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Sweet but dangerous – the role of immunoglobulin G glycosylation

in autoimmunity and inflammation
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Glycosylation is well-known to modulate the functional capabilities of immunoglobulin G
(IgG)-mediated cellular and humoral responses. Indeed, highly sialylated and desialylated IgG
is endowed with anti- and pro-inflammatory activities, respectively, whereas fully deglycosy-
lated IgG is a rather lame duck, with no effector function besides toxin neutralization.
Recently, several studies revealed the impact of different glycosylation patterns on the
Fc part and Fab fragment of IgG in several autoimmune diseases, including systemic lupus
erythematosus (SLE) and rheumatoid arthritis (RA). Here, we provide a synoptic update
summarizing the most important aspects of antibody glycosylation, and the current progress
in this field. We also discuss the therapeutic options generated by the modification of
the glycosylation of IgG in a potential treatment for chronic inflammatory diseases. Lupus
(2016) 25, 934–942.
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Introduction

One of the mechanisms fostering the development
of immunoglobulin G (IgG)-mediated inflamma-
tory autoimmune diseases is the impaired clearance
of cell-derived remnants, which results in a break-
down of tolerance to self and the initiation of an
autoimmune response.1 B cells exert their pro-
inflammatory effects by producing pathogenic IgG
autoantibodies (AAbs). In systemic lupus erythe-
matosus (SLE) IgG AAbs interact with dsDNA,
and DNA- and RNA-associated nuclear proteins.2

In rheumatoid arthritis (RA), pathogenic IgG
AAbs recognize citrullinated epitopes.3 In diseases
affecting the skin, such as epidermolysis bullosa
acquisita or bullous pemphigoid, pathogenic IgG
AAbs specifically bind collagen type VII and
XVII, respectively.4 Pathogenic IgG AAbs tend to
form immune complexes (IC) with their cognate
autoantigens (AAgs). These activate complement

and recruit inflammatory effector cells expressing
Fcg receptors (FcgRs), which ultimately contrib-
ute to tissue damage.5 The glycosylation pattern of
an antibody crucially influences its conformation,
if it binds to FcgRs and complement, as well as
its aggregation behaviour. The pro-inflammatory
effector functions of IgG AAbs are mainly
modulated by their Fc N-linked glycan patterns.
IgG profiling of glycan structures employing
denaturating analytical methods have shown that
hypoglycosylation of IgG AAbs correlates with
pro-inflammatory immune responses and disease
severity in patients with SLE or RA.6,7 In the fol-
lowing paragraphs we provide an overview of
findings concerning the role of IgG glycosylation
in the course of inflammation and autoimmune
disease. Furthermore, we aim to encourage
researchers to develop new therapeutic strategies
shaping the immune response based on the IgG
glycans.

Immunoglobulin Fc fragment glycosylation

It is well known that IgG recognizes pathogens and
toxic products in order to neutralize and tag them
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for elimination from the host (opsonization). IgG is
a hetero-tetrameric protein consisting of two heavy
(HC) and two light chains (LC) linked by disulfide
bonds.8 Papain cleaves IgG into two functional
units: two fragment antigen binding (Fab) frag-
ments specifically recognizing the antigen, and the
fragment crystallizable (Fc) part mediating the
interactions of IgG with FcgRs on cellular surfaces
and with complement. Human IgG is mainly gly-
cosylated with biantennary oligosaccharide chains
covalently attached to asparagine 297 (Asn 297) of
each HC (CH2 domain). The N-linked glycan is
composed of a core heptasaccharide (GlcNAc2-
Man3-GlcNAc2) (Figure 1).9 Glycosylation starts
in the endoplasmatic reticulum, but the complex
processing of the glycan tree occurs mainly in the
Golgi apparatus.10 Variable additions to, and
modifications of, fucose, galactose and sialic acid
involving this core heptasaccharide can generate a

total of 32 unique oligosaccharide chains.11 In add-
ition, asymmetric addition of oligosaccharides to
each HC can generate more than 400 glycoforms.
In average human serum, 16%, 35% and 35% of
the IgG carry terminal galactosyl residues on 2, 1 or
0 of the glycan chains, respectively, and are, there-
fore, referred to as IgG-G2, G1 and G0, respect-
ively. The remaining 14% are terminally sialylated
at one (S1) or two glycan arms (S2) (Figure 1). The
IgG-associated glycan depends on the age and
gender of the individual and the state of a disease.
As an example, Parekh and colleagues reported
a minimum of IgG-G0 glycan in individuals of
25 years of age.12 The IgG glycans are thought to
act as spacers between the two HCs. The inter-
actions of protein and sugar residues are critical
for the structural stability and functional activity
of the IgG molecule influencing the outcome of
the immune response.13–15

Figure 1 N-Glycosylation of immunoglobulins and its implications in autoimmune diseases. The human IgG is a hetero-
tetrameric protein consisting of two heavy (HC) and two light (LC) chains linked by disulfide bonds. It is mainly glycosylated
with biantennary oligosaccharide chains covalently attached to Asparagine 297 (Asn 297). The core heptasaccharide of
N-acetylglucosamine (GlcNAc, blue square) and mannose (green circle) can be altered by addition of variable sugar moieties,
namely fucose (red triangle), galactose (yellow ellipse) and sialic acid (purple diamond). In addition to galectins or MBL, several
plant lectins recognize specific glycans and are used for in vitro analyses of protein glycosylation. Aleura aurantia lectin (AAL),
Lens culinaris agglutinin (LCA) and Sambucus nigra lectin (SNA) reportedly bind to fucose, fucosylated tri-mannose N-glycan core
sites and sialic acid, respectively. The glycosylation pattern of IgG crucially impacts subsequent cellular effector functions mediated
by binding of the antibody to Fc receptors (see Figure 2). Lower glycosylation results in a more pronounced immune response
(including ADCC). However, complete removal of the Fc sugar residues abrogates IgG activity. Increased IgG autoantibody
(AAb) activity is often associated with a higher pathogenicity of AAb in autoimmune diseases, including SLE, RA, APS and
inflammatory bowel diseases (Crohn’s disease, ulcerative colitis). In contrast, enrichment of sialylation by therapeutic intravenous
IgG (IVIG) can be utilized to ameliorate pro-inflammatory effects.
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Thirty percent of serum IgG carries N-linked
carbohydrates on the Fab region, attached to the
variable regions of LC or HC. The composition of
these oligosaccharides is shifted towards higher
galactosylation and sialylation when compared to
the Fc fragment.15 The function of these oligosac-
charides has not been fully elucidated, although
studies on monoclonal antibodies suggest that gly-
cosylation of the variable regions can have positive,
neutral or negative influences on antigen binding.15

Several plant lectins recognize specific glycans and
are used for in vitro analyses of protein glycosyla-
tion. Aleura aurantia lectin (AAL), Lens culinaris
agglutinin (LCA), Sambucus nigra lectin (SNA)
and Jacalin (from Jackfruit) reportedly bind to
fucose, fucosylated tri-mannose N-glycan core
sites, sialic acid and N-acetylgalactosamine,
respectively (Figure 1).

Furthermore, a recent study used Narcissus poe-
ticus lectin binding oligomannose N-glycans, and
Viscum album agglutinin binding desialylated
glycans, specifically targeting subpopulations of
human polymorphonuclear leukocytes undergoing
apoptosis.16

Receptors sensing IgG glycosylation

Effector functions of IgG are mediated by the inter-
action of its Fc fragment and the IgG-specific
FcgRs (FcgRs or type I FcRs). Type II FcRs
include C-type lectins, SIGLECs and the low-
affinity IgE receptor CD23 (Fc"R), which mediate
inhibitory or immunomodulatory signals. The IgG-
specific FcgR is a type I transmembrane glycopro-
tein, which is primarily expressed on leucocytes.
The FcgR consist of an extracellular part of two
or three immunoglobulin-like domains, one trans-
membrane and one cytosolic domain. The signal is
transduced via phosphorylation of immunorecep-
tor tyrosine-based activating motifs (ITAM) by
SRC family kinases. The ITAM motif is located
on the cytoplasmic domains of the activating recep-
tors FcgRIIA and FcgRIIC and on an associated
g-chain of the activatory FcgRI and FcgRIIIA.17

In humans there are three FcgRs: the high affin-
ity FcgRI and two low affinity receptors, FcgRII
and FcgRIII.18 Most isoforms are activatory,
including high-affinity FcgRI and low-affinity
FcgRIIA, FcgRIIC, FcgRIIIA and FcgRIIIB.
When aggregated IgG-Fc fragments bind to
FcgRs, they induce cross-linking of two or more
receptors and, subsequently, trigger receptor signal-
ling. Subsequent immune responses include
antibody-dependent cellular cytotoxicity (ADCC),
secretion of inflammatory mediators, regulation of

antibody production, oxidative burst and/or
phagocytosis (Figure 2). FcgRIIB is the main
inhibitory receptor, present on B cells, dendritic
cells (DC), macrophages, activated neutrophils,
mast cells and basophils. Cross-linking of
FcgRIIB and the B cell receptor decreases the B
cell activation threshold and ameliorates the
humoral response. Also, in the case of other
immune cells, engagement of FcgRIIB suppresses
the immune response (Figure 2).19 Each subclass of
IgG binds to a specific FcgR. In humans, IgG1 and
IgG3 mainly interact with FcgRI.17 The binding
affinity for functional FcgR by specific IgG sub-
classes is described as a result of an activatory/
inhibitory (A/I) ratio. Glycosylation is vitally
involved in affinity binding and, therefore, in shap-
ing the immune response. The fact that each cell
subset has an overlapping repertoire of FcgRI
makes it tough to identify the precise effector cells
that mediate a certain antibody function.20

Consistent evidence for the modulation of effec-
tor functions by specific IgG glycosylations was
reported by Kaneko et al. in 2006.21 Antibodies
that recognize a platelet integrin efficiently depleted
platelets in vivo only if they are enriched for low
sialylated IgG isoforms. This reduction correlated
with a lower binding affinity of the IgG for the
respective FcgRs. In murine models of experimen-
tal autoimmune encephalomyelitis (EAE), inflam-
matory arthritis and immune thrombocytopenia
(ITP), removal of the glycan tree abrogated its
anti-inflammatory function confirming the import-
ance of the oligosaccharide chain.20

Low fucosylation of IgG1 increases binding to
FcgRIIIa, leading to enhanced cytotoxic activity
in vivo. It is yet unknown if the absence of fucose
alters the conformation of the HC or interferes with
the interaction with the FcgRIIA.22 However, it is
known that the presence or absence of fucose does
not affect the binding of IgG1 to the neonatal FcR
or C1q. Importantly, differential glycosylation was
found to alter the A/I ratio of specific murine IgG
subclasses for FcgR.5 Defucosylation of IgG2a and
IgG2b, increasing the A/I ratio, resulted in higher
affinity to FcgRIIb and IV, and subsequently
increased ADCC. In contrast, defucosylation of
IgG1 did not alter affinity to FcgRIIB or
FcgRIII. It was suggested that non-fucosylated
IgG displays a larger surface on the Fc fragment,
making it available for additional interactions with
glycan residues on the FcgR.23 Several studies
aiming to generate therapeutic monoclonal Ab
revealed that IVIG carrying bisecting N-acetylglu-
cosamine residues shows enhanced ADCC activity,
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since the early addition of Glc-NAc inhibited sub-
sequent addition of fucose.24

In 2011, Biburger and colleagues showed that,
despite expression of relevant activating FcgR on
various phagocyte populations, the majority of
these cell types were dispensable for IgG activity
in vivo.25 The CX3CR1hiLy6CloCD11cint monocyte
subset was crucial to mediating IgG-dependent
effector functions.

Sialylation

Recently, several studies revealed that sialylation of
the Fc part of IgGs has a critical influence on their
pro- or anti-inflammatory activities (Figure 2). An
anti-inflammatory and immunomodulatory activity
has been observed when IgG glycovariants are rich
in terminal sialic acid and galactose residues, result-
ing from a loss of affinity for type I FcR. This is
often accompanied by a simultaneous gain of the
capacity to bind type II FcR.26–28 Consistently,
patients suffering from RA, Crohn’s disease,

ulcerative colitis and tuberculosis show increased
levels of IgGs lacking terminal sialic acid and
galactose residues (Figure 1).29–31 Vice versa, the
recovery of IgG sialylation of therapeutic
intravenous IgG (IVIG) is associated with an
anti-inflammatory effect that counteracts AAb
pathogenicity.21,32,33 Tetra-Fc sialylation of IVIG
(S4-IVIg) enhances its anti-inflammatory activity
up to 10-fold in comparison to random IVIG
across different animal models.34

Consistent with these findings, we recently
detected a significantly lower sialylation of IgG
recognizing b2GP-1 isolated from sera of patients
with clinically apparent APS when compared to
IgG of asymptomatic carriers.35 Interestingly,
healthy children also carry high levels of non-
pathogenic, highly sialylated, specific anti-b2GP-1
IgG. This suggests that an increased sialylation is
an important factor limiting the pathogenicity of
specific AAbs.

Terminal sialic acid residues reportedly control
the arrangement of the carbohydrate chains,

Figure 2 Fc receptor-mediated effector functions. Effector functions of IgG are mediated by the interaction of its Fc fragment and
the IgG-specific FcgR. Activation. Most isoforms are activatory, including high-affinity FcgRI and low-affinity FcgRIIA,
FcgRIIC, FcgRIIIA and FcgRIIIB. When aggregated IgG-Fc fragments bind to FcgR, they induce cross-linking of two or
more receptors and trigger receptor signalling. Subsequent immune responses include antibody-dependent cellular cytotoxicity
(ADCC), secretion of inflammatory mediators, regulation of antibody production, ROS production or phagocytosis. Inhibition.
FcgRIIB is the main inhibitory receptor, present on B cells, dendritic cells (DC), macrophages, activated neutrophils, mast cells and
basophils. Its engagement suppresses immune responses and inhibits phagocytosis. Cross-linking of FcgRIIB and the B cell
receptor decreases the B cell activation threshold and reduces the humoral response.
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prevent conformational modifications and provide
antibody binding to receptors on the surfaces of
immune cells (macrophages, neutrophils, mast
cells and many others) and complement component
C1q, thereby avoiding inflammation and induction
of autoimmune reactions.36 We have demonstrated
that random IgG and specific anti-dsDNA/anti-his-
tone antibodies isolated from the sera of patients
with SLE reveal completely distinct profiles of
the glycan residues they expose.37 Histone IgG
AAb displayed significantly lower sialylation than
random IgG of the same individual, suggesting that
these prototypic SLE AAbs possess pro-inflamma-
tory properties. Functional analyses of ex vivo
phagocytosis revealed that the purified desialylated
anti-SNEC AAbs mediate the uptake of SNEC
preferentially into polymorphonuclear cells without
inducing anti-inflammatory cytokine responses. In
contrast, the sialylated IgG fraction reduced
phagocytosis by monocytes of SNEC and induced
a switch of the cytokine profile from IL-6/IL-8 to
TNF-a/IL-1b.

Recently, Harre et al. reported an association
between desialylation of IgG and bone loss in
patients with RA.38 Desialylated IC enhanced
osteoclastogenesis in vitro and in vivo. The state
of Fc sialylation of random IgGs and specific IgG
AAbs is associated with bone pathology in patients
with RA. Furthermore, mice treated with the sialic
acid precursor N-acetylmannosamine, causing
increased IgG sialylation, were less susceptible to
inflammatory bone loss. This suggests a protective
role of sialylated IgG in autoimmune-mediated
bone destruction.

Taken together, terminal sialylation of IgG con-
trols its action regarding cytotoxicity and anti- or
pro-inflammatory effects.39,40 Carrying low sialy-
lated glycans, IgG binds to activating FcgR and
hence displays cytotoxic activity. However, sialyla-
tion of the Fc-linked glycan reduces FcgR binding
and induces the loss of the cytotoxic capability and,
consequently, converts IgG into an unreactive,
non-inflammatory molecule. In addition, IgG can
actively suppress inflammatory responses mediated
through 2,6-linked sialic acid residues binding to a
cognate receptor. Importantly, a recent study
revealed that, in distinct combinations of FcgR
alleles and human IgG subclasses, the interaction
of certain non-FcgR-binding IgG variants was not
abrogated if present in large IC.41 This study
emphasizes the importance of investigating the
interaction of IgG with FcgR in a cellular and
physiological context (i.e. as part of IC).

Fucosylation

The state of IgG-fucosylation has been shown to be
essentially implicated in antibody-dependent cellu-
lar cytotoxicity (ADCC). In general, addition of
fucose residues decreases ADCC.5,42 IgG1 carrying
Fc glycans without fucose residues showed dramat-
ically enhanced binding to human FcgRIIA and
increased ADCC in vitro.22

In 2015, we reported on the impact of fucosyl
exposure on native circulating IgG complexes in
patients with SLE.43 Our results showed signifi-
cantly higher levels of AAL and LCA binding
sites exposed on IgG complexes of patients with
SLE than on those of normal healthy donors
(Figure 1). Moreover, disease activity in patients
positively correlated with exposure of AAL-reac-
tive fucosyl residues on immobilized IgG com-
plexes. The increased exposure of these glycans
may have resulted from an increased exposure on
either the canonical N-glycan of the Fc fragment or
on an IgG binding non-IgG molecule, such as com-
plement or CRP. In both cases, the complexed IgG
may be alternatively targeted to lectin receptors of
effector cells, for example, dendritic cells.

Galactosylation

Agalactosyl glycoforms of IgG (IgG-G0) are mark-
edly increased in patients with RA and positively
correlate with disease activity.44,45 IgG-G0 is also
directly associated with pathogenicity of murine
collagen-induced arthritis.44–46 Moreover, high
serum levels of these IgG glycoforms are associated
with further autoimmune diseases, including
Crohn’s disease, juvenile onset chronic arthritis,
SLE complicated by Sjögren’s syndrome and tuber-
culosis.47–49 The presence of agalactosyl glycoforms
in RA has been shown to be associated with low-
ered galactosyltransferase (GTase) activity.50

Inflammation in the joints was once thought to be
mediated by MBL binding to clustered IgG-G0 and
IgG-G0 ICs, which had been deposited in the syn-
ovial tissue, subsequently initiating the MBL-
dependent pathway of complement activation.51

However, later it was reported that the activity of
IgG-G0 in mice with a genetic deletion of MBL
(MBL-null mice) is unimpaired, but fully depend-
ent on the presence of activating FcgR.32,52,53

However, RA patients carrying an MBL mutant
allele show an earlier onset of disease, confirming
the current paradigm that MBL, as well as other
complement components, protects from the devel-
opment of autoimmune diseases.54 Clarification of
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the role of MBL in the pathogenesis of RA is still
needed.

Moreover, a role for differential glycosylation
of IgG rheumatoid factor (IgG-RF) has been
described. The levels of sialylation and galactosyla-
tion were significantly lower in IgG-RF than in
RF-depleted IgG.55 In addition, decreased levels
of galactosylation and sialylation of RF-IgG posi-
tively correlated with increased RF avidity, suggest-
ing an increased pathogenicity of galactose-free and
less-sialylated IgG-RF.

IC composed of galactosylated IgG1 has been
shown to inhibit complement component 5a (C5a)
receptor-mediated phosphorylation of extracellu-
lar-signal-regulated kinase 1/2 (ERK1/2).56 This
blocked C5a effector functions in vitro and
C5a-dependent inflammatory responses in vivo
(peritonitis and experimental epidermolysis bullosa
acquisita).

Furthermore, terminal galactose has been shown
to be crucial for antibody-mediated phagocytosis.
In IgA nephropathy, reduced levels of this residue
lead to hampered clearance of both IgA and serum
IC-containing IgA1 by hepatic asialoglycoprotein
receptor, thus resulting in their deposition in the
kidneys.57,58 The activation of complement by
enhanced binding of MBL to agalactosyl IgA in
the IC deposits essentially contributes to the induc-
tion of inflammation in renal mesangium.59

Polyclonal IgG isolated from sera of patients
with ANCA-associated vasculitides was shown to
display a marked deficit in galactosylation when
patients were experiencing an acute inflammatory
episode.60,61 Under these conditions, the Fc part of
ANCA IgG was hypogalactosylated, whereas the
Fab fragment displayed normal galactosylation
and sialylation. Thus, the IgG Fc hypogalactosyla-
tion most likely results from a conformational
change of the IgG Fc portion. The glycan process-
ing machinery seemed unaffected.

Immunoglobulin Fab fragment glycosylation

Thirty percent of serum-derived Fab fragments
contain N-glycosylation motifs which differ signifi-
cantly from those found in the Fc domain.62 Fab
portions contain about 14% of the total carbohy-
drate chains of IVIG preparations. The relative dis-
tribution of glycans in the Fab fragment has been
reported to be 21% S0; 43% S1; 36% S2. The dis-
tribution within S0 is 14% G0; 34% G1; 52% G2.
Compared to Fc fractions, Fab portions contain
much higher proportions of sialic acid and bian-
tennary fucosilated residues.63

The role of the sialylation of the F(ab0)2 part in
the function of IVIG therapy is controversial.64

In one study, high F(ab0)2 sialylation resulted in a
reduction of the anti-inflammatory activity in a
murine model of idiopathic thrombocytopenic pur-
pura.65 In another study, it promoted the produc-
tion of prostaglandin E2 by monocytes, which in
turn suppressed TLR-mediated IFN-a secretion by
pDC.66 Since the enrichment of sialylated fractions
of IVIG are mostly made by Sambucus nigra lectin
fractionation, the evaluation of the role of F(ab0)2
sialylation needs further investigation and more
specific approaches to draw definitive conclusions.
Similarly, contradictory reports are found regard-
ing the biological activity of therapeutic antibodies
in terms of affinity and aggregation properties.67,68

The importance of Fab glycosylation has been
recently illustrated by an elegant study on anti-
citrullinated peptide antibodies (ACPA) in RA.
This study reported that the vast majority of
ACPA-IgG harbour N-glycans in their variable
domains. The glycosylation consensus sites of the
mutated variable regions were absent in their
‘germline-counterparts’. This suggests that the N-
glycosylation sites in ACPA variable domains have
been introduced by somatic hypermutation. This
specific modification of ACPA modulates the bind-
ing activity to citrullinated AAg, thereby conferring
a selective advantage to ACPA-producing B cells in
RA.69 A similar mechanism has been proposed in
the case of follicular lymphoma B cells. Mannose-
rich Fab glycans on cell surface BCR create a func-
tional bridge with micro-environmental lectins,
thereby providing survival signals.70 It is not yet
clear whether this feature is unique for ACPA.
Fab glycosylation also influences ACPA fine speci-
ficity. Patients who are seropositive for low avidity
ACPA display the highest rate of erosive joint
destruction.71 Thus, it is possible that ACPA Fab
glycosylation is responsible for the overall low avid-
ity of the citrulline-specific immune response, which
opens a novel perspective for the study of AAb
function in autoimmunity.

Concluding remarks and outlook

The evidence published so far clearly shows
that glycosylation of antibodies plays a crucial
role in modulating antibody-mediated responses.
Rheumatic diseases offer the opportunity to analyse
the impact on disease development and the progress
of glycosylation patterns of IgG. The availability of
antibody-based therapies has provided further
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insights into this complex field. Recently, it was
demonstrated that the therapeutically most
widely-used IgG subclasses, including human
IgG1 and IgG3, surprisingly remained fully func-
tional in a minimally glycosylated form solely car-
rying a mono- or di-saccharide sugar moiety.72

Thus, enzymatic processing of heterogeneously gly-
cosylated IgG preparations may represent a strat-
egy to generate well-defined and highly-active
therapeutic antibody preparations. As an example,
obinutuzumab (GazyvaTM), a humanized and
glycoengineered therapeutic antibody, has been
recently approved, showing increased ADCC
against B-cell malignancies.73

Fully deglycosylated autoreactive IgG recogniz-
ing cellular debris might also be a promising tool
for the treatment of SLE. Deglycosylated IgG tar-
geting circulating SNEC might be able to neutralize
this material without inflammatory FcgR signal-
ling.74 Treatment with endoglycosidase S (EndoS),
an IgG glycan-hydrolyzing bacterial enzyme from
Streptococcus pyogenes, has already been shown to
have beneficial effects in several experimental
animal models for chronic inflammatory dis-
eases.75,76 Moreover, a study investigating the
pro-inflammatory properties of IC in vitro suggests
that EndoS treatment has the potential to serve as
therapy for SLE.7

Analysis and quantification of the glycosylation
state of IgG are mostly based on denaturating
methods such as mass spectrometry. These methods
cannot resolve the spatial configuration of the
hetero-tetrameric IgG molecule in vivo. Glycans
of IgG and IC are usually recognized by lectin
receptors on immune cells. Several plant lectins
possess highly specific carbohydrate recognition
domains, and they have been used to fractionate
differently glycosylated IgG. Those lectins can
also be exploited for the development of a new gen-
eration of diagnostic tools that detect functionally
relevant alterations of the glycosylation pattern in
patients with rheumatic diseases.
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