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Abstract. Noncommutative spacetimes are widely believed to model some properties of the
quantum structure of spacetime at the Planck regime. In this contribution the construction
of (anti-)de Sitter noncommutative spacetimes obtained through quantum groups is reviewed.
In this approach the quantum deformation parameter z is related to a Planck scale, and the
cosmological constant Λ plays the role of a second deformation parameter of geometric nature,
whose limit Λ → 0 provides the corresponding noncommutative Minkowski spacetimes.

1. Introduction
Non-Abelian algebras play a prominent role in the Hamiltonian description of physical systems.
For instance, nonrelativistic Quantum Mechanics is based on a ‘noncommutative phase space’
in which position and momenta operators generate the Lie algebra

[x̂i, p̂j ] = i� δij , [x̂i, x̂j ] = 0, [p̂i, p̂j ] = 0, i, j = 1, . . . , N, (1)

which is the direct sum of N copies of the Heisenberg–Weyl algebra. Here, noncommutativity
is controlled by the fundamental constant �, since the � → 0 limit of (1) leads to an Abelian

algebra, and the classical limit of (1) is defined as {xi, pj} := lim�→0
[x̂i,p̂j ]

i� = δij . In this way
we recover the symplectic structure of Classical Hamiltonian Mechanics, which can be properly
said to be a Poisson-noncommutative theory.

On the other hand, spacetimes with nonvanishing cosmological constant Λ lead to
noncommuting momenta in a natural way. For instance, the (3+1) (anti-)de Sitter (hereafter
(A)dS) Lie algebra of isometries of the corresponding spacetimes can be written as

[Ji, Jj ] = εijkJk, [Ji, Pj ] = εijkPk, [Ji,Kj ] = εijkKk,

[Pi, Pj ] = −ω εijkJk, [Pi,Kj ] = − δijP0, [Ki,Kj ] = − εijkJk,

[P0, Pi] = ωKi, [P0,Ki] = −Pi, [P0, Ji] = 0,

(2)

where i, j = 1, 2, 3, ε123 = 1 and ω = −Λ. Here {Ji, P0, Pi,Ki} denote the generators of rotations,
time translation, space translations and boosts. The algebra (2) is called the AdSω Lie algebra.
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In this framework, when ω > 0 we recover the (3+1) anti-de Sitter Lie algebra so(3, 2), when
ω < 0 we find the (3+1) de Sitter Lie algebra so(4, 1), and the flat limit ω → 0 gives rise to
the (3+1) Poincaré algebra iso(3, 1). Note that the commutation rules amongst the translation
generators read

[Pi, Pj ] = −ω εijkJk, [P0, Pi] = ωKi,

and the fundamental parameter that controls the noncommutativity of momenta is just the
cosmological constant ω = −Λ.

In this contribution we shall deal with a third type of noncommutativity: The one arising
in different approaches to Quantum Gravity aiming to describe the ‘quantum’ structure of the
geometry of spacetime at the Planck scale through a noncommutative algebra of ‘quantum
spacetime coordinates’ [1, 2, 3, 4, 5]. In this approach the Planck length lP (or energy Ep)
is the parameter that governs the noncommutativity of the spacetime algebra, thus generating
uncertainty relations between noncommuting coordinates that can be used in order to describe
a ‘fuzzy’ or ‘discrete’ nature of the spacetime at very small distances or high energies [6, 7].

It is worth recalling that most of the ‘quantum’ spacetimes that have been introduced so far
are noncommutative versions of the Minkowski spacetime [8, 9, 10, 11, 12]. As a consequence,
the construction of noncommutative spacetimes with nonvanishing cosmological constant arises
as a challenging problem in order to describe the interplay between the nonvanishing curvature
of spacetime and quantum gravity effects, having in mind the possible cosmological consequences
of Planck scale physics [13, 14, 15, 16, 17, 18].

In this paper we report on recent results [19, 20, 21, 22, 23, 24, 25] concerning the construction
of noncommutative (A)dS spacetimes, which have been obtained by making use of the theory of
quantum groups. We recall that the so-called ‘quantum’ deformations of Lie groups and algebras
(see [26, 27, 28, 29, 30, 31, 32] and references therein) present many features that make them
suitable to be considered in a Quantum Gravity scenario:

• They are Hopf algebra deformations of kinematical Lie groups in which the quantum
deformation parameter, hereafter z = ln q, can be related to a Planck scale parameter.

• They give rise to noncommutative spacetimes which are covariant under quantum group
(co)actions. In this context, several notions in ‘quantum kinematical geometry’ can be
rigorously generalized, like Poisson and quantum homogeneous spaces [33, 34, 35, 36, 37].

• Quantum groups can be thought of as Hopf algebra quantizations of Poisson–Lie (PL)
groups, and the relevance of the latter in (2+1) gravity has been rigorously established
(see [38, 39, 40, 41, 42, 43, 44] as well as the connections between dynamical r-matrices and
gauge-fixing [45]).

• Deformed Casimir operators can be interpreted as modified dispersion relations of the same
type that appear in several phenomenological approaches to Quantum Gravity [46, 47, 48].

Indeed, quantum group techniques can only be used to construct noncommutative analogues
of spacetimes that can be obtained either as group manifolds or as homogeneous spaces, but
Minkowski and (A)dS spacetimes fall into this class. Moreover, each Lie group admits a number
of inequivalent quantum group deformations, and the quantum spacetime arising from each of
them can be essentially different. The classification and explicit construction of such plurality
of quantum geometries constitutes one of the main issues in the theory of quantum kinematical
groups, which is far from being completed. In general, the results contained in the next sections
show that noncommutative spacetimes with cosmological constant can be viewed as ‘geometric’
nonlinear deformations (with parameter Λ) of the noncommutative Minkowski spacetimes with
quantum deformation parameter z related to either lP or Ep.

The paper is organized as follows. In the next section we summarize the construction of
noncommutative spacetimes from quantum groups. Section 3 is devoted to present two different
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noncommutative (2+1) (A)dS spacetimes that have been obtained by making use of two quantum
deformations whose classical counterpart is known to be compatible with the Chern-Simons
approach to (2+1) gravity, together with a brief summary of the results obtained so far in (3+1)
dimensions.

2. Quantum groups, Lie bialgebras and noncommutative spacetimes
Quantum groups can be understood as noncommutative generalizations of algebraic groups,
and all their properties are mathematically encoded within the Hopf algebra of functions on
the group. Alternatively, they can also be interpreted as quantizations of PL groups, i.e.,
of the Poisson-Hopf algebras of multiplicative Poisson structures on Lie groups. It is well
known that PL structures on a (connected and simply connected) Lie group G are in one-to-one
correspondence with Lie bialgebra structures (g, δ) on g = Lie(G) [49], where the skewsymmetric
cocommutator map δ : g → g ∧ g fulfils the two following conditions:

• i) δ is a 1-cocycle, i.e.,

δ([X,Y ]) = [δ(X), Y ⊗ 1 + 1⊗ Y ] + [X ⊗ 1 + 1⊗X, δ(Y )], ∀X,Y ∈ g.

• ii) The dual map δ∗ : g∗ ∧ g∗ → g∗ is a Lie bracket on g∗.

Therefore, each quantum group Gz (with quantum deformation parameter z = ln q) can be put
in correspondence with a PL group G, and the latter with a Lie bialgebra structure (g, δ).

Moreover, in the same manner as Lie algebras provide the infinitesimal version of Lie groups
around the identity, quantum algebras play the same role with respect to quantum groups.
more explicitly, quantum algebras Uz(g) are Hopf algebra deformations of universal enveloping
algebras U(g), and are constructed as formal power series in a deformation parameter z and
coefficients in U(g). The Hopf algebra structure in Uz(g) is provided by a coassociative coproduct
map Δz : Uz(g) −→ Uz(g) ⊗ Uz(g), which is an algebra homomorphism, together with its
associated counit ε and antipode γ mappings. It can be easily shown that the first-order
deformation (in z) of the coproduct map

Δz = Δ0 + z δ + o[z2],

is just the Lie bialgebra cocommutator map δ, where we have denoted the primitive
(nondeformed) coproduct for U(g) as Δ0(X) = X⊗1+1⊗X. Again, each quantum deformation
is related to a unique Lie bialgebra structure (g, δ). If we consider a basis for g where

[Xi, Xj ] = Ck
ijXk,

any cocommutator δ will be of the form

δ(Xi) = f jk
i Xj ∧Xk ,

where f jk
i is the structure tensor of the dual Lie algebra g∗, that will be given by

[ξ̂j , ξ̂k] = f jk
i ξ̂i , (3)

where 〈ξ̂j , Xk〉 = δjk. In particular, if G is a group of isometries of a given spacetime (for

instance, (A)dS or Poincaré), then Xi will be the Lie algebra generators and ξ̂j will be the local
coordinates on the group. We thus realize that if the cocommutator δ is non-vanishing (which
means that we have a non-trivial deformation of U(g)) then, automatically, the commutator (3)
among the spacetime coordinates associated to the translation generators of the group will
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be non-zero. This is just the way in which noncommutative spacetimes arise from quantum
groups. Moreover, we stress that, as we will see in what follows, higher-order contributions to
the noncommutative spacetime are obtained from dualizing the full quantum coproduct Δz.

In some cases the 1-cocycle δ is found to be coboundary

δ(X) = [X ⊗ 1 + 1⊗X, r], ∀X ∈ g, (4)

where r (the classical r-matrix) r = rabXa ∧Xb , has to be a solution of the modified classical
Yang–Baxter equation

[X ⊗ 1⊗ 1 + 1⊗X ⊗ 1 + 1⊗ 1⊗X, [[r, r]] ] = 0, ∀X ∈ g,

where the Schouten bracket is defined as [[r, r]] := [r12, r13] + [r12, r23] + [r13, r23], where
r12 = rabXa ⊗ Xb ⊗ 1, r13 = rabXa ⊗ 1 ⊗ Xb, r23 = rab 1 ⊗ Xa ⊗ Xb (recall that [[r, r]] = 0
is just the classical Yang–Baxter equation). An important application of the classical r-matrix
associated to a given quantum deformation consists in the fact that the PL structure on G linked
to δ is explicitly given by the so-called Sklyanin bracket

{f, g} = rij(XL
i f XL

j g −XR
i f XR

j g),

where XL
i , XR

i denote the right- and left-invariant vector fields on G. The linearization of
this bracket in terms of the local coordinates in G is just the Poisson version of (3), and
the quantization of the Sklyanin bracket gives the commutation relations that define the
quantum group Gz in terms of noncommuting local coordinates. Moreover, if we compute
the Sklyanin bracket for the spacetime coordinates we will obtain the ‘semiclassical’ version of
the noncommutative spacetime associated to the quantum group Gz, and the main algebraic
features induced from the spacetime noncommutativity can be straightforwardly appreciated at
this Poisson level, such as, for instance, the role played by the cosmological constant. Moreover,
if the classical spacetime is a homogeneous space M = G/H, where H is a certain subgroup of
G, and the 1-cocycle δ fulfils the so-called coisotropy condition (see [25] and references therein)

δ(h) ⊂ h ∧ g, h = Lie(H), g = Lie(G), (5)

then the canonical projection of the Sklyanin bracket to the M submanifold generates a Poisson
subalgebra, which is just the Poisson homogeneous space associated to the chosen r-matrix,
whose quantization will be the quantum homogeneous space associated to Gz.

Finally, it is is also worth mentioning that Lie bialgebras can alternatively be described as
Drinfel’d double (DD) Lie algebras given by the relations

[Xi, Xj ] = Ck
ijXk, [ξ̂j , ξ̂k] = f jk

i ξ̂i, [ξ̂i, Xj ] = Ci
jkξ̂

k − f ik
j Xk. (6)

Moreover, for any DD Lie algebra D(g) (6), its corresponding double Lie group D(G) can be
endowed with a PL structure generated by the canonical classical r-matrix

r =
∑
i

xi ⊗Xi (7)

which is a solution of the classical Yang–Baxter equation [[r, r]] = 0. In fact, if a given even-
dimensional Lie algebra can be written in the form (6), then the quantum deformation associated
to the classical r-matrix (7) is called a DD one.

It can be proven that for the (A)dS and Poincaré algebras in (2+1) and (3+1) dimensions
all 1-cocycles δ are coboundaries. Therefore, the classification problem for the quantum
deformations of these Lie algebras is equivalent to finding all inequivalent (under automorphisms)
solutions of the modified classical Yang–Baxter equation. This is, by no means, a simple task
(see [50, 51, 52, 53]). In the sequel we will present the explicit construction and properties
of some noncommutative spacetimes with nonvanishing cosmological constant that have been
recently obtained through certain quantum (A)dS deformations of DD type.
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3. AdSω noncommutative spacetimes from Drinfel’d doubles
In the specific case of (2+1)-quantum gravity, there are indications [14] that the perturbations of
the vacuum state of a Chern–Simons (CS) quantum gravity theory with cosmological constant
Λ are invariant under a certain quantum (A)dS algebra, whose zero-curvature limit is the κ-
Poincaré quantum algebra [11]. Also, it is well-known that PL structures on the isometry groups
of (2+1) spaces with constant curvature play a relevant role as phase spaces in the framework of
a CS gauge theory. In this context, the gauge group is the isometry group, and the phase space
of (2+1)-gravity coupled to point particles is related to the moduli space of flat connections,
while the Poisson structure on the moduli space is a PL group (see [38, 39, 40, 41, 42, 43]).

Therefore, it seems reasonable to assume that quantum deformations of the (A)dS and
Poincaré groups could play a relevant role in (2+1) quantum gravity. Nevertheless, a plethora
of possible quantum deformations for these groups do exist (see [50, 51, 52, 53]), and some
physically motivated criteria were needed in order to filter them. An answer to this question
was presented in [19, 20], where it was proven that all the classical r-matrices coming from a
DD structure of the (A)dS and Poincaré groups are compatible with the CS formalism, thus
supporting the idea that natural PL structures for (2+1)-gravity are classical doubles [43, 44].
Moreover, all DD structures for the (A)dS Lie algebras (so(3, 1) and so(2, 2)) were explicitly
obtained in [20], and a similar classification for the Poincaré algebra has been also worked
out [54]. As a result, two main candidates for quantum deformations of the (A)dS symmetries
that would be suitable in a (2+1)-gravity CS setting were obtained. The main properties of these
two quantum deformations and their associated noncommutative spacetimes will be sketched in
what follows. In this approach, the cosmological constant will be included as a ‘geometric
deformation’ parameter, and its flat (Poincaré) limit can be smoothly obtained.

To this aim we shall make use of the (2+1) AdSω algebra (which can be obtained from (2))

[J, Pi] = εijPj , [J,Ki] = εijKj , [J, P0] = 0,

[Pi,Kj ] = −δijP0, [P0,Ki] = −Pi, [K1,K2] = −J,
[P0, Pi] = ωKi, [P1, P2] = −ωJ,

where i, j = 1, 2 and ε12 = 1. The anti-de Sitter algebra so(2, 2) corresponds to ω = −Λ > 0,
the de Sitter algebra so(3, 1) to ω = −Λ < 0 and the Poincaré algebra iso(2, 1) to ω = Λ = 0.

3.1. A (2+1) anti-de Sitter noncommutative spacetime
The first type of anti-de Sitter classical r-matrix coming from a DD structure is given by [20]

r = η J ∧K1 − 1
2
(−J ∧ P0 −K2 ∧ P1 +K1 ∧ P2) (8)

where Λ = −η2 = −ω < 0. The associated cocommutator map (4) reads

δ(J) = −ηK2 ∧ J, δ(K2) = 0, δ(K1) = −ηK2 ∧K1,

δ(P0) =
(
P1 ∧ P2 + ηP1 ∧ J − η2K1 ∧K2

)
, (9)

δ(P1) =
(
P0 ∧ P2 + ηP0 ∧ J − ηP2 ∧K1 + η2K1 ∧ J

)
,

δ(P2) =
(
P1 ∧ P0 + ηP1 ∧K1 − η2J ∧K2

)
.

From it, the first-order noncommutative spacetime (3) is defined by the dual algebra g∗, namely

[x̂0, x̂1] = −x̂2, [x̂0, x̂2] = x̂1, [x̂1, x̂2] = x̂0, (10)

where the x̂i coordinates are dual to the translation generators through 〈x̂j , Pk〉 = δkj . The
Lie algebra (10) is just so(2, 1), but we have to recall that higher-order contributions can arise
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from the full quantum coproduct. In fact, the full noncommutative Poisson structure on the
homogeneous space AdS2+1 = SO(2, 2)/SO(2, 1) is obtained through the canonical projection of
the Sklyanin bracket defined by the r-matrix (8). In terms of the AdS2+1 group coordinates xa
this Poisson noncommutative spacetime reads [22, 25]

{x0, x1} = −tanh ηx2
η

Υ(x0, x1) = −x2 + o[η],

{x0, x2} = tanh ηx1
η

Υ(x0, x1) = x1 + o[η], (11)

{x1, x2} = tan ηx0
η

Υ(x0, x1) = x0 + o[η],

where Υ(x0, x1) = cos ηx0(cos ηx0 cosh ηx1+sinh ηx1). The linearisation of this Poisson bracket
is just the Lie bracket (10), and higher-order terms turn out to depend on the cosmological
constant. Since the 1-cocycle (9) fulfils the coisotropy condition (5), then (11) is a Poisson
homogeneous space, although its quantisation is by no means trivial, as it was discussed in [22].

3.2. A (2+1) twisted κ-AdSω noncommutative spacetime
Another relevant AdSω classical r-matrix coming from a different DD structure reads [20, 21]

r = z(K1 ∧ P1 +K2 ∧ P2) + ϑJ ∧ P0, (12)

where ϑ is a second quantum deformation parameter associated to a twist (this is the ‘time-like’
realization of the r-matrix, for the ‘space-like’ one we refer to [21, 25]). Here δ reads

δ(P0) = δ(J) = 0,

δ(P1) = z(P1 ∧ P0 − ωK2 ∧ J) + ϑ(P0 ∧ P2 + ωK1 ∧ J),

δ(P2) = z(P2 ∧ P0 + ωK1 ∧ J)− ϑ(P0 ∧ P1 − ωK2 ∧ J),

δ(K1) = z(K1 ∧ P0 + P2 ∧ J) + ϑ(P0 ∧K2 − P1 ∧ J),

δ(K2) = z(K2 ∧ P0 − P1 ∧ J)− ϑ(P0 ∧K1 + P2 ∧ J),

from which a first-order noncommutative spacetime is obtained:

[x̂0, x̂1] = −zx̂1 − ϑx̂2, [x̂0, x̂2] = −zx̂2 + ϑx̂1, [x̂1, x̂2] = 0.

As expected, when the twist parameter ϑ vanishes, we recover the well-known κ-Minkowski
spacetime [8, 9, 10, 11]. Once again, these are first-order relations, and the cosmological
constant Λ = −ω = −η2 will appear in higher-order corrections generated by the full quantum
deformation. Namely, the full Poisson noncommutative spacetime obtained through the Sklyanin
bracket from (12) reads

{x0, x1} = −z tanh ηx1

η cosh2ηx2
− ϑ cosh ηx1

tanh ηx2
η

,

{x0, x2} = −z tanh ηx2
η

+ ϑ
sinh ηx1

η
, {x1, x2} = 0. (13)

The coisotropy condition (5) is again fulfilled, and the quantization of (13) can be performed
by asuming that [x̂1, x̂2] = 0. Therefore, the noncommutative twisted κ-AdSω spacetime is

[x̂0, x̂1] = −z
(
x̂1 − 1

3
ωx̂31 − ωx̂1x̂

2
2

)
− ϑ

(
x̂2 +

1

2
ωx̂21x̂2 −

1

3
ωx̂32

)
+O(ω2),

[x̂0, x̂2] = −z
(
x̂2 − 1

3
ωx̂32

)
+ ϑ

(
x̂1 +

1

6
ωx̂31

)
+O(ω2),

where the cosmological constant generates nonlinear deformation terms that disappear after
performing the Minkowski limit ω → 0.
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3.3. A (3+1) noncommutative AdSω spacetime
Although there is no CS approach to gravity in (3+1) dimensions, it seems natural to explore
whether DD quantum deformations do exist and can be related to the (2+1) ones. The answer is
affirmative for the twisted κ-AdSω deformation, whose DD structure has been recently presented
in [23, 24]. In the basis (2), the corresponding classical r-matrix reads

r = z(K1 ∧ P1 +K2 ∧ P2 +K3 ∧ P3 +
√
ω J3 ∧ J1) + ϑP0 ∧ J2,

where the term
√
ω J3 ∧ J1 (which does not exist in (12)) implies that the rotation subalgebra

becomes quantum deformed when ω does not vanish. From this expression, it can be shown
that the first-order noncommutative spacetime turns out to be

[x̂1, x̂0] = z x̂1 + ϑ x̂2, [x̂2, x̂0] = z x̂2 − ϑ x̂1, [x̂3, x̂0] = z x̂3,

together with [x̂a, x̂b] = 0, (a, b = 1, 2, 3). This algebra is not isomorphic to the (3+1) κ-
Minkowski spacetime whenever ϑ is not zero (see [23]). Again, a nonlinear deformation of this
algebra in terms of the cosmological constant is obtained for higher orders [54], thus being the
dual counterpart of the full (3+1) Hopf algebra deformation that has been explicitly given in [24].

A remarkable problem consists in finding the explicit form of the deformed version of the two
AdSω Casimir operators, namely the quadratic one coming from the Killing–Cartan form

C = P 2
0 −P2 + ω

(
J2 −K2

)
,

and the fourth-order invariant

W = W 2
0 −W2 + ω (J ·K)2 ,

where W0 = J · P and Wa = −JaP0 + εabcKbPc are the components of the Pauli–Lubanski
4-vector. As it has been shown in [24], the quantum version of the former is

Cz =
2

z2
[
cosh(zP0) cosh(z

√
ωJ3)− 1

]
+ ω cosh(zP0)(J

2
1 + J2

2 )e
−z

√
ωJ3

−ezP0
(
P2 + ωK2

) [
cosh(z

√
ωJ3) +

z2ω

2
(J2

1 + J2
2 )e

−z
√
ωJ3

]
(14)

+2ωezP0

[
sinh(z

√
ωJ3)√

ω
R3 + z

(
J1R1 + J2R2 +

z
√
ω

2
(J2

1 + J2
2 )R3

)
e−z

√
ωJ3

]
,

where Ra = εabcKbPc. Indeed, the κ-Poincaré Casimir is obtained as the ω → 0 limit of (14),

Cz = 2

z2
[cosh(zP0)− 1]− ezP0P2 =

4

z2
sinh2(zP0/2)− ezP0P2. (15)

Therefore, the κ-Minkowski deformed dispersion relation coming from (15) turns out to be
significantly modified when the cosmological constant does not vanish. This raises the question
concerning the physical meaning of the quantum AdSω Casimir (14) in a cosmological context.
Also, the classification of DD structures for the (3+1) (A)dS algebras is a challenging open
problem, and the corresponding Poincaré case has been recently solved in [54]. Finally, we
mention that the characterization of (3+1) (A)dS Poisson homogeneous spaces is currently
under investigation by following the approach presented in [25].
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