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Abstract: Within the last two decades, there has been increasing evidence that heat-shock proteins
can have a differential influence on the immune system. They can either provoke or ameliorate
immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects
of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.

Keywords: heat-shock proteins; autoimmunity; heat-shock response

1. Introduction

Heat-shock proteins (HSPs) are molecular chaperones participating primarily in pro-
tein folding preventing protein degradation and subsequent cellular distress [1]. HSPs are
regulated through heat-shock factor 1(HSF-1) [2]. In the steady state HSF-1 is bound to
HSP90 or HSP70 [3,4]. Upon stressful signals HSF-1 dissociates from HSPs and translocates
into the nucleus where it stimulates HSP expression [1]. HSPs can be exposed to the im-
mune system through tissue necrosis and the resultant cellular debris, via organized release
of exosomes/endosomes, or through their presence on the cellular membrane [5–7]. Their
evolutionary conservation can elicit interspecies immune recognition [8]. The resulting
immune response can be either immunoregulatory or immunostimulatory [9,10]. Further-
more specific HSP domains as well as certain HSP isoforms and their client proteins induce
a differential autoimmune response. The purpose of the present review is to outline the yet
known pathophysiology guiding these bimodal and sometimes paradoxical phenomena.
The effects of heat-shock protein 27 (HSP27), heat-shock protein 40 (HSP40), heat-shock
protein 70 (HSP70), heat-shock protein 60 (HSP60), heat-shock protein 65 (HSP65), and
heat-shock protein 90 (HSP90) in eliciting differential immune responses in experimental
as well as in clinical autoimmune settings will be described.

2. Structural Characteristics, Subcellular Localization of HSPs, and Elicited
Immune Responses
2.1. Structure and Subcellular Localization of the Small HSP Family

The small HSP (sHSP) gene family has 11 family members (Table S1) [11], which are
located in the nucleus, cytoplasm, extracellular space, and the cytoskeleton where they can
modulate its structure [12–14]

Small HSPs have a central alpha crystallin domain (ACD) bounded by N-terminal
and C-terminal domains (Figure 1a) [15–17]. The ACD entails many antiparallel β-sheets
which form its final β-sandwich conformation [15]. The N-terminal domain contains serine
residues which can be phosphorylated by intracellular kinases. For example, MAPK-
activated protein kinase 5 (MK5) can interact with HSP27 in vivo and influence F-actin-
dependent cytoskeletal organization [18]. Binding of denatured proteins (client proteins) to

Cells 2021, 10, 2626. https://doi.org/10.3390/cells10102626 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-3678-9421
https://doi.org/10.3390/cells10102626
https://doi.org/10.3390/cells10102626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10102626
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10102626?type=check_update&version=1


Cells 2021, 10, 2626 2 of 20

sHSPs is characterized by diversity in terms of their docking sites. The N-terminal domain
as well as the ACD can serve as client protein-binding sites [15,19].
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Figure 1. Structure and function of heat shock proteins (HSPs): Diagrammatic representation of the
domain structure and subcellular localization of HSPs under discussion. Of note is the fact that heat-
shock proteins can form complexes with other molecular chaperones. These chaperone complexes
may exert a different action than the uncomplexed HSPs. (a) HSP27 (black circle) secondary structure,
consists of an N-terminal (blue rectangle) substrate-binding region, followed by an alpha crystallin
domain (ACD, gray rectangle) ending in the C-terminus (green rectangle). ACD has a β-sandwich
conformation. Client proteins dock to ACD. The C-terminus is highly variable among protein
members and facilitates HSP27 oligomerization. (b) Class A HSP40 (blue circle) protein family
secondary structure consists of an N-terminal (blue rectangle) substrate-binding region, followed
by a zinc finger-like region (ZFLR), C-terminal domains I and II (CTDI and II, green rectangles
in c-terminal region), and ending in a dimerization domain (DD). The J-domain localizes within
N-terminal region. Class B preserves the N-terminal localization of the J-domain but the C-terminus
can acquire a more diverse structure. In class C, the J-domain can be localized anywhere within
the amino-acid sequence. (c) HSP70 (turquoise circle) secondary structure consists of an N-terminal
domain (blue rectangle), followed by a substrate-binding domain (SBDβ, gray rectangle), a substrate-
binding domain α-helical (SBDα, gray rectangle), and ending in the C-terminus (green rectangle).
The reaction cycle involves ATP docking within N-terminal domain since ATP hydrolysis powers the
structural opening of the substrate cleft within the SBDβ (gray arc). (d) The HSP90 (dark green circle)
secondary structure consists of an N-terminus (blue rectangle), followed by a middle domain (MD,
gray rectangle), ending in a c-terminus (green rectangle). HSP90 homodimerizes with the use of its
c-terminal region. Unfolded proteins are docking in the MD. ATP hydrolysis is required for substrate
processing. (e) The HSP60 (light green circle) reaction cycle. Unfolded substrates enter the HSP60
processing cleft. HSP10 acts as a lid, and ATP-hydrolysis is necessary for substrate folding.

Each one of the sHSPs plays a pivotal role in stabilizing denatured native proteins.
They lack, however, the ability to refold destabilized proteins [20], thus sHSP interaction
with larger HSPs such as HSP40 or HSP70 is necessary [15]. Larger HSPs, in contrast with
sHSPs, have an ATPase function which provides the energy needed to refold the client
protein [21]. Normally sHSP molecules are in a polymeric/oligomeric state equilibrium.
The presence of noxious stimuli favors their oligomerization. N- and C-termini confer to
sHSPs solubility facilitating their oligomerization (Figure 1a) [15,22]. sHSP oligomers can
be engaged within protein aggregates in order to facilitate protein folding [23,24]. HSP27 is
the most referenced member of the sHSP family in cases of autoimmunity (see below).
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2.2. Immune Response Elicited through HSP27

The sHSP family, apart from its chaperoning function, has a pivotal role in cytoskeletal
organization in conditions of cellular stress, transducing signals after autoantibody stim-
ulation [25] (Figure 2). Aberrant phosphorylation of HSP27 correlates to various clinical
pathologies, such as viral infections, specific tumor cells, and autoimmune skin diseases
(pemphigus vulgaris and pemphigus foliaceus) [18].
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Figure 2. Immunomodulatory actions of HSP27. HSP27 (blue circle) participates in cytoskeletal integrity in cases of
cellular distress. Phosphorylation of the N-terminal domain of HSP27 through MAPK kinase protects against cytoskeletal
disorganization. HSP27 gene expression can be controlled through transcription factors LEGF (lens epithelium growth
factor). HSP27 may inhibit mRNA expression of IL-1β and thus inhibit the production of proinflammatory cytokine
IL-1β and subsequent inflammatory milieu, P2X7R (ATP-gated P2X cation channel receptor). HSP27 activates SIP1R
(sphingocine 1 phosphate receptor) signaling, ameliorates renal inflammation, and protects against acute kidney injury (AKI).
Proinflammatory actions of HSP27. HSP27 induces mesangial cell activation; immunization with HSP27 leads to expansion
of specific T-cell populations (CD43+, CD45Ro+, and CD57+ NK cells) as well as the production of HSP27 autoantibodies.

Reduction in HSP27 levels leads to an increase of pro-IL-1β protein in LPS-treated
monocytes and HSP27-knockdown cells release significantly more IL-1β [26].

Upregulation of HSP27 was primarily induced by immunoregulatory cytokines
such as IL-4, IL-6, and TGF-β, whereas the expression of other sHSPs such as alpha
B-crystallin was found solely to be enhanced by the pro-inflammatory cytokine TNFα.
Apparently, there is a HSP-specific cytokine combination that provokes or ameliorates its
expression [27].

NZBxW/F1 mice develop a spontaneous lupus phenotype manifesting with lupus
nephritis. When NZBxW/F1 mice were immunized with recombinant ribosomal protein
P0 (rRibos.P), anti-rRibos.P antibodies developed in the context of lupus disease. Primary
mesangial cells were exposed to NZBxW/F1-mouse anti-rRibos.P and to human anti-
rRibos.P antibodies, respectively. This action induced an activation of mesangial cells
partly mediated through HSP27 [28] (Figure 2).
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Myasthenia gravis (MG) is a paraneoplastic syndrome defined by the presence of
acetylcholine receptor antibodies (AchR-Abs) which occurs in up to 30% of patients with
thymoma. Phosphorylated HSP27 was significantly increased in the serum of patients with
MG, who were positive for AchR-Abs compared to seronegative patients [29].

In patients with cancer, HSP27 was among the antigens capable of inducing an im-
munoregulatory action in lymphoid cell lines. In a phase 2 study vaccination of cancer
patients with HSP27, client peptides induced lymphoid cell infiltration in the postvaccine
biopsy, with an evident increase in the number of total T-cells (CD43+) and mature acti-
vated T-cells (CD45Ro+). The postvaccine biopsy also showed an increase in the number of
NK-cells (CD57+) [30] (Figure 2).

Deletion of the endothelial-expressed sphingosine-1-phosphate 1 receptor (S1P1R)
is associated with exacerbation of renal injury and cellular inflammatory infiltrates after
ischemic acute kidney injury (AKI) in mice. The authors identified an endothelial reduc-
tion of HSP27 expression as a mechanism for exacerbated kidney injury and neutrophil
infiltration after ischemic AKI in mice (Figure 2). Fingolimod, a S1P1R agonist, is highly
protective in ischemic AKI [31,32]. However, fingolimod seems to exert its action through
multiple pathways including activation of protein phosphatase 2A (PP2A) and activation
of necroptosis [33]. HSP27 externalization has been identified as playing a central role in
neutrophilic cell death after fingolimod exposure [33]. This action is mediated through
activation of receptor-interacting protein kinase (RIP1/RIP3) and the mixed-lineage kinase
domain-like (MLKL) pathway [33].

In the setting of organ transplantation, there is a statistically higher level of serum
HSP27 from lung transplant recipients with bronchiolitis obliterans (BOS) compared to
control subjects. BOS accompanies chronic lung allograft dysfunction and is characterized
by obliterative fibrosis of the small airways [34]. BOS is considered as a manifestation of
chronic allograft rejection [34]. Anti-HSP27 antibody levels were significantly higher in
broncho-alveolar lavage (BAL) in patients with BOS compared to lung transplant recipients
without BOS. Elevated serum levels of HSP27 and elevated antibody titers against HSP27
only in the BAL suggest a localized immune response occurring at the level of alveoli and
terminal airways [35].

2.3. Structure and Subcellular Localization of HSP40 Family Members

Eukaryotes generally express an expanded arsenal of HSP40s compared to prokary-
otes [36]. To date there are 49 human genes coding for separate members of the HSP40
family (Table S2). HSP40 protein family members are localized within the nucleus, plasma
membrane, extracellular space, and cytoplasm (Figure 1b) [37,38].

The molecular signature of the HSP40 family is the J-domain, which contains multiple
α-helices and has a critical role of stimulating the ATPase domain within HSP70 protein
family members [21]. A histidine–proline–aspartate (HPD) motif is required for the J-
domain to be functional [21]. HSP40 family members are categorized into type I, type
II, or type III, according to their structural conformation. Types I and II have a J-domain
located at the N-terminus. In type III, is apparent that the J-domain can be located in any
position of the protein sequence [36]. The C-terminal domain of HSP40 binds denatured
client proteins [39]. Since both HSP40 and HSP70 family members can be localized in the
extracellular space [40,41] they could collectively interact with immune system components.

2.4. Immune Response Elicited through HSP40

The term glomerulonephritis defines the subset of glomerular diseases in which
inflammation or autoimmunity play a substantial pathogenetic role. A member of HSP40
protein family, DNAJB9, is a novel biomarker with a sensitivity and specificity near 100%
for fibrillary glomerulonephritis [40,42,43]. Fibrillary glomerulonephritis is characterized
by the extracellular deposition of non-amyloid fibrils ranging between 16 and 25 nm [42].
Immunoelectron microscopy revealed HSP40 localization to individual fibrils of fibrillary
glomerulonephritis [42] (Figure 3a).
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signaling and inflammation. (d) HSP40 exerts a bimodal action. Antigen-presenting cells exposed to HSP40 induce an
inflammatory response through increased IFNγ production. However in a later phase, there is an expansion of tolerogenic
T-regulatory cells.

A homolog of the human HSP40, HDJ-2, found in Escherichia coli, is significantly
increased in human atherosclerotic carotid artery plaques when compared with non-
atherosclerotic intima (Figure 3b). Furthermore, immunoreactive HDJ-2 protein was lo-
calized in macrophage-derived foam cell surfaces, in endothelial cells, and in vascular
smooth muscle-like myointimal cells [44]. The authors suggest that HDJ-2 expression may
be responsible for T-cell activation in the development of atherosclerosis (Table 1). HSP40 is
increased in stroke patients. Increased expression of human HSP40/HSP70 during stroke
may lead to autoimmunization against human HSP40 and may cause the immunolog-
ical cross-reaction against bacterial HSP40 [45]. HSP40 has been shown to stimulate a
macrophage cell line (RAW264) to secrete IL-6 through activation of the PI3K and JNK
signaling pathways towards a pro-inflammatory response [46,47] (Figure 3c).

HSP40 induces an in vitro decline of the production of the proinflammatory cytokine
TNFα and a corresponding increase of the tolerogenic cytokine IL-10 in the synovial fluid
of juvenile idiopathic arthritis patients. This decline seems to be dependent on PD-1 and
CTLA-4 expression [48]. In order to study T- cell responses to HSP40 peptide fragments in
patients with oligoarticular juvenile arthritis, Massa et al. [48] showed that proliferative
responses of patient synovial fluid monocytes (SFMCs) to recombinant E. coli HSP40 (rdnaJ)
were significantly higher than those of the corresponding peripheral blood monocytes. The
exposure of SFMCs to HSP40 peptide fragments induced CD4+, CD25+ high T-cells (Treg)
with higher expression of CTLA-4, IL-10, and FoxP3 mRNA. These T-cells had the ability to
suppress effector T-cell proliferation in vitro. Although the CD4+, CD25+ high Treg-cells
clearly could not prevent the development of the disease, they may contribute to reversing
ongoing inflammation. According to this mechanism, patients with persistent oligoarticular



Cells 2021, 10, 2626 6 of 20

juvenile arthritis may have partially maintained the Treg-cell function in response to self-
HSP40 in the joint, where it is overexpressed during inflammation; this may result in the
self-remitting course of the disease [48] (Figure 3d). HSP40-family-member expression is
influenced by external stimuli, more specifically, the presence of the heat-shock proteins
DnaJB4 and DnaJC6 was higher in the synovial tissue compared to non-smokers with
rheumatoid arthritis [49]. These local changes can activate pro-inflammatory signaling
pathways and promote autoimmunity.

Bullous pemphigoid is a bullous autoimmune disease of the skin. It is characterized
by the presence of auto-antibodies against components of the dermal–epidermal junction.
Circulating IgG autoantibodies directed against HSP40 were elevated in patients with
active bullous pemphigoid and pemphigus vulgaris compared with healthy controls [50].

The expression of the HSP40 family homolog DNAJC15 is directly influenced by
IFNγ. The reduction of DNAJC15 expression is regulated through ikaros, a transcription-
regulating factor, which directly binds the promoter region of DNAJC15 gene under IFNγ

influence. Therefore, the regulation of HSP gene expression involves the participation of
proinflammatory cytokines [51].

2.5. Structure and Subcellular Localization of HSP70 Superfamily Members

HSP70 family members have a central role in protein unfolding. There are 17 human
family members of the HSP70 superfamily (Table S3). HSPA1 is the most studied isoform
of HSP70 [8,52]. HSP110 is also a member of HSP70 superfamily [53]. HSP70 localizes in
the cytosol, the nucleus [54], the endoplasmic reticulum(ER) [55], the peroxisomes [56], the
extracellular space [57,58] and the mitochondria [59] (Figure 1c). Through its extracellular
localization, and its complexing with other HSPs, HSP70 may directly present client
peptides to the local immunological microenvironment.

What designates the HSP70 superfamily is the N-terminal nucleotide-binding domain
(NBD) [21]. NBD has four subdomains (namely IA, IB, IIA, and IIB) surrounding an ATP-
binding pocket [60]. C-terminal substrate-binding domain (SBD) has a β-sandwich (SBDβ)
and an α-helical domain (SBDα) [60,61]. For ATP-hydrolysis, the binding of J-domain-
baring chaperones is necessary (Section 2.3). ATP hydrolysis is a major determinant of its
spatial conformation and protein-binding function [5]. By binding ATP, an NBD-binding
pocket opens (Figure 1c). Consequently, SBDα is detached from SBDβ and embarks onto
NBD [21,61]. As a result of ATP-binding, there is increased affinity and processing rate of
non-native peptides [21]. GrpE (GroP-like gene E), BAG (Bcl-2-associated athanogene), pro-
teins with Arm (armadillo repeat) domain, and HSP110 are the nucleotide exchange factors
(NEFs) [21,53,62–64]. NEFs assure proper substrate release from HSP70 machinery [21,61].

2.6. Immune Response Elicited through HSP70

Antigen-presenting cells exposed to HSP70 secrete more TNFα, IL-6, IL-12, and IL-
1β, and enhance surface expression of B7 and maturation of immature dendritic cells.
HSP70 also binds to its client proteins through the KEFRQ-like motif [65] and leads
to MHC-II recognition [6,65–68] (Figure 4b and Table 2). An HSP70-associated expan-
sion of T-cells was observed. This T-cell expansion was CD4-dependent but not CD28-
dependent [68]. Millar et al. showed that the immunization of RIP-GP/P14 mice with
recombinant HSP70 (rhHSP70) induced the onset of diabetes showing an in vivo promotion
of autoimmunity [68].
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Figure 4. Immunomodulatory actions of HSP70 (a) HSP70/client protein-complexes induced signaling through HLA-DR
binding in T-regulatory cells. Endoplasmic reticulum HSP70, binding of HSP70 with LAG3 receptor increases IL-2, IL-4,
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coexist. Collectively these changes promote autoimmunity.

HSPA5 (an endoplasmic reticulum isoform of HSP70) elicits an immunomodulatory T-
cell response (increase of IL-10 and IL-4 production) diminishing experimental autoimmune
arthritis activity [69]. Multiple HSP70 client peptides promote a T-regulatory cell pheno-
type(CD4+, CD25+, FoxP3+) [70]. T-regulatory cell stimulation through HSP70, induced
an increase in LAG3 expression (CD233 induces the suppressive function of T-regulatory
cells [70,71]) (Figure 4a). In a mouse model of autoimmune arthritis, T-regulatory cell
expansion and the subsequent suppression of disease activity was mediated through the
LAG3 co-stimulatory molecule [70].

Furthermore, HSP70 is present in clathrin-coated pits, uncoating during clathrin-
mediated endocytosis. HSP70 packaged in exosomes can be released from cells. This
attracts T-cells bearing a CD8+ IL-10+ phenotype [65].

HSP70 and client peptide HINT1 (histidine triad nucleotide-binding protein-1, a pro-
tein having an active role in the p53 signaling pathway [52]) mediate immunoregulation
through CD94 and NKG2D (NKG2-D type-II integral membrane protein; a costimulatory
receptor of NK-cells [72]) signaling in a mouse model of experimental autoimmune en-
cephalomyelitis (EAE) [73]. Detection of HSP70 mRNA was related with reduced clinical
inflammation scores in an experimental mouse model of EAE. In this set of experiments,
there was a reduction in inducible nitric oxide synthase (NOS) production, RANTES
(chemokine C-C motif ligand 5), and NF-κB mRNA [74] (Figure 4a). This shows that HSPs
can regulate gene expression in response to autoimmune stimuli.
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Immunization of Balb-c mice against α-actinin induces autoimmune responses against
HSP70 and produces a lupus-like phenotype [75]. HSP70 dermis exposure causes inflam-
matory infiltration and increases IL-6 production with progressive reactivity of T-cytotoxic
cell phenotypes (CD4+, CD8+) through IL-17 production [76] (Figure 4b).

Ro52 and Ro60 complex with Grp78 (an inducible form of HSP70). These com-
plexes are recognized via surface immunoglobulins specific for the HSP70 component [77].
Grp78/Ro52 complexes co-localize with HSP90 in apoptotic debris and stimulate T-cells [78].

In salt-sensitive hypertension there is an overexpression of tubulointerstitial HSP70,
T-cell proliferation with perivascular T-cell infiltration and circulating anti-HSP70 antibod-
ies [79]. HSP70 was found increased in a cohort of ANCA (anti-neutrophil cytoplasmic
antibody) vasculitis patients. Increased presence of interstitial HSP70 was associated with
worsened kidney survival in this cohort [80]. There is a plethora of examples showing that
elevated serum circulating anti-HSP70 correlates with immune response modulation in
humans as well as in laboratory animals (Tables 1 and 2).

2.7. Structure and Subcellular Localization of HSP90

There are five members of the human HSP90 family. The HSP90 family mem-
bers (Table S4) are localized within the cytoplasm, the endoplasmic reticulum, the en-
dosomes [41], the cell membrane [81], and the nucleus [82], and they can be secreted in the
extracellular space (Figure 1d) [41]. Furthermore, the HSP90 isoform, TRAP1, is localized
within the mitochondrion [83]. HSP90 interacts with other client proteins as well as other
members of the heat-shock-protein family [84]. The N-terminal domain of HSP90 contains
its ATP-binding pocket [85]. This N-terminal domain is followed by a middle domain
leading to the C-terminal region [86] (Figure 1d). The middle domain is responsible for
client protein-binding [86]. The C-terminal region of HSP90 homodimerizes in the steady
state. By binding of ATP in its N-terminal domain, HSP90 gains its active conformation [87].
After completion of its chaperone function, the ATP molecule is hydrolyzed and HSP90
regains its resting state [86].

2.8. Immune Responses Elicited through HSP90

Exposure to an HSP90 isoform (grp96) downregulates T-cell responses in experimental
models of type 1 diabetes mellitus and EAE. HSP90 causes an expansion of CD4+ T-
regulatory cells by binding to CD91, CD36, and TLR2/4, which in turn can inhibit CD8+
T-cells [88]. Exposure of dendritic cells to grp96 suppresses their maturation. PGMA1
(2,3-bisphosphoglycerate-dependent phosphoglycerate mutase, an enzyme participating in
glycolysis pathway) complexes with grp96 producing an immunosuppressive effect [89].
Inhibition of HSP90β with vibsanin-B inhibits interstitial leukocyte migration in a mouse
model of EAE [90]. Small inhibiting-RNA (si-RNA)-induced inhibition of grp96 prevents
dendritic cell maturation without involving TLR4 signaling. AIMP1 (aminoacyl tRNA
synthase complex-interacting multifunctional protein 1, a multirole protein involved in
many disease processes including immune modulation [91]) binds grp96 and reduces the
intensity of the elicited immune response [92] (Figure 5a). Functional HSP90 is required for
P2X7-receptor-mediated IL-1β release in a mouse model of autoimmune exocrinopathy [93]
(Figure 5b). Exposure of HSP90 on the cell membrane is associated with a lupus-like
phenotype, mediated through CD24+ antigen-presenting cells. Extrapolating data from
a CD24-knockout mouse model, HSP90 induction of autoimmunity is mediated through
regulation of CD11c+ macrophages and inactivation of a specific dendritic cell subset
(CD80+, CD86+, CD40+, IL-12+) [7] (Figure 5b).
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T-cell responses. This can be followed by macrophage recruitment and anti-HSP90 antibody production.

In a mouse model of collagen type VII autoimmune disease, blocking of HSP90 reduces
anti-collagen type VII antibodies, reduces expansion of CD3+, CD28+ T-cells, and increases
neutrophil infiltration [94]. Expression of the HSP90 isoform (gp96) on the cell surface is
associated with glomerulonephritis and auto-antibody production (anti-nuclear antibodies
and anti-dsDNA antibodies). This phenotype is associated with CD4-T-cell stimulation
which in turn activates dendritic cells [95].

It is apparent that an armamentarium of different receptors and signaling pathways
may have different immune effects upon the exposure to the same HSP. This fact may lead
to immunoregulation or immunostimulation.

2.9. Structure and Subcellular Localization of Chaperonins

There are 15 members in the human chaperonin family (Table S5). HSP60 and HSP10
are primarily located within the mitochondrion [96], although cell membrane [97–99],
peroxisomes [96] and extracellular localizations [100] have been reported. The protein
structure of this family consists of two heptameric ring subunits, or two octameric rings in
the case of TCP1 [101], which come positioned “back to back” to form a barrel-like structure
(Figure 1e). Unfolded proteins bind to each subunit ring with 1:1 stoichiometry [102].
HSP10 forms a heptameric cover upon the substrate cavity of HSP60 [103] and is a necessary
component of the optimal processing of substrates through HSP60 machinery [104]. ATP-
binding, followed by binding of HSP10 can induce processing of the unfolded protein
within the central cavity of each ring subunit [102]. As a result, ATP hydrolysis induces
dissociation of HSP10, ADP and the release of the folded substrate protein [102].

The molecular chaperone HSP65 is mainly expressed in the cytoplasm of non-mammalian
cells, such as Mycobacterium species. HSP65 has a very similar structure and function
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to that of HSP60 and can form oligomeric aggregates within the cell as well as within
the extracellular space [105]. The homology between human HSP60 and HSP65 makes
molecular mimicry unavoidable, leading to an involvement in immune processes.

2.10. Immune Responses Elicited through HSP60

T-cell subpopulations and related responses are classified according to cytokine ex-
pression profiles and surface expression molecules. More specifically, T-helper 1 (Th1) cells
produce among others, IFNγ, GM-CSF (granulocyte macrophage colony-stimulating factor)
and TNFα and promote a proinflammatory state. Whereas T-helper 2 (Th2) cells produce
among others IL-4, IL-5, and IL-13 and promote a tolerogenic immune phenotype [106].

Molecular mimicry between endogenous and foreign peptides could induce autoim-
mune phenomena [107]. Mycobacterial HSP65 undergoes a self-induced autolysis engaging
MHC-I and MHC-II antigen processing [108]. HSP60/65 are HLA-DR binders and could
thus ease client peptide presentation to antigen-presenting cells. This specific binding
properties of distinct HSP60/65 peptide regions induces TNFα and IFNγ production [109]
(Figure 6a,b). There seems to be a differential T-cell reaction against indigenous com-
pared with exogenous HSP60. While mycobacterial HSP60 induces T-cell activation, the
indigenous HSP60 induces T-cell anergy [110] (Figure 6c).
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Figure 6. Immunomodulatory actions of HSP60/65. (a) HSP60/65 induce a Th2 cytokine response after stimulating
TLR9/HLA-DR in antigen-presenting cells. (b) HSP60/65 induce a Th1 cytokine response after stimulating TLR2/HLA-
DR in antigen-presenting cells. (c) Self HSP60 undergoes a complete antigen processing within antigen-presenting cells.
This induces Th2 responses and tolerogenicity. Non-mammalian HSP65 undergoes an incomplete antigen processing
within antigen-presenting cells. This induces Th1 responses and autoimmunity. Non-self and self HSPs share a conserved
amino acid sequence homology. Self-HSP60 can stochastically activate Th1-cell clones. This induces autoimmunity
after stimulation with non-self HSP65 molecules. In the case of autoimmunity there can be a parallel production of
anti-HSP60/65 autoantibodies.

Type 1 diabetes mellitus is an autoimmune disease [111]. In an experimental model
of streptozotocin-induced diabetes, HSP60 inhibited diabetes progression by eliciting a
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Th2 response [112]. Non-obese diabetic (NOD) mice are a primary animal model for
studying autoimmune diabetes [113]. Immunization of NOD mice with a HSP60-p277
peptide, also induces a Th2 response with the subsequent production of IL-4 and IL-10.
This is accompanied by reduced immune reactivity against HSP60 through Th1 response
downregulation [114]. Immunization with mycobacterial HSP65 has been shown to prevent
autoimmune diabetes in NOD mice [115]. On the other hand, HSP60 induced T-cell
stimulation which was associated with diabetes aggravation and anti-HSP60 antibody
production in experimental models of type 1 diabetes mellitus [116].

Vascular-associated lymphoid tissue (macrophages, T-cells, and mast cells) is stim-
ulated by HSP60 exposure. This stimulation could aggravate atherosclerosis [117]. Au-
toantibodies against HSP60 were detected after chlamydial infection in cholesterol-fed
C57Bl/6 mice and subendothelial accumulation of foam cells was observed [118].

Autoantibodies against HSPs indicate the involvement of humoral immunity in the
response induced by HSPs (Table 1). However, it seems apparent that specific subsets of
B-lymphocytes are involved [119]. Anti-HSP60 protein antibodies are present in patients
with rheumatoid arthritis, SLE, Sjögren syndrome, and undifferentiated connective tissue
disease [120–122] (Table 1).

In a rat arthritis model, HSP60 induces a TLR9-mediated T-regulatory cell (CD4+,
FoxP3+) proliferation leading to IL-10 production. Rats treated with a HSP60 showed
greater amount of T-regulatory cells in the joint-draining lymph nodes and had lower
arthritis activity scores [123] (Table 2). There are specific domains of HSP65, which exert
their immunomodulatory action in autoimmune arthritis; for example, HSP65 peptide P118-
388 causes T-cell expansion while HSP65 peptide P180-188 does not inhibit autoimmune
arthritis [124]. Bacterial HSP65 protects against arthritis by inducting tolerogenic T-cell
clones against self HSP60 [125]. C-terminal mycobacterial HSP65 causes cross reactivity
against rat HSP65 in experimental autoimmune arthritis [126].

Table 1. Heat-shock proteins (HSP) in human autoimmune disease.

Heat-Shock Protein (HSP) Disease Effect References

HSP27 Glaucoma—increased
intraocular pressure HSP27 serum auto-antibodies [127]

Myasthenia gravis Increased HSP27 phosphorylation [18]

T-cell neoplasia (thymoma,
T-cell carcinoma)

Increased serum HSP27 protein,
increased HSP27 tissue expression,

patient subsets with reduced expression
associated with worsened outcome

[45]

Lung transplantation
Bronchioalveolar lavage HSP27
auto-antibodies associate with

bronchiolitis obliterans
[49]

Immunization of cancer patients
(renal-, breast-, colon-carcinoma,

melanoma, and astrocytoma)

Increased immunoreactivity following
HSP27 vaccination [128]

Guillain Barret HSP27 serum auto-antibodies [129]

HSP40 Fibrillary glomerulonephritis Colocalization of HSP40 with fibrils [65,69]

Bullous pemphigoid,
pemphigus vulgaris HSP40 serum auto-antibodies [66]

Cigarette smoking and
rheumatoid arthritis

HSP40 serum auto-antibodies, HSP40
increase in synovial fluid and worsened

clinical course
[44]

Stroke HSP40 serum auto-antibodies [50]

Various arthritis phenotypes Complex immunoregulatory or
immunostimulatory action [67]

Atherosclerosis Increased HSP40 in atheromatous
lesions—implication in pathogenesis [70]

HSP70 Thyroiditis HSP70 serum auto-antibodies [99]
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Table 1. Cont.

Heat-Shock Protein (HSP) Disease Effect References

Inner ear disease HSP70 serum auto-antibodies, HSP70
associates with steroid responsiveness [112,114]

Diabetic microangiopathy Association of HSP70 serum
autoantibodies and disease severity [110]

HSP90 SLE HSP90 autoantibodies, HSP90 presence
in peripheral blood monocytes [130]

HCV infection Interaction of HSP90 with HCV antigens [131]

HSP60/65

Systemic lupus
erythematosus(SLE), Sjögren
syndrome, undifferentiated

connective tissue disease,
Bechcet’s disease,

relapsing polychondritis

HSP60/65 auto-antibodies [132–134]

Rheumatoid arthritis HSP60/65 auto-antibodies, modification
of immune response, T-cell expansion [128–130]

Coronary artery disease
Molecular mimicry, worsening of

disease activity, presence
of autoantibodies

[105,115,135,136]

Heart transplantation Worst prognosis co-related with
serum autoantibodies [125]

Helicobacter pylori infection Presence of autoantibodies [87]

Autoimmune hepatitis, hepatitis
C virus (HCV) infection

Presence of autoantibodies, interaction
with client proteins [84]

Renal transplantation Increased renal HSP65 protein
expression associated with Th2 cell shift. [9]

Table 2. Autoimmune effects of heat-shock proteins in animal models.

Heat-Shock Protein (HSP) Disease Model Effect References

HSP27 NZBW mice—systemic
lupus erythematosus

Lupus nephritis, mesangial
cell activation [30]

Rat model of glaucoma (increased
intraocular pressure, IOP)

HSP27 auto-antibodies in
cerebrospinal fluid [127]

HSP40 Rheumatoid arthritis
mouse model

HSP40 auto-antibodies, increased
disease activity [44]

HSP70 Autoimmune arthritis
mouse model Suppression of T cells [74]

Mouse model of experimental
autoimmune

encephalomyelitis(EAE)

Natural-killer-cell-induced
immunoregulation, increased HSP70

mRNA associated with reduced
inflammation, HSP70 induces a Th17

cell response

[79,137,138]

Mouse model of
salt-sensitive hypertension Increased renal inflammatory infiltration [139]

HSP90 Mouse model of type I
diabetes mellitus

Immunization with HSP90
reduces autoimmunity [88,90]

Mouse model of EAE Reduction of autoimmune response [90]

Mouse models of bullous
pemphigoid and

pemphigus vulgaris
Reduction of autoimmune response [140]

Mouse model of autoimmune
exocrinopathy Increased autoimmunity [93]

Mouse model of anti-collagen VII
autoimmunity

Increased infiltration of
inflammatory cells [94]

Rat model of
autoimmune arthritis

Immunization reduced arthritis activity,
tolerogenicity induction [124,141]
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Table 2. Cont.

Heat-Shock Protein (HSP) Disease Model Effect References

Mouse model of
hemolytic anemia

Immunization with HSP60/65 reduced
autoantibodies against erythrocytes. [124]

Rat model of uveitis Increased activity of uveitis [122]

HSP60/65 Mouse model of type I diabetes
(DM)

Immunization vs HSP60/65 reduced
DM severity, immunization increased

DM severity and autoimmune response
[116,118,142]

Mouse model of
autoimmune arthritis

Immunization against HSP60/65
reduced arthritis activity, immunization
against mycobacterial HSP65 increases

arthritis severity

[107,108,143]

Mouse model of atherosclerosis
Immunization against HSP60/65

increased inflammatory response in
atheromatous vascular lesions

[144]

Mouse model of intestinal
autoimmune disease

Increase of intestinal
autoimmune lesions [121]

Rat model of
autoimmune arthritis

Immunization reduced arthritis activity,
tolerogenicity induction [124,141]

Mouse model of
hemolytic anemia

Immunization with HSP60/65 reduced
autoantibodies against erythrocytes. [124]

Rat model of uveitis Increased activity of uveitis [122]

The conserved sequences of self and non-self HSP60/65 seem to activate the immune
system. Unanswered remains the fact concerning the exact amount of non-self HSPs that
could induce a cross-recognition reaction from the native immune system. It may be the
case that this could be organism-, disease-, tissue-, or target-HSP (or HSPs)-specific.

3. Therapeutic Implications

As of today, there are at least 54 studies concerning therapeutic applications of heat-
shock proteins (source: https://clinicaltrials.gov/, accessed on 18 August 2021). The vast
majority of those completed, did not concern autoimmune disorders per se. Of those
actively recruiting or ongoing, none concern autoimmune disorders. This observation
denotes not only the necessity for establishing new treatment strategies but also the com-
plexity of the heat-shock-protein system itself. A multimodal approach which targets
multiple heat-shock proteins and components of the immune system may be necessary.
Given the fact that the heat-shock-protein system produces an effect in multiple levels
of the immune system, the effects of a heat-shock-protein driven intervention might be
time demanding. In the aforementioned paradigms, HSPs undergo control at the level of
gene expression both by components of the immune system and also by external stimuli.
Possible gene polymorphisms of heat-shock response genes might help us individualize
future treatments. Given the fact that heat-shock proteins finely modulate immune re-
sponses one may have to examine the combined effect of heat-shock response and other
immunomodulatory agents.

At last, but not least, heat-shock proteins can help us drive therapy in various au-
toimmune diseases. There is relative new knowledge that heat-shock proteins are unique
biomarkers of disease (the paradigm of fibrillary glomerulonephritis and the HSP40 iso-
form DNAJB9). Taking this idea one step further, one could use the tissue signature of
HSP-system components for guiding therapy in various autoimmune diseases. Utilizing
proteomic analysis or immunohistochemistry, HSPs that are uniquely expressed at the
tissue level in specific disease stages can guide the intensity as well as the modalities of
immunosuppressive therapy.

https://clinicaltrials.gov/
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4. Conclusions

It is the very nature of the immune response that is characterized by plasticity. This
plasticity is depicted in the case of HSPs:

(1) Through molecular mimicry in cases of microbial or mycobacterial infection. In-
fection causes exposure of non-self-antigens to the immune system. The evolutionary
conservation of heat-shock proteins induces cross-reactivity with self HSP antigens.

(2) Through induction of different signaling pathways via a plethora of membrane
receptors and client peptides. HSPs act as vehicles which present self-antigens to immune
cells. Specific domains within the HSP molecule are responsible for effective antigen pre-
sentation. The degree of antigen processing within antigen-presenting cells guides not only
the intensity of immune response but also whether this response leads to autoimmunity or
immunoregulation. Making things even more complicated, different receptors (MHC-II,
TLR, etc.), upon stimulation with different HSPs, produce different immune responses.
It seems therefore that the HSP system is dependent on external stimuli and the tissue
microenvironment. Immune responses can be finely tuned through exposure to HSPs.
Altogether, the above points pose an intriguing endeavor in understanding immunity and
planning future therapeutic strategies for autoimmune diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10102626/s1, Table S1: Nomenclature of human small HSP family gene members
(modified according to Kampinga et al. [11] and HUGO Gene Nomenclature Committee), Table
S2: Nomenclature of human HSP40 family members (modified according to Kampinga et al. [11]
and HUGO Gene Nomenclature Committee), Table S3: Nomenclature of human HSP70 superfam-
ily members including HSP70 and HSP110 families (modified according to Kampinga et al. [11]
and HUGO Gene Nomenclature Committee), Table S4: Nomenclature of HSP90 family members
(modified according to Kampinga et al. [11] and HUGO Gene Nomenclature Committee), Table
S5: Nomenclature of chaperonin family members (modified according to Kampinga et al. [11] and
HUGO Gene Nomenclature Committee).
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