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How scan parameter choice affects 
deep learning‑based coronary 
artery disease assessment 
from computed tomography
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Recently, algorithms capable of assessing the severity of Coronary Artery Disease (CAD) in form of the 
Coronary Artery Disease‑Reporting and Data System (CAD‑RADS) grade from Coronary Computed 
Tomography Angiography (CCTA) scans using Deep Learning (DL) were proposed. Before considering 
to apply these algorithms in clinical practice, their robustness regarding different commonly used 
Computed Tomography (CT)‑specific image formation parameters—including denoising strength, slab 
combination, and reconstruction kernel—needs to be evaluated. For this study, we reconstructed a 
data set of 500 patient CCTA scans under seven image formation parameter configurations. We select 
one default configuration and evaluate how varying individual parameters impacts the performance 
and stability of a typical algorithm for automated CAD assessment from CCTA. This algorithm consists 
of multiple preprocessing and a DL prediction step. We evaluate the influence of the parameter 
changes on the entire pipeline and additionally on only the DL step by propagating the centerline 
extraction results of the default configuration to all others. We consider the standard deviation of 
the CAD severity prediction grade difference between the default and variation configurations to 
assess the stability w.r.t. parameter changes. For the full pipeline we observe slight instability (± 
0.226 CAD‑RADS) for all variations. Predictions are more stable with centerlines propagated from 
the default to the variation configurations (± 0.122 CAD‑RADS), especially for differing denoising 
strengths (± 0.046 CAD‑RADS). However, stacking slabs with sharp boundaries instead of mixing 
slabs in overlapping regions (called true stack ± 0.313 CAD‑RADS) and increasing the sharpness of 
the reconstruction kernel (± 0.150 CAD‑RADS) leads to unstable predictions. Regarding the clinically 
relevant tasks of excluding CAD (called rule‑out; AUC default 0.957, min 0.937) and excluding 
obstructive CAD (called hold‑out; AUC default 0.971, min 0.964) the performance remains on a high 
level for all variations. Concluding, an influence of reconstruction parameters on the predictions is 
observed. Especially, scans reconstructed with the true stack parameter need to be treated with 
caution when using a DL‑based method. Also, reconstruction kernels which are underrepresented in 
the training data increase the prediction uncertainty.

CAD continues to be one of the most severe human diseases with a frequent deadly  outcome1. Commonly, its 
root cause is inflammation of perivascular tissue, leading to atherosclerosis, i.e., aggregation of plaque deposits 
within the vessel walls. These deposits may cause a narrowing of the vessel—so-called stenosis—which may lead 
to a malperfusion of the heart muscle and therefore cardiac ischemia and a higher risk of acute cardiac  death2. 
Also, these plaques can rupture, leading to thrombus formation and thus potentially causing stroke or myocardial 
infarction. A non-invasive modality capable of assessing the severeness of CAD is CCTA. Contrast agent injected 
during a Computed Tomography (CT) acquisition enhances the vessels, allowing stenotic lesions to be detected. 
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Commonly, the severeness of CAD, as manifested in CCTA scans, is assessed using the CAD-RADS  score3). 
The most severe stenotic lesion within a patient’s coronary tree is the main contributor to this score. However, 
also the location of this culprit lesion and some qualitative aspects are considered when determining this score. 
Relevant subgroups within the six grades of the CAD-RADS score are CAD-RADS 0, referring to no CAD being 
present, CAD-RADS 1–2, referring to a non-obstructive CAD without need for further (invasive) assessment and 
CAD-RADS 3–5 being assigned to patients who should undergo immediate further assessment. The resulting 
clinical questions are whether a patient has CAD or not (rule-out) and whether a patient has obstructive CAD or 
not (hold-out). In general, the CAD-RADS score is determined manually by a human reader grading the whole 
coronary artery tree. This procedure is time-consuming, and with the increasing workload radiologists need to 
cope with, interest in supporting algorithms is high.

We recently proposed such an  algorithm4 which is Deep Learning (DL)-based and directly predicts the 
CAD-RADS score using a task-specific data representation and architecture design. A high-level overview of 
this method is displayed in Fig. 2. It consists of multiple steps: First, the heart is roughly isolated from the rest of 
the  scan5. Then, centerlines of the coronary arteries are extracted from the CCTA  volume6 and subdivided into 
sub-segments. Next, for each of these sub-segments a Multi Planar Reformatted (MPR) volume stack is extracted 
by interpolating planes orthogonal to each centerline point. Finally, from these MPR volumes, longitudinal 
views through the centerline are sliced for each respective sub-segment and individually fed into a shared 2D 
feature extraction Convolutional Neural Network (CNN). The resulting feature representation is used to pre-
dict a segment-wise stenosis degree label and global max-pooling of the representations is leveraged to predict 
the patient-wise CAD-RADS grade and the Agatston score binned according to Rumberger and  Kaufman7 as 
additional auxiliary target.

This method reaches high performance on the task of regressing all six CAD-RADS grades as well as for the 
rule-out and hold-out task, with an average accuracy of 0.859 for the six class problem and an AUC of 0.942 and 
0.950 for the rule-out and hold-out case, respectively.

Before we go into detail on our methodology in this paper, we want to sketch the bigger picture and discuss 
variances within the whole measurement system of a CCTA analysis. First, a patient, who exhibits different 
characteristics like weight, shape, disease state, position, etc., undergoes a CT scan. The resulting projection 
data is not only influenced by the patient’s characteristics but also by the type of scanner, the tube voltage, and 
the dosage of contrast agent applied. Next, the projection images are reconstructed, whereby the choice of 
reconstruction kernel, the amount of applied denoising, the heart phase for which the scan is reconstructed, the 
way neighboring slabs from different heart cycles are stacked together influence the appearance and content of 
the final volume. Finally, the resulting images are interpreted by a human or Artificial Intelligence (AI) reader. 
An experienced human reader might be able to disentangle the change in visual perception caused by different 
acquisition parameters from the actual biological information. However, an AI system, which may have only 
seen training samples from a subset of fixed scan and reconstruction parameters, is probably influenced by these 
different technical variations.

Examples for this are already described in literature and can be divided into analyses focusing on the impact 
of image formation parameter choice on classical Machine Learning (ML)8–11 on the one hand and on  DL12–14 
approaches on the other.

Wielpütz et al.10 examined the influence of the tube voltage selection and whether Filtered Back Projection 
(FBP) or Iterative Reconstruction (IR) is used for the volume reconstruction for the task of detecting artificial 
nodules in an ex vivo study. They found that there was no significant impact on the evaluated classical ML algo-
rithm. In contrast, Berenguer et al.8, and Li et al.9 showed that Radiomic features (which include shape-based 
and first- and second-order statistics on a selected Region of Interest (ROI)) are often not reproducible if one of 
various scan parameters or the scanner type is  varied8. Also, the performance of models based on these features 
may  drop9. Moreover, Reiazi et al.11 confirmed that feature distributions vary for different scanner types. For 
classical ML algorithms, research to compensate differing image formation parameters exist based on statistical 
 assumptions15 or technical fingerprints in control  regions16.

For DL-based algorithms, analysis of the influence of the image formation parameter was mainly performed 
on the task of CT lung imaging. Li et al.12 demonstrated that the performance on the task of detecting nodules 
changes slightly when the tube voltage or the reconstruction type is varied in a phantom study. A comparable 
study was conducted by Blazis et al.13 with a commercially available AI-based system for nodule detection. They 
used raw data from 24 patients and evaluated 16 different reconstruction settings varying the kernel, denoising 
strength and reconstruction type. They found an impact of all parameters on the sensitivity of the examined 
system. Another paper published by Hoang Thi et al.14 evaluated whether reconstructions with both sharp and 
soft kernels should be included within training of an algorithm to segment lung nodules. They concluded that 
the performance is only transferable between kernel types if all options are included in the training step of the 
algorithm. Recently, the impact of acquisition and patient parameters on an AI-guided CAD assessment system 
was  evaluated17. The underlying pipeline consists of ML-based centerline extraction and labeling, inner and 
outer wall segmentation and lesion detection and scoring systems. However, the final prediction of each step 
is double-checked by a human reader to prevent error propagation. They explore several different variations of 
acquisition and patient parameters including the scanner type, tube voltage, gating technique, several clinical 
parameters, etc.. Limitations of this work are that the individual subgroups differ in size and that the impact of a 
single parameter change on the system cannot be directly measured but needs to be statistically assessed over a 
large patient population. Furthermore, the influence of the variations on the AI components cannot be separated 
from the additional human reader.

After this brief overview of related work, we will define the scope of this work. The image formation param-
eter choice often differs for different clinical sites and personal preference. Therefore, when considering the 
clinical application of an AI-based CAD approach, it is crucial to evaluate how well this algorithm performs for 
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differing reconstruction parameters. With this work, we aim to analyse the influence of a set of reconstruction 
parameters on our previously published CAD-RADS scoring  system4. These parameters are defined in more 
detail in “Raw prediction changes” and include the ADMIRE strength, stacking and reconstruction kernel choice. 
Image impressions of these altered reconstruction parameters are depicted in Fig. 1. To systematically evaluate 
the influence of each of these parameters on our AI system, we leverage a collection of 500 raw data sets, and 
reconstruct all samples with one default configuration and single parameter variations. The CAD-RADS grading 
method consists of several preprocessing and a Neural Network (NN) prediction step. To be able to separate the 
variation changes’ impact on the NN step of the pipeline from the impact on the preprocessing, we evaluate the 
full pipeline and the pipeline with the centerlines propagated from the default configuration to all variations. 
Our contributions can be summarized as follows:

• To the best of our knowledge, we conduct the first evaluation of scan parameter dependency of a DL-based 
approach for automatic assessment of CCTA scans with paired data, i.e. the sole difference between the 
individual reconstructions being the parameter change.

• We separate the influence of the parameter changes on the preprocessing results from the change in image 
data.

• We provide guidance regarding which image formation parameters need to be treated with caution.

Methods
All the methods in this study were performed in accordance with the Declaration of Helsinki.

Data. Before going into detail about the data used in this study, the distribution of labels and reconstruction 
parameters, we want to define the parameter space we evaluate. An exemplary case for each parameter configu-
ration is displayed in Fig. 1.

ADMIRE strength. A parameter that might influence the prediction and is sometimes altered in clinical prac-
tice is the number of iterations of the reconstruction algorithm. In this study, we use the ADMIRE  algorithm18 
to denoise already during reconstruction. Depending on the number of iterations, the algorithm reduces noise 
but also may introduce denoising artifacts. A popular choice in clinical practice is a ADMIRE strength of 3 
(default) with variations to 2 or 4 depending on the image quality and personal reader preference. We therefore 
reconstructed our raw data with these three parameter choices.

Stacking. Mostly, CCTA projection images are acquired over multiple heart cycles as the field of view of the 
detector is usually not large enough to cover the whole heart in one rotation. Therefore, the patient table is 
moved along the superior-inferior axis during the acquisition. In addition, depending on the motion occurring 
between heart cycles, e.g. breathing motion, the projections for different z-positions may not match each other 
directly at their boundaries. Since there are usually overlapping regions for the patient positions, there are two 
possible strategies to cope with this: either the overlapping regions are merged using interpolation strategies 
(mixed stack, default), or only the information of a single position is preserved (true stack). As the first strategy 
may introduce artifacts when a lot of motion occurs between the heart cycles, physicians prefer the true stack 

Figure 1.  Sagittal views of a CCTA scan reconstructed with different parameters. The default configuration (A) 
reconstructed with an Advanced Modeled Iterative Reconstruction (ADMIRE) strength of 3, mixed stack and 
Bv36 kernel is varied by using: an ADMIRE strength of 2 (B) or 4 (C), using true stack (D) and utilizing a Bv40 
(E), Bv44 (F) or Bv49 (G) reconstruction kernel.
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option in these cases. However, it leads to sharp boundaries between the individual stacks, which do not neces-
sarily impact human readers but may impact the performance of algorithms processing the volume (cf. Fig. 4).

Reconstruction kernel. Finally, another important parameter that is often changed in clinical practice is the 
reconstruction kernel. By adapting it, the sharpness of the edges can be increased at the cost of an increased 
noise level. Each vendor offers its own set of reconstruction kernels. For our experiments, we choose the Siemens 
Healthineers specific Bv36 kernel as the default, which is a medium sharp kernel specifically designed for the 
heart anatomy and therefore commonly used for CCTA scans. As we observed an increase in instability cor-
relating with kernel sharpness during initial experiments we chose the increasingly sharp Bv40, Bv44, and Bv49 
kernels as variations. With all of these variations, the volume content should be consistent while the appearance 
may change (cf. Fig. 1).

Data characteristics. We use two data collections in this study. Once, a data collection of 2596 reconstructed 
CT scans (data set A) as training set for the CAD-RADS scoring system. Additionally, we leverage a data collec-
tion containing raw CT data of 500 patients (data set B). Both data collections were collected at the same center 
with Siemens SOMATOM Force scanners. All samples in data collection A were reconstructed using the Bv36 
reconstruction kernel with a slice thickness of 0.6 mm. Furthermore, the ADMIRE reconstruction algorithm 
was applied with a strength of 3. 55 cases were reconstructed using true stack and all others with mixed stack-
ing. The CAD-RADS class frequency in the training set (A) is 370, 551, 828, 542, 281, 24 for CAD-RADS 0 to 5 
respectively. For the raw data collection B 7 configurations (examples displayed in Fig. 1) were reconstructed for 
all 500 data samples: a default configuration (ADMIRE strength = 3; stacking = mixed; kernel = Bv36) varied by 
using an ADMIRE strength of 2 or 4, true stacking and a Bv40, Bv44 or Bv49 reconstruction kernel. Reconstruc-
tion was performed with ReconCT (version 15.0, Siemens Healthineers). For data set B the class distribution is 
more balanced with 73, 61, 81, 85, 146, 54 samples for each respective CAD-RADS grade.

Algorithm. A high-level overview of the method evaluated in this work is depicted in Fig. 2. As this scien-
tific publication focuses on the evaluation of scan parameter influences, we refer to the publication where the 
evaluated method was  proposed4 for most details. Still, we want to mention some properties which have impact 
on the robustness analysis. From the CCTA scan data to the final prediction, multiple different algorithms are 
utilized. These include an algorithm for creating a rough segmentation of the  heart5, extracting the  centerlines6, 
and labeling  them4. As each of the later steps depends on the preceding ones, differences are propagated through 
the whole pipeline, altering the final prediction. Centerline labeling does not depend on the image data but solely 
leverages the centerline coordinates. The last pipeline step is the data processing through a task-specific DL-
based architecture. One forward pass of this architecture takes one longitudinal slice of each labeled coronary 
segment as an input. In order to include all information in the final prediction the concept of Test Time Augmen-
tation (TTA) is leveraged by extracting these longitudinal slices at 16 equidistant angles around the centerline 
as rotation axis within a range of [0, π ] from the volume. The average prediction over all angles is considered 
the final prediction for a single model. This is done to prevent the algorithm from missing information due to 
unfortunate angle choices. Also, the models of 25 training runs with different randomly chosen training and 
validation splits are ensembled to increase the method’s stability and performance. We encode the prediction in a 
multi-label format. As, if a patient belongs, e.g., to the CAD-RADS 3 category, he also fulfills the criteria of CAD-
RADS 0-2 due to a gradual nature of the score (i.e., (1, 1, 1, 1, 0, 0) represents CAD-RADS 3). We consider the 
predicted cumulative probability of all classes as the raw output score. Due to class imbalance default thresholds 
of .5 between the raw predictions do not necessarily lead to optimal class predictions. To circumvent this prob-
lem we determine more optimal thresholds: we define them as the percentiles of the raw prediction histogram. 
The percentile values are defined by the class frequencies. E.g. if 73 cases belong to the CAD-RADS 0 and 61 to 
the CAD-RADS 1 class, the threshold between CAD-RADS 1 and CAD-RADS 2 is the 134th lowest prediction.

Figure 2.  Overview of the used AI approach. First the heart is isolated from the CCTA scan using the 
algorithm proposed by Zheng et al.5. Then the coronary centerlines are  extracted6. These are subdivided into up 
to 11 equally sized sub-segments4. For each sub-segment, longitudinal slices are interpolated orthogonal to the 
centerline and fed into a NN.
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As we focus on having the best possible class separation for the robustness analysis, we calculated the thresh-
olds on the test set predictions of the default configuration reconstructions. For the performance analysis we use 
the threshold invariant AUC metric.

Evaluation. As the focus of this work is the evaluation of the stability of our CAD-RADS estimation approach, 
we choose to compare predictions of the default parameter configuration to the individual parameter variations. 
Since with the step of binning the network’s CAD-RADS predictions to distinct scores a lot of information is lost 
we choose to evaluate the difference in raw prediction scores. These also encode a kind of certainty regarding the 
prediction. To render the raw scores comparable for all individual CAD-RADS grades we rescale the predictions 
such that the value range between two thresholds always equals 1. As metrics, we evaluate whether the parameter 
change leads to a shift in the mean prediction and how much the standard deviation over all patients changed. 
Also, the number of cases where the parameter change leads to a different binned prediction is of interest, 
although outliers may influence it. Finally, the overall performance of the method regarding the hold-out and 
rule-out case may vary. Here, we decide to focus on the AUC as a threshold independent metric, also because 
the thresholds were defined on the test set. Also, to separate the influence of the parameter change on the NN 
component; we evaluate the influence of the deviations if we propagate the centerlines extracted from the default 
configuration to all others. Furthermore, as our approach relies on model ensembling, TTA, and a large training 
data cohort, which are all known factors to increase the robustness of DL-based models, we conduct additional 
experiments without model ensembling, without TTA, and with random subsets of only 10% (259 patients) or 
20% (519 patients) of the training data.

Ethical standards. The CT examinations were clinically indicated by the referring physicians and conducted 
in accordance with current clinical standards, guidelines, and recommendations. The study was performed in 
accordance with the Declaration of Helsinki and was approved by the local ethics committee (S-226/2016 and 
S-758/2018, Ethikkommission der Medizinischen Fakultät Heidelberg, Germany). Subjects included as of Janu-
ary 2019 gave informed consent in the scientific data analyses. For the retrospective analyses of the datasets 
acquired before January 2019, a waiver of consent was granted by the aforementioned ethics committee.

Results
Raw prediction changes. First, we want to report the changes in raw predictions caused by varying the 
image formation parameters. Therefore, the prediction difference between the default and the respective varia-
tion for the whole data set is visualized as boxplot in Fig. 3. The standard deviation of the distributions displayed 
in Fig. 3 can be seen in Table 1. From a first glance, it is apparent that propagating the centerlines from the default 
to the varied configuration leads to a decreased variance. This holds true for all variations when comparing the 
standard deviations. For a differing amount of denoising iterations of the ADMIRE algorithm, the variance is 
relatively low in the case centerlines are propagated. For sharper kernels, mean offsets are observed ( µBv40 = 
0.054; µBv44 = 0.101; µBv49 = 0.094). The most considerable offset of the mean value with an amplitude of 0.167 
is observed for the true stack variation with centerline propagation. When using true stack the standard devia-

Figure 3.  Boxplot of the rescaled raw prediction difference between the default configuration and all 
variation configurations (Ad2, Ad4 = ADMIRE strength of 2/4; TS = true stack; Bv40, Bv44, Bv49 = different 
reconstruction kernels), with and without centerline propagation.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2563  | https://doi.org/10.1038/s41598-023-29347-9

www.nature.com/scientificreports/

tion and therefore the variance of the prediction change is higher than with all other variations. An explanation 
for this behavior is that vessels at the slab edges may have the visual impression of being narrowed due to the 
sharp slab boundaries. A visual example of this effect is shown in Fig. 4. Analyzing different reconstruction ker-
nels, the resulting variance in prediction seems to correlate with the sharpness of the kernel.

Above mentioned trends observed for the variations hold when assessing the model without ensembling, TTA, 
or using less training data (cf. Table 1). However, the general robustness decreases for each of these experiments 
compared to the default model. The highest standard deviation (± 0.390) of the prediction changes is observed 
when using just 10 % of the data without propagating the centerline extraction results. Results are again more 
robust when propagating the centerlines. However, the standard deviation still increases by at least 32% when 
not using TTA and up to 44% when only using 10% of the data.

Binned prediction changes. To more directly assess the impact on the resulting clinical scores and deci-
sions, we also show how many times the prediction changed due to the changed image formation parameters. 
We therefore present the number of class changes in Fig. 5. Overall, for all configuration and the full pipeline 
between 12 and 20% of the cases changed the predicted CAD-RADS score. A low number changes between the 
clinically relevant cases of rule-out and hold-out. Moreover, the same trends as described for the other metric 
hold true for all varied configurations.

Appearance changes. To foster intuition on why the reconstruction parameter changes lead to different 
predictions, we depict the stretched proximal RCA segment as fed into the NN for the cases with the respec-
tive largest CAD-RADS prediction change for each variation in Fig. 6 (all other segments are provided in the 

Table 1.  Standard deviation of the raw prediction change for all individual variations (abbreviations as in 
Fig. 3) compared to the default. “Centerline (CL) Transfer” refers to the centerlines being propagated from the 
default to the varied configurations.

CL transfer Ad2 Ad4 TS Bv40 Bv44 Bv49 Mean

Default Without 0.220 0.225 0.355 0.243 0.233 0.307 0.226

No ensembling Without 0.270 0.280 0.397 0.292 0.309 0.418 0.281

No TTA Without 0.267 0.280 0.398 0.286 0.305 0.392 0.275

10% of data Without 0.405 0.411 0.462 0.413 0.468 0.569 0.390

20% of data Without 0.297 0.318 0.360 0.304 0.340 0.464 0.298

Default With 0.035 0.057 0.313 0.080 0.143 0.227 0.122

No ensembling With 0.048 0.087 0.340 0.110 0.199 0.334 0.160

No TTA With 0.043 0.075 0.347 0.108 0.192 0.296 0.152

10% of data With 0.030 0.077 0.286 0.148 0.261 0.433 0.176

20% of data With 0.051 0.077 0.308 0.106 0.209 0.376 0.161

Figure 4.  Curved Planar Reformatted (CPR) view of the Right Coronary Ascending (RCA) proximal segment 
for a reconstruction with mixed stacking (left) and true stacking (right) of the same raw data set. Due to the 
sharp slab boundaries the visual perception suggests a narrowing of the vessel.
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Supplementary material). When changing the ADMIRE strength to 2 or 4 the visual appearance is quite similar 
for a human reader, but the difference image shows slight deviations, especially around the vessel wall, which 
may explain the slightly different scores. For the true stack variations, the reason for the differing prediction is 
already apparent when looking at the deviation image: the slab boundary cuts through the vessel obscuring the 
image information. Lastly, we assess how the reconstruction kernel choice changes the appearance. Here we can 
see incrementally higher noise levels which appear slightly localized at the vessel wall as seen in the difference 
images.

Overall performance. Besides individual prediction changes, the method’s overall performance is of inter-
est. For the default configuration an AUC of 0.957 (95% CI [0.942, 0.971]) for the rule-out task and 0.971 (95% 
CI [0.961, 0.981]) for the hold-out task is achieved as displayed in Fig. 7 and in Table 2. The deviation from the 
results reported in Denzinger et al.4 is caused by the different class balance/test set evaluated. In Fig. 7 the perfor-
mance deviation for the different variations is displayed as well. Interestingly, the deviation is mostly within the 
CI and, therefore, insignificant in these cases. The only variation leading to a significant performance drop is the 
use of true stack instead of mixed stacking, but only for the rule-out task. A possible explanation for this is that 
vessels at the stack boundaries may appear stenotic due to the sudden jump between stacks (see Fig. 4). Above 
observations also hold true when the centerlines are propagated from the default to the variation configurations.

Assessing the performance changes for different model configurations (no ensembling, no TTA, less training 
data), the findings for the default configuration hold when using no ensembling and no TTA. When training 
with only 10% or 20%, we can observe a significant drop in performance of our approach with larger confidence 
intervals, especially on the rule-out task, indicating a model that did not generalize as well. Interestingly, the 
performance actually improves for some of the variations. This indicates that the model focuses on different 
features when trained with less data and that these features are actually enhanced when the noise level varies 
compared to the default configuration. This reasoning at least applies to the rule-out task, where the task inher-
ent class imbalance impacts the generalization of the model more when reducing the amount of data. Overall, 
the performance changes are still mostly within the 95% CIs.

Figure 5.  Number of samples for which the class prediction changed due to the parameter change 
(abbreviations as in Fig. 3). Total class changes refers to all CAD-RADS grades, RO to the rule-out and HO to 
the hold-out task. Note: predictions close to the thresholds easily change class bin even with small prediction 
changes.

Figure 6.  Proximal RCA segments for the cases with the largest CAD-RADS prediction deviation for each 
parameter configuration (note that the same patient showed the largest deviation for all possible kernel choices). 
Raw predictions with propagated preprocessing results are displayed for each respective configuration.
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Discussion
For all evaluation metrics, it becomes apparent that the preprocessing steps have an impact on the prediction if 
the scan parameters are varied. The centerline extraction is likely a larger contributor regarding this behaviour 
as small changes in the heart isolation mask are not expected to lead to much of a difference and the centerline 
labeling approach only depends on the centerline points. A detailed evaluation regarding the influence of scan 
parameters on the centerline extraction results is not the main focus of this work, but should be subject of further 
research. That said, looking at the overall performance of the method, there is mostly no significant performance 
drop, also when considering the full pipeline. A possible explanation for this behavior is that a similar number 
of cases are correct for any one variation as were previously erroneous as no parameter variation causes a mean 
shift. However, there are two perspectives (global vs. local) regarding performance, and knowing that a slight 
parameter change may lead to a different diagnosis by the system for a single patient does not build trust. On the 
other hand, when comparing algorithms with the current gold standard—manual assessment by physicians—one 
must acknowledge that different readers (or one reader over time) may also grade the same or different recon-
structions differently. In literature, the inter-observer variability of manual CAD-RADS scoring is reported 
with an inter-observer correlation (IOC) of 0.748 (average pairwise inter-observer agreement (IOA) 0.847)19, 
an IOA of 0.88520, or an IOC of 0.95821, depending on the study design and reader experience. When consider-
ing the ratio of unchanged predictions (cf. Fig. 5, right) as a metric comparable to the IOA, varying parameters 
like the denoising strength, and a slightly sharper reconstruction kernel are within this range. However, for the 
true stack configuration and even sharper kernels, the number of changed predictions increases. Looking at 
Fig. 1 and Fig. 6, these variations have the largest impact on the visual perception of human readers as well and 

Figure 7.  Performance on the data set A with all configurations (abbreviations as in Table 1) compared to 
the default for the rule-out and hold-out task, with and without centerline propagation. The dashed lines 
correspond to the 95% Confidence Interval (CI) for the default configuration. Note that the performance of the 
default configuration does not depend on the preprocessing as the centerlines of the default configuration are 
propagated.
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may even change the perception regarding the disease state as can be seen in Fig. 4. Also, reconstruction with 
a sharper kernel might lead to such a high noise level that the resulting volumes are hard to read. However, no 
study comparing the performance of readers on the task of CAD-RADS grading for differing reconstruction 
kernels exist. Such a study would be hard to design as readers might be biased by their first reading under a dif-
ferent reconstruction configuration.

Therefore, the algorithm’s variance in prediction appears to be within the range of human readers. However, 
this is usually not the motivation to use algorithms as assistance tools. Algorithms are expected to yield con-
sistent outcomes for the same patient. In particular, since the used algorithm embodiment mostly behaves as a 
black box, a higher robustness with respect to parameter variation is required to allow for clinical acceptance. 
A possible way to achieve this robustness is to include different parameter configurations into  training14. This 
idea seems promising, as in the current training pipeline only reconstructions with a softer kernel are included. 
An additional possibility to increase robustness might be to transfer algorithms aiming to disentangle biological 
and technical  information16 into the deep learning world.

Another aspect to elaborate on is whether the results reported here are transferable to other methods proposed 
in  literature22–30. These mostly focus on the determination and detection of significant stenosis which is similar 
to the hold-out task. Usually, these approaches also rely on a prior centerline extraction usually followed by an 
MPR volume  construction22–27,29. Additionally, for all approaches a CNN is used as a feature extractor. Therefore, 
findings presented here should be largely transferable to different architecture embodiments. Exceptions may 
be the works of Muscoguiri et al.28, who directly operate on the 3D data, and Paul et al.30, who operate on the 
curved views instead. Furthermore, all of the above-mentioned approaches were trained from data collected from 
a respective single site. As there usually is an internal consensus on how data is reconstructed at each individual 
clinical site, our choice of training our method with the data reconstructed as part of the clinical workflow is a 
valid and transferable choice.

Also, we evaluate whether our CAD-RADS scoring NN behaves similarly if no robustness enhancing measures 
like ensembling and TTA, or a smaller data collection are used. We have shown that model ensembling and TTA 
did not alter the findings of our study. However, a limited amount of training data leads to a less generalized 
model, especially regarding the rule-out task, which is most severely impacted by the task inherent class imbal-
ance. Related works usually perform analysis on a per-vessel basis and are therefore not impacted as severely 
by this class imbalance. Still, the uncertainty when considering the standard deviation of the raw CAD-RADS 
prediction changes as a metric, behaves comparable to the default configuration.

Conclusion
In this work, we analyzed the effects of varying image formation parameters on an existing AI-based system 
to automatically grade CCTA scans with the CAD-RADS score. To this end, we reconstructed 500 raw CCTA 
scans under eight parameter configurations, which to our knowledge are commonly applied in clinical practice. 
Parameter changes evaluated include the denoising strength, slab combination, and reconstruction kernel choice. 

Table 2.  Performance deviation for all individual variations (abbreviations as in Fig. 3) compared to the 
default. “CL Transfer” refers to the centerlines being propagated from the default to the varied configurations. 
AUC is either displayed with 95% CI or the standard deviation over all respective single models or angles.

Task CL transfer AUC [%] Ad2 Ad4 TS Bv40 Bv44 Bv49

Default Rule-out Without 95.72 [94.21, 97.07] − 0.14 − 0.15 − 2.07 − 0.08 − 0.08 − 0.36

No ensembling Rule-out Without 94.65 ± 0.74 + 0.03 − 0.15 − 1.98 + 0.05 − 0.06 − 0.23

No TTA Rule-out Without 94.59 ± 0.39 − 0.09 − 0.04 − 1.58 + 0.04 − 0.15 − 0.68

10% of Data Rule-out Without 86.73 [84.01, 89.52] + 1.25 + 1.97 − 0.40 + 1.29 + 1.95 + 2.41

20% of Data Rule-out Without 87.84 [85.00, 90.43] + 1.07 + 0.99 − 0.69 + 0.78 + 1.07 + 1.15

Default Hold-out Without 97.11 [96.06, 98.12] + 0.08 − 0.04 − 0.34 − 0.03 − 0.06 − 0.48

No ensembling Hold-out Without 96.79 ± 0.18 + 0.12 − 0.13 − 0.44 − 0.06 − 0.16 − 0.62

No TTA Hold-out Without 96.66 ± 0.32 − 0.09 + 0.08 − 0.42 − 0.08 − 0.30 − 0.88

10% of data Hold-out Without 93.01 [90.97, 94.86] + 0.39 + 0.20 + 0.08 + 0.14 − 0.14 − 0.06

20% of data Hold-out Without 96.00 [94.75, 97.20] − 0.19 + 0.09 − 0.57 − 0.35 − 0.79 − 1.01

Default Rule-out With 95.72 [94.21, 97.07] − 0.06 − 0.04 − 1.66 + 0.06 − 0.06 − 0.54

No ensembling Rule-out With 94.65 ± 0.74 − 0.05 − 0.13 − 1.42 + 0.12 + 0.02 − 0.51

No TTA Rule-out With 94.59 ± 0.39 − 0.12 − 0.12 − 2.12 − 0.11 − 0.10 − 0.42

10% of data Rule-out With 86.73 [84.01, 89.52] + 0.05 + 0.07 − 0.59 + 0.75 + 1.02 + 1.24

20% of data Rule-out With 87.84 [85.00, 90.43] + 0.13 − 0.27 − 1.48 + 0.52 + 1.10 + 0.92

Default Hold-out With 97.11 [96.06, 98.12] − 0.05 + 0.05 − 0.20 − 0.05 − 0.25 − 0.71

No ensembling Hold-out With 96.79 ± 0.18 − 0.04 + 0.02 − 0.36 − 0.10 − 0.30 − 0.83

No TTA Hold-out With 96.66 ± 0.32 + 0.07 − 0.10 − 0.48 − 0.08 − 0.17 − 0.70

10% of data Hold-out With 93.01 [90.97, 94.86] + 0.10 − 0.18 − 0.08 + 0.07 + 0.11 − 0.20

20% of data Hold-out With 96.00 [94.75, 97.20] − 0.07 + 0.10 − 0.83 − 0.12 − 0.33 − 0.88
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We found that the preprocessing steps as well as the NN prediction step are not robust to all parameter variations. 
Using true stack to combine slabs of different heart phases leads to a slight overestimation of the CAD-RADS 
score for patients with movement between slabs as stack artifacts occurred. These artifacts can create the visual 
perception of a narrowed vessel at slab boundaries. We conclude that one should consider excluding datasets 
reconstructed with this parameter from training and application. For varied reconstruction kernels, the variance 
of the prediction change increased with increasing kernel sharpness. Globally, the performance remained on a 
high level for all variations. However, individual prediction changes occurred, which may not built trust in clinical 
application of such an algorithm if a patient’s scoring depends on the way their scan was reconstructed. Therefore, 
we conclude that strategies to create more robust predictions for individual patients need to be developed. These 
may include the use of a more diverse training set. However, also the preprocessing steps need some additional 
attention as they were contributors to the prediction changes. We have shown that the same findings hold true 
when leaving out robustness-enhancing measures like model ensembling and TTA. Furthermore, the method 
at hand behaves slightly differently when trained with less samples due to reduced generalization.

Data availability
The data are not publicly available due to data protection regulations. They are available from the authors upon 
reasonable request.
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