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ABSTRACT

Chronic kidney disease (CKD) affects 10–13% of the general
population and diabetic nephropathy (DN) is the leading
cause of end-stage renal disease (ESRD). In addition to known
demographic, biochemical and lifestyle risk factors, genetics is
also contributing to CKD risk. In recent years, genome-wide
association studies (GWAS) have provided a hypothesis-free
approach to identify common genetic variants that could
account for the genetic risk component of common diseases
such as CKD. The identification of these variants might reveal
the biological processes underlying renal impairment and
could aid in improving risk estimates for CKD. This review
aims to describe the methods as well as strengths and limita-
tions of GWAS in CKD and to summarize the findings of
recent GWAS in DN. Several loci and SNPs have been found
to be associated with distinct CKD traits such as eGFR and al-
buminuria. For diabetic kidney disease, several loci were iden-
tified in different populations. Subsequent functional studies
provided insights into the mechanism of action of some of
these variants, such as UMOD or CERS2. However, overall, the
results were ambiguous, and a few of the variants were not
consistently replicated. In addition, the slow progression from
albuminuria to ESRD could limit the power of longitudinal
studies. The typically small effect size associated with genetic
variants as well as the small portion of the variability of the
phenotype explained by these variants limits the utility of
genetic variants in improving risk prediction. Nevertheless,
identifying these variants could give a deeper understanding

of the molecular pathways underlying CKD, which in turn,
could potentially lead to the development of new diagnostic
and therapeutic tools.

Keywords: chronic kidney disease, diabetes mellitus, genome-
wide association studies

INTRODUCTION

Chronic kidney disease (CKD) affects about 10–13% of the
general population, and the incidence and prevalence are in-
creasing in most countries [1, 2]. CKD has multiple aetiolo-
gies; the two major aetiologies are hypertensive nephropathy
and diabetic nephropathy (DN). DN affects up to 40% of all
patients with diabetes and is the leading cause of end-stage
renal disease (ESRD) [3]. In patients with diabetes, albumin-
uria often precedes the decline of kidney function as measured
by eGFR and is therefore considered a first sign of DN [4].

While many demographic, biochemical and lifestyle risk
factors of CKD have been established, a portion of the risk of
CKD remains unexplained by these factors pointing towards a
possible genetic contribution [5]. The genetic component of
CKD has been demonstrated in familial aggregation studies in
families with diabetes and hypertension, which estimated the
heritability to range from 36 to 75% for glomerular filtration
rate (GFR) and from 16 to 49% for albuminuria [6, 7].

Given the many potential genetic risk factors for com-
mon diseases such as CKD, a genome-wide association
study is an excellent screening tool to discover genetic risk
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loci. In addition to improving risk prediction for CKD, identi-
fication of genetic markers associated with CKD could also
provide us with important insights into the underlying bio-
logical processes of the renal impairment.

Genome-wide association studies (GWAS) focus on the
most common kind of genetic variation in the human genome,
a single nucleotide polymorphism (SNP). SNPs are common
substitutions of a single base with another, which occur with
high frequency in the human genome (1 every 300–500 base
pairs) [8]. Although most of them have no functional outcome,
some SNPs might change the amino acid sequence of the re-
sulting protein, the stability of the mRNA transcript or the
transcription factor binding activity, splicing or epigenetics
regulation. These changes could result in biological changes,
which could play a role in disease susceptibility.

For each SNP, there are typically two possible alleles (i.e.
two possible base-pairs). The frequency of these alleles in any
given population can be assessed, and the term minor allele
frequency (MAF) refers to the frequency of the less common
allele in the population.

In contrast to the rare diseases that are caused by single-
locus mutations (Mendelian diseases), the genetic component
of common polygenic diseases such as CKD is thought to
involve many common genetic variants. The common disease/
common variance (CD/CV) hypothesis states that common
SNPs with their high minor allele frequencies and small effect
sizes constitute the genetic risk in CD (Figure 1) [9]. Because a
single SNP explains only a small proportion of the trait’s vari-
ance, multiple genetic variants are required to account for the
total genetic risk of a disease.

A GWAS is frequently conducted in a case–control study
design. In this design, the allele frequency of each SNP is com-
pared between individuals with a disease or trait (cases), and

individuals without the disease or trait (controls). SNPs with
different allele frequency in cases and controls are identified as
being associated with the specific disease or trait. A precise
definition of cases and controls is crucial, because this ‘alloca-
tion’ is done post hoc, which makes case–control studies prone
to selection bias, which occurs when controls are not represen-
tative of the population of cases [10]. A common alternative to
the binary case–control study design is the analysis of quanti-
tative traits, such as GFR or albuminuria, which improves the
power of a GWAS and does not require a differentiation be-
tween cases and controls. Quantitative traits can also be studied
in a case–control design by defining quantitative trait thresholds
that would discriminate between cases and controls.

The study cohort can be population-based, i.e. a sample of
unrelated individuals derived from the general population, or
consist of a selected population with a certain trait, e.g. only
patients with diabetes. A common alternative design is family-
based studies, which study the association of variants with
disease among trios of affected and unaffected parents/
offspring or among twins or siblings [11].

When choosing quantitative traits and case definitions in
GWAS of CKD, it is important to consider that pathogenesis and
the associated genetic variants may differ between aetiologies and
in different stages of disease. Different renal traits may be asso-
ciated with distinct genetic variants [12]. Another essential aspect
in GWAS design is calculation of the statistical power of the
study. The size of the study, the magnitude of the effect and the
allele frequency determine the power to detect an association in a
given study. Because of the typically small effect size of individual
SNPs, many thousands of participants are needed to achieve suf-
ficient power to detect an association with genetic variants while
accounting for testing hundreds of thousands of SNPs [13]. This
is often accomplished by conducting a meta-analysis of GWAS

F IGURE 1 : Allele frequencies and effect sizes in human diseases.

F
U
L
L
R
E
V
IE

W

G WA S a n d C K D iv27

 at U
niversitaet E

rlangen-N
uernberg, W

irtschafts- und Sozialw
issenschaftliche Z

 on A
ugust 15, 2016

http://ndt.oxfordjournals.org/
D

ow
nloaded from

 

http://ndt.oxfordjournals.org/


data from many different studies, which can increase the
overall power of the studies considerably.

Designing GWAS has been greatly facilitated by the
growing understanding of the structure of genetic variation in
the human genome and the development of whole-genome
databases, such as the International HapMap Project and the
1000 Genomes Project (http://www.1000genomes.org/) [8].
The International HapMap Project established a publicly avail-
able database of SNP frequencies and haplotypes in different
populations. A haplotype is a linked set of SNP alleles that are
likely to be inherited together through generations and are
statistically associated, as can be described by the degree of
linkage disequilibrium (LD). Haplotype information in any
given genomic region allows the identification of tag SNPs
(tSNPs) that can be used to predict the genotypes of other
SNPs in the region. Therefore, genotyping a small number of
tSNPs could provide information on additional SNPs in the
same genomic region. Imputation, the prediction of genotypes
based on tSNPs, increases the number of analysed SNPs and
improves the genomic coverage of the study.

Other databases provide us with information about the po-
tential functional outcome of SNPs, such as the potential effect
of amino acid change on protein function, or potential effect of
DNA or RNA regulatory elements, which can affect gene tran-
scription, splicing or mRNA stability. This information can in-
dicate potential functional consequences of SNPs, which further
helps to decide which SNPs should be interrogated/further
investigated.

QUANTITATIVE EVALUATION OF GWAS
STUDIES ; STATISTICAL BACKGROUND

For a biallelic gene locus, the three potential genotypes for
each individual are major homozygous (i.e. carrying two ver-
sions of the more common allele, usually denoted as AA),
minor homozygous (denoted as aa) or heterozygous (i.e. car-
rying one major and one minor allele, denoted as Aa). It is im-
portant to note that these genotypes occur with different
frequencies in a population, and that these frequencies might
differ depending on ethnicity. The frequency of genotypes
depends on the frequency of the two alleles A and a in the
population. The probability of carrying allele A is usually
denoted as p, and the probability of carrying allele a as q, with
p + q = 1 (i.e. 100%). Consequently, the probability of being
homozygous for allele A (genotype AA) is p2, the probability
of being homozygous for allele a is q2, and the probability of
being heterozygous is 2pq.

The relation between allele frequencies and genotype fre-
quencies is illustrated in Table 1 for two alleles (A and a) that
occur in 95 and 5% of the population, respectively.

From Table 1, it can be seen that the proportion of alleles
and genotypes can be described by the formula p2 þ 2pqþ
q2 ¼ 1, known as the Hardy–Weinberg equilibrium (HWE).
Alleles in the gene pool are expected to be at HWE as long as a
population is not subject to any evolutionary influences, such
as strong selection pressure, non-random-mating, migration,
mutations or genetic drift. Under these conditions, the alleles

in the gene pool are merely ‘shuffled’ over time, which explains
why even rare alleles with low MAF do not disappear, and
allele and genotype frequencies remain stable over generations.
These conditions are never fully met in reality, because most
populations are subject to one or many evolutionary influ-
ences. However, for most populations, evolutionary changes
happen at such a slow rate that they appear to be close to
HWE. Testing for deviations from HWE by a Chi-square test
can therefore be used for quality control test to identify sys-
tematic genotyping errors or population stratification in the
study, or to indicate whether a marker is associated with case
status if deviation is found only in the case group [14, 15].

The statistical analysis of GWAS data generally aims to de-
termine if any of the genotyped markers is associated with
case status or a quantitative trait at the predefined level of sig-
nificance. Such analysis needs to account for multiple testing
of the roughly 10 million SNPs in the genome. For categorical
outcomes in a case–control study, the main objective is to de-
termine if any genotype, for example being homozygous for a
potential risk allele, constitutes a higher risk for the disease
compared with another genotype (for example being homozy-
gous for the other allele).

A first analysis can be done using a contingency table,
which lists the genotype distribution and allele frequency for
cases and controls separately. Table 2 is a contingency table
for a variant with a C risk allele and a T non-risk allele.

The odds ratio (OR) is the ratio of the odds of being a case
when having a specific genotype to the odds of being a case
when having a reference genotype.

From Table 2, the OR for the risk genotype CC in reference
to the genotype TT can be calculated as

OR (CC versus TT)¼ CCcases=CCcontrols

TTcases=TTcontrols
¼ 571/548

39/68
¼1:81

Table 1. Example for distribution of allele and genotype frequencies in the
population

Alleles

A
95% of alleles in a population
(P = 0.95)

a
5% of alleles in a
population (q = 0.05)

A
P = 0.95

AA
occurs with a frequency of
p2 = 0.9025 90.25% of
population

Aa
occurs with a frequency of
pq = 0.0475 4.75% of
population

a
P = 0.05

aA
occurs with a frequency of
pq = 0.0475 4.75% of
population

aa
occurs with a frequency of
q2 = 0.0025 0.25% of
population

Table 2. Example contingency table showing genotype distribution for
cases and controls

Cases (n = 1000) Controls (n = 1000)

Risk allele homozygotes (C/C) 571 548
Heterozygotes (C/T) 390 385
Non-risk homozygotes (T/T) 39 68
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Alternatively, to test the association of single alleles (for example,
C versus T), a similar equation using the allele counts is used
as follows:

OR (C versus T)¼ Ccases=Ccontrols

Tcases=Tcontrols
¼ 1532/1481

468/521
¼ 1:15

A Chi-square test or Fisher’s exact test is used to assess the sig-
nificance of the association.

Multivariable regression models, such as linear regression
for continuous outcomes (e.g. GFR), or logistic regression for
dichotomous outcomes (e.g. CKD/no CKD), can be used to
assess the influence of other factors, such as sex, age, popula-
tion substructure or study site on the association.

The choice of statistical model depends on the number of
variants investigated. When using classical regression models,
it has to be noted that the large number of hypothese tested in
a GWAS increases the probability of false-positive results
unless appropriate multiple testing correction is applied.
There are several approaches to correct for this problem of
multiple testing, such as the Bonferroni correction, the false
discovery rate or a Bayesian approach [10, 16].

Simulation studies aimed to develop standards for genome-
wide significance [17, 18]. Based on the distribution of LD and
resulting independent genomic regions, the effective number
of independent tests in a dense genome-wide scan has been
estimated as 1 million for European populations. Subsequent-
ly, the unadjusted P-value of 5 × 10−8 is commonly accepted
as a significance threshold for GWAS in populations of Euro-
pean descent. For African populations, which have a greater
genetic diversity, the threshold is closer to 10−8.

Alternatively to the use of classical regression models and
an adjusted P-value, there are more complex approaches such
as lasso, ridge regression or elastic net to account for the huge
abundance of predicting variables compared with the number
of observed subjects [19, 20].

Another important factor to consider is the possibility of
spurious associations caused by population stratification,
which describes differences in allele frequencies due to ethni-
city or population substructure differences between cases and
controls. Furthermore, it is important to consider that when
an SNP is associated with disease, it is not necessarily causally
related to the disease. The associated SNP could merely be a
tSNP for the causal variant. To identify potentially causal
variant(s), the genomic region identified by the tSNP should
be fine mapped by a denser genotyping.

EXTERNAL VALIDATION

A key element in GWAS is the validation of significant SNPs
from the discovery phase in an independent study. The discov-
ery study often overestimates the effect size of the discovered
variants, a phenomenon known as ‘winner’s curse’. The over-
estimation of the effect size results in an underestimation of
sample size for a validation study, and an underpowered valid-
ation study may, in some cases, explain the failure to replicate
the results of the discovery study [21].

GENOME-WIDE STUDIES TO IDENTIFY
GENETIC RISK FACTORS FOR CKD

Köttgen et al. [22, 23] performed two large meta-analyses of
over 20, predominantly population-based, studies, altogether in-
cluding over 90 000 individuals of European ancestry. Two of
the studies in the replication stage consisted entirely of diabetic
patients; in the other studies, diabetes prevalence ranged from
2.6 to 15.3%. Both eGFR (estimated by creatinine and cystatin
C) and CKD (defined as eGFR < 60 mL/min/1.73 m2) were
investigated in these studies. They identified 16 loci that were as-
sociated with renal function and CKD at genome-wide signifi-
cance level (P < 5 × 10−8). Several of these loci had previously
been linked to renal disease, as for example rare, mutations in
the UMOD locus, which cause rare, autosomal-dominant renal
diseases such as familial juvenile hyperuremic nephropathy and
medullary cystic kidney disease type 2 [23, 24]. UMOD encodes
the most abundant protein excreted in urine, uromodulin, also
known as Tamm–Horsfall protein; however, its physiological
function is not fully understood [25]. Other variants identified
by Köttgen et al., were in genes related to nephrogenesis
glomerular filtration barrier formation and podocyte function,
angiogenesis, solute transport, metabolic functions of the kidney
and the function of primary cilia [23]. Together, the 16 loci
accounted for only 1.4% of variability of eGFR. These 16
eGFR-associated SNPs were also evaluated for their association
with baseline eGFR, baseline albuminuria and time to stage 3B
CKD in 3028 patients with type 2 diabetes. The association
with eGFR was replicated for 3 SNPs in UMOD, GCKR and
SHROOM3, but none of the 16 SNPs were associated with albu-
minuria or time to stage 3B CKD [26].

In a large meta-analysis involving 31 850 individuals of
European ancestry and 6981 African Americans, an SNP in
the CUBN locus was found to be associated with higher levels
of albuminuria, but not with eGFR or CKD. The results were
replicated in 27 746 individuals and were independent of the
hypertension or diabetes status. Only 0.15% of variance in al-
buminuria levels was explained by the SNP.

In the context of the large SysKid collaborative project
(www.syskid.eu), Shiffman et al. investigated the association of
the 16 eGFR-associated SNPs identified by Köttgen et al. with
the annual rate of increase of albuminuria among 3723 diabet-
ic patients of European and non-European ancestry [27]. One
variant, rs267734 in CERS2, was found to be associated with
the rate of increase of albuminuria (P = 0.0015). The annual
rate of increase of albuminuria was 11.3% for homozygote car-
riers of the risk allele, compared with 5.0% for heterozygotes
and 1.7% for non-risk homozygotes. For patients who were
normo-albuminuric at baseline, each risk allele was associated
with a 50% increased risk of incident albuminuria after adjust-
ment for age, sex, ethnicity, principal component of genetic
variability, baseline hypertension, eGFR, uACR, smoking
status, study and treatment group. Another SNP, rs267738,
which was in high LD with the original SNP and encoded an
amino acid change in the CERS2-encoded protein, was also as-
sociated with progression of albuminuria with P = 0.0013. The
association of the initially identified SNP (rs267734) with
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albuminuria progression was confirmed in an independent
large population of 4390 participants of the ORIGIN study
(P = 0.02) [28].

In recent years, several other loci associated with DN and
ESRD have been discovered. Variants in the engulfment and
cell motility 1 (ELMO1) locus were associated with renal
disease in individuals with type 1 diabetes in a Caucasian
population, and type 2 diabetes in a Japanese and African
American population [29–31]. Overexpression of ELMO1 was
shown to contribute to the progression of chronic glomerular
injury [32].

A meta-analysis of 21 studies showed that the MTHFR
gene 677TT genotype might confer a moderately increased
risk for DN and diabetic retinopathy [33]. MTHFR encodes
the methylenetetrahydrofolate reductase, which plays an im-
portant role in homocysteine metabolism. The TT genotype
was also shown to be associated with cardiovascular disease in
ESRD [34].

Two studies showed that variants in MYH9 account for
most of the 2- to 4-fold increased risk for non-diabetic ESRD
and focal segmental glomerulosclerosis in African Americans
compared with Europeans [35, 36]. Two years later, it was
found that this risk was actually conferred by variants in the
neighbouring APOL1, which are in high LD with the MYH9
SNPs and encode non-synonymous amino acid changes [37].
Variants in APOL1 were shown to be associated with higher
rates of ESRD and a more rapid progression of CKD in black
patients, when compared with white patients, regardless of the
diabetes status [38]. Other studies investigating the MYH9/
APOL1 region in DN found an association of several variants
in MYH9 with DN in African Americans and European
Americans [35, 39, 40], however, this association was not con-
firmed in a UK population [41].

Several studies investigated genetic risk factors specifically
for type 1 or type 2 diabetes. A large meta-analysis of GWAS
in DN type 1 identified two variants associated with diabetic
ESRD at genome-wide significance, one in the AFF3 gene and
one intergenic SNP between RGMA and MCTP2. Functional
data suggest that AFF3 influences renal tubule fibrosis via the
transforming growth factor-beta (TGF-β1) pathway. The
strongest association with DN (defined as macroalbuminuria
or ESRD due to DN) was detected for an SNP in the ERBB4
gene, which however did not reach genome-wide significance
(P = 2.1 × 10−7). ERBB4 encodes a member of the EGF receptor
tyrosine kinase family and modulates kidney tubule prolifer-
ation and polarity during nephrogenesis. Subsequent pathway
analysis of genes co-expressed with ERBB4 indicated potential
involvement of ERBB4 in fibrosis [42].

Several gender-specific associations with CKD have been
reported, most convincingly with the rs4972593, which is as-
sociated with ESRD in women, but not in men with type 1 dia-
betes. This SNP is located on chromosome 2q31 between the
Sp3 transcription factor (SP3) and the cell division cycle asso-
ciated 7 (CDCA7) genes. SP3 is a transcription factor which
shows higher glomerular expression level in women. CDCA7 is
a transcription factor regulating cell proliferation [43].

Several candidate genes for DN are related to the renin–
angiotensin–aldosterone–system. A meta-analysis from Wang

et al. suggested that an insertion/deletion polymorphism in
the angiotensin-converting enzyme might contribute to DN
development, especially in an Asian population with type 2
diabetes mellitus [44].

Variants in the angiotensinogen (AGT) and angiotensin II
receptor type 1 (AGTR1) have also been shown to be involved
in the development of DN. A meta-analysis suggested that the
AGTR1 A1166C polymorphism may contribute to DN devel-
opment, particularly in type 2 diabetes mellitus patients [45].

A variant in the gene encoding acetyl-coenzyme A carb-
oxylase beta (ACACB) was shown to be associated with pro-
teinuria and ESRD in patients with type 2 diabetes mellitus in
several Asian and European American populations. ACACB is
an important enzyme in fatty acid oxidation and was shown to
be expressed in podocytes and tubular epithelial cells in mice
[46, 47].

A summary of the recent findings on DN can be found in
Table 3.

CONCLUSION AND OUTLOOK

Many GWAS and meta-analyses have aimed at identifying
genetic risk factors for kidney disease during the last few years.
Many genetic loci have been identified and replicated for
eGFR, CKD, albuminuria and distinct kidney diseases, such as
non-diabetic ESRD or focal-segmental glomerulosclerosis in
African Americans, idiopathic membranous nephropathy or
IgA nephropathy [23, 36, 51, 59–61]. However, association
data for DN were less conclusive. Although several DN asso-
ciated loci have been identified, only few of them have been va-
lidated and many remained unvalidated. Even variants in one
of the more promising candidate genes, ELMO1, were not sig-
nificant in all the studies. Consistent with the aetiological het-
erogeneity of CKD, there has been little overlap in genetic
markers associated with different kidney diseases—or even dif-
ferent measures of renal function, such as albuminuria and
eGFR—which could indicate different underlying disease pro-
cesses for these traits [62]. Furthermore, there is evidence that
different genetic variants are involved in different stages of dis-
eases, and that the functional effect of a genetic variant may
differ depending on ethnicity and population.

In general, the GWAS have several strengths and limita-
tions. The hypothesis-free approach of GWAS enables the
identification of new genes and new genomic regions and
might improve the understanding of underlying mechanisms
of disease. After identifying genomic regions of interest by
GWAS, it is essential to conduct follow-up studies to deter-
mine the consequences and potential clinical value of GWAS
findings. Fine-mapping, gene expression data and further
in vitro and in vivo experiments are necessary to identify the
actual causal variant and to further investigate its molecular
mechanism and biological effect. This has been done to some
degree for the aforementioned UMOD locus, which had been
found to be strongly associated with eGFR and CKD [22]. In a
follow-up analysis, the presence of the UMOD SNP rs4293393
was found to be associated with uromodulin levels, and ele-
vated uromodulin levels preceded the development of CKD
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Table 3. GWAS and meta-analyses in diabetic kidney disease

Implicated gene SNP Ethnicity Lowest P-value Significance Phenotype Sample
size

Reference Year Study type

ACACB rs2268388 Japanese P = 5.35 × 10−8 GW T2DM
proteinuria

3919 Maeda
et al. [47]

2010 Meta-analysis

ACE I/D White P = 0.01 Significance
<0.05, only one
SNP tested

T1DKD
and
T2DKD

26 580 Wang et al.
[44]

2012 Meta-analysis for ACE
Asian

AFF3 rs7583877 White P = 1.2 × 10−8 GW T1DKD 12 564 Sandholm
et al. [42]

2012 GWAS

AGTR1 rs5186 Caucasian Odds
ratio = 2.11

Sign. corr. T1DKD
and
T2DKD

9282 Ding et al.
[45]

2012 Meta-analysis for renin–
angiotensin–aldosterone
genes

Asian

rs12695897 African
American

P = 0.032 T2DM
ESRD

1984 Palmer
et al. [48]

2014 GWAS

APOL E2 allele Chinese Han P = 0.01 Significance
<0.05, only three
haplotypes tested

T2DKD 7482 Yin et al.
[49]

2014 Meta-analysis for
apolipoprotein EE4 allele

CDCA7-Sp3 rs4972593 White P = 5 × 10−8 GW T1DKD
ESRD

7761 Sandholm
et al. [43]

2013 GWAS; sex specific

CERS2 rs267734 European and
non-European

P = 0.0015 Sign. corr. T1DM and
T2DM
albuminuria

3723 Shiffman
et al. [27]

2014 GWAS
rs267738 P = 0.0013 sign. corr.

Chr 2
AC14777.4

rs7560163 African
American

P = 7 × 10−9 GW T2DKD 6449 Palmer
et al [50]

2012 GWAS

CNDP1 rs4892249 African
American

P = 0.043 Sign. corr. T2DM
ESRD

1984 Palmer
et al. [48]

2014 GWAS
rs6566815 P = 0.0076 Sign. corr.

CUBN rs1801239 European P = 4 × 10−8 GW T1DM and
albuminuria

31 580 Boger et al.
[51]

2011 Meta-analysis
African
American

6981

ELMO1 rs7785934 Caucasian P = 3.3 × 10−4 Sign. corr. T1 DKD
ESRD

1705 Pezzolesi
et al. [52]

2009 Meta-analysis

Intron
18 + 9170

Japanese P = 8 × 10−6 Sign. corr. T2 DKD 880 Shimazaki
et al. [29]

2005 GWAS

intron 1, 5
and 13

African
American

P = 0.001–
0.004

Significance:
0.0001–0.0002

1261 Leak et al.
[31]

2009 GWAS

rs741301 Chinese P = 0.004 Significance
<0.05, only six
SNP tested

200 Wu et al.
[53]

2013 GWAS

EPO rs161740 White P = 2 × 10−9 GW T1DM and
ESRD

7007 Williams
et al. [54]

2012 Meta-analysis

FRMD rs10868025 P = 5 × 10−7 Did not meet
their calculated
genome-wide
sign. of
1.4 × 10−7

T1DM
proteinuria,
ESRD

820 Pezzolesi
et al. [52]

2009 Meta-analysis

rs13288659 P = 9.7 × 10−5 Sign. corr. T1DKD 6366 Williams
et al. [54]

2012 Meta-analysis

GCKR rs1260326 P = 3.23 × 10−3 Significance
<0.003

T2DM
eGFR

3028 Deshmukh
et al. [26]

2013 GWAS

MTHFR rs1801133 Caucasian P = 0.042 Significance
<0.05, only one
SNP tested

T1DKD
and
T2DKD

7807 Niu et al.
[33]

2012 Meta-analysis for
methylenetetrahydrofolate
reductase

Asian
African
Latin-American

MYH9 rs4821480 European
Americans
African
American

P = 0.053 Significance
<0.05

T2DM
ESRD

1963 Cooke et al.
[40]

2012 GWAS

P = 0.0381 1903 Freedman
et al. [39]

2009

rs2032487 P = 0.054 1963 Cooke et al.
[40]

2012

P = 0.0449 1903 Freedman
et al. [39]

2009

rs4281481 P = 0.055 1963 Cooke et al.
[40]

2012

P = 0.0477 1903 Freedman
et al. [39]

2009

Continued
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[63]. Whether the findings of this rather small study can be re-
plicated in larger study populations and eventually put into
clinical application depends on the outcomes of further
studies.

The biological role of CERS2 has also been investigated by
two studies in CERS2-deficient mice. Both studies reported
severe liver pathologies and hepatocellular carcinoma. However,
only one study described discrete loss of renal parenchyma [64],
whereas the other reported normal kidney morphology and
function [65]. It remains to be determined whether the identi-
fied SNPs influence CERS2 activity or stability, and how CERS2
activity affects progression of albuminuria.

While the potential benefit of an increased understanding
of disease is obvious, the prognostic value of the identified
markers is questionable, as it is compromised by the discrep-
ancy between the observed high heritability of traits and the
small effect sizes of currently identified variants, which explain
only a small proportion of the genetic risk or the variance of a
trait. For example, the 16 SNPs identified by Köttgen et al. ac-
counted for only 1.4% of the variability of eGFR. It is unclear
why there is such a big difference between the observed herit-
ability and the fraction of the variance explained by known
genetic variants (‘missing heritability’). Potentially, there are
many more common variants with small effect that await dis-
covery. Other explanations include the existence of undetected
rare variants with larger effects, genetic variants other than
SNPs [66]. It is also possible that the heritability has been
overestimated by neglecting the contribution from gene–gene
or gene–environmental interactions to a trait’s variability [67].

Regardless, the small impact of known variants on disease
risk does not currently allow the identification of individuals at
higher risk of disease or disease progression. Whether or not
the future identification of more risk variants, each of small
effect, would enable the determination of individual genetic
risk profile is a subject to debate [68]. However, the detection of
rare or low-frequency variants, with potential large effect sizes

could be achieved by sequencing genomic regions identified by
GWAS. Whole-genome or, the less expensive whole-exome se-
quencing has been made technically feasible through the emer-
gence of rapid next-generation sequencing and will allow the
detection of novel, rare variants not captured by GWAS.

Another challenge of GWAS in kidney research is the defin-
ition of phenotypes. GFR is usually estimated by filtration
markers in serum, which may also be influenced by factors
other than renal function. To differentiate between genetic
markers associated with renal function and those associated
with biomarker metabolism, it has proven useful to estimate
GFR by two different markers (creatinine and cystatin) [22].

While in many kidney diseases, the diagnosis is based on
histology and is therefore quite clearly defined, the phenotype
of DN is in most studies based on clinical criteria and their
progression. There is no consistent definition of cases and con-
trols across all cross-sectional studies on DN. In addition, the
degree of albuminuria is known to vary and might regress to
normoalbuminuria in early stages, which increases the risk of
case/control misclassification [69, 70]. Longitudinal studies
could reduce the risk of misclassification and are suited to
capture CKD initiation, the slope of decline of renal function
and progression to ESRD. They are, however, limited in their
power by the moderate rate of progression of albuminuria and
the small proportion of individuals progressing to ESRD.

The advantages and disadvantages of GWAS and their sys-
tematic approach are shared by other ‘omics’ areas. Omics
refers to fields of research that deal with the collective pools of
biomolecules in a cell or tissue, such as genes (genomics),
mRNA (transcriptomics), protein (proteomics) or metabolites
(metabolomics). An interesting future prospect of GWAS
could be found in integrating their results with data of other
‘omics’ areas to create and analyse larger models.

In conclusion, GWAS in kidney disease have been success-
ful in reproducibly identifying genetic variants and loci for
some distinct kidney diseases and renal function. For diabetic

Table 3. Continued

Implicated gene SNP Ethnicity Lowest P-value Significance Phenotype Sample
size

Reference Year Study type

RGMA-MCTP2 rs12437854 White P = 2.0 × 10−9 GW T1DKD 12 564 Sandholm
et al. [42]

2012 GWAS

SHROOM3 rs17319721 P = 3.18 × 10−3 Significance
<0.003

T2DM
eGFR

3028 Deshmukh
et al. [26]

2013 GWAS

SLC12A3 rs11643718 Japanese P = 0.0002 Sign. corr T2DKD 870 Tanaka
et al. [55]

2003 GWAS

P = 0.021 Significance
<0.05, only one
SNP tested

T2DM,
albuminuria

264 Nishiyama
et al. [56]

2005 Retrospective study

Malaysian
Chinese, Malay,
Malaysian
Indians

P = 0.038 Significance
<0.05, eight
SNPs tested

T2DKD 383 Seman
et al. [57]

2014

TGF-β1 rs1800470
(T869C)

Asian P = 0.005 Significance
<0.05, only one
SNP tested

T1DKD
and
T2DKD

4863 Zhou et al.
[58]

2014 Meta-analysis for TGF-β1
Caucasian P = 0.04
African

UMOD rs12917707 P = 8.84 × 10−4 Sign. corr. T2DM
eGFR

3028 Deshmukh
et al. [26]

2013 GWAS

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; T1DKD, type 1 diabetic kidney disease; T2DKD, type 2 diabetic kidney disease; sign. corr., significant after correction
for multiple testing; GW, genome-wide significance; GWAS, genome-wide association studies.
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kidney disease, several loci have been identified and validated,
but the results were quite heterogenic across different popula-
tions and depended on the type of diabetes and stage of disease.

The major benefit of GWAS results is to be found in the in-
creased understanding of disease mechanism and identifica-
tion of novel pathways and possibly new therapeutic targets.
Follow-up studies are important in order to identify variants
with specific biological effect and may provide important
insight for some identified variants. Given the small effect size
of known variants on disease risk, the potential for persona-
lized risk prediction is currently low.
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