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ABSTRACT
Introduction  Systemic lupus erythematosus with 
antiphospholipid syndrome (SLE-APS) represents a 
challenging SLE endotype whose molecular basis remains 
unknown.
Methods  We analysed whole-blood RNA-sequencing 
data from 299 patients with SLE (108 SLE-
antiphospholipid antibodies (aPL)-positive, including 67 
SLE-APS; 191 SLE-aPL-negative) and 72 matched healthy 
controls (HC). Pathway enrichment analysis, unsupervised 
weighted gene coexpression network analysis and 
machine learning were applied to distinguish disease 
endotypes.
Results  Patients with SLE-APS demonstrated 
upregulated type I and II interferon (IFN) pathways 
compared with HC. Using a 100-gene random forests 
model, we achieved a cross-validated accuracy of 75.6% 
in distinguishing these two states. Additionally, the 
comparison between SLE-APS and SLE-aPL-negative 
revealed 227 differentially expressed genes, indicating 
downregulation of IFN-α and IFN-γ signatures, coupled 
with dysregulation of the complement cascade, B-cell 
activation and neutrophil degranulation. Unsupervised 
analysis of SLE transcriptome identified 21 gene 
modules, with SLE-APS strongly linked to upregulation 
of the ’neutrophilic/myeloid’ module. Within SLE-
APS, venous thromboses positively correlated with 
’neutrophilic/myeloid’ and ’B cell’ modules, while 
arterial thromboses were associated with dysregulation 
of ’DNA damage response (DDR)’ and ’metabolism’ 
modules. Anticardiolipin and anti-β2GPI positivity—
irrespective of APS status—were associated with the 
’neutrophilic/myeloid’ and ’protein-binding’ module, 
respectively.
Conclusions  There is a hierarchical upregulation and—
likely—dependence on IFN in SLE with the highest IFN 
signature observed in SLE-aPL-negative patients. Venous 
thrombotic events are associated with neutrophils and 
B cells while arterial events with DDR and impaired 
metabolism. This may account for their differential 
requirements for anticoagulation and provide rationale 

for the potential use of mTOR inhibitors such as sirolimus 
and the direct fIIa inhibitor dabigatran in SLE-APS.

INTRODUCTION
Approximately 30% of patients with systemic lupus 
erythematosus (SLE) harbour antiphospholipid 
antibodies (aPL) such as anticardiolipin (anti-CL), 
anti-beta2 glycoprotein I (anti-β2GPI) and lupus 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Gene expression studies in systemic lupus 
erythematosus with antiphospholipid syndrome 
(SLE-APS) have suggested a plasmacytoid 
dendritic and neutrophil signature but these 
studies have been limited by small sample size.

	⇒ Direct oral anticoagulants, particularly factor 
Xa inhibitor (Xai) rivaroxaban, may not be 
protective against arterial thrombosis in APS. 
Direct factor IIa inhibitor (fIIai) dabigatran—but 
not fXai—can completely repair the double-
stranded DNA breaks and a post-hoc analysis 
of three randomised clinical trials (RCTs) has 
demonstrated equivalence between warfarin 
and dabigatran in APS.

WHAT THIS STUDY ADDS
	⇒ APS in SLE is characterised by enhanced type 
I and II interferon (IFN) signatures which 
however are less prominent compared with 
their antiphospholipid antibodies-negative 
counterparts.

	⇒ Venous thrombotic events in SLE-APS are 
associated by an enhanced neutrophilic and B 
cell response.

	⇒ DNA damage response aberrancies and altered 
metabolic pathways are linked to arterial 
thromboses in SLE-APS.
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anticoagulant (LA).1 Among these, one-third will eventually 
develop thrombotic events or maternal morbidity, collectively 
termed SLE-antiphospholipid syndrome (SLE-APS).2 In addi-
tion to their association with severe disease manifestations, 
aPL contribute to the progressive accrual of organ damage and 
morbidity.3

SLE-APS represents one of the most challenging lupus endo-
types, with both inflammatory and thrombotic mechanisms 
implicated.4 Experimental studies suggest an aPL-induced acti-
vation of monocytes, platelets and endothelial cells leading to 
release of proinflammatory molecules.5 Current management 
involves prevention of thrombotic events, with the use of low-
dose aspirin for individuals carrying aPL and vitamin-K antago-
nists (VKA) for the treatment of patients with thrombotic APS.6 
However, certain primary APS phenotypes, like refractory or 
catastrophic APS, are treated with anti-inflammatory therapy (ie, 
anticomplement therapy), suggesting an aPL-mediated inflam-
matory effect. Thus, delineating the molecular underpinnings of 
SLE-APS is essential for novel therapeutic interventions.

Genome-wide expression analyses offer an unbiased and 
comprehensive approach in the study of complex diseases like 
SLE or APS, providing valuable insights into molecular charac-
teristics and aberrancies.7 To date, RNA-sequencing studies have 
been conducted in patients with APS focusing on plasmacytoid 
dendritic cells (pDCs) and neutrophils and revealed P-selectin 
glycoprotein ligand-1 as key adhesion molecule overexpressed 
in APS neutrophils, but these studies have been limited by their 
small sample size.8 9 In a recent whole blood RNA-seq analysis 
in 62 patients with thrombotic primary APS, interferon (IFN)-
regulated genes emerged as key drivers.10

Herein, we report a comprehensive RNA-sequencing analysis 
to profile the blood transcriptome of a large cohort of patients 
with aPL-positive SLE, with or without APS. We compared their 
transcriptomic profiles to those of patients with aPL-negative 
SLE and healthy individuals and analysed gene expression 
patterns associated with SLE-APS. Our data suggest distinct tran-
scriptomic signatures of patients with SLE-APS between venous 
and arterial thrombosis. These data may have implications for 
the pathogenesis and management of SLE-APS.

MATERIALS AND METHODS
Patients and healthy individuals
Patients were recruited from the Departments of Rheuma-
tology at ‘Attikon’ University Hospital, Athens,11 and Univer-
sity Hospital of Crete.12 We included 299 patients with SLE 
according to the American College of Rheumatology 1997 
criteria and/or the Systemic Lupus Erythematosus International 
Collaborating Clinics 2012 criteria, and 72 age and sex-matched 
healthy controls (HC). Among patients with SLE, 108 were 
aPL-positive (SLE-aPL-positive), of whom 67 were diagnosed 
with thrombotic APS (SLE-APS), according to Sydney classifi-
cation criteria and 41 were aPL carriers without clinical APS; 

the remaining 191 patients with SLE were negative for all aPL 
(SLE-aPL-negative).

For subgroup analysis, aPL profile was categorised as high 
risk (aPLhigh) and low risk (aPLlow) according to the European 
Alliance of Associations for Rheumatology (EULAR) recom-
mendations. A high-risk aPL profile was defined as the presence 
of (1) LA, or (2) a double positivity of LA, anti-CL or anti-
β2GPI, or (3) triple aPL positivity, or (4) persistently high aPL 
titres, while a low-risk profile was defined as isolated anti-CL 
or anti-β2GPI positivity at low-medium titres.13 Anti-CL (both 
IgG and IgM) and anti-β2GPI (both IgG and IgM) were tested/
quantified with ELISA. Patients with SLE with SLEDAI-2K 
>8 were not included in the study to minimise transcriptome 
signatures driven by SLE disease activity. Demographic, clinical 
and serological characteristics were recorded for each patient 
at the time of sampling and are summarised in table 1, online 
supplemental figure 1 and online supplemental table 1. Patient 
subgroups did not differ with respect to disease activity, disease 
manifestations at the sampling, medications and autoantibodies 
profiles.

Written informed consent was obtained from all participants, 
after which whole blood samples were collected, and RNA was 
extracted for subsequent analysis.14

RNA-sequencing
Total whole-blood RNA was extracted using Paxgene Blood 
miRNA kit (PreAnalytiX) and libraries were prepared using 
the Illumina stranded Truseq mRNA protocol. Paired-end 67 
bp or 100bp mRNA sequencing was performed on Illumina 
HiSeq2000 or HiSeq4000 at the Department of Genetic Medi-
cine and Development, University of Geneva Medical School. 
Library preparation and sequencing were performed as previ-
ously described.7 14 Quality of sequencing was assessed using 
FastQC software.15 Samtools16 was used to sort bam files, and 
HTSeq17 was used to extract gene expression counts.

Table 1  Demographic and clinical characteristics of patients with 
SLE and healthy individuals included in the study

Patients with 
SLE
(n=299)

Patients with SLE 
with APS
(n=67)

Patients with SLE 
without APS
(n=232)

Healthy 
individuals
(n=72)

Gender

 � Female 261 (87.2%) 56 (83.6%) 205 (88.4%) 67 (93.1%)

 � Male 38 (13.8%) 11 (16.4%) 27 (11.6%) 5 (6.9%)

Race

 � Caucasian 297 (99.3%) 67 (100%) 230 (99.1%) 72 (100%)

 � Other 2 (0.7%) 0 (2.4%) 2 (0.9%) 0 (0%)

Age (years)

 � Mean±SD 47±13.2 49.2±13.1 46.4±13.3 43.4±12

Disease manifestations

 � Venous thrombosis 57 (18.7%) 45 (68.2%) 12 (5.2%)

 � Pulmonary embolism 8 (2.7%) 7 (10.4%) 1 (0.4%)

 � Arterial thrombosis 58 (19.4%) 22 (32.8%) 36 (15.5%)

 � Pregnancy complications – 10 (14.9%) –

Antibodies

aPL negative 191 (63.9%%) 0 (0%) 191 (82%)

aPL positive 108 (36.1%) 67 (100%) 41 (17.6%)

 � High aPL profile 62 (57.4%) 51 (76.1%) 11 (26.8%)

 � Low aPL profile 46 (42.6%) 16 (23.9%) 30 (73.2%)

Anti-CL 90 (30.1%) 55 (82.1%) 35 (15%)

Anti-β2GPI 56 (18.2%) 39 (58.2%) 17 (7.3%)

LA 39 (13%) 35 (52.2%) 4 (1.7%)

anti-β2GPI, anti-beta2 glycoprotein I; aPL, antiphospholipid antibodies; APS, antiphospholipid syndrome; CL, cardiolipin; LA, lupus 
anticoagulant; SLE, systemic lupus erythematosus.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR 
POLICY

	⇒ Patients with SLE-APS might be less dependent to type I IFN 
but the clinical implications of this finding need further study.

	⇒ Inhibitors of fIIai such as dabigatran and mTOR inhibitors 
such as sirolimus—that reduce DNA damage and metabolic 
aberrancies—have been used and tested for the treatment of 
arterial events in SLE-APS and could be further explored.

https://dx.doi.org/10.1136/ard-2024-225664
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Differential expression analysis
Raw counts were normalised and analysed with edgeR 
package18 (V.3.40.2, RRID: SCR_012802) in R (V.4.2.0, RRID: 
SCR_001905), to identify differentially expressed genes (DEGs) 
between (1) patients with SLE-APS and HC, (2) SLE-aPL-positive 
patients and HC, (3) SLE-APS and SLE-aPL-negative patients, 
and (4) SLE-aPL-positive and SLE-aPL-negative patients. DEGs 
were defined as genes with |FC|>1.5 and p value <0.05. Gene 
ontology (GO) analysis was performed using gProfiler,19 as 
previously described.14

Gene set enrichment analysis
Preranked gene set enrichment analysis (GSEA) was performed 
against the gene sets of MsigDB database20 for the following 
terms: (1) GO: (a) biological process (​GO:​BP;​c5.​go.​bp.​v2023.​1.​
Hs.​symbols.​gmt), (b) hallmark (​h.​all.​v2023.​1.​Hs.​symbols.​m), (c) 
canonical pathways: KEGG (​c2.​cp.​kegg.​v2023.​1.​Hs.​symbols.​
gmt), and (d) canonical pathways: reactome (​c2.​cp.​reactome.​
v2023.​1.​Hs.​symbols.​gmt). GSEA was performed using the soft-
ware (V.4.3.2) applying log2FC and FDR values from each DE 
analysis.21 Genes were ranked based on the product of −log10(p 
value) multiplied by log2FC in descending order, as previously 
described.22

Deconvolution of whole-blood transcriptomic data
CIBERSORTx23 deconvolution tool was used, through its web 
portal, to estimate the abundance of immune cell subsets in our 
whole-blood samples. Transcript-per-million expression values 
and the LM22 signature matrix were used as input to quantify 
22 infiltrating immune cell types, namely 3 macrophage subsets 
(M0, M1 and M2), natural killer (NK) cells (activated and resting 
NK cells), T cells (memory resting CD4+, CD8+, naïve CD4+, 
regulatory T cells, memory activated CD4+, gamma delta T cells 
and T follicular helper cells), B cells (memory and naïve B cells), 
mast cells (activated and resting mast cells), monocytes, dendritic 
cells (resting and activated dendritic cells), neutrophils, plasma 
cells and eosinophils. Differences in cell type proportions among 
sample groups were tested by the Wilcoxon rank sum test.

Weighted gene coexpression network analysis
Weighted gene coexpression network analysis (WGCNA) R 
package24 (V.1.72-1, RRID: SCR_003302) was used to perform 
unsupervised cluster analysis to identify molecular groups 
(modules) of coexpressed genes, using the gene expression 
data of the 299 patients with SLE. Genes with a central role 
(Hub genes) in each of the significant modules were determined 
using the connectivity measure of module membership (>0.8), 
while significant modules (p <0.05) were tested for functional 
enrichment using g:Profiler,19 in order to associate modules and 
genes with specific biological processes or functions. Identified 
modules were correlated with patients’ clinical manifestations 
and autoantibody status.

Protein–protein interaction networks
Networks of interactions between genes associated with SLE-
APS, arterial thrombosis and venous thrombosis were created 
through StringDB25 using the STRINGdb R package.26 Genes 
included in the significantly correlated modules (APS—salmon, 
arterial thrombosis—turquoise and green, venous thrombosis—
salmon and lightyellow) were used as input. Version 12.0 of 
the database was selected and query was limited to the physical 
subnetwork of interactions identified in Homo sapiens having a 

score threshold of 500. Networks were exported in tsv format 
and visualised in R using packages ggraph27 and igraph.28

Machine learning
The RNA-sequencing dataset was randomly split into training 
(70%) and validation (test) (30%) sets. The training set was used 
to develop a prediction model and the test to validate the results 
using caret29 package in R. Using the training set, differential 
expression using Deseq and recursive feature elimination (RFE) 
(random forest model) using 5 repeats of 10-fold cross-validation 
(CV) were used as a feature selection step (random forest model) 
to remove noise and keep the smallest set of genes which best 
predicted coexistence of APS based on accuracy. Next, six 
different prediction models (rf, glm, glmnet, svmRadial, svmPoly, 
nnet from caret package) were fit to identify which performs 
best using the genes based on feature selection step and the best 
model was selected based on accuracy, sensitivity and specificity. 
The final model was validated in the validation set. Receiver 
operating characteristic curves (ROC) were generated using the 
pROC package30 in R and PCA plots using FactoMineR.31 The 
importance of each feature in the final predictive models was 
calculated using varImp function from caret package.32

RESULTS
Patients with SLE with APS demonstrate extensive 
aberrancies in blood transcriptome
We first asked what distinguishes the SLE-APS transcriptome 
both from the SLE-aPL-negative transcriptome and the healthy 
transcriptome. Unsupervised principal component analysis of 
SLE-aPL-negative patients, patients with SLE-APS and HC is 
illustrated in figure 1A. A total of 995 upregulated and 343 down-
regulated DEGs were found in the SLE-APS group compared 
with HC (figure 1B). A further comparison between SLE-aPL-
positive and HC demonstrated 1346 DEGs (987 upregulated 
and 359 downregulated; figure  1C), which significantly over-
lapped (86.9%) with the DEGs identified in the SLE-APS group 
(online supplemental figure 2A). GO analysis between SLE-APS 
and HC revealed dysregulation of multiple pathways, including 
collagen degranulation, apoptotic signalling, angiogenesis and 
cell surface interaction at the vascular wall (figure 1D). GSEA 
identified the most enriched upregulated pathways as IFN-α, 
IFN-γ, complement, coagulation, oxidative stress and neutrophil 
degranulation (figure 1E). Some of the key dysregulated genes 
associated with each pathway are highlighted in figure 1F. Similar 
dysregulated pathways were also observed in SLE-aPL-positive 
patients compared with HC (online supplemental figures 2B–D). 
Taken together, these data suggest that similar to the SLE tran-
scriptome, the SLE-APS transcriptome demonstrates extensive 
aberrancies with quantitative and qualitative differences charac-
terised mainly by neutrophilic, apoptotic, complement, coagula-
tion and type-I/II IFN signatures.

Machine learning discriminates patients with SLE with 
APS from HC and uncovers genes implicated in disease 
pathogenesis
We next examined whether an ML-based approach could also 
discriminate patients with SLE-APS from HC based on specific 
gene expression patterns. To this end, the complete mRNA-
sequencing dataset was randomly split into training and vali-
dation sets, followed by feature selection using differential 
expression analysis (p <0.05) followed RFE with a random 
forest model under a fivefold CV. Based on model accuracy, a 
set of 100 genes was selected and tested to determine which 

https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
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Figure 1  Transcriptomic signature in patients with SLE with APS versus healthy individuals demonstrates extensive aberrancies in blood 
transcriptome. A total of 1338 dysregulated DEGs in SLE-APS compared with HC revealed upregulation of pathways related to interferon (IFN)-α, 
INF-γ, complement, oxidative stress and neutrophil degranulation. (A) PCA of blood gene expression profiles from patients with SLE with APS (SLE-
APS; n=67), SLE-aPL-negative patients (n=191) and HC (n=72). (B) Volcano plot highlighting the DEGs in patients with SLE-APS versus HC (left) and 
SLE-aPL-positive patients versus HC (right). Upregulated DEGs are coloured green, and downregulated DEGs are coloured blue. Genes not reaching 
our significance thresholds (|log2FC| >0.58 and p value <0.05) are shown in grey. (C) Dot plot showing the results of GO analysis representing 
biological pathways that are deregulated in patients with SLE-APS versus HC. The size of the dots represents the number of genes included in each 
enriched term and the colour represents the adjusted p value. (D) Bar plot showing the results of GSEA analysis representing biological pathways 
associated with the Hallmark V.7.5 database. The figure shows the positively enriched pathways (false discovery rate (FDR) <0.25) in patients 
with SLE-APS versus HC. (E) Heatmap showing the expression profile of the 49 genes belonging to specific Hallmarks (IFN-a, IFN-g, neutrophils, 
complement and coagulation) found as DEGs between SLE-APS and HC. Expression values were z-score normalised. Top annotation row shows the 
condition of each sample, coloured grey for patients with SLE-APS, turquoise for HC and lightgreen for aPL-negative patients, red for aPL-positive 
patients with aPLhigh profile and blue for aPL-positive patients with aPLlow profile. aPL, antiphospholipid antibodies; APS, antiphospholipid syndrome; 
DEGs, differentially expressed genes; FC, fold change; GO, gene ontology; GSEA, gene set enrichment analysis. HC, healthy controls; PCA, principal 
component analysis; SLE, systemic lupus erythematosus.
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prediction model performs best with the selected genes, using a 
2-fold cross-validation approach (figure 2A). The random forest 
model using these 100 genes (figure  2B), best distinguished 
patients with SLE-APS from HC with a 10-fold CV, calculated 
accuracy of 75.6% (95% CI 60% to 88%), sensitivity of 80% 
and specificity of 71% (0.80 area under the curve (AUC) of the 
ROC analysis) in the validation set (figure 2C and D), demon-
strating good model efficiency to discriminate true positive 
(patients with SLE-APS) from false positive (HC) cases. Thus, 
using the training and validation set, PCA showed that the 100 
selected genes could accurately distinguish SLE-APS from HC 
(figure 2E).

Among these 100 genes derived from ML, we identified 13 
keys genes potentially implicated in the pathogenesis of APS 
(highlighted in figure 2B). To uncover underlying mechanisms 
and possible crosstalk among these genes at molecular level, we 
next performed in silico analysis to identify potential transcrip-
tion factors regulating the expression of these 13 genes. SPIB 
and KLF1 were found as key transcription factors associated 
with SLE-APS based on the ML model, while their expression 
may be regulated by inflammation-related genes, such as IRF1, 
IRF3 and STAT5a/b (online supplemental figure 3A). Genes 
with the highest importance in the final model included TSPO2, 
implicated in the redistribution of cholesterol, and AHSP and 
HBM, which encode alpha haemoglobin stabilising protein and 
haemoglobulin subunit Mu, respectively; both may be regu-
lated by KLF1 and SPIB (online supplemental figure 3B). More 
importantly, SPIB and/or KLF1 may also regulate the expression 
of IFN-related genes (IFIT1; Online supplemental figure 3C), 
B cell-related genes (BCR; Online supplemental figure 3D) and 

neutrophil-related genes (MMP9, MPO; Online supplemental 
figure 3E). These data underscore the potential role of SPIB and 
KLF1 in SLE-APS pathogenesis.

IFN signature is less pronounced in SLE-APS versus SLE-aPL-
negative patients
We next analysed transcriptomic perturbations between SLE-APS 
and SLE-aPL-negative after controlling for the effects of disease 
activity. We found 136 upregulated and 91 downregulated DEGs 
in SLE-APS versus SLE-aPL-negative groups, mainly involving 
pathways related to complement cascade, B cell activation and 
neutrophil degranulation (figure  3A and B). GSEA revealed 
a robust downregulation of IFN-α and IFN-γ signatures in 
patients with SLE-APS with key deregulated genes contributing 
to that signature (figure 3C). To further explore this finding, we 
performed deconvolution analysis using CIBERSORTx to esti-
mate the proportion of circulating immune cells. We observed 
a tendency towards reduced T cell frequency and significantly 
increased macrophage proportions in patients with SLE-APS 
(figure  3D). Patients with SLE-APS exhibited lower frequency 
of CD4 memory T cells and higher frequency of resting (non-
activated) M0 macrophages, suggesting that altered myeloid 
populations towards an undifferentiated stage (M0 stage) may 
account for the downregulation of IFN signature (online supple-
mental figure 4A).33 We also compared SLE-aPL-positive to SLE-
aPL-negative patients, unravelling 126 DEGs (76 upregulated 
and 50 downregulated; figure  3E, online supplemental figure 
4B) with GSEA demonstrating deregulation of several pathways 
including IFN-α, IFN-γ, complement cascade and oxidative 

Figure 2  Machine-learning algorithm of whole-blood RNA-sequencing data distinguishes patients with systemic lupus erythematosus (SLE) with 
antiphospholipid syndrome (APS) from healthy individuals. A group of 100 genes discriminates SLE-APS from healthy controls (HC) (specificity=71%, 
sensitivity=80%, area under the curve (AUC)=0.80) including the key transcription factors SPIB and KLF1 that regulate the expression of IFIT1B, 
BCR, MPO and MMP9. (A) Schematic overview of the machine-learning approach; RNA-sequencing were split in training and test sets at 70:30 ratio. 
(B) The 100 gene predictors of the random forest model distinguishing patients with SLE with APS from HC based on their importance, as evidenced 
by their absolute coefficient. Gene predictors potentially implicated in the pathogenesis in the SLE-APS are highlighted. (C) Characteristics of the 
prediction model of patients with SLE-APS from HC. (D) Receiver operating characteristic curve (ROC) analysis of the random forest model in the 
validation set reveals an AUC of 0.80. (E) Principal component analysis (PCA) in training and validation sets using the 100 genes.
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Figure 3  Transcriptomic signature in patients with SLE with APS (SLE-APS) versus SLE-aPL-negative: Interferon signature is less profound in 
patients with SLE-APS versus SLE-aPL-negative. Dysregulation of a group of 227 DEGs underlines the SLE-APS phenotype in SLE characterised by 
downregulation of type-I and type-II IFN signatures along with dysregulation of complement cascade, B-cell activation, and neutrophil degranulation. 
(A) Volcano plot highlighting the DEGs in SLE-APS versus SLE-aPL-negative. Upregulated DEGs are coloured green, and downregulated DEGs are 
coloured blue. DEGs not reaching our significance thresholds (|log2FC| >0.58 and p value <0.05) are shown in grey. (B) Dot plot showing the results of 
GO analysis representing biological pathways that are deregulated in patients with SLE-APS versus SLE-aPL-negative. The size of the dots represents 
the number of genes included in each enriched term and the colour represents the adjected p value. (C) Chord plot showing the results of GSEA 
analysis representing biological pathways associated with the Hallmark v2023.1.Hs database. The figure shows the significantly enriched pathways 
(FDR <0.25) in patients with SLE-APS versus SLE-aPL-negative (right) and key deregulated genes of each pathway found to DE between the two 
groups (left). (D) Deconvolution analysis using CIBERSORTx shows the estimated proportions of different immune cell subsets in SLE-APS versus SLE-
aPL-negative. (E) Volcano plot highlighting the DEGs in SLE-aPL-positive versus SLE-aPL-negative patients. Upregulated DEGs are coloured green, 
and downregulated DEGs are coloured blue. DEGs not reaching our significance thresholds (|log2FC| >0.58 and p value <0.05) are shown in grey. 
(F) Chord plot showing the results of GSEA analysis representing biological pathways associated with the Hallmark v2023.1.Hs database. The figure 
shows the significantly enriched pathways (FDR <0.25) in SLE-aPL-positive versus SLE-aPL-negative patients (right) and key deregulated genes of 
each pathway found to DE between the two groups (left). aPL, anti-phospholipid antibodies; APS, antiphospholipid syndrome; DEGs, differentially 
expressed genes; FC, fold change; GO, gene ontology; GSEA, gene set enrichment analysis; IFN, interferon; SLE, systemic lupus erythematosus.
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phosphorylation between these groups (figure 3F, online supple-
mental figure 4C). To further explore the impact of aPL on SLE 
transcriptome, we compared aPLhigh to aPLlow patients with SLE, 
which revealed 231 DEGs mainly involved in adaptive immune 
response and complement (online supplemental figure 5A, B). 
GSEA showed downregulation of IFN-α, IFN-γ along with 
cholesterol homeostasis and angiogenesis in patients with SLE-
aPLhigh (online supplemental figure 5C), further supporting the 
association of aPL positivity with less profound IFN signature 
in SLE.

Unsupervised analysis differentiates pathogenetic 
mechanisms in venous from arterial thrombosis
Arterial and venous thromboses are distinct clinical entities with 
regards to pathogenesis (vascular wall injury vs stasis/hyperco-
agulation, respectively), location and therapies (antiplatelets 
vs anticoagulants).34 To explore the transcriptomic landscape 
related to APS-specific thrombotic manifestations, we selected a 
WGCNA using transcriptomic data from the entire SLE cohort. 
WGCNA analysis identified 21 modules of coexpressed genes. 
Within the SLE cohort, APS was associated with the salmon 
module. Six gene modules significantly correlated with arte-
rial thrombosis in patients with SLE-APS (‘arterial thrombosis 
modules’). Venous thrombosis in SLE-APS was associated with 
two gene modules (‘venous thrombosis modules’), one of which 
also correlated with pulmonary embolism (figure 4A).

Next, we performed enrichment analysis to identify deregu-
lated pathways in each module. Salmon module was annotated 
to neutrophilic/myeloid signature, which further supports that 
secondary APS is characterised by a robust myeloid response, 
primarily mediated by neutrophils (figure  4B). The ‘arterial 
thrombosis modules’ (greenyellow, turquoise, brown, magenta 
and green) were associated with oxidative phosphorylation, 
DNA damage response (DDR), neutrophilic/myeloid response, 
immune response and metabolism, respectively (figure  4B), 
suggesting that arterial thrombosis in APS may be mediated 
by neutrophils through deregulation of pathways related to 
DDR and metabolism. To further evaluate these findings, we 
constructed a protein–protein interaction network based on 
deregulated coding genes in green (metabolism) and turquoise 
(DDR) modules, and we found key orchestrators of arterial 
thrombosis including TP53, ATM, ATR and HIF1A (figure 4C, 
online supplemental figure 6A). The ‘venous thrombosis 
modules’ (salmon and lightyellow) were associated with neutro-
philic/myeloid response and adaptive immunity, respectively, 
suggesting that both neutrophils and B cells are important regula-
tors of venous thromboses in patients with SLE-APS (figure 4B). 
The ‘venous thrombosis’ protein–protein interaction network 
revealed CD79A, GATA1, TRAF4, STPA1 as significant genes 
that are associated with venous thromboses (figure 4D, (online 
supplemental figure 6B).

Unsupervised analysis differentiates pathogenetic 
mechanisms in patients with SLE with distinct aPL profiles
To further illustrate the transcriptomic landscape in SLE-APS, 
we performed WGCNA in relation autoantibody-positivity 
irrespective of APS status. Anti-CL positivity was associated 
with the salmon module, while anti-β2GPI was associated with 
yellow and black modules (figure  5A). Enrichment analysis 
demonstrated that salmon module is linked to a neutrophilic/
myeloid signature, while yellow and black were associated with 
generic transcription and protein-binding pathways, respectively 

(figure 5B). These data indicate that distinct mechanisms may be 
implicated in patients with different autoantibody profiles.

DISCUSSION
Our study provides a comprehensive characterisation of gene 
signatures in patients with SLE with either APS or aPL positivity. 
Herein, we report the transcriptomics aberrancies associated 
with specific APS-related manifestations and autoantibodies, 
providing novel insights into SLE-APS. SLE-APS is associated 
with a less profound IFN signature within the SLE popula-
tion. Furthermore, we showed that venous thrombotic events 
are linked to an enhanced myeloid/neutrophilic response, while 
arterial thromboses are associated with aberrant DDR and 
impaired metabolism (figure  6). Finally, we have developed a 
machine learning-based blood-gene model capable of identifying 
patients with SLE with APS.

The diagnosis of APS, currently dependent on the presence of 
aPL, poses challenges, as some patients may develop thrombotic 
events and non-criteria APS-related manifestations without aPL, 
giving rise to the suspicion of the ‘seronegative APS’. The new 
American College of Rheumatology (ACR)/EULAR classification 
criteria for APS, published recently,35 include manifestations 
previously considered as ‘non-criteria’ and thus these criteria 
may capture patients with possible APS. The initial performance 
of the ACR/EULAR criteria demonstrated very high specificity 
(almost 100%), yet with a sensitivity of 84% indicating that 
approximatively 15% of patients with clinical APS may not be 
classified by the new criteria. ML has emerged as a useful tool 
to construct diagnostic and prognostic models in rheumatology; 
to this end, we suggest that new features (eg, gene expression 
patterns) could be incorporated into existing classification 
systems to further improve their performance. Herein, we devel-
oped an ML model based on the expression of 100 genes that 
distinguished patients with SLE-APS from healthy individuals. 
The potential diagnostic value of these gene predictors in clin-
ical setting can only be established through rigorous validation 
studies in independent cohorts, particularly among patients with 
thrombotic events.

Further on the ML-uncovered genes implicated in pathogen-
esis of APS, we found that SPIB and KLF1 might be critical tran-
scription factors of IFN (IFIT1b), adaptive immunity (BCR) and 
neutrophilic (MMP9, MPO) associated pathways, based on in 
silico analysis. These findings suggest a shared molecular regu-
lation underlying traditional pathogenetic mechanisms involved 
in disease pathogenesis. In addition to the inflammation-related 
genes, ML identified haemoglobin-related genes (AHSP, HBM) 
as significant contributors to the algorithm, implicating a patho-
genetic role of haemoglobin in thrombosis. Indeed, red blood 
cells crosstalk with platelets regulating their physical location 
in vessels and promoting platelet margination, which further 
enhances platelet–wall interactions and deposition on thrombi.36 
To this end, the gene with the most important contribution to the 
algorithm was the TSPO2, which encodes a protein that binds 
to cholesterol and plays a role in transferring cholesterol from 
lipid droplets to the endoplasmic reticulum.37 Dyslipidaemia is 
frequently present in patients with aPL, serving as an additional 
risk factor for cardiovascular events. Our data indicate that 
aberrant gene regulation may play a role in the development of 
dyslipidaemia in these patients, thereby amplifying the risk of 
thrombosis. These findings also raise the possibility for shared 
mechanisms underlying immunothrombosis and dyslipidaemia/
atherosclerosis.38

https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
https://dx.doi.org/10.1136/ard-2024-225664
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Figure 4  Unsupervised cluster analysis reveals distinct pathogenetic mechanisms implicated in venous and arterial thromboses. Venous thromboses 
are positively correlated with ‘neutrophilic/myeloid’ and ‘B cell’ modules, while the arterial thromboses were associated with dysregulation of ‘DNA 
damage response (DDR)’ and ‘metabolism’ modules. (A) Heatmap showing gene modules derived from WGCNA using transcriptomic data of the 
entire SLE cohort. Asterisks indicate statistically significant correlations between modules (rows) and APS-related clinical manifestations (columns). 
(B) Bubble plot of gene ontology terms found as significantly enriched in the correlated modules (salmon, greenyellow, turquoise, lightyellow, 
brown, magenta, green, black). Colour represents adjusted FDR, and size represents the number of genes related to a term found in each module. 
(C) Network from protein–protein interactions of proteins derived from green (green) and turquoise (turquoise) modules. Node fill colour corresponds 
to the module. The network layout was created using Davidson and Harels simulated annealing algorithm from the package igraph. (D) Network 
from protein–protein interactions of proteins derived from salmon (salmon) and lightyellow (lightyellow) modules. Node fill colour corresponds to 
the module. The network layout was created using Davidson and Harels simulated annealing algorithm from the package igraph. WGCNA, weighted 
gene coexpression network analysis; SLE, systemic lupus erythematosus; APS, antiphospholipid syndrome; DEGs, differentially expressed genes; aPL, 
antiphospholipid antibodies; FDR, false discovery rate; FC, fold change.
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While numerous studies have dwelled into APS pathogenesis, 
there has been limited investigation into the molecular-level 
pathogenetic distinctions between patients with SLE with and 
without APS. In our SLE cohort, we observed 91 significantly 
downregulated genes mainly involving in type-I and type-II IFN 
pathways in patients with SLE with APS. Although an upregu-
lated IFN signature is typically associated with primary APS,39 
our observations using a large SLE cohort indicate downregula-
tion of critical IFN genes in SLE-APS, including IFN-stimulated 
genes (ISG15, ISG20), IFIT protein-encoding genes (IFIT1, 
IFIT2, IFIT3), IFN-inducible genes (IFI27, IFI35), IFN regula-
tory factors genes (IRF7) and IFN-induced GTP-binding genes 
(MX1, MX2). Of note, type-I IFN pathway was enhanced in 

our SLE-APS population when compared with healthy indi-
viduals, although not to the level of SLE-aPL-negative. Patients 
with SLE-APS had more myeloid cells, particularly macro-
phages, suggesting a skewing towards myeloid lineage.40 More 
specifically, patients with SLE-APS had significantly higher 
proportions of M0 macrophages, which may be driven by the 
lower IFN levels, as IFN-α promotes myeloid cell differentia-
tion towards M1 macrophages.33 Of note, CIBERSORTx has 
limitations in capturing populations with a very low percentage 
within the overall immune cell populations, such as pDCs, which 
are considered the main source of IFN-α.41 In another study, 
RNA-sequencing in pDCs from patients with SLE, SLE-APS and 
primary APS showed that pDCs from SLE with and without APS 

Figure 5  Unsupervised cluster analysis reveals distinct pathogenetic mechanisms implicated in patients with specific autoantibody profile. 
Anticardiolipin and anti-beta2 glycoprotein I (anti-β2GPI) positivity without clinical APS is associated with ‘neutrophilic/myeloid response’ and 
‘protein-binding’ modules, respectively. (A) Heatmap showing gene modules derived from WGCNA using transcriptomic data of the entire SLE cohort. 
Asterisks indicate statistically significant correlations between modules (rows) and APS-related autoantibodies (columns). (B) Bubble plot of gene 
ontology terms found as significantly enriched in the correlated modules (black, salmon, yellow). Colour represents adjusted FDR, and size represents 
the number of genes related to a term found in each module. APS, antiphospholipid syndrome; FDR, false discovery rate; SLE, systemic lupus 
erythematosus; WGCNA, weighted gene coexpression network analysis.

Figure 6  Schematic overview of deregulated mechanisms in SLE-APS. The SLE-APS transcriptome demonstrates extensive aberrancies with 
quantitative and qualitative differences characterised mainly by neutrophilic, apoptotic, complement, coagulation and type-I/II IFN signatures. 
APS in SLE is characterised by enhanced type I and II interferon (IFN) signatures which however are less prominent compared with their aPL-
negative counterparts. Venous thrombotic events are predominantly driven by an enhanced neutrophilic and B cell response. DNA damage response 
aberrancies and altered metabolic pathways underlie arterial thromboses. Inhibitors of fIIai such as dabigatran, statins and mTOR inhibitors such as 
sirolimus—that attenuate DNA damage and metabolic aberrancies—have been used tested for the treatment of arterial events in SLE-APS and could 
be further explored. APS, antiphospholipid syndrome; aPL, antiphospholipids antibodies; SLE, systemic lupus erythematosus.
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express comparable levels of IFN, while pDCs from primary APS 
might express slightly lower IFN levels.8 From a clinical stand-
point, an alternative plausible explanation for these findings is 
that aPL positivity in SLE is linked to haematological and neuro-
psychiatric manifestations but does not exhibit an association 
with nephritis or cutaneous manifestations, which are tradition-
ally tied to IFN-α.1

The molecular heterogenicity of APS prompted us to examine 
whether specific APS-related manifestations or autoantibody 
profiles are associated with unique molecular patterns. Impor-
tantly, we uncovered significant differences between venous and 
arterial thromboses at molecular level. As expected, given that 
APS is commonly manifested with venous thrombosis and anti-CL 
positivity, venous thrombosis and pulmonary embolism were 
positively correlated with the ‘neutrophilic/myeloid’ module. 
This may explain the beneficial effects of immunomodulators that 
interfere with a neutrophil function such as glucocorticoids and 
immunosuppressive agents in thrombotic events associated with 
generalised inflammatory activity in SLE without APS. More-
over, venous thrombosis was associated with pathways related to 
adaptive immune response. Arterial thrombosis was significantly 
associated aberrant DDR and impaired metabolism. Although 
aberrant DDR and altered metabolism are primarily associated 
with tumourigenesis, their involvement in vascular function and 
autoimmunity has also been recognized.42 43 Different pathoge-
netic roles of p53 have been identified across various immune 
cells; both upstream ATM and ATR-related pathways enhance 
inflammatory response via distinct mechanisms in autoimmune 
diseases,44 yet its role in APS remains to be elucidated. Aberrant 
DDR has been linked to cardiovascular diseases, which are char-
acterised by atherosclerosis and arterial thrombosis. Increased 
DDR-mediated senescence and apoptosis are evident in athero-
sclerotic lesions, while accumulation of DNA damage is positively 
associated with the severity of atherosclerosis.42 45 Aberrant DDR 
in endothelial cells may result in prothrombotic and antiangio-
genic phenotype.46 Statins are recommended in patients with 
APS with recurrent arterial thrombosis for primary prevention; 
statins mitigate DNA damage induced by oxidative stress and 
impede downstream signalling associated with aberrant DDR, 
thus exerting beneficial effects in patients with cardiovascular 
diseases.46 47 Specifically, atorvastatin suppresses both ATM and 
ATR-related pathways decreasing senescence and apoptosis in 
atherosclerotic lesions.48 These findings support that aberrant 
DDR may be involved in arterial-related events in APS. aPL are 
considered pathogenetic, yet additional pathogenetic ‘hits’ (the 
so-called ‘2 hit’ concept) are required for the thrombus forma-
tion, and thus different ‘second hit’ mechanisms may drive the 
diverse clinical manifestations of APS. Herein, we demonstrated 
that DDR aberrancies and metabolic pathways may orchestrate 
arterial thromboses in APS. Again, our data raise the possibility 
for shared pathogenetic mechanisms between atherosclerosis/
immune thrombosis and SLE-APS.38

Our findings have possible therapeutic implications. The 
mTORC pathway is activated in intrarenal arteries from patients 
with APS in a PI3K-AKT-dependent manner.49 Treatment with 
sirolimus in kidney-transplant recipients with aPL showed down-
regulation of mTROC pathway in intrarenal vessels which was 
associated with more favourable outcomes. Sirolimus is a mTOR 
inhibitor with extensive effects on metabolism,50 which further 
supports the critical role of altered metabolism on thrombus 
formation. Together, our data encourage further assessment of 
metabolic-targeting drugs such as sirolimus in clinical trials, to 
mitigate the altered ‘metabolism’ signature seen in patients with 
APS and arterial events.

Currently, direct oral anticoagulants (DOACs) are not recom-
mended in APS due to higher incidence of arterial—but not 
venous—events observed in the DOACs arm during clinical 
trials, comparing their efficacy to warfarin.51 Commonly used 
DOACs include two direct factor Xa inhibitors (fXAi; rivarox-
aban, apixaban) and one direct fIIa inhibitor (fIIai; dabigatran). 
Of note, clinical trials and observational studies in APS have been 
conducted with fXAi rivaroxaban or apixaban.51–53 Although all 
DOACs are considered equal in terms of anticoagulation, fXAi 
but not fIIai, suppress inflammatory response by reducing the 
expression of proinflammatory mediators (interleukin (IL)-1, 
IL-6, TNF-a, NF-kb) and inflammasome activation.54 These find-
ings may explain the efficacy of fXAi in patients with APS with 
respect to venous events, since venous thromboses are mediated 
by a potent inflammatory/myeloid signature based on our find-
ings. Another study demonstrated that these two DOACs have 
different mechanisms of action with respect to DNA damage 
repair. Although both drugs are able to reduce ROS levels in 
vascular-damaged vessels, only dabigatran can completely repair 
the double-stranded DNA breaks suggesting that fIIai but not 
fXai enhance DNA damage repair mechanisms,55 which are 
involved in APS arterial immunothrombosis. The data suggest 
that fIIai might be more effective than fXai in treating APS, 
especially arterial APS, providing a rationale for evaluating fIIai 
(eg, dabigatran) in clinical trials. Of note, a post-hoc analysis 
of three randomised clinical trials of dabigatran versus warfarin 
in patients with thrombophilia including patients APS (20% of 
population) showed no differences with respect to thrombotic 
events between dabigatran and VKA groups.56

In summary, we show that SLE-APS is associated with a less 
profound IFN signature within the SLE population suggesting 
that in contrast to renal and cutaneous expressions, SLE-APS 
may be less driven by IFN-α mediated pathways. Furthermore, 
we showed that venous thrombotic events are predominantly 
driven by an enhanced myeloid/neutrophilic response, while 
arterial thromboses are mediated by aberrant DDR and impaired 
metabolism suggesting that distinct pathogenetic mechanisms 
may account for specific APS-related manifestations. These data 
could account for the differential response of the various antico-
agulants in arterial versus venous thromboses and they provide a 
basis to study the effectiveness of such interventions in SLE-APS.
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