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Abstract. We study the quasiclassical dynamics of the cross-Kerr effect. In
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a space is not considerably modified, but their size is reduced.

S Online supplementary data available from stacks.iop.org/NJP/15/043038/
mmedia

5 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 043038
1367-2630/13/043038+18$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:lsanchez@fis.ucm.es
http://www.njp.org/
http://stacks.iop.org/NJP/15/043038/mmedia
http://stacks.iop.org/NJP/15/043038/mmedia
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. Cross-Kerr quasiclassical evolution 3
3. Mode correlation dynamics 5
4. Polarization squeezing 8
5. Mapping the dynamics on the sphere 10
6. Dissipative effects 11
7. Concluding remarks 14
Acknowledgments 14
Appendix A. The two-mode Wigner function 14
Appendix B. Purity of the reduced density matrix 15
References 16

1. Introduction

The optical Kerr effect refers to the intensity-dependent phase shift that a light field experiences
during its propagation through a third-order nonlinear medium. This leads to a remarkable
non-Gaussian operation that has sparked considerable interest due to potential applications
in a variety of areas, such as quantum non-demolition measurements [1–9], generation of
quantum superpositions [10–19], quantum teleportation [20–22], quantum logic [23–28] and
single-particle detectors [29–31], to cite only a few.

Enhanced Kerr nonlinearities have been observed in electromagnetically induced
transparency [32–35], Bose–Einstein condensates [36], cold atoms [37] and Josephson
junctions [38–40]. Additional arrangements involve the Purcell effect [41], Rydberg atoms [42],
light-induced Stark shifts [43] and nanomechanical resonators [44].

Special mention must be made of the role this cubic nonlinearity has played in the
generation of squeezed light. The first proposals employed schemes involving a nonlinear
interferometer [45] or degenerate four-wave mixing [46, 47]. But quite soon optical fibers
became the paradigm for that purpose [48–53]. However, due to the typically small values of
the nonlinearity in silica glass [54], Kerr-based fibers need long propagation distances and high
powers, which bring other unwanted effects [55, 56].

In this paper, we direct out attention on this limit of high intensities, in which one
could expect a classical description to be pertinent. Under reasonable assumptions, Maxwell’s
equations lead to a set of coupled nonlinear Schrödinger equations that has long been a useful
tool for depicting the behavior of optical fields in nonlinear dispersive media. It has proved
valuable in the description of such diverse phenomena as pulse compression, dark soliton
formation and self-focusing of ultrashort pulses [57]. However, there remain non-classical
features that cannot be explained in this classical manner. To put it differently, at the most
basic level, the propagation of light in a Kerr medium is accompanied by unavoidable quantum
effects.

The considerations so far indicate that the regime we wish to explore can be regarded
as a problem at the boundary between classical and quantum worlds. Probably, the transition
between both can be best scrutinized by exploiting phase-space methods [58–60]. This opens
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up the possibility of gaining some information about the non-classical behavior with a
quasiclassical description that employs essentially classical trajectories, while the correct
quantum initial state is taken into account via, e.g., the Wigner function [61–63]. Despite
some problems with the interpretation, the Wigner function has enjoyed substantial attention
in various domains of physics [64] and has already been applied to some nonlinear problems in
quantum optics [65–69].

The intensity dependence of the refractive index, which is the hallmark of the Kerr effect,
can manifest itself in two different ways: as a self-phase modulation and as a cross-phase
modulation. Self-phase modulation refers to the self-induced phase shift experienced by an
optical field during its propagation, whereas cross-phase modulation refers to the nonlinear
phase shift of an optical field induced by another one having a different wavelength, direction
or state of polarization.

In this paper we focus on the cross-Kerr effect, for it is especially germane to attain
polarization squeezing, a major goal in our laboratory [70]. We capitalize on the quasiclassical
approach to re-analyze the light propagation in this case in a very concise way: after
neglecting higher-order fluctuations, we obtain an evolution equation for the Wigner function
that can be integrated to an analytical form. This allows us to study the dynamics of mode
correlations. Since the resulting state is non-Gaussian, the application of common entanglement
criteria [71, 72] becomes problematic, so we content ourselves with the study of the purity of
the reduced states, which can be carried out in a closed form.

The two-mode Wigner function is appropriately cast in Poincaré space in terms of the
phase-space version of the Stokes parameters, which affords an intuitive picture. Finally, as
the Kerr dynamics is photon number preserving, the standard models of dissipation [73] based
on coupling the modes to lossy reservoirs seem inadequate. Instead, we allow for dissipation
through pure dephasing processes which turns out to be exactly solvable. The resulting evolution
reveals that the shape of the Wigner functions is not considerably modified, but their size is
shrunk.

2. Cross-Kerr quasiclassical evolution

As heralded in section 1, the cross-Kerr configuration corresponds to a situation in which the
refractive index of a beam (say a) is modified by the intensity of a second one (say b). These
beams are excited in two orthogonal polarization modes that, in a quantum description, are
characterized by two complex amplitude operators, denoted as â and b̂, respectively. These
operators obey the standard bosonic commutation relations

[â, â†] = 1̂1 = [b̂, b̂†], [â, b̂] = 0 (2.1)

the superscript † standing for the adjoint.
In terms of these annihilation and creation operators, the Hamiltonian accounting for the

cross-Kerr interaction is [74]

Ĥ = h̄χ â†âb̂†b̂, (2.2)

where χ is an effective coupling constant that depends on the third-order nonlinear
susceptibility. For any state described by the density operator ρ̂, the evolution is given by

i h̄∂t ρ̂ = [Ĥ , ρ̂], (2.3)
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whose solution can be formally written as

ρ̂(t) = exp(−i t Ĥ/h̄) ρ̂(0) exp(i t Ĥ/h̄). (2.4)

By expanding this equation in the two-mode Fock basis |na, nb〉, the evolution may be, in
principle, tracked. Take the example of an initially pure, two-mode coherent state |9(0)〉 =

|α0, β0〉, where henceforth the subscript 0 indicates the value of the corresponding variable at
t = 0. The resulting state is

|9(t)〉 = exp(−i t Ĥ/h̄)|9(0)〉

= exp[−(|α0|
2 + |β0|

2)/2]
∞∑

na,nb=0

α
na
0 β

nb
0

√
na! nb!

exp(−i χ tnanb)|na, nb〉. (2.5)

The term exp(−i χ tnanb) arises because of the coupling between the modes and causes that
the state cannot be factorized into single-mode states; that is, it becomes entangled, as we shall
examine in the next section.

It is apparent that equation (2.5) is of practical use only for few-photon states. Actually,
such an exact solution does not allow us to extract the classical part of the dynamics in a manifest
form. To that end, we proceed to decompose the mode operators â and b̂ as

â = α + δâ, b̂ = β + δb̂, (2.6)

that is, a sum of classical amplitudes and quantum noise operators. The average values of the
noise operators are assumed to be much smaller than the corresponding coherent amplitudes
(|α|

2, |β|
2
� 1), so we can restrict the analysis to first-order terms in δâ and δb̂. If we employ

the two-mode Wigner function W (α, β) and the basic techniques outlined in appendix A,
equation (2.4), with this linearization ansatz, can be recast as

i ∂t W = χ |β|
2

(
α∗

∂W

∂α∗
− α

∂W

∂α

)
+ χ |α|

2

(
β∗

∂W

∂β∗
− β

∂W

∂β

)
. (2.7)

Two comments are in order here. Firstly, we are ignoring quantum fluctuations, inasmuch
as we are disregarding higher-order moments of the noise operators; this seems a plausible
approximation for highly excited fields. Secondly, we underline that the evolution is specified
only by classical trajectories, much in the spirit of the quasiclassical approximation.

To shed light on the physics embodied in (2.7), we resort to action-angle variables (I , ϕ)

for each mode [75]. In our context, they can be defined as

α =

√
Ia exp(i ϕa), β =

√
Ib exp(i ϕb), (2.8)

and therefore ϕ is the polar angle in phase space, whereas I is related to the mode intensity
(see figure 1). With these variables, equation (2.7) can be rewritten in a simple and elegant form

∂t W = χIb
∂W

∂ϕa
+ χIa

∂W

∂ϕb
. (2.9)

As ∂/∂ϕ generates rotations in phase space, equation (2.9) reflects that the amplitudes in each
mode experience different rotations, with angles proportional to the intensity components of the
other mode [76, 77]. The result is schematized in figure 1: roughly speaking, the shaded area
indicates the region in phase space occupied by the state. For an initial coherent state this area is
a circle; the top of the circle corresponds to higher intensity and therefore is more phase shifted
than the bottom, resulting in an elliptical noise distribution.
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Figure 1. Schematic representation, in the phase space of a single mode, of the
effect of a Kerr medium. The initial state is a coherent state, represented by a
circle noise determined by the uncertainty relation. It experiences a rotation of
angle depending on the different amplitudes

√
I . The final result is an elliptical

noise distribution.

Equation (2.9) can be readily solved:

W (Ia, ϕa; Ib, ϕb|t) = W (Ia, ϕa + Ibχ t; Ib, ϕb + Iaχ t |0). (2.10)

If again we assume initially the two-mode coherent state |α0, β0〉 (α0 =
√

I0a ei ϕ0a , β0 =
√

I0b ei ϕ0b), then using (A.5), equation (2.10) reduces to

W (Ia, ϕa; Ib, ϕb|τ) =
4

π2
exp

[
−2|

√
Ia ei (ϕa+2Ibτ)

−

√
I0a ei ϕ0a |

2
]

× exp
[
−2|

√
Ib ei (ϕb+2Iaτ)

−

√
I0b ei ϕ0b |

2
]

, (2.11)

where we have introduced the dimensionless variable s = vt/2. Observe that at s = 0 the Wigner
function is made of two independent Gaussians, while as time goes by the induced mode
correlations lead to a non-Gaussian state.

3. Mode correlation dynamics

Two-mode Gaussian states constitute the simplest example of a continuous-variable bipartite
system, the workhorses of quantum information. Accordingly, the theoretical aspects of these
states have been extensively worked out and a variety of quantitative characterizations are
available for them [78–82].

A unique feature of these Gaussian states is that they are fully specified (up to local
displacements) by the covariance matrix γ , with elements γi j = Tr[ρ̂{R̂i , R̂ j}/2], where {, }

denotes the anticommutator and R̂ = (x̂a, p̂a, x̂b, p̂b) is the vector of phase-space operators.
This covariance matrix can be jotted down as

γ =

(
A C
Ct B

)
. (3.1)
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Figure 2. Time evolution of the symplectic eigenvalue ν̃− of the state (2.11), as a
measure of the entanglement between the two modes. We have taken both modes
with the same intensity I0a = I0b = 106. Entanglement is proven for ν̃− < 0.5,
a region that can be observed only in the inset.

Here, A and B are the covariance matrices associated with the reduced state of the modes a and
b, while C describes the correlation between these modes. The symplectic eigenvalues of γ are

ν2
±

=
1
2

[
1 ±

√
12 − 4 det γ

]
(3.2)

with 1 = det A + det B + 2 det C. These symplectic eigenvalues encode all the essential
information and provide powerful, simple ways for to express fundamental properties. For
example, a Gaussian state is entangled if and only if

ν̃− < 1/2, (3.3)

where the smallest symplectic eigenvalue ν̃− of the covariance matrix corresponding to the
partially transposed state is obtained from ν− by replacing det C with − det C, i.e. by time
reversal in the second system and thus a flip of its canonical momentum.

In figure 2 we have plotted the time evolution of ν̃− for the state (2.11), showing a rapid
increase (in the inset, we observe a fluctuating behavior that is smeared out in a larger scale).
The main caveat with this approach is that, as mentioned before, our state rapidly becomes
non-Gaussian, and criterion (3.3) gives then only a sufficient condition. Consequently, we can
certify entanglement just in the short-time window displayed in the inset. This actually holds
for any available criterion [71, 72]: if the state is entangled, a given test may or may not detect
its entanglement; in turn, if a particular test does not detect entanglement, we cannot conclude
separability of the state.

Genuine non-Gaussian entanglement can only be revealed by measures involving higher-
order moments. In this vein, Shchukin and Vogel [83] (see also [84, 85]) have introduced
a general hierarchy of necessary and sufficient conditions for any state to be entangled.
Nevertheless, the application of this technique to our problem turns out to be very arduous for it
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involves checking non-trivial inequalities, which can be performed only numerically. Moreover,
the method involves the determination of moments that are extremely oscillatory and noisy [86].

In view of these difficulties, we content ourselves with assessing the purity of the reduced
state of both modes. This is related to the linear entropy and is intimately connected to the
intermodal correlations [87]. These local purities are

Pa(τ ) = Tra[ρ̂2
a(τ )], Pb(τ ) = Trb[ρ̂2

b(τ )], (3.4)

ρ̂a(τ ) = Trb[ρ̂(τ )] and ρ̂b(τ ) = Tra[ρ̂(τ )] being the reduced density matrices of modes a and b,
respectively. If we employ now the two-mode Wigner function (2.11), the purity, say Pa(τ ), can
be written as

Pa(τ ) =
π

8

∫ π

−π

dϕa

∫
∞

0
d Ia

[∫ π

−π

dϕb

∫
∞

0
d IbW (Ia, ϕa; Ib, ϕb|τ)

]2

. (3.5)

For a bipartite system, both purities in (3.4) coincide for pure states [88, 89]. In
general, these quantities are different for mixed states. In our case, after a long but otherwise
straightforward calculation (which, for completeness, is sketched in appendix B), Pa(τ ) can be
displayed as

Pa(τ ) = exp(−4I0b − 2I0a)

∞∑
n=−∞

In(2I0a)

1 + τ 2n2
exp

(
4I0b

1 + τ 2n2

)
= Pb(τ ), (3.6)

where In(z) are the modified Bessel functions of the first kind and the last equality has been
carefully checked by numerical experiments. This surprising symmetry can be ascribed to the
way in which the modes enter the Kerr Hamiltonian (2.2). Accordingly, we drop the mode
subscripts in the purities.

As we are dealing with highly excited fields (I0a � 1), we can make use of the asymptotic
expansion [90]

In(z) ∼
ez

√
2π z

e−n2/2z, |z| � 1. (3.7)

In addition, as τ � 1 and the functions in (3.6) do not oscillate, we can replace the summation
by an integral, the final result being

P(τ ) =
1

√
4πI0a

∫
∞

−∞

dx
1

1 + τ 2x2
exp

(
−

4I0bτ
2x2

1 + τ 2x2
−

x2

4I0a

)
. (3.8)

In figure 3, we plot the time evolution of this P(s) in the same scale as in figure 2. At s = 0
the reduced purity is unity, in agreement with the fact that initially the state consists of two
uncorrelated Gaussians. As time evolves, the purity smoothly decreases (much in the same way
as the symplectic eigenvalue ν̃− decreases), which indicates the presence of mode correlations.
This is supported by the following asymptotic estimate of (3.8):

P(τ ) '
1√

1 + 16I0aI0bτ 2
(3.9)

valid for I0bτ / 1. It is clear that this form of P(τ ) is invariant under mode permutations.
Finally, P(s) tends to its stationary value.

One might wonder how quantum fluctuations, neglected so far, could modify this
quasiclassical picture. For the particular case of initial coherent states we are treating here,
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Figure 3. Evolution of the purity P(τ ) as a measure of the correlations between
the two modes for the same conditions as in figure 2.

we can analytically compute the purity for the exact quantum solution. Indeed, from (2.5) we
have

ρ̂a(t) = exp[−|α0|
2
− |β0|

2]
∞∑

na,nb=0

α
na
0 α

∗nb
0

√
na! nb!

exp
[
e2i τ(na−nb)|β0|

2
]
|na〉〈nb|, (3.10)

wherefrom one can easily derive the exact expression for the purity:

Pexact(τ ) = exp(−2I0a − 2I0b)

∞∑
n=−∞

In(2I0b) exp[2I0a cos(2nτ)]. (3.11)

Using the properties of the Bessel functions, we redraft this as

Pexact(τ ) = exp(−2I0a − 2I0b)

∞∑
m,n=−∞

Im(2I0a)In(2I0b) exp(2 i mnτ), (3.12)

which explicitly exhibits the aforementioned symmetry. In fact, taking into account (3.7),
Pexact(τ ) appears as a bidimensional Jacobi theta function [90], which is periodic. However,
in the time scales we are considering here, such a periodicity is unnoticeable and we can replace
again the sum by an integral, getting precisely equation (3.9).

In the inset of figure 3, we have plotted the difference between the exact solution (3.12) and
the quasiclassical one (3.8). As we can see, both solutions coincide for any practical purpose.
This means that the correlations examined before are of quantum nature, but higher-order
correlations play no relevant role here.

4. Polarization squeezing

Since the polarization modes a and b have the same frequency and are orthogonal, their
superposition results in a general elliptical polarization. This means that one needs only three
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independent quantities: the amplitudes of each mode and the relative phase between them. To
describe this at the quantum level, it is advantageous to use the Stokes operators [91]

Ŝx = â†b̂ + b̂†â, Ŝy = i(âb̂†
− â†b̂), Ŝz = â†â − b̂†b̂ (4.1)

complemented with the total number N̂ = â†â + b̂†b̂. On account of (2.1), the operators (4.1)
satisfy the commutation relations of an angular momentum

[Ŝk, Ŝ`] = 2 i εk`m Ŝm, [N̂ , Ŝk] = 0, (4.2)

where the Latin indices run over {x, y, z} and εk`m is the Levi–Civita fully antisymmetric
tensor. This non-commutability precludes the simultaneous exact measurement of the physical
quantities they represent and leads immediately to the Heisenberg inequalities [92–95]

12 Ŝk 12 Ŝ` > εk`m |〈Ŝm〉|
2, (4.3)

where 12 Â = 〈 Â2
〉 − 〈 Â〉

2 indicates the variance. It is always possible to find pairs of maximally
conjugate operators for this uncertainty relation. This is equivalent to establishing a basis in
which only one of the operators (4.1) has a non-zero expectation value, say 〈Ŝk〉 = 〈Ŝ`〉 = 0 and
〈Ŝm〉 6= 0. The only non-trivial Heisenberg inequality reads thus

12 Ŝk 12 Ŝ` > |〈Ŝm〉|
2. (4.4)

Polarization squeezing can then be sensibly defined by the condition [96–100]

12 Ŝk < |〈Ŝm〉| < 12 Ŝ`. (4.5)

Note that squeezed states according to (4.5) are not, in general, minimum uncertainty states.
The choice of the conjugate operators {Ŝk, Ŝ`} is by no means unique: there exists an

infinite set {Ŝ⊥(ϑ), Ŝ⊥(ϑ + π/2)} that are perpendicular to the classical excitation 〈Ŝm〉, for
which 〈Ŝ⊥(ϑ)〉 = 0 for all ϑ . All these pairs exist in the Sk–S` plane, which is called the dark
plane. A generic Ŝ⊥(ϑ) can be written as

Ŝ⊥(ϑ) = Ŝk cos ϑ + Ŝ` sin ϑ, (4.6)

ϑ being an angle defined relative to Ŝk . Condition (4.5) is then equivalent to

12 Ŝ⊥(ϑsq) < |〈N̂ 〉| < 12 Ŝ⊥(ϑsq + π/2), (4.7)

where Ŝ⊥(θsq) is the maximally squeezed operator and Ŝ⊥(θsq + π/2) the antisqueezed one.
In many experiments both modes have the same amplitude but are phase shifted by π/2:

〈â〉 = i〈b̂〉. This light is circularly polarized and fulfills 〈Ŝx〉 = 〈Ŝz〉 = 0, 〈Ŝy〉 6= 0, so (4.7)
directly applies.

The time evolution of the variables involved in those definitions can be evaluated using the
Wigner-distribution approach:

〈Ŝ⊥(ϑ, τ )〉 = π 2 Re

[
ei ϑ

∫
d2α d2β WŜ⊥(ϑ)(α, β) W (α, β|τ)

]
. (4.8)

Here, WŜ⊥(ϑ)(α, β) refers to the phase-space function corresponding to the operator Ŝ⊥(ϑ)

(commonly called its symbol). From (4.1) and (4.6) it is clear that the symbol of Ŝ⊥(ϑ) can
be directly constructed in terms of the symbols of the basic mode amplitudes â and b̂, which,
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from appendix A, we know are given by Wâ(α) = α/π and Wb̂(β) = β/π . Therefore, we obtain

〈Ŝy(τ )〉 =
I0

(1 + τ 2)2
exp

(
−

2I0τ
2

1 + τ 2

)
, 〈Ŝx(τ )〉 = 〈Ŝz(τ )〉 = 0, (4.9)

where I0 = Tr[ρ̂(0)N̂ ] is the initial average number of photons of the state. The second-order
moments are calculated much in the same way; the final result is

12 Ŝ⊥(ϑ, τ ) = I0[1 + (I0/2) sin2 ϑ] − sin2(ϑ/2)
2I 2

0

(1 + 4τ 2)3
exp

(
−

8I0τ
2

1 + 4τ 2

)
− sin(2ϑ)

2I0τ

(1 + τ 2)3

(
1 +

I0

1 + τ 2

)
exp

(
−

2I0τ
2

1 + τ 2

)
. (4.10)

A major advantage of this formalism is that we can specify the time evolution of polarization
squeezing. In particular, for sufficiently short times τ � 1, we can expand equations (4.9)
and (4.10) up to second order, so that

〈Ŝy(τ )〉 ' I0(1 − I0τ
2), 12 Ŝ⊥(ϑ, τ ) ' I0[1 + 4I 2

0 sin2(ϑ) τ 2] − 2I 2
0 sin(2ϑ)τ, (4.11)

so that the optimal squeezing angle is roughly given by

ϑsq '
1
2 arccot(I0τ), (4.12)

i.e. it starts at ϑsq = π/4 and slowly moves toward 0 as τ goes by.

5. Mapping the dynamics on the sphere

It is possible to turn the action of the Stokes operators discussed in the previous section into a
very simple phase-space picture. To this end we introduce the parametrization [101]

α =

√

I ei ϕa cos(θ/2) , β =

√

I ei ϕa e−iφ sin(θ/2), (5.1)

where ϕa appears now as a global phase and the pertinent relative phase is φ = ϕa − ϕb. The
radial variable

I = Ia + Ib (5.2)

represents the total intensity. The parameters θ and φ can be interpreted as the polar and
azimuthal angles, respectively, on the Poincaré sphere: θ describes the relative amount of
intensity carried by each mode and φ is the relative phase between them. In terms of these
new variables, equation (2.9) becomes

∂t W = χIb
∂W

∂ϕa
+ χ(Ib − Ia)

∂W

∂φ
. (5.3)

In (5.1), ϕa appears as an irrelevant global phase over which we can integrate without losing
relevant information; the result is

∂t W (I , θ, φ) = −χI cos θ
∂W (I , θ, φ)

∂φ
, (5.4)

whose solution in terms of the adimensional variable τ reads

W (I , θ, φ|τ) = W (I , θ, φ − 2τI cos θ |0). (5.5)
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The three numbers (I , θ, φ) are the spherical coordinates in the Poincaré space:

Sx = I sin θ cos φ, Sy = I sin θ sin φ , Sz = I cos θ . (5.6)

In terms of the Cartesian counterpart, equation (5.5) can be compactly expressed as

W (Sx , Sy, Sz|τ) =
8

π
exp(−2I − 2I0) I0

(
2
√

σ(θ, φ, τ )
)

, (5.7)

where

σ(θ, φ, τ ) = 2
[
I I0 + Sz S0z + cos(2Szτ)(Sx S0x + Sy S0y) + sin(2Szτ)(Sy S0x − Sx S0y)

]
. (5.8)

For the aforementioned case of circularly polarized light, with S0x = S0z = 0, S0y = I0, this
reduces to

σ(θ, φ, τ ) = 2I0

[
I + Sy cos(2Szτ) − Sx sin(2Szτ)

]
. (5.9)

In the x–p quadrature phase space, the usual way of representing states is by an uncertainty
region which is just a contour of the Wigner function W (x, p) for that state. Much in the
same way, for each fixed time, the equation W (Sx , Sy, Sz|τ) = constant defines an isocontour
surface in the Poincaré space of the axes (Sx , Sy , Sz), which gives complete information
about the fluctuations of the state. In the supplementary material of this paper (available from
stacks.iop.org/NJP/15/043038/mmedia), we include a movie portraying the time evolution of
the Wigner function (5.7) for the particular instance in (5.9). As can be appreciated, the state
gets elongated along the direction of maximal squeezing. In figure 4, we present three snapshots
of the movie, corresponding to different times.

6. Dissipative effects

As light propages through the Kerr medium, it experiences a decorrelation of the relative phase
between both basic polarization modes. A sensible approach to deal with this decorrelation
is through the notion of decoherence, by which we loosely understand the appearance
of irreversible and uncontrollable quantum correlations when a system interacts with its
environment [102].

Usually, decoherence is accompanied by dissipation, i.e. a net exchange of energy with the
environment. However, given the nature of the Kerr nonlinearity, we are interested in the case
of pure decoherence (also known as dephasing), for which the processes of energy dissipation
are negligible. Models in which the number of photons do not change, while the coherences
are strongly decaying, are at hand [103–107]. Surprisingly enough, however, they have not
been applied in the context of the phase-number preserving Kerr dynamics. In consequence, we
model such a dephasing by the master equation

∂t ρ̂ = −i[Ĥ , ρ̂] + γaLâ[ρ̂] + γbLb̂[ρ̂], (6.1)

where Lâ[ρ̂] is the Linblad superoperator

Lâ[ρ̂] = 2â†â ρ̂ â†â − (â†â)2 ρ̂ − ρ̂ (â†â)2 (6.2)

with γa the dephasing constant. A similar expression holds for mode b. The equation for the
Wigner function (2.9) is modified now to

∂t W = χIb
∂W

∂ϕa
+ χIa

∂W

∂ϕb
+

γa

4

∂2W

∂ϕ2
a

+
γb

4

∂2W

∂ϕ2
b

. (6.3)
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Figure 4. Isocontour surfaces of the level 10−4 (from the maximum) of the
Wigner function W (Sx , Sy, Sz|τ) = constant at times τ = 1.5 × 10−7, 3.0 ×

10−7 and 4.5 × 10−7 (from left to right), without dephasing (top) and with a
dephasing of γ = 0.5χ (bottom). The orthogonal axes are Sx , Sy and Sz, the box
is centered at Sx = Sz = 0, Sy = 106 and the axis ticks are measured in units of
the (spherical) isocontour at τ = 0, which corresponds to the shot-noise limit.

Using again the variables (5.6) and integrating over the irrelevant overall phase ϕa, this equation
turns out to be

∂t W (I , θ, φ) = −χI cos θ
∂W (I , θ, φ)

∂φ
+

γ

4

∂2W (I , θ, φ)

∂φ2
(6.4)

with γ = γa + γb. Its general solution can be represented by

W (I , θ, φ|t) =
1

2π

∫
dφ′2(φ − φ′

− χ tI cos θ |tγ /4) W (I , θ, φ′
|0) (6.5)

with 2(φ|t) =
∑

k exp(i kφ − tk2). In the limit I0 � 1, this exact result simplifies to

W (I , θ, φ|t) =
2 exp(−2I − 2I0 + 4I I0)

π 2
√

I I0 sin θ sin θ0

2

(
φ − φ0 − χ tI cos θ

∣∣∣γ t

4
+

cos[(θ − θ0)/2]

2SI0 sin θ sin θ0

)
.

(6.6)

The snapshots of the evolution of this Wigner function can be again appreciated in
figure 4, with c = 2ca = 2cb = 0.5v. While at the beginning one can only observe a very gentle
difference with the non-dissipative case, this difference gets more visible as time goes by.
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Figure 5. Optimal amount of squeezing 12 Ŝ opt
ϑ (t) − |〈Ŝy(t)〉|. The values for c/v

are 0 (black solid), 0.2 (green dashed), 1 (red dotted), 5 (blue dash-dotted) and
20 (orange dashed).

The shrinking of the isolevels of the Wigner function for the dissipative evolution means that
it gets ‘smeared out’ over the phase space due to the dephasing. Note that the shape and the
direction of the ellipsoids are not changed; only their size is different, indicating a lower degree
of polarization.

We can also investigate the impact of dephasing on squeezing. To this end we need to
calculate the corresponding quantities as in equations (4.9) and (4.10). One finally gets

〈Ŝy(t)〉 =
I0

(1 + τ 2)2
exp

(
−

2I0τ
2

1 + τ 2
−

γ t

4

)
(6.7)

12 Ŝ⊥(θ, t) = I0[1 + (I0/2) sin2 ϑ] − sin2(ϑ/2)
I 2

0

(1 + 4τ 2)3
exp

(
−

8I0τ
2

1 + 4τ 2
− γ t

)
− sin(2ϑ)

2I0τ

(1 + τ 2)3

(
1 +

I0

1 + τ 2

)
exp

(
−

2I0τ
2

1 + τ 2
−

γ t

4

)
. (6.8)

For short times τ � 1 one can show that the optimal squeezing angle is approximately given by

ϑsq '
1

2
arccot

(
I0τ +

γ

4χ

)
. (6.9)

Note that in contradistinction with equation (4.12), for a given time τ the optimal squeezing
angle is closer to 0 in the presence of dephasing. In a certain sense, dephasing makes the
isocontour ellipsoid rotate faster (yet also making it smaller). Finally, the optimal squeezing
amount turns out to be

12 Ŝ opt
⊥

(ϑ, t) − |〈Ŝy(t)〉| ' 2I 2
0 τ

I0τ +
γ

4χ
−

√
1 +

(
I0τ +

γ

4χ

)2
 . (6.10)

In figure 5, we plot this optimal squeezing for several values of the ratio γ /χ . The degradation
of this quantity with γ /χ can be clearly observed.
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7. Concluding remarks

In summary, we have presented a quasiclassical approximation to the light propagation in
a cross-Kerr medium. Even if the states considered are bright and we neglect quantum
correlations, we still observe non-classical effects such as entanglement or squeezing.
Interestingly, in the quasiclassical limit the correlations remain in the system once induced,
as opposed to the periodical decorrelation observed in the exact evolution. We have also
constructed a model for dephasing processes in these media, demonstrating that dissipation
does visibly affect the degree of polarization, but not so much its vectorial direction.
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Appendix A. The two-mode Wigner function

In this appendix a brief review of the Wigner distribution is given for the problem at hand. For
a single mode a, the Wigner function for a state given by the density matrix ρ̂ is defined as

W (α) = Tr[ρ̂a ŵ(α)], (A.1)

where the kernel ŵ(α) reads

ŵ(α) =
1

π 2

∫
dλ exp(αλ∗

− α∗λ) D̂(α), (A.2)

so it appears as the Fourier transform of the displacement operator D̂(α), with

D̂(α) = exp(αâ†
− α∗â). (A.3)

Note that the standard coherent states |α〉 are generated by the action of D̂(α) on the
vacuum, i.e.

|α〉 = D̂(α)|0〉. (A.4)

For a coherent state |α0〉, the Wigner function is

W (α) =
2

π
exp(−2|α − α0|). (A.5)

In a more general context, the Wigner function can be interpreted as the phase-space
symbol of the density matrix ρ̂. This notion can be extended to any operator Ô in such a way
that its symbol is given by

WÔ(α) = Tr[Ô ŵ(α)]. (A.6)

In particular, for the basic mode operator â we have

Wâ =
α

π
. (A.7)
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In terms of W (α), we can map any operator evolution into a differential equation using the
following rules [105]:

âρ̂ 7→

(
α +

1

2

∂

∂α∗

)
W (α), â†ρ̂ 7→

(
α∗

−
1

2

∂

∂α

)
W (α),

(A.8)

ρ̂â 7→

(
α −

1

2

∂

∂α∗

)
W (α), ρ̂â†

7→

(
α∗ +

1

2

∂

∂α

)
W (α),

and after performing the decomposition (2.6), this reads

δâ ρ̂ 7→
1

2

∂

∂α∗
W, δâ† ρ̂ 7→ −

1

2

∂

∂α
W,

(A.9)

ρ̂ δâ 7→ −
1

2

∂

∂α∗
W, ρ̂ δâ†

7→
1

2

∂

∂α
W

and analogous ones for the b mode.
The two-mode Wigner function is given by a direct generalization of equation (A.1),

namely

W (α, β) = Tr[ρ̂ ŵ(α)ŵ(β)]. (A.10)

The rest of the properties needed in the paper can be extended to this two-mode case in a direct
way.

Appendix B. Purity of the reduced density matrix

For completeness, we give here some intermediate steps to obtain the expression (3.6) for the
reduced purity Pa(τ ), which is defined as

Pa(τ ) =
π

8

∫ π

−π

dϕa

∫
∞

0
d Ia

[∫ π

−π

dϕb

∫
∞

0
d IbW (Ia, ϕa; Ib, ϕb|τ)

]2

. (B.1)

Employing the form of the explicit form of the Wigner function (2.11) we have

Pa(τ ) =
2

π3

∫ π

−π

d ϕa d ϕ1 dϕ2

∫
∞

0
d Ia d I1 d I2 exp(−4Ia − 4I0a − 2I1 − 2I2 − 4I0b)

× exp
[
2
√

IaI0a

(
ei ϕa+2iI1τ + ei ϕa+2iI2τ + e−iϕa−2iI1τ + e−i ϕa−2iI2τ

)]
× exp(4

√
I1I0b cos ϕ1 + 4

√
I2I0b cos ϕ2). (B.2)

In the second line, we can expand the exponential in power series in ei ϕa and e−i ϕa , considering
the rest of the variables as fixed coefficients. Then, the integration over ϕa can be explicitly
carried out, with the result

2π

∞∑
k=0

(4Ia)
k(2I0a)

k

(k!)2
{1 + cos [2(I1 − I2)τ ]}k . (B.3)

Together with the term e−4Ia , this can be immediately integrated over d Ia, yielding
π

4
exp {2I0a [1 + cos (2(I1 − I2)τ )]} , (B.4)
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which replaces the second line in equation (B.2). The integrations over ϕ j transform the last line
of (B.2) into

(2π)2 I0(4
√

I1I0b) I0(4
√

I2I0b) . (B.5)

Finally, to carry out the integrations over I1 and I2, we expand the Bessel functions in power
series, namely

I0(4
√

I jI0b) =

∞∑
k=0

(2I j)
k(2I0b)

k

(k!)2
, (B.6)

as well as the exponential in (B.4)

exp [2I0a cos (2(I1 − I2)τ )] =

∞∑
n=−∞

In(2I0a) exp [2i(I1 − I2)τ ] . (B.7)

All this enables a direct integration over I1 and I2, yielding

P(τ ) = 4 exp(−4I0b − 2I0a)

∫
∞

0
d I1dI2 exp(−2I1 − 2I2)

×

∞∑
k,m=0

(2I1)
k(2I2)

m(2I0b)
k+m

(k!)2(m!)2

∞∑
n=−∞

In(2I0a) e2i(I1−I2)τ . (B.8)

From this expression, the result (3.6) for the purity follows straightforwardly.
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