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Abstract
We introduce a phase field crystal (PFC) model for particles with n-fold rota-
tional symmetry in two dimensions. Our approach is based on a free energy
functional that depends on the reduced one-particle density, the strength of the
orientation, and the direction of the orientation, where all these order parame-
ters depend on the position. The functional is constructed such that for particles
with axial symmetry (i.e. n = 2) the PFC model for liquid crystals as introduced
by Löwen (2010 J. Phys.: Condens. Matter 22 364105) is recovered. We dis-
cuss the stability of the functional and explore phases that occur for 1 � n � 6.
In addition to isotropic, nematic, stripe, and triangular order, we also observe
cluster crystals with square, rhombic, honeycomb, and even quasicrystalline
symmetry. The n-fold symmetry of the particles corresponds to the one that can
be realized for colloids with symmetrically arranged patches. We explain how
both, repulsive as well as attractive patches, are described in our model.
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1. Introduction

The formation of patterns in particulate systems is a long-standing topic [1]. A mean field
approach to describe the formation of complex equilibrium phases is the so-called phase
field crystal (PFC) model [2, 3] where a free energy expansion in a density-like field and
its gradient is considered in a way similar as in the well-known approaches by Swift and
Hohenberg [4], by Alexander and McTague [5], or by Lifshitz and Petrich [6]. Non-trivial
phases are stabilized in PFC models in various ways, e.g., by using more than one length
scale [7, 8] (similar as in the Lifshitz–Petrich model [6, 9, 10]) or by introducing a compe-
tition with an incommensurate external potential [11, 12]. In another approach anisotropic
particles are considered. By introducing an orientational field and couplings between the
orientational and the density-like field, PFC models for particles with polar [13] or axial
[14–16] symmetry have been modeled. Here we want to generalize these models for par-
ticles with other n-fold rotational symmetries. Note, there are other PFC approaches to
describe systems composed of particles with a certain rotational symmetry [17, 18]. How-
ever, in these approaches the orientation field and the density field cannot vary indepen-
dently and as a consequence some phases like plastic crystals and oriented crystals cannot be
distinguished.

Colloids with a given rotational symmetry can be realized by decorating the particles with
attractive or repulsive patches. These so-called patchy colloids are known to exhibit a complex
phase behavior [19–24]. Patchy colloids can even be used to obtain quasicrystals [25–28] or
to be designed in a way to obtain a complex ordering as desired [29–32].

In this work we want to consider both, attractive and repulsive patches. In case of attractive
patches the patches of neighboring particles tend to point towards each other while repulsive
patches tend to be oriented away from neighboring patches. As a result neighboring particles
either have the same orientation or they are rotated by an angle π/n as illustrated in figure 1.

Note that the particles in this work do not possess any hard core. Therefore, large overlaps
can occur and the ordering that we report corresponds to those of so-called cluster crystals
[33–36]. Cluster crystals occur naturally in PFC models or related approaches [10] and can
form periodic as well as aperiodic structures [10]. In the conclusions in section 4 we will
discuss how our approach might be modified in order to describe particles with hard cores, i.e.
particles that cannot overlap significantly.

The article is organized as follows: in section 2 we introduce the PFC model for n-fold par-
ticles and explain how we determine the stable phases numerically. In section 3 we first present
an overview of the phases that occur for various rotational symmetries before we discuss these
phases in more detail. Finally, we conclude in section 4.

2. Model

We generalize the PFC models that have been introduced for particles with one-fold [13] or
two-fold [14–16] symmetry to particles with n-fold symmetry. We will consider both, attractive
and repulsive patches. Concerning the notation, we will follow the model presented in [15],
which is shortly outlined in the next subsection.

2.1. Short summary of the PFC model for two-fold symmetry

In [15] Achim et al have proposed and studied a PFC model for apolar liquid crystals, i.e. par-
ticles of two-fold rotational symmetry. The used free energy functional model had previously
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Figure 1. Sketch of the preferred orientation of neighboring particles with (a) and (b)
n = 4-fold rotational symmetry showing cases that are typical for all even n and (c) and
(d) n = 5-fold rotational symmetry, which is typical for odd n. In (a) and (c) neigh-
boring particles prefer to possess the same orientation, while in (b) and (d) they prefer
alternating orientations, which we realize by a modulated alignment interaction. As
a consequence, the cases in (a) and (d) correspond to patchy particles with attractive
patches, while in (b) and (c) the patches are repulsive.

been derived by Löwen in [14] from classical density functional theory. The free energy func-
tional therein depends on the one-particle density of a nematic rotator particle that depends on
the position �x and the orientation φ and is approximated as [14]

ρ(�x,φ) ≈ ρ0

(
1 + ψ(�x) +

1
2
|U|(�x)cos(2(φ− ϕ(�x)))

)
(1)

with the density-like field ψ that gives the deviation from the mean density, the nematic order
parameter |U|, and the nematic director field ϕ. The free energy functional Fid[ρ] of the ideal
rotator gas is obtained by replacing the density in the well-known free energy of an ideal gas
by the density of a rotator particle ρ as given above such that [14]

Fid[ρ] =
1
β

∫
d2x

∫ 2π

0
dφρ

(
ln
(
Λ2ρ

)
− 1

)
(2)

with the inverse temperature β and the thermal wavelength Λ. Using (1) and the expansion

(1 + x)(ln(1 + x) − 1) = −1 +
1
2

x2 − 1
6

x3 +
1

12
x4 +O

(
x5
)
, (3)

then integrating over the angle and dropping irrelevant constant terms and terms linear in
ψ or |U|,

Fid
[
ψ, |U|

]
=

∫
d2x

(
ψ2 − 1

3
ψ3 +

1
6
ψ4 +

1
8
|U|2 + 1

256
|U|4 + 1

8
(ψ − 1)ψ|U|2

)
(4)

is obtained as a Landau-like model for the ideal rotator gas [14]. One of these terms,
1
8 (ψ − 1)ψ|U|2, couples ψ and |U|. Yet this coupling is isotropic, since it only depends on
the intensity, but not the direction of orientation. To consider contributions arising due to inter-
actions between particles, which might also include anisotropic interactions, the expansion
of the excess free energy must be considered. As usual for PFC models, a gradient expan-
sion is employed. Again, the details of the expansion are given in [14]. The basic idea is
that the excess free energy functional can be given as usual depending on the direct corre-
lation function that is given as function of the positions and orientations of two particles. The
terms of the resulting expansion with respect to the density-like field, an orientational field
that is further explained below, and the gradients of these fields also depend on the direct
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correlation function. As usual for PFC models parameters are used instead of the full depen-
dence on the direct correlation function, though in principle all these dependencies are known
(and also given in [14]). As a consequence, the parameters used in the following model are
given by the interactions between the particles and can be determined via the direct correlation
function.

We now want to introduce the full free energy functional as used in [15], which can be
obtained by an expansion [14] as explained before. The functional is based on a complex ori-
entation field that is defined in terms of the nematic order parameter |U| and nematic director
field ϕ as

U(�x) = |U|(�x)exp(i2ϕ(�x)). (5)

Hence the modulus of U represents the intensity of orientational ordering, while the complex
phase encodes the direction. The free energy F[ψ, U] is given as a functional of the density-
like field ψ and the orientation field U. In slightly modified notation, but as studied in [15], the
free energy is

F [ψ, U] =
∫

d2x

(
Blψ

2 + Bxψ
(
2∇2 +∇4

)
ψ − 1

3
ψ3 +

1
6
ψ4

+D|U|2 − ER
(
U∇2U∗)+ 1

256
|U|4

+FR
(
Uκ2

)
ψ +

1
8

(ψ − 1)ψ|U|2
)

(6)

with the complex derivative operator

κ = ∂x − i∂y. (7)

The values of the parameters Bl through F are given by generalized moments of the direct cor-
relation function (see above and [14]) and thus can be linked to the temperature, mean density,
and the interaction of the modeled particles. They can in principle be determined from mea-
surements of material constants. In the scope of PFC modeling Bl through F can be considered
free parameters.

The equilibrium phases are found by minimizing the free energy with respect to the fields
ψ and U. Since dynamical processes are not considered in this type of PFC model, different
methods for minimization can be chosen, which have often nothing to do with real dynamics.
Thus the process of minimization is referred to as pseudodynamics. The minima of the free
energy are stable or metastable states. In the minimization, the mean of the density-like field is
conserved, whereas the orientation field is treated as a non-conserved field. Therefore a suitable
choice for pseudodynamical equations reads

∂ψ

∂t
= −δF

δψ
+ λ(t) (8)

∂U
∂t

= − δF
δU∗ (9)

with the Lagrange multiplier λ(t), keeping the mean of ψ constant. The Lagrange multiplier is
not a constant itself, but fluctuates; for details see section 2.3. The density field would as well
be conserved, if ∂ψ/∂t = ∇2δF/δψ was applied, instead of (8) [2, 37]. But the numerical
treatment of the non-linear terms would be more complicated. Note, we are not aware of any
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technique that guarantees that the lowest energy has been found and real dynamics can also get
stuck in metastable states. As usual, by using different candidate structures and random initial
states and by comparing the free energies of the observed minima, one at least can identify the
lowest energy that can be reached from the initializations.

Before generalizing the free energy for particles with n-fold symmetry, we shortly dis-
cuss the roles of the parameters and the terms that are obtained from an expansion of the
excess free energy and thus are not just given by the ideal rotator gas (see also discussion
in [15]). The value of Bl − Bx determines whether modulations in density are energetically
favorable. In reciprocal space the respective contributions are

(
Bl + Bx

(
−2k2 + k4

))
|Fψ|2,

where F denotes the Fourier transformation. This expression has a minimum at k = 1, where
its value is (Bl − Bx)|Fψ|2. Therefore density modulations of wave number k = 1 decrease
the free energy if Bl − Bx < 0, while modulations with other wavelengths are less favor-
able which can be attributed to the elasticity of the system. For small values of D, strong
nematic order is favored, whereas nematic order vanishes for large D. Around D = 0 crys-
talline phases with non-vanishing nematic order are observed [15]. Thus D is related to the
orientational interactions between particles, i.e. it denotes how strongly particles want to
align with neighboring particles. The term proportional to E (E-term) can be rewritten via
integration by parts in the form E∇U · ∇U∗. Hence it is a diffusion term, suppressing mod-
ulations in the orientation field and ensuring stability for E > 0. The F-term is the lowest-
order anisotropic coupling between ψ and U. Thus it denotes that a density gradient might
change the orientation or vice versa. It is the simplest term that couples the density and the
direction of orientation, while respecting two-fold rotational symmetry. Since the sign of U
does not enter any of the other terms, the free energy is invariant under a sign change of
F and U. Thus only values F � 0 need to be considered [15]. For F = 0 the phases with
modulated density have vanishing orientations and the nematic phase is the only phase that
shows a finite orientation, while for F > 0 new phases with non-vanishing orientations are
obtained [15].

2.2. New generalization for n-fold symmetry

We now want to generalize the free energy functional of (6) to n-fold symmetry. First, the
definition of the orientation field from (5) is generalized to

U(�x) = |U|(�x)exp(inϕ(�x)). (10)

In this way the interpretation of U is compatible with n-fold symmetry, since the complex phase
of U is 2π/n-periodic in the director field ϕ. This means U performs a full turn in the complex
plane when the particle orientation rotates by 2π/n.

Note that the F-term in (6) is the only contribution to the free energy that depends on the
complex phase of U. Since all terms in F[ψ, U] need to be invariant under local rotations of
the coordinate system, the F-term needs to be adjusted to the new definition of U. The operator
κ transforms under a local rotation of the coordinate system by an angle α as κ′ = κ e−iα.
Therefore, Uκn is the simplest term that is linear in U and that respects local n-fold rotational
symmetry. Hence the F-term of (6) is generalized to

FR(Uκn)ψ. (11)

A modification of the E-term proves to be necessary for numerical stability as we will
explain in more detail in our discussion of the stability presented in section 3.1. Hence we
replace the operator −∇2 in the E-term by f

(
∇2

)
. Moreover, this generalization permits
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Table 1. Comparison of terms occurring in the excess free energy for polar (one-fold)
particles [13], including nematic (two-fold) contributions, with the respective terms for
purely two-fold [14] and one-fold symmetry. The single terms are referenced by their
coefficients in the notation of the respective publication. Terms that cannot occur in a
model are marked with a dash (—) and deviations are specified. The terms of [13],
proportional to E1 through G7, are unparalleled in [14] and this work. Moreover the
terms in [15] are identical to those in [14], up to a rescaling, which merges B and C of
[14] into Bx of [15].

n = 2 [14] n = 1 & 2 [13] n = 1 (this work)

A A1 Bl

B A2 }Bx
C A3

— B1 F, up to an irrelevant sign
— B2 —

F, lacking contributions of ∇ϕ B3 —

— C1 D
— C2 E, up to modifications
— C3 Lacking

D D1 —
E D2 —

modulated alignment that will be used to reflect both repulsive as well as attractive patches
as will be explained in section 2.4.

With the E-term and F-term modified, the free energy becomes

F [ψ, U] =
∫

d2x

(
Blψ

2 + Bxψ
(
2∇2 +∇4

)
ψ − 1

3
ψ3 +

1
6
ψ4

+ D|U|2 + ER
(
U f

(
∇2

)
U∗)+ 1

256
|U|4

+FR(Uκn)ψ +
1
8

(ψ − 1)ψ|U|2
)
. (12)

This is the new free energy functional for particles with n-fold rotational symmetry that we
study in this article.

When keeping f
(
∇2

)
= −∇2 and specializing to n = 2, our model reduces to the one from

[15]. Moreover, the generalization proposed here is in accordance with a model for polar liq-
uid crystals, i.e. particles of one-fold rotational symmetry (n = 1), presented by Wittkowski
et al in [13]: for example, the F-term for n = 1 can be identified with the term proportional to
B1 in [13]. Table 1 provides a detailed comparison of all terms. Note that although [13] con-
siders polar particles of one-fold symmetry, contributions of two-fold (nematic) symmetry are
taken into account in [13], by introducing fields for both, polar and nematic order parameter.
This is reasonable, since the two-fold symmetry is compatible with the underlying one-fold
symmetry. The two-fold contributions can thus be seen as an extension upon the lowest-order
orientational ordering. Yet, the number of parameters is drastically increased due to the mul-
titude of cross terms. We narrow down the number of terms in the free energy functional by
restriction to a single orientation field, representing the fundamental contribution of n-fold
symmetry.
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Figure 2. The functions f
(
−k2

)
as defined for unmodulated alignment in (17) and

piecewise defined for modulated alignment in (18), both here with m = 4.

2.3. Minimization scheme and numerical details

Motivated by the numerical investigation of systems with axial symmetry by Achim et al [15]
we implement a similar combination of explicit Euler integration in direct space for the con-
tributions from Fdir and implicit Euler integration in reciprocal space for the contributions
from Frec. Conveniently, the terms of F[ψ, U], that are quadratic or bilinear in ψ or U, can
be expressed in reciprocal space, where spatial derivation reduces to multiplication with wave
vector components. Since the functional derivatives of quadratic or bilinear expressions lead to
linear terms in the differential equation, implicit Euler integration can be performed on these
terms to improve numerical stability.

To be specific, the explicit Euler integration in direct space is given by

ψ′ = ψ −Δt
δFdir

δψ
[ψ,RU,�U], (13)

RU′ = RU −Δt
δFdir

δRU
[ψ,RU,�U], (14)

�U′ = �U −Δt
δFdir

δ�U
[ψ,RU,�U] (15)

and the implicit Euler integration in reciprocal space leads to an evolution according to
⎛
⎝ Fψ′′

FRU′′

F�U′′

⎞
⎠ = (1 −ΔtL)−1

⎛
⎝ Fψ′

FRU′

F�U′

⎞
⎠ (16)

where F denotes the Fourier transformation and L is a matrix that contains coefficients stem-
ming from the functional derivatives ofFrec. The terms in the matrix L will be shortly discussed
in the stability analysis in section 3.1 and the functional derivatives are given in the appendix A.
After the implicit integration, the Lagrange multiplier is applied, setting the appropriate value
for the �k = 0-component of Fψ′′. The backwards transformation to direct space completes the
timestep.

We apply periodic boundary conditions and discretize ψ and U on a grid of 512 × 512
or 1024 × 1024 points. The intrinsic lengthscale is set by the Bx-term to k = 1, i.e. a
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peak–peak distance of 2π in direct space. The system size spans 10 to 14 peak–peak dis-
tances, such that single peaks, as well as structures much larger than the typical unit cell are
resolved. We perform several computations for each point in phase space, starting from ran-
dom noise in both fields. When the resulting free energies differ, which happens when defects
or metastable structures appear, we start more computations with appropriately patterned ini-
tial fields. The structure that yields the lowest free energy is assumed to be the equilibrium
phase.

2.4. Modulated or unmodulated alignment to implement attractive or repulsive patches

Here we explain how the function f
(
∇2

)
(or f

(
−k2

)
in reciprocal space) is chosen such

that either the alignment or the anti-alignment of neighboring particles is preferred. Note that
the differences in alignment of neighboring particles is used to model repulsive or attractive
patches as sketched and explained in figure 1. The asymptotics of f

(
−k2

)
, i.e. the behav-

ior at large wave vectors, are dictated by the stability requirement which will be discussed in
section 3.1.

In case neighboring particles prefer to align, we use a monotonic function namely

f
(
−k2

)
= km (17)

with m = max{2n − 4, 2}. Note that for n = 2 the term used in [15] is obtained.
In case the anti-alignment of neighboring particles is preferred, the function f

(
−k2

)
should

be non-monotonic, leading to a negative free energy contribution for an orientation that alter-
nates on the length given by the nearest neighbor distance. As anti-aligned particles experience
a rotation of π/n from one particle to its neighbor, the period of U amounts to two particle
distances. This corresponds to a wavelength of k = 1

2 . Hence f
(
−k2

)
should have a min-

imum at k = 1
2 . However, we aim not to introduce a second lengthscale via the preferred

wavelength of alignment. Thus we choose a broad minimum in f
(
−k2

)
, extending beyond

k = 1
2 and k = 1. Furthermore, the asymptotics should be similar as for the alignment case to

ensure stability. Based on these requirements we employ a continuous piecewise-defined term
namely

f
(
−k2

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(
k/0.4

)2
for k2 � 0.42

−1 for 0.42 < k2 � 1.12

km − 1.1m − 1 for 1.12 < k2.

(18)

We call this case the modulated alignment case. The first piece of this function leads to a
continuous connection from f (0) = 0 to f

(
−0.42

)
= −1. The k = 0-component of the orien-

tation field is the global orientational order, which is already controlled by the parameter D.
By choosing f (0) = 0, D has the same meaning for modulated and unmodulated alignment
and is not shifted by E under modulated alignment. The second piece of the function is the
extended minimum and the third piece ensures stability by suppressing short-length modula-
tions in the orientation field, with m = max{2n − 4, 2} as before. For both types of alignment
the functions are depicted in figure 2.
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Figure 3. Matrix elements from (19) as functions of the wave vector. Plotted are the most
extreme contours, which are observed along certain radial directions in reciprocal space.
The diagonal elements vary between functions 4© and 5©, depending on direction. The
factors ξR, ξI, ξRI arise from the real and imaginary part of κn. They are 2π/n-periodic
in the polar angle associated with direction of the wave vector. ξRI ranges from −1 to 1;
both, ξR and ξI, range from −1 to 1 for even n and from −i to i for odd n, respectively.
Parameter values are Δt = 1 × 10−2, Bl = 3.0, Bx = 3.5, D = 0.1, E = 0.1, F = 1.0,
f
(
∇2

)
= −∇2, and n = 4.

3. Results

3.1. Stability requirement

To study the stability we have a closer look at the implicit integration step (16) that corresponds
to the linear contribution of the integration and is governed by a matrix

(1 −ΔtL)−1 =
1

ad − |cR|2 − |cI|2

⎛
⎝ d −cR

∗ cI
∗

−cR a − |cI|2/d −cRcI
∗/d

cI −cR
∗cI/d a − |cR|2/d

⎞
⎠ (19)

with

a = 1 + 2Δt(Bl + Bx(−2k2 + k4)) (20)

cR = ΔtFinR
((

kx − iky

)n)
(21)

cI = −ΔtFin�
((

kx − iky

)n)
(22)

d = 1 + 2Δt(D + E f (−k2)). (23)

See the appendix A for how this matrix is obtained from the free energy functional. We now
want to choose f

(
∇2

)
such that the integration is stable. Note that in general the choice that

is used in [14, 15] is not suitable: for example, if n � 4 and the E-term was given by f
(
∇2

)
=

−∇2, the computations would exhibit a numerical instability for many (significant) regions in
physical parameter space.
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Figure 4. Left column: unmodulated, right column: modulated alignment. F = 0 gives
only isotropic, triangular, stripe with vanishing U, and nematic or cholesteric phase. We
choose standard parameters Bx = 3.5, F = 1.0 and E = 0.1 for unmodulated alignment
and E = 1.0 for modulated alignment, respectively. We have tried combinations of these
values and Bx = 1.0, E = 3.5, F = 3.0, without finding different phases.

10
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Figure 5. Phases that occur for small D, where the orientational field is strong.
(a) Nematic phase for unmodulated alignment and n = 3, Bl = 3.0, Bx = 3.5, D =
−1.0, E = 0.1, F = 1.0. (b) Cholesteric phase for modulated alignment and n = 2, Bl =
1.5, Bx = 3.5, D = −1.0, E = 0.4, F = 1.0. In equilibrium the density in the nematic
phase is constant while the cholesteric phase possesses stripe-like density modulations.
Large variations in density only appear in case of topological defects in the director field
as depicted here in the lower left parts of the figures.

In figure 3 we plot the matrix elements of (19) as functions of �k. All of the matrix ele-
ments have poles at certain values of �k. These poles derive from a root of the determinant
of 1 −ΔtL, which enters into (19) as denominator. The position of the poles depends on the
physical parameters of the free energy functional and also on the timestep Δt of Euler integra-
tion. For sufficiently small Δt, the poles fall outside the range of numerically accessible wave
vectors. Hence Δt can be chosen small enough to avoid numerical instability caused by the
poles themselves.

Yet a different cause of instability remains, independent of Δt: in certain directions in recip-
rocal space the diagonal elements that correspond to the curves labeled by 5© in figure 3 exceed
1 for all wave vectors up to the pole. These matrix elements let the high-frequency modes grow,
while the terms in Fdir of higher order in ψ and U either overcompensate or fail to compensate
for this growth.

To guarantee stability we want the respective matrix elements to fall below 1, i.e.

1 � a

ad − |cR|2 − |cI|2
⇔ F2 � a(d − 1)

Δt2k2n
. (24)

This relation can be used to compute the maximum F, for which the calculations will be
stable, given the timestep Δt, the maximum length of contributing wave vectors k, and the
parameters of the free energy functional. In addition, the relation (24) permits us to pin-
point a condition on the asymptotics of the E-term, necessary for numerical stability at arbi-
trary non-zero F. Let f

(
−k2

)
be of order O(km) for large wave vectors k 	 1. Then (24) is
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Figure 6. Typical stripe phases as they occur e.g., for (a) unmodulated alignment
and n = 3, Bl = 3.0, Bx = 3.5, D = 0.5, E = 0.1, F = 1.0 and (b) modulated alignment
and n = 4, Bl = 1.5, Bx = 3.5, D = 2.0, E = 1.0, F = 1.0. The orientation fields of the
stripe phases depend only on n and are independent of (un)modulated alignment.

expressed as

F2 � 4
Δt2

BxEk4−2n f
(
−k2

)
+O

(
km−2n+3

)
. (25)

In order to ensure that this relation holds for a finite F and arbitrarily large k, m � 2n − 4 is
required. Conversely the function in the E-term has to behave asymptotically like

f
(
−k2

)
∝ k2n−4 for k 	 1 (26)

or like a term of higher order in k. Only then the right-hand side expression of (25) does not
tend to zero for large k.

If we considered conserved dynamics with a Laplacian instead of the negative gradient
that we use in our pseudodynamical equation (8), some of the matrix elements would change.
However, the position of the pole and the problem of matrix elements exceeding 1 up to the
pole would remain unchanged and we would obtain the same stability criterion.

Note that qualitatively the order of the term f
(
−k2

)
seems not to matter as long as the

integration is stable. For example, for liquid crystals (n = 2) we have found the same phases
as in [15] even if we use f

(
−k2

)
= k4 instead of f

(
−k2

)
= k2.

3.2. Overview of the phase behavior

Due to the number of parameters and the rich zoo of complex phases that can occur, system-
atic studies of the whole parameter space are difficult. Our goal in this work is not to present
complete phase diagrams. In this and the following subsections we want to present typical
phases that can occur in systems for various rotational symmetries. Concerning the parameters

12



Modelling Simul. Mater. Sci. Eng. 30 (2022) 074003 R F B Weigel and M Schmiedeberg

Figure 7. Triangular phases for (a) unmodulated alignment and n = 3, Bl = 3.0, Bx =
3.5, D = 1.0, E = 0.1, F = 1.0, (b) modulated alignment and n = 4, Bl = 3.0, Bx =
3.5, D = 1.5, E = 1.0, F = 1.0, (c) modulated alignment and n = 5, Bl = 4.5, Bx =
3.5, D = 1.0, E = 0.5, F = 1.0, and (d) modulated alignment and n = 6, Bl = 3.0, Bx =
3.5, D = 1.0, E = 1.0, F = 1.0. In (d) |U| is twice as large as plotted and the phase is
metastable.

we have focused on the regions in parameter space where non-trivial phases are expected as
discussed e.g., in the work by Achim et al on two-fold particles [15].

In figure 4 we show an overview of the phases that we have found in systems with 1 � n � 6
both, for alignment between neighboring particles (left column in figure 4) as well as mod-
ulated alignments (right column). While the figures shown in figure 4 not necessarily are
complete phase diagrams as we cannot be sure whether there are additional intermediate phases
(see also discussion in section 3.4), the figures demonstrate the typical phases that occur in
the small and large limits of D for almost all rotational symmetries namely a nematic or
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Figure 8. Rhombic phases for (a) modulated alignment and n = 1, Bl = 2.0, Bx =
3.5, D = 0.95, E = 1.5, F = 1.0, (b) unmodulated alignment and n = 4, Bl = 3.0, Bx =
3.5, D = 0.5, E = 1.0, F = 1.0, (c) modulated alignment and n = 5, Bl = 4.5, Bx =
3.5, D = 0.5, E = 1.0, F = 1.0, and (d) unmodulated alignment and n = 6, Bl =
6.0, Bx = 3.5, D = 0.5, E = 0.1, F = 1.0.

cholesteric phase for small D and usually stripe, triangular, and isotropic phases for large
D. Furthermore, in the overviews some non-trivial phases that occur in between are shown.
Details of the phases are discussed in the following subsections as denoted in the legend
of figure 4.

3.3. Discussion of stable phases

In the following we discuss the stable phases that we observe in detail.
Note that in all snapshots depicting the phases the color denotes the density-like field ψ(x).

The orientation field U(x) is superimposed over ψ in the form of markers, which show the
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Figure 9. (a) Honeycomb phase for modulated alignment and n = 4, Bl = 3.0, Bx =
3.5, D = 0.5, E = 1.0, F = 1.0 and (b) square phase for modulated alignment and n =
6, Bl = 4.5, Bx = 3.5, D = 1.0, E = 1.0, F = 1.0.

symmetry and direction. Furthermore, the size of the circle at the markers denotes magnitude
|U|. Note that the fields U and ψ are determined with the same spatial resolution. However, we
plot fewer orientation markers to keep the plots legible.

3.3.1. Isotropic phase. For large D and large Bl an isotropic phase is observed. In the isotropic
phase the density is homogeneous and the magnitude |U| of the orientation field vanishes, i.e.,
there is no preferred orientation of the particles.

3.3.2. Nematic and cholesteric phases. For small D structures with strong orientational order
occur. In case neighboring particles prefer to align, i.e. for unmodulated interactions, a nematic
phase is found as depicted in figure 5(a). If neighboring particles prefer opposite orienta-
tions, i.e. for modulated alignment interactions, we observe a phase where a strong orientation
changes continuously in a wave-like pattern. We call this structure a cholesteric phase.

While in an ideal nematic phase all particles possess the same orientation, in the cholesteric
phase particles with similar orientation occur along stripes. Furthermore, the density is constant
in the nematic phase but there is a stripe-like weak density modulation in the cholesteric phase.

In both phases, when defects are present, they tend to cluster in motifs that occur in close-by
phases.

3.3.3. Stripe phases. For small Bl and usually larger D stripe phases with a strongly modu-
lated density occur. The stripe phases of modulated and unmodulated alignment are identical.
For all odd n we observe the strongest modulations to appear where the density gradient is
maximal as depicted in figure 6(a). In contrast, for all even n, figure 6(b), the orientational
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Figure 10. Dodecagonal quasicrystal for modulated alignment and n = 6, Bl =
3.0, Bx = 3.5, D = 2.0, E = 1.0, F = 1.0. The inset shows the Fourier transform of ψ
and (b) is a zoom-in on the configuration from (a).

strength is maximal in the density maximum as well as in opposite direction (rotated by π/n)
in the density minimum but vanishes at the flanks of the stripes.

3.3.4. Triangular phases. The triangular phases occur at larger Bl than the stripe phases. Sim-
ilar to the stripe phases, the orientation fields of the triangular phases depend whether n is even
or odd; yet with exceptions when n matches a symmetry of the triangular lattice. Typically for
even n the orientation is strong between neighboring density peaks, see figure 7(b), while for
odd n each density peak is surrounded by a ring of strong orientation as shown in figure 7(c).
In both cases the orientation vanishes at the density maxima, marking the triangular phases
as plastic crystals. Exceptions of this general rule are n = 3 and n = 6: figure 7(a) shows the
triangular phase of n = 3, exhibiting strong orientation not between pairs, but between triplets
of neighboring density peaks. Figure 7(d) presents the triangular phase of n = 6, which is an
oriented crystal. However, it only occurs as metastable phase as the dodecagonal quasicrystal
is stable for these parameters.

3.3.5. Rhombic phases. Figure 8 shows several rhombic phases for different n. The rhombic
phases often appear at intermediate D between the nematic or cholesteric phase and other crys-
talline phases. In some cases the angles that occur might not be uniquely given: for modulated
alignment next to the cholesteric phase, the rhombic phase often can be stretched or com-
pressed at almost no energy cost, because there is a flat segment in the piecewise definition of
f
(
−k2

)
in (18).

3.3.6. Honeycomb and square phases. The honeycomb and square phases, depicted in
figure 9, add to the examples of plastic crystalline phases which appear in between the ubiqui-
tous phases. Their topology is the same as reported for two-fold particles in [15]. Surprisingly,
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Figure 11. Defects along a grain boundary of the triangular phase of five-fold particles
for unmodulated alignment and Bl = 3.0, Bx = 3.5, D = 0.7, E = 0.5, F = 1.0. The sta-
ble phase for these parameters is a triangular crystal. The orientations of the two grains
are highlighted in cyan, seven-neighbor dislocations are marked in purple, and five-
neighbor dislocations in green. The orientation field is large on the density peaks with
five neighbors, as shown in (b), a zoom-in on the configuration from (a).

the honeycomb phase is stable for four-fold particles and the square phase is stable for six-fold
particles, but not vice versa. This underlines again, like the rhombic phases, that the symmetry
of the particles does not dictate the symmetry of the emergent crystal.

3.3.7. Dodecagonal quasicrystalline phase. We also find a stable quasicrystal, i.e. a struc-
ture with long-ranged order but without translational symmetry. The observed quasicrys-
tal is shown in figure 10. It possesses twelve-fold rotational symmetry and occurs for a
system with modulated alignments and particles with six-fold rotational symmetry. From
a zoom-in to the quasicrystalline structure as shown in figure 10(b) one recognizes that
along a ring around a local symmetry center there are 12 regions with strong orientation.
The orientation in neighboring regions is rotated by π/6 as expected due to the modula-
tion of the alignment interaction. Probably these regions are the features that stabilize the
quasicrystals.

As typical to quasicrystals, the Fourier transform of ψ exhibits not only the 12 main peaks
but numerous quite strong satellite peaks as well. Therefore, the anisotropic interaction can
indeed lead to the stabilization of lengthscales that differ from the length that is preferred by
the free energy functional.

In principle a similar structure might occur for particles with twelve-fold rotational symme-
try and unmodulated alignment interactions. However, we have not found such a quasicrystal.
Furthermore, we have not observed any stable quasicrystals with other rotational symmetry.

17



Modelling Simul. Mater. Sci. Eng. 30 (2022) 074003 R F B Weigel and M Schmiedeberg

Figure 12. Metastable dodecagonal quasicrystal for modulated alignment and n =
3, Bl = 4.5, Bx = 3.5, D = 1.0, E = 1.0, F = 1.0. Note that the stable phase for these
parameters is the stripe phase. The inset shows the Fourier transform of ψ and (b) is a
zoom-in on the configuration from (a).

3.4. Defects and metastable states

Although we do not observe any stable quasicrystals composed of particles with five-fold rota-
tional symmetry, it seems that five-fold symmetry prominently occurs in defects along grain
boundaries as shown in figure 11. The grain boundaries contain the well known pairs of dis-
locations with five and seven neighbors [38]. Yet the density peaks with five neighbors stand
out, as the orientation field on the peaks is large, whereas it vanishes on the peaks with six or
seven neighbors.

We also observe metastable quasicrystals like the one shown in figure 12 that are different
from the dodecagonal structure reported in section 3.3.7. The stabilization mechanism for the
three-fold particles is probably the same as for the six-fold ones, where the orientation field
modulates along the rings of high density. Despite having the same 12-fold symmetry, the
metastable quasicrystal consists almost entirely of rings of high density and very few isolated
density peaks, as opposed to the stable quasicrystal. Moreover the satellite peaks of this struc-
ture in reciprocal space are much less pronounced. In this case the stripe phase is stable, i.e.
has a lower free energy than the metastable quasicrystal.

The figures shown in figure 4 are not necessarily complete phase diagrams. In some cases
it is hard to figure out whether a resulting structure is stable or metastable. For example in
figure 4(b) some points in parameter space are marked with crosses. For these parameters we
observe structures that seem to be mixtures of triangular, stripe, and possibly rhombic phase
as shown in figure 13. Note that the corresponding pure phases possess a higher free energy
than the mixture that we observe. Probably in these points the true equilibrium phase has not
been found yet.
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Figure 13. Mixture of triangular, stripe, and possibly rhombic phase for modulated
alignment and n = 1, Bl = 2.9, Bx = 3.5, D = 1.5, E = 1.5, F = 1.0. (b) Is a zoom-in
on the configuration from (a).

4. Conclusions

We have introduced a new PFC model for particles with n-fold rotational symmetry in two
dimensions as it occurs, e.g., for patchy particles with symmetrically placed patches. Both the
cases of attractive as well as repulsive patches have been considered leading either to alternating
or the same orientation of neighboring clusters.

The PFC model is used to determine the phases that are stable for various rotational sym-
metries. We usually observe nematic or cholesteric phases in case a non-vanishing orienta-
tional order is preferred by the free energy. In the opposite limit we find stripe, triangular,
or isotropic phases depending on how strong density modulations are supported. In between
these phases, complex orderings with honeycomb, square, or rhombic symmetry occur. We
even find a quasicrystalline phase with dodecagonal rotational symmetry. Therefore it is
demonstrated that quasicrystals can be stabilized by interactions that only possess one length
scale if in addition special binding angles are preferred. Note that we do not find the type
of quasicrystals that has been reported to occur for patchy particles in simulations [25–28].
As we will discuss in the last paragraph this is probably due to lack of a hard core in our
approach.

Since a lot of complex phases occur in our system, finding the global minimum might be
hard and usually there are a lot of metastable states with interesting structures. At the end of
section 3 we shortly comment on some examples including a metastable quasicrystal. How-
ever, the metastable states deserve more detailed analyses in future works. For example, the
domains that meet at grain boundaries prefer orientations that depend on the rotational symme-
try and the orientational interactions. As a consequence the grain boundaries probably differ

19



Modelling Simul. Mater. Sci. Eng. 30 (2022) 074003 R F B Weigel and M Schmiedeberg

from the boundaries that are observed for isotropic particles. By adding noise the coarsen-
ing processes in systems with such grain boundaries can be explored, which we leave for
future works.

The particles that we have in mind in this work do not possess a hard core. Therefore,
the phases described here correspond to cluster crystals similar as in [10, 33–36, 39]. In
contrast, in many particulate systems a hard core prevents large overlaps of particles. Fur-
thermore, a hard core can support the formation of some complex phases like quasicrystals
[40–42]. Note that the quasicrystalline phases that have been observed in computer simula-
tions of patchy colloids have been found in systems where the particles can hardly overlap
[25–28]. As a consequence, in future we want to study mean field approaches with similar
couplings between an orientational field and the density-like field as in this article. How-
ever, to model a hard core as well, the functional dependence on the density-like field has
to be changed. A suitable way to describe the hard core is given by the so-called funda-
mental measure theory [43–45], which can be formulated in two dimensions [46] and which
is known to lead to complex phases in case of the competition with an incommensurate
substrate [47–49].
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Appendix A

For the following calculations we introduce the shorthand notation p = RU and q = �U as
independent real-valued fields. Due to the linearity of the Fourier transformation, FU = Fp+
iFq holds. The free energy (12) is split into reciprocal-space and direct-space contributions:

F [ψ, U] = Frec[Fψ,Fp,Fq] + Fdir[ψ, p, q]. (A.1)

The single contributions are

Frec[Fψ,Fp,Fq] =
∫

d2k
((

Bl + Bx
(
−2k2 + k4

)))
|Fψ|2

+
(
D + E f

(
−k2

))(
|Fp|2 + |Fq|2

)
+F

(
Fp∗kR − Fq∗kI

)
Fψ

)
, (A.2)

Fdir[ψ, p, q] =
∫

d2x

(
−1

3
ψ3 +

1
6
ψ4 +

1
256

(
p2 + q2

)2

+
1
8

(ψ − 1)ψ
(

p2 + q2
))

, (A.3)
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where kR = inR
((

kx − iky

)n)
and kI = in�

((
kx − iky

)n)
. The functional derivatives ofFrec are

δFrec

δFψ∗ = 2
(
Bl + Bx

(
−2k2 + k4

))
Fψ + FkR

∗Fp− FkI
∗Fq, (A.4)

δFrec

δFp∗
= 2

(
D + E f

(
−k2

))
Fp+ FkRFψ, (A.5)

δFrec

δFq∗ = 2
(
D + E f

(
−k2

))
Fq − FkIFψ. (A.6)

These are linear in Fψ, Fp, and Fq. In explicit Euler integration, the coefficients in these func-
tional derivatives would be the elements of a matrix L. As in previous works [15], we deploy
implicit Euler integration where possible, namely in (16). The integration step requires the
inverse of the matrix

1 −ΔtL =

⎛
⎝ a cR

∗ −cI
∗

cR d 0
−cI 0 d

⎞
⎠ (A.7)

with the elements as stated in (19) through (23). The functional derivatives of Fdir are

δFdir

δψ
= −ψ2 +

2
3
ψ3 +

1
8

(2ψ − 1)
(

p2 + q2
)
, (A.8)

δFdir

δp
=

1
64

(
p2 + q2

)
p+

1
4

(ψ − 1)ψp, (A.9)

δFdir

δq
=

1
64

(
p2 + q2

)
q +

1
4

(ψ − 1)ψq. (A.10)
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