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Abstract

Recent works, both numerical and experimental, on residual stress and geometrical errors in selective laser melting-produced
parts highlighted the preponderance of these phenomena. However, their mechanisms of appearance are not yet fully
explained. An in-house finite element model was developed and implemented to reproduce their formations. The consistence
of the model with existing simulation results and with respect to experimental observations was checked. Simulations were
then performed using a computational design of experiments to better comprehend the underlying phenomena and the
influence of the laser speed and power. Relationships between process parameters and residual stress, plastic strain, and
geometrical errors formations have been put into evidence which can support optimization procedures at design stage.
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Introduction

Despite the recent interest in the selective laser melting
(SLM) technology and the growing number of studies
published on this topic, defects of thermo-mechanical
nature are still not fully addressed.! One of these
defects, distortions, i.e. the deformation of the part
due thermal stress release, is still being intensely dis-
cussed.” ® These macro-scale distortions are related to
the stresses that develop between layers and grow
throughout the part build-up.” However, having
remaining compressive stress after the part is separated
from its substrate may as well have desirable effects
such as increasing the part life.® It is thus of interest
to investigate the formation of these stresses in order to
become able to control them at design stage and main-
tain them at non-detrimental levels and orientations.’

Another typical defect observed in SLM-built part,
and more specifically in small structure, is the discrep-
ancy between nominal and as-built geometries. Demir
and Previtali'® reported that SLM-processed stent
struts were consistently thicker than their designed
dimensions which can prove to be very detrimental on
their functionality.!’ That is why the final dimensions of
the processed area were studied to characterize the dis-
crepancies between nominal and actual final geometries.

The classical approach to deal with the SLM mech-
anical modeling at macro-scale is based on the small-
strain assumption, i.e. the strains are considered small

enough to neglect the effects of the geometry deform-
ation during the process. This assumption simplifies
the mechanical problem zeroing quantities that repre-
sent the stress dependence on the configuration. To
the authors’ knowledge, a large majority of mechan-
ical solvers previously developed for SLM simulations
used this small strain approach. Indeed, these refer-
ences include part-scale models, i.e. of dimensions of
few centimeters. The displacements involved being of
few hundreds microns (see, for example, Buchbinder
et al.” and Hodge et al.'?), considering them as infini-
tesimal is adapted and allows considerable computa-
tional savings. However, Ganeriwala et al.'* recently
utilized a finite deformation algorithm for part-scale
additive manufacturing of Ti-6Al-4V simulation. It
shows encouraging results in terms of residual stress
predictions. Moreover, considering the size of the pre-
sent models (few millimeters), the small strain
assumption did not appear valid anymore.
Indeed, these deformations can hardly be considered
as infinitesimal at millimeter scale. That is why, unlike
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most of the previously developed mechanical solver
for SLM simulation, a finite strain approach was
adopted that did not neglect the geometrical
nonlinearities.

Considering its relative novelty, the model develop-
ment methodology is thoroughly described in the first
section. Then the model numerical validation and
consistency verification with respect to experimentally
observed phenomena are introduced. It is followed by
the model utilization to characterize the influence of
two major process parameters (laser power P and
laser speed v) on the thermo-mechanical behavior of
SLM-process metals. This characterization was per-
formed using AISI316L stainless steel, since the ther-
mal part of the solver was experimentally validated
for this material."* Moreover, being a widely used
metal, its mechanical property are rather well docu-
mented. Finally, the computational design of experi-
ment that was put into use and the related parametric
analysis are presented together with the main results
they brought.

Methods
Modeling approach

The thermo-mechanical model is weakly coupled,
meaning that the temperature influences the mechanical

variables, but the displacements do not have an impact
on the thermal field. This translates into a staggered
resolution that is illustrated in Figure 1. More specific-
ally, at each time step, the mechanical solver uses the
thermal field and levels of fusion that are computed by
the thermal one, as presented in a previous publica-
tion."* For that reason, solely the mechanical aspect
of the model will be introduced here.

Two phenomena were assumed to have a signifi-
cant effect on the part mechanical behavior and will
thus be represented in the model:

1. The powder shrinkage to consolidated material;
2. The stress produced by the thermal gradients.

The first one was included for three main motives:

e address the ““‘mass creation” issue in the thermal
model. Indeed, during the phase change powder
— consolidated material, the density at a node
evolves from the one of the powder to the one of
the bulk material. However, the volume is kept
constant since the mesh is fixed which leads to arti-
ficial and not-physical mass creation.

e Quantify the real dimensions of the part with
respect to the input file specifications.

e Consider the deformed element geometry to com-
pute the stress.

Mesh ¢

reation

r

Data initia

Initial conditions

lization &

NO

Data reinitialization
& B.C

Thermal solver

.

A

Mechanical solver

Mesh deformation < END )

Figure |. Thermo-mechanical simulation flowchart.



2024

Proc IMechE Part C: | Mechanical Engineering Science 235(11)

The second phenomenon was modeled because the
stresses induced by the thermal deformations are the
main responsible for the distortions observed at the
macro-level. It is thus of great interest to study how
the process creates and influences them.

Kinematic and kinetic approaches

This subsection will explain the kinematic and kinetic
approaches adopted for the description of the phe-
nomena experienced by the material during the
SLM process.

Multiplicative  split of the deformation gradient. The
approach chosen to tackle the finite strain FE simu-
lation of the SLM process is the multiplicative split of
the deformation gradient. It was put into use to derive
a model that takes into account the major phenomena
creating stress and strain in SLM-processed metals.
The decomposition that was adopted is developed in
equation (1) and is illustrated in red in Figure 2

F = FPF°F°F’ (1)

where each term F°® represents a component of the
total deformation gradient F :g—; produced by the
various mechanical phenomena to which the material
is subjected to. The computation of the different com-
ponents of this decomposition will be detailed in the
following sections.

Elasto-viscoplastic ~ deformations. As  explained in
Lemaitre and Chaboche,' the viscous phenomena
begin to arise at roughly one-third of the material
melting temperature. Considering that in the SLM
process the metal is fully melted, these effects have
to be taken into account. Moreover, from a more
computational point of view, using a viscoplasticity
scheme is more general, numerically more stable,
and the rate-independent case can be dealt with as a
limit case.'® SLM-processed metals endure elevated
thermal gradients due to the local heating of the
laser as well as extreme heating/cooling rates due to
the laser high energy density. It is substantially prob-
able that these phenomena would lead to stress levels
that will exceed the material yield stress. Plasticity
thus has to be included in the stress-state computa-
tions. In line with these considerations, the metal
behavior will be modeled using a visco-hyperelastic-
plastic constitutive model. To fully define such model,
three functions have to be specified: the strain energy
density y, the flow rule (also called yield criterion) fy,
and a viscoplastic function g,. These functions will be
defined in the next sections and are followed by a brief
presentation of the numerical method implemented to
solve the elasto-viscoplastic problem.

Governing equations. The specific free energy ¥ per unit
volume is assumed to depend on two variables: the
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Figure 2. Mechanical model kinematics (red path) and for-
mulation (blue path).

elastic left Cauchy-Green strain tensor b® = F°F°¢7
and a scalar internal variable & that describes the iso-
tropic hardening of the material. It is assumed that
the material is isotropic and remains so during the
process, which is admissible for moderated strains,'’
and ¥ is an isotropic function of b°.

Utilizing data defined in the principal space, it is
possible and convenient to use a reduced vector nota-
tion as introduced by Simo'®

B &
B=1By¢. &£=1&¢, 1=11 2
ﬂ3 8§ 1

The function that was chosen to model the free
energy ¥ and thus defined the constitutive behav-
ior of the 316L stainless steel is displayed in
equation (3)

~ 1
Y 6) =5 1e] + &5 + &SI+ pl(e))’
+ (£’ + (9] + K(®)

A3)

The free energy is quadratic in the logarithmic
principal elastic stretches, defined by
€4 =1n(4y), A =1,2,3. In this function, elastic and
plastic effects are uncoupled. The elastic part of ¥
corresponds to a stretch-based hyperelastic material.
It is similar to the strain energy function used in small
strain linear elasticity, except for the fact that loga-
rithmic strain is used instead of the infinitesimal one."?
Assuming such a free energy function provides the
following stress/strain relationship

p=as, wherea=11Q1+2ul; 4)

where 4 and u are the Lamé coefficients, p is the
vector containing the eigenvalues of the Kirchhoff
stress, & is the vector of principal logarithmic elastic
strains, a is the 3 x 3 matrix of elastic moduli in prin-
cipal space, I5 is the 3 x 3 identity matrix, and K is a
function describing the isotropic hardening behavior
of the material. The yield criterion fy was set to be the
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Von Mises criterion, classically used for metal.'” It is
given by equation (5) using principal stress

Sy(B.§) = lldev(B)I| — \/g[ay + K'(®)] ®)

The model thus obtained by assuming these forms
of free energy function and yield criterion is the
canonical J2-viscoplasticity, extensively discussed in
the literature and classically used to represent the
elasto-plastic and elasto-viscoplastic behaviors of
metals (see, for example, Doghri*® and Simo and
Hughes?").

The next and last function to define to fully char-
acterize the elasto-viscoplastic mechanical problem
is the viscoplastic function g,,. The widely used
Norton’s power law?® was selected. It is defined by
the following equation

gl =2 (”) ©)

oy

where the exponent was set to m=1 and 5 is a tem-
perature-dependent ““fluidity” coefficient, somewhat
referring at the capacity that a solid has to behave
like a fluid. To retrieve the rate-independent case,
one has to set 7=0.

The numerical method chosen to deal with elasto-
viscoplasticity was adapted from the one first intro-
duced by Simo.'® Its main component is a return-map
algorithm in principal space. The algorithm, per-
formed at each quadrature point of each element, is
formed of the following steps:

1. Computation of the local total deformation-gradi-
ent increment dF = V(Au) + I;

2. Removal of the shrinkage and thermal deform-

ations from dF;

Computation of an elastic trial state;

4. Computation of the eigenvalues of the trial strain

tensor b®":

Return mapping algorithm in principal space;

6. Update of the intermediate configuration.

W

e

This algorithm needs as input the local displace-
ment increment vector Au computed solving the
global equilibrium of equation (14). Then, based on
the internal variables at previous time step, the mater-
ial state at the current one is computed. Details on the
practical implementation of such an algorithm are
available in Simo and Hughes>! and
Ibrahimbegovic.”> However, features specific to the
problem at hand had to be added. The original
method considers a deformation gradient composed
of two parts: F® and FP. It can thus be applied directly
in the current problem considering as deformed (spa-
tial) configuration Q, instead of the actual one,
namely €, (see Figure 2). Some manipulations
were thus necessary to not only compute the

elasto-viscoplastic effects using Simo’s method with
the appropriate input deformation gradient, but also
to retrieve the output data expressed in the actual
reference configuration in order to solve the equilib-
rium of equation (14).

These additional steps are the following:

1. Removal of the thermal and
deformations.

shrinkage

In order to properly use Simo’s algorithm, it is
necessary to use a deformation-gradient increment
that does not include the deformations due to shrink-
age and dilatation. Similarly, to the decomposition of
the total deformation gradient of equation (1), the
deformation-gradient increment can be expressed as:
dF = dF°dFPdF°dF°. From this formula, an elasto-vis-
coplastic deformation-gradient increment can be
retrieved. It is the one that is used to compute the
elastic trial state and that enters the return map
algorithm

dF*® — dFedF® — dF’ ' dF*'dF (7

2. Push-forward of the local tangent and Kirchhoff
stress tensor to the spatial configuration.

The local tangent ¢ and Kirchhoff stress tensor t,
that are the outputs of the viscoplastic algorithm, are
computed in the elastic configuration Q, of the
Figure 2. It is necessary to transport them to the
appropriate configuration using adequate pull-back
and push-forward operations (see, for example,
Holzapfel*®). The global equilibrium equation (see
equation (14)) includes the global tangent C and
second Piola—Kirchhoff stress tensor S that are
assembled using integration point data returned by
the local elasto-plasticity algorithm. They are both
material tensors i.e. they are expressed in the initial
configuration €. To transport ¢ to this configuration,
a pull-back transformation is made using the defor-
mation-gradient tensor F® = F*” F*"'F. To assemble
S, the Kirchhoff stress tensor returned by the visco-
plastic algorithm, which is a spatial tensor, is first
pushed forward to the current configuration €2,
using the deformation-gradient F® = F’F°. Then,
using proper relationships, the second Piola—
Kirchhoff stress tensor 1is retrieved from the
Kirchhoff stress tensor. All the calculations related
to those transformations are regrouped in
equation (8)

P ol 1 —1
Cuke =¥y F cijF gy,
T
tq,,, = F*tF” (®)

SIP = F_]TQ F_T

n+1
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The superscript [e]"” precises that the variable is
considered at integration point level, where an ambi-
guity is present.

Thermal deformations. The thermal strains are intro-
duced through a deformation-gradient Fy. Since isot-
ropy is assumed, Fy is a spherical tensor
(A = kI k € R). As proposed by Vujosevic,* the for-
mula of equation (9) was used to calculate the defor-
mation-gradient tensor variation due to the
temperature evolution between times 7, and 7,

711+1

dF, :f HT)AT1 9)
T

where (7) is the temperature-dependent thermal

expansion coefficient.

Shrinkage deformations. The shrinkage deformations
are computed using the powder fraction variable
returned by the thermal model phase change algo-
rithm. As for the thermal deformations, isotropy is
assumed which lead to a spherical tensor computed
as in equation (10). This formula describes the defor-
mation-gradient tensor variation relative to the
volume reduction due to the transformation from
powder of porosity ¢ to consolidated material
between times 7,, and 7,

1— 1/3
dF, = ()1 where: ¢() = (1_.;1”12) (10)
n+

Mechanical properties

To fully characterize the elastic behavior of the
316 L stainless steel, two parameters are needed.
Here, the Poisson ratio and the Young modulus
were chosen. The Poisson ratio v was kept at a con-
stant value of 0.29. The Young modulus E (GPa) is
temperature-dependent  according to formulas
obtained with interpolations and extrapolations
based on experimental data from Panayiotis and
Marc-Jean®

205, for T<830K
205.91 — 2.6913¢

(e72)(T +273.15)
—4.1876e~5(T + 273.15)%, for T<1125K

—0.0169 x T+ 27.89, for T< Ty
2e —2, for T > Tyl

)

E(T) =

The yield stress oy and the thermal expansion coef-
ficient are considered temperature-dependent as well.
Their thermal evolutions were inter- and extrapolated

from experimental data retrieved from Panayiotis and
Marc-Jean.?

The hardening behavior of the 316 L stainless steel
was assumed to be isotropic-only. The main motive
for which the kinematic hardening was not repre-
sented is that the Bauschinger effect is not preponder-
ant, which legitimates the use of an isotropic
hardening function.”® The isotropic hardening func-
tion K was defined as a Voce-type function?’ given by
equation (12)

K(§) = (o5 — o1)(1 — exp(n,6)) (12)

It can be interpreted as the evolution of the yield
stress from an initial value o to a saturation value oy.
The constant 7, determines the rate at which the ini-
tial stress tends to the saturation value. This function
was proved to best represent the hardening behavior
of the 316 L stainless steel, especially at elevated tem-
peratures, as shown by Singh.®® The functions
describing the temperature-dependence of the three
parameters oy, oy, and n, were obtained from inter
and extrapolation of the data reported in this article.
The values that were used are the ones determined for
the smallest grain size available (i.e. 2.7 um). Indeed,
considering the very high (>10° K/s**% cooling
rates to which the material is exposed during its
SLM processing, the grain sizes are in the order of
magnitude of few microns or less.’!

Fluidity coefficient. The fluidity coefficient # (Pa~' s")
in solid phase at high temperature is comparable to
a viscosity, i.e. it represents the ability that a solid
has to behave like a fluid. It was modeled with
a temperature-dependent function. Data on this par-
ameter, especially in the solid-phase temperature
range, is scarce. A model was assumed, based
on the Lemaitre recommendation,'”> which states
that viscous effects appear at roughly one-
third of the melting temperature. Consequently, a
null viscosity was set for 7'< %, and the liquid steel
viscosity, retrieved from Li and Thomas,** was used
when T'= Ty, i.e. 6.7 x 107> Pa~! s7!. A linear inter-
polation was then made between these two
temperatures.

Treatment of the liquid/mushy zone and the powder. The
material that is modeled is present under three
phases: bulk, liquid, and powder. The bulk material
behavior does not apply for the two other phases, for
which specific constitutive equations had to be imple-
mented. The method that was adopted is the one pro-
posed by Koric and Thomas™ for molten metal
modeling in casting simulations. The objective is to
derive a constitutive behavior that imposes negligible
stress in these phases without introducing a different
treatment of the liquid/powder elements in the finite
element assembling, which would be cumbersome
from a technical point of view. Among the two
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techniques suggested in this reference, the so-called
“elastic-perfectly plastic model” was selected. It con-
sists in setting for elements with 7> To1 or ypow > 0 a
low yield stress (typically 0.02 MPa) to enforce small
stress values without giving birth to numerical issues,
with no hardening, and then use the regular radial-
return algorithm.

Model formulation

The equation which governs the mechanical
behavior of the part is the linear momentum equilib-
rium. Although the transient thermal field induces
dynamic variations of stress and strain around the
laser beam-heated area, the global domain remains
static during the process. Consequently, the problem
was considered as quasi-static (similar to Hodge
et al.,'” Denlinger et al.,** and Peng et al.*® for

example).
This translates into the following strong
formulation
V:-P+by = in
u =u onl)p (13)
T =T onTly

where the first line corresponds to the static linear
momentum equilibrium expressed in terms of the
first Piola—Kirchhoff stress P and where by is the
body forces density inside the part (here, gravity
forces only) and u. The two subsequent lines corres-
pond to the boundary conditions, where u is a pre-
scribed displacement and T is a prescribed force. In
the present problem, there are neither imposed dis-
placement nor force, so T = 0 and W = 0. An illustra-
tion of the domain and the surface corresponding to
I'p and 'y can be found in Figure 3.

For later use, the second Kirchhoff stress tensor
S =F 1. P is introduced.

The approach chosen to derive the linearized weak
formulation is the so-called updated Lagrange (UL)
formulation. Its main characteristic is to take as ref-
erence configuration the last converged one, Q,,
instead of the initial €0.>® The main advantage of
this method for the present problem is the possibility
to compute the thermal problem on the “real” geom-
etry. Indeed, the mesh is updated at the end of every
time step, so the thermal transfers are computed on
the last converged configuration. Since the deform-
ation map ¢ includes the volume reduction resulting
from the transformation from powder to consolidated
material, the issue of ““mass creation” introduced ear-
lier is addressed leaving untouched the thermal prob-
lem formulation and implementation. This is of great
interest from a practical point of view with respect to
a total Lagrange (TL) formulation. The linearized UL

formulation of the problem to be solved finally reads
(technical details on the calculations are available in
Leger et al.’’)

fg $: (V1 (Ag) - Yy, (5p)dV,

+ f € (Faonn” - V] (Ag)):
Q”
(Fnen+1T'v)€,,(8(p))dV; =

/ bn . 5‘Pd Vn - / S: (Fnen+1T : V§”(8¢))d Vn
Q,

o
(14)
With
1
= b
" det(Fon,)
~ 1
Cmnop = mq:ijkl(F0—>H)mi(F0—>n)l1j(F0—>H)()k(F0—>ﬂ)p[
~ 1
= Fo.,-S-FI
de'[(F()_m) 0 0—n

The last two relationships correspond, respectively,
to the push-forward of the tangent and the second
Piola—Kirchhoff stress from the initial configuration
Qp to the reference configuration Q,, as illustrated in
Figure 2.

3¢ is a test function, while Ag is the unknown
deformation map variation to be computed.

Numerical validation and consistency
check of the model

Numerical validation

The mechanical solver was confronted with the
numerical results from the literature. For that pur-
pose, the uniaxial tension test of Auricchio and
Taylor’® was reproduced to verify the correct imple-
mentation of the mechanical solver and the material
constitutive behavior. It consists in a single cubic
element loaded controlling the displacements. The
two models were compared in terms of stress/strain
response. The results are displayed in Figure 4.

Physical consistency of the model

To partially address the lack of experimental valid-
ation of the mechanical model, its physical consist-
ency was checked in order to qualitatively verify its
ability to represent the SLM process millimeter-scale
thermo-mechanical phenomena. Generally speaking,
thermal stresses appear when a volume cannot
expand or shrink without impediment after a local
temperature modification. More specifically, two
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Neumann BC
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Dirichlet BC

Laser source

Dirichlet BC

uy =10
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Figure 3. Model and mechanical boundary conditions. uy stands for the displacement component normal to the surface.
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Figure 4. Numerical validation computational experiment results: (a) results from Auricchio & Taylor; (b) our results.
phenomena were identified in the literature (see, for substrate or the previously built layers.

example, Mercelis and Kruth® and Shiomi et al.* or
Simson et al*') as creating the residual stresses
observed in the SLM-built parts:

e The thermal-gradient mechanism (TGM): The ther-
mal expansion of the laser-heated material is hin-
dered by the surrounding colder material which
results in compressive stress in the heat-affected
zone. Since the yield stress at high temperature is
low, plastic strain appears to limit the stress to
admissible levels. When the laser moves away
from the area, the material cools down and shrinks.
During this stage, tensile stress appears in the plas-
tically deformed area.

The cool down: At the end of its processing, the top
layer is at a higher temperature than either the

Consequently, its contraction is larger than in the
underneath material. This contraction is thus
restrained, which gives birth to tensile stress in
the top layer and compressive stress in the under-
lying ones.

Figure 5 shows a section of the part during the
processing of the first track along the xz plane. The
areas of tension-compression characteristic of
the TGM described earlier are clearly visible and in
accordance with the temperature and plastic strain
fields. Indeed, the accumulated plastic strain &, that
has non-zero values only where plastic deformation
occurs, is significantly high close to the surface,
where the model predicts the appearance of tensile
stress.



Bruna-Rosso et al.

2029

T(K)
1000 1.621e+03

—

2.836e+02

I- I

L,

..l

X

0.000e+00 0.01 2.797e-02

'

Oyy (Pa)

-1.171e+09  -5e+8  3.350e+08

|

Oy (Pa)
-8.670e+08 -5e+8 2.477e+08

Figure 5. TGM: the blue arrows indicate the area in compression in the heat affected zone. Yellow arrows indicate the area in

tension after the laser moved away.

Figure 6 shows the same section at the end of the
simulation. The superficial area of tensile stress and
the underneath area of compression typical of the cool
down mechanism are distinctly observable.

Finally, as experimentally evidenced by Simson
et al.,*! the through-thickness evolution of the stress
in the final state features an initial increase on a
reduced height, followed by a monotonous decrease.
This behavior was reproduced by the model as illu-
strated in Figure 7. This figure shows as well that the
stress in the building direction is significantly smaller
than in the x and y directions. This is in accordance
with the fact that the upper surface has a free BC that
allows the part to expand freely in the z direction. All
the preceding observations confirm that the simula-
tion was able to reproduce the main empirically evi-
denced phenomena that give birth to residual stress
and plastic strain. In absence of a full experimental
validation, it nonetheless ensures the qualitative cor-
rect thermo-mechanical behavior of the model.

Analyses of residual stress, plastic strain,
and geometrical error formation
mechanisms

Computational experiments

The computational experiment that was run is
illustrated in Figure 8. It is a millimeter-scale, three-
track, and single-layer simulation. A 2x2 full-
factorial design of experiment with a central point
was performed, the variable parameters being the
laser speed and power. The corresponding sets of vari-
able parameters are regrouped in Table 1. The main
fixed parameters in the computational experiments
are listed in Table 2. The processing time amounts
to 28 ms, and extra 100 ms of cooling time was simu-
lated. The time discretization was performed using a
classic backward Euler scheme. The time-step size was
set to 4 x 107> s. The space discretization was done

using standard Lagrange linear elements. At the
beginning of the simulation, the total number of elem-
ent amounted to 26,400 and fluctuated subsequently
according to a mesh refinement algorithm. The model
was implemented using the open source finite element
library deal.IT*? (more details on the technical aspects
can be found in a previous article'*). The simulations
lasted approximately 8 h each on a desktop computer
(four cores (eight threads) at 3.6 GHz with 24 Go of
memory). The Newton iterations were deemed to have
converged when the normalized residual norm (norm
of the residual divided by the norm of the residual at
the first iteration) was smaller than 107,

The outputs of the simulation that will be studied
are the widths and lengths of the three melted tracks,
the Von Mises stress, and the accumulated plastic
strain values in the processed material.

Preliminary thermal-only simulations showed that
the couple (100,500) is outside the processing window
and will not be considered in the thermo-mechanical
analysis.

Analyses of residual stress and plastic strain
formations

The particularly high levels of stress in the final state
are in accordance with the previous works, both
experimental® and numerical.***** Indeed, the elevated
cooling rates give birth to high thermal strains and as
a consequence, high stresses. These mechanisms
explain as well the position of the local maxima.
They are positioned at the beginning and the end of
each track. It corresponds to the peak temperatures as
well as the highest heating/cooling rate locations, due
to the laser ignitions and extinctions. This phenom-
enon was observed experimentally by Zhang et al.*’
However, the maximal values visible in Figure 9
(1.5 x 10> MPa) may appear as disproportionate in
regard of the ultimate tensile stress of the AISI316L
stainless steel, i.e. 500 MPa at room temperature.*
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This is most probably due to the Voce’s parameters
temperature dependence. The functions that were
implemented are inter- and extrapolation from data
retrieved from the literature and may thus contain
imprecisions, especially at high temperatures where
the empirical information is scarce. It is probable
that overestimation of the hardening saturation
stress o, at high temperature led to excessive yield
stress values and as a consequence to oversize Von
Mises stress. This highlights the utility of a thorough
experimental calibration procedure to feed the model
with accurate and reliable input data. As displayed in
Figure 10, local peaks of plastic strains are located as
well at the track extremities. Similar to the residual
stress, it can be explained by the fact that the heating/
cooling rates are the highest in these areas. More glo-
bally, Figure 11 discloses that the plastic strains tend
to decrease with the number of processed track, i.e.
Erackl > &Erack2 > &Erack3. This is in accordance with the
maximal temperature and temperature rates time evo-
lutions, illustrated in Figure 13(a) and (b). In fact, the
time dependence of the global temperature maximum
is enlightening to explain the final stress and plastic
strain fields. First, it can be seen on this graph that the
maximal temperature in the steady state of one track
tends to diminish when the number of track increases.
Then, it shows peak values of both temperature and
temperature rates at the times corresponding to the
first instant of each track processing. Their localiza-
tions are at the beginning of the tracks, i.e. where the
laser beam is being switched on and the heating rates
are the highest, as shown in Figure 13(b). These obser-
vations underline the relationship between peak

temperatures, cooling rates, and plastic strain forma-
tion. This makes it possible to use thermal data to
anticipate the most critical areas in terms of distortion
defects, which is of importance during the process
design stage. It also highlights the importance of tem-
perature field control in the quality of the parts pro-
duced by SLM.

Figure 12 presents more specifically the time evo-
lution during the cooling phase of the temperature,
stress, and plastic strain. It can be seen that the
major part of the residual stress develops during the
first instants after the end of the processing phase, i.e.
right after the laser is being switched off. This is con-
sistent with the fact that it corresponds with the
period in which cooling rates are the highest, and in
which the material is getting stiffer, due to the thermal
dependence of the 316 L stainless steel mechanical
properties. Indeed, the global temperature decreases
rapidly since no heat input is provided to the part
anymore. Figure 12 also discloses an increase in the
plastic strain values at constant stress (between
t=0.0944s and t=0.1284s). While most of the ther-
mal stress develops in the first milliseconds after the
heat source is being switched off, the plastic strains
continue to grow up until the end of the simulation.
These deformations at constant stress in the area
where the material is at a high temperature reflect
the viscoplastic behavior implemented.

Strategies to lower the residual stresses were
already proposed in the literature. One of the most
popular and easy to implement is substrate preheat-
ing.*>*7 It has two effects in reducing the stress: it
diminishes the thermal gradients by increasing the
material minimum temperature and lowering the
rigidity of the substrate since the Young modulus is
reduced when the material is heated.

All the previous observations lead to a conclusion
similar to the one that was drawn by Bruna-Rosso
et al."* for the reduction of lack of fusion porosities,
i.e. in-process variable parameters would be beneficial
to improve the quality of the part produced. While the
lack of fusion defects reduction suggested to modify
the scanning strategy between the first tracks, the
plastic strain and residual stress creation mechanisms
put forward the utility of varying the process param-
eters within the track itself. In fact, considering a
gradual laser power at the beginning and the end of
each track, i.e. a progressive switch on/switch off of
the laser beam appeared as relevant in order to reduce
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Figure 8. Computational experiment scheme.

Table 1. Preliminary design of experiment for the mechanical
solver validation.

Laser speed Laser Energy density
Set # (mm/s) power (W) ( mm™3)
0 500 100 57
| 500 200 114
2 350 150 122
3 200 100 143
4 200 200 285

the heating/cooling rates. It would compensate the
acceleration/deceleration of the beam when a track
starts or ends to keep the energy density constant.
Empirical studies are investigating this topic.*®
However, considering the current industrial hardware
capacities, scanning strategies with variable param-
eters cannot be implemented on commercial machines
and are thus for now confined to the research field.

Then, the results of the four simulations of the
parametric analysis were compared and analyzed in
terms of maximal and mean global Von Mises stress
and residual strain at the last computed time step.
Their values for the four sets of parameters simulated
are given in Tables 3 and 4.

As discussed in the previous section, the values of
the Von Mises stress are excessive with respect to the
AISI stainless steel mechanical properties. Moreover,
the lack of experimental validation prevents to con-
sider the absolute values of the simulation outputs as
fully reliable. However, the model behavior is consist-
ent with the experimental observations. That is why it
was deemed relevant to investigate relative levels and
tendency with respect to input parameters
modifications.

A close relationship between plastic strain and
maximal temperature is disclosed when plotting the
curve &Emax = f(Tmax), as displayed in Figure 14. The
linear regression has a good coefficient of determin-
ation R? which supports the affine correlation between
the maximal plastic strain and the maximal

Table 2. Simulation campaign fixed parameters.

Parameter Value

Material AISI316L stainless steel
Powder granulometry 30 um

Hatching distance 70 um

Layer thickness 50 pm

Convection coefficient 20Wm~2 K™
Ambient temperature 298K

temperature. It can be explained by the fact that
high peak temperatures give birth locally to elevated
thermal gradients and cooling rates which then engen-
der thermal deformations and stress beyond the metal
elastic limit. Table 4 shows that locally, the plastic
strains can exceed 20%. As a consequence, one
should keep in mind to adjust the process parameters
and the experimental setup to moderate peak tem-
peratures, such as an efficient gas flow when the
laser is working.

The mean of the Von Mises stress oyy seems to
depend linearly on the laser power, but has a more
complicated behavior with respect to the laser vel-
ocity. Indeed, when observing the curve of
Figure 15, a correlation can be found between vy
and the fraction v—’; with an excellent coefficient of
determination. This result is interesting from a pro-
cess design point of view. Indeed, for now, one of the
main variables taken into account to determine
whether a set of parameter was suitable or not is the
volumetric energy density. It was proven to be effi-
cient in determining the region where the heat input
is high enough to melt the required amount of
powder. However, Bertoli et al.*’ demonstrated that
this factor alone is not sufficient to determine the
feasibility window. Other criteria should be con-
sidered to further restrain this window to avoid the
appearance of other detrimental phenomena such as
the keyhole effect. For instance, King et al.”® pro-
posed the normalized enthalpy <6 to determine the
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Figure 10. Final plastic strain field. Orange arrows indicate the strain peak value points—parameter set #l.

adapted process parameters to remain in conduction
mode. The result correlating oyy to the fraction v—’;
suggests that an additional criteria could be con-
sidered to avoid excessive residual stress and conse-
quently excessive thermal distortions. This criterion
would be directly related to V%. However, a deeper
and broader investigation to determine a more reli-
able and widely valid relationship oyy = f(vig) is

necessary, since only four sets of parameters were
tested to obtain the regression of Figure 15.

Final geometry analyses. Performing thermo-mechanical
simulations demonstrated that the local geometry
does not depend on mechanical phenomena but
rather on thermal ones, i.e. on the molten pool dimen-
sions. Table 5 regroups the final dimensions of the
three tracks together for the four sets of parameters
simulated. The parametric analysis showed that the
width is strongly related to the process parameters

and more specifically to the energy input density.
Indeed, simulation 3 shows an increase in the width
of 80 um with respect to the others. It corresponds to
an excess of 230 um with respect to the nominal width
(140 um) while the other simulations showed an excess
of 150 um. This phenomenon was shown experimen-
tally by Demir and Previtali.'® The authors report
errors of 50-250 um depending on the process param-
eters and scanning strategy, which is in the same order
of magnitude than the numerical results. Here appears
the influence of the melt pool size on the final local
dimensional properties of the part. Indeed, increased
dimensions of the molten pool result in oversize con-
solidated material area, as illustrated in Figure 16.
However, the rather coarse spatial discretization did
not allow to discriminate the set of parameters with
similar energy density.

The length appeared less sensitive to the process
parameters. It can be explained as follows: first, the
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Figure 12. Temperature, Cauchy stress and plastic strain evolutions during the cooling phase—parameter set #I.

heat source depends on the laser speed through its
geometric parameters as described in Bruna-Rosso
et al.'* The extra length depends on the size of the
melt pool solely at the beginning and the end of each

track, unlike the width that is influenced by its dimen-
sions all along the track. Second, the laser speed is
position-dependent, i.e. it accelerates at the beginning
of each track and decelerates at the end at a constant
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rate. Consequently, in the first instant of each track
processing, the speed is the same for all the set of
parameters, which explains the similar melt pool
dimensions it these areas and the following similar
lengths. However, the error between nominal (5 mm)
and measured length (5.5-5.6 mm) is significant. This
is most probably due to an overestimation of the
length by the simulations. In fact, the Goldak heat
input model was developed and experimentally cali-
brated in permanent regime. As a result, it provides
reliable quantitative results in permanent regime, i.e.
when the melt pool reaches a stable size, as demon-
strated by Bruna-Rosso et al.'* However, at the begin-
ning and end of the tracks, the transient regime is less
well represented by the heat input model that is

implemented. These results suggest to better describe
the laser source in these regions to obtain more accur-
ate track length estimations.

The results showed as well the importance of
taking into account the extra thickness of molten
material brought by the melt pool dimensions in the
part and process design to avoid the geometrical
errors beforehand, i.e. at design stage. Indeed, the dis-
crepancy induced by this phenomenon amounts from
few dozen to few hundreds of microns. If this is
acceptable for many applications where the dimen-
sions of the parts are few dozen millimeters or more,
or where a post-processing stage can correct it, this
difference between designed and actual geometry can
be very detrimental for applications such as
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Table 3. Global thermo-mechanical simulations Von Mises stress mean values and maximal values.

Laser speed (mm/s)

Laser power (W)

Energy density (Jmm'3)

Max. stress (MPa)

Mean stress (MPa)

500 200 114 923 I.15 x 10°
350 150 122 899 1.13 x 103
200 100 143 865 .12 x 10
200 200 285 978 1.45 x 10
Table 4. Global thermo-mechanical simulations plastic strain mean values and maximal values.
Laser speed (mm/s) Laser power (W) Energy density (J mm ) Max. strain Mean strain
500 200 114 0.030 0.35
350 150 122 0.029 0.18
200 100 143 0.028 0.082
200 200 285 0.051 0.23
0.35-
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Table 5. Final melted area widths and lengths.

Energy density (J mm~3) Length (mm) Width (mm)
114 5.6 0.29
122 5.6 0.29
143 5.5 0.29
285 5.6 0.37

A §

s 4

—p— Laser trajectory

= Melt pool at different times
Nominal final geometry
i1 Actual final geometry

Figure 16. Mechanism of oversize dimensions due to the
melt-pool.

cardiovascular stents'® due to their geometrical speci-
ficities. Indeed, their minute dimensions, with strut
widths as small as few hundreds microns, render the
error proportionally significant. Moreover, their intri-
cate geometries make post-process corrections chal-
lenging while their functionality strongly depends on
their size.'" The model can provide an estimation of
the downsizing of the theoretical geometry to perform
in order to compensate the extra molten material. The
computational experiment spatial discretization is
rather coarse with respect to the geometry of the
molten metal area. This brings significant uncertainty
and error to the dimension measurements. However,
simulations with a finer mesh can be planned to have
a better quantification of the effect of the melt-pool
dimensions on the geometrical errors. Besides, a wider
range of parameters could be tested, and an adapted
computational DoE could be performed. A simple
empirical model can be derived linking the process
parameters (P,v) and the scaling to apply to the nom-
inal dimensions in order to obtain a final geometry
closer to the nominal one. Moreover, if a more loca-
lized and precise correction is to be planned due to
the space variations of the melt pool dimensions, the
model can provide quantitative information on the
local process parameters modifications to make to
compensate them.

Conclusion

An original finite strain mechanical solver was devel-
oped for stress, plastic strain, and final geometry com-
putation at millimeter scale during the SLM of
AISI316L stainless steel powder. It takes as input
the temperature and powder fraction fields calculated
using a previously developed thermal model. The

residual stresses, plastic strains, and distortions result-
ing from the material temperature variations and
phase transformations were computed in order to
better understand and predict the geometrical errors.
This thermo-elasto-viscoplastic FEM was first numer-
ically validated since it was able to replicate data
retrieved from the literature. Its ability to represent
the in-process thermo-mechanical behavior of the
manufactured material was then qualitatively
checked. Comparisons of the computed data with
empirical results from the literature showed the ability
of the model to reproduce the two major phenomena,
namely thermal gradients and cooling down. Finally,
a computational design of experiment was run to get
insight into the formation mechanisms of plastic
strain and residual stress and the effects of two of
the main SLM process parameters, namely powder
P and laser speed v. Their effects on the final geometry
of the final melted area dimensions were scrutinized.
The results obtained from these simulations led to the
main following conclusions:

e Areas that are the most at risk of cracking due to
excessive stress are located close to the lateral sur-
faces of the built part;

e The peak plastic strain values, reflecting the risk of
cracking, are correlated to the maximal
temperatures;

e Local geometrical errors are related to thermal
phenomena only (excessive/too small melt pool
dimensions);

e The heat input model should be modified in the
transient regime to have more accurate estimations
of the track lengths;

e Global geometrical errors (distortions), conse-
quence of residual stresses, can be tuned through
the fraction %;

e Local variation of the heat input volumetric dens-
ity due to the laser speed variations should be com-
pensated by a varying power;

e Excessive heating/cooling rates at laser ignition/
extinction should be avoided gradually switching
on the beam.

The thermo-mechanical model cannot be used as a
stand-alone tool allowing for a complete planning
of the SLM strategy due to its limitations in terms
of domains that can be simulated. Besides,
the model lacks a full experimental validation to
ensure its capacity to provide reliable quantitative
results. Nevertheless, considering its ability to repro-
duce experimentally observed main SLM mechan-
ical phenomena, the thermo-mechanical model can
be of use in a process parameter design procedure to
orientate and thus speed up their optimization.
Indeed, it gives insight into the effects of these param-
eter variations thus providing information on
how they could be modified to improve the final
part quality.
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Appendix

Notation

a 3 x 3 matrix of elastic moduli in prin-
cipal space (Pa)

by density of body forces (N/m?)

b® elastic left Cauchy—Green strain tensor
b = FeFeT

B vector of principal stress (Pa)

dF°P elasto-viscoplastic deformation gradi-
ent increment

E Young modulus (Pa)

fy yield criterion

F deformation gradient tensor g—)’é

F’ part of the deformation gradient tensor
due to thermal expansion

F° elastic part of the deformation gradient

FP plastic part of the deformation gradient
tensor

F part of the deformation gradient tensor
due to shrinkage

&vp viscoplastic function

n fluidity coefficient in solid phase
(Pa~'s™h

) thermal expansion coefficient (k')

K isotropic hardening function

A first Lamé coefficient (Pa)

U second Lamé coefficient

n, parameter of the Voce isotropic
hardening function

v Poisson ratio

P first Piola—Kirchhoff stress tensor (Pa)

S second Piola—Kirchhoff stress
tensor (Pa)

o] parameter of the Voce isotropic
hardening function (Pa)

O parameter of the Voce isotropic
hardening function (Pa)

ovM Von Mises stress

oy yield stress (Pa)

T Kirchhoff stress tensor (Pa)

u displacement vector (m)

X coordinate vector in the current
configuration

X coordinate vector in the initial
configuration

¢ strain like internal scalar variable rep-

resenting the isotropic hardening of the
material
specific strain energy function (J kg™



