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Abstract. The present work aims at better understanding of the physics underlying swirling
flows in pipes by means of numerical simulations. Direct numerical simulations have been carried
out by using two different inlet swirl conditions. In one case, rotating honeycomb is used as the
means to generate swirl whereas in the other case a solid body rotation is provided at the inlet.
The inlet swirl intensity is varied in order to scan the underlying physics. Reynolds number
1730 is selected so that the flow remains in laminar regime. The results are compared with those
obtained from the experiments using a similar experimental set-up. It is shown that the increase
in the inlet swirl intensity leads to a faster decay of swirl downstream of the pipe. Similarly
certain specific vortex structures are observed in the radial velocity contours. These structures
are thought to be analogous with those found in the Taylor-Couette flow between a stationary
outer cylinder and inner rotating cone. The reported investigations reveal dependence of swirl
decay on the inlet swirl intensity and occurrence of vortex structures.

1. Introduction

Swirling flows are an important class of flows not only due to their complex nature but also
due to their technical relevance in combustion, heat exchange, cyclone separation, mixing, etc.
However, their complex nature hinders their modeling and thorough understanding (Jakirlic et
al., 2002). Due to this fact, swirling flows have been extensively studied for several decades and
many publications can be found in the literature (see Steenbergen (1995); Rocklage-Marliani et
al. (2003); Pashtrapanska et al. (2006) for detailed reviews) accordingly. These studies reveal
the fact that, depending on the boundary conditions, swirling flows can undergo totally different
scenarios and the flow field can exhibit different dynamical features. A great number of these
studies concentrate on the effects of swirl when the swirling flow is created and subjected to
gradual or sudden expansion in pipes or injected as a free jet (unconstrained) (Billant et al.,
1998; Novak & Sarpkaya, 2000; Facciolo et al., 2007). In such flows, swirl component decays
rapidly due to the action of adverse pressure gradient and sometimes vortex core breakdown
phenomenon occurs (Novak & Sarpkaya, 2000). In contrast to these, present study concentrates
on the relatively less studied case when the swirl is generated at the inlet of a straight circular
pipe and constrained in it (Kitoh, 1991; Steenbergen, 1995; Rocklage-Marliani et al., 2003; Genc
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et al., 2005; Pashtrapanska et al., 2006). In this kind of flow, the swirl component decays
downstream of the pipe and as a consequence a number of different effects that have been
reported; like stabilizing-destabilizing effect of swirl on turbulence (Kito, 1984), effect of swirl
decay on breaking of axisymmetry (Pashtrapanska et al., 2006), relaminarization of flow profile
(Nishibory et al., 1987), annihilation of Reynolds shear stresses (Rocklage-Marliani et al., 2003).
Genc et al. (2005, 2010) carried out experiments using rotating honeycomb for introducing swirl
in a stationary circular pipe at a Reynolds number of 1730. The results highlight the influence
of swirl on the flow field. The honeycomb introduces a solid body rotation at the inlet which
decays downstream. It was shown that with the increase in the inlet swirl intensity decay of swirl
gets faster downstream and during this process the momentum carried by the tangential velocity
is transferred to smaller scale turbulent structures. The appearence of turbulence and vortex
breakdown support this assumption. Much of the energy carried by the tangential momentum
is spent in the conservation of these turbulent structures which leads to the faster swirl decay.
Numerical simulations studying the characteristics of swirl generated using the honeycomb have
been carried out by Ayinde (2010); Najafi et al. (2005).

In order to find answer to some questions unanswered by the experiments (Genc et al., 2009)
and to validate the results, the present numerical study was carried out. Unlike experiments the
numerical simulations provide a powerful tool to visualize the flow fields in detail and capture
minute details like the different flow structures occuring due to the momentum transfer as
mentioned above. The focus of the present study is to understand the decay of swirl and to
visualize the flow structures. Due to some appealing similarities in their nature, these structures
can be thought to be analogous with those obtained in the Taylor-Couette flows (Sprague &
Weidman, 2009).

2. Numerical modeling

2.1. Flow domain
An unsteady, laminar, incompressible flow in a straight constant-diameter pipe is considered.
Depending on the type of inlet swirl condition, two cases are studied in the following simulations.
Case(I) involves the inlet swirl generated by a rotating honeycomb whereas Case(II) uses a
tangential velcoity profile at the inlet such that a solid body rotation is imparted to the fluid by
a constant angular velocity. The Case(II) serves as a comparison to analyze the swirl generated
using the honeycomb and helps to find out whether the various effects observed are generated
inside the honeycomb or after that.

For Case(I) the flow domain consists of three parts as shown in figure 1. The first part is
the rotating pipe (φ= 50mm), followed by the rotating honeycomb and the stationary pipe.
The honeycomb can be visualized as a bundle of pipes of small diameters (φ= 3.5mm) packed
inside a circular pipe. The length to diameter ratio (L/D) of the stationary pipe is 20. The flow
domain for Case(II) as illustrated in figure 1 just includes the stationary pipe with suitable inlet
condition.

2.2. Mesh characteristics
An unstructured trimmed mesh with prism layer for resolving the boundary layer is generated
using the mesher provided by STAR-CCM+ c©. The Case(I) has a mesh comprising 9 million
cells. For Case(II) the mesh size is 2.3 million. The sections of the mesh for Honeycomb are
shown in figure 2. While clustering of the grid near the wall it was ensured that the viscous
sublayer is properly resolved.
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Figure 1: Computational domain. Figure 2: Computa-
tional grid used in
the honeycomb of
Case(I).

2.3. Boundary conditions
For the Case(I) a plug flow profile with Uz=0.135 m/s is provided at the inlet of the rotating
pipe. The swirl is introduced at the inlet of the stationary pipe by rotating the honeycomb with
a constant angular velocity ω. On the other hand for Case(II) following inlet conditions are
introduced: Uθ = r ω, Ur=0, Uz = 0.135 m/s. Hence, the Reynolds number for both cases is
kept constant at 1730, which is well below the transition Reynolds number for pipe flows. The
pressure outlet condition is used at the exit of the stationary pipe for both the cases. Radial
equilibrium outflow is applied to the specified pressure boundary condition as:

pf = pi +

∫ r

ri

ρUθ
2

r
dr (1)

where the subscript i refers to the inner location and vθ is the tangential component of the
velocity. For the radial equilibrium outflow the radial pressure gradient exactly balances the
centrifugal forces due to rotation. The no slip condition ui = 0, wherever applicable was imposed
at the pipe wall.

2.4. Test cases and methodology of solution
Swirling flow in general, as well as in a pipe, can be defined as a flow having a rotational velocity
along with the linear velocity component. For swirl flows generated by solid-body rotation, as
in the case under consideration, the swirl ratio N describes the amount of swirl at the inlet and
is defined as

N =
ΩR

Uave
(2)

where Ω is the angular velocity, R is the radius of the pipe and Uave is the mean axial velocity.
N is the definition used to quantify the swirl of solid body rotation locally at the inlet of the
pipe. However as we move downstream of the pipe the swirl decays and the solid-body rotation
disappears. For quantifying the swirl locally downstream of the pipe we use the parameter S ,
the swirl intensity. It is defined as the ratio of axial flux of tangential momentum to the axial
flux of axial momentum times the effective nozzle radius.

S =
Axial flux of tangential momentum

Axial flux of axial momentum · Radius
=

2π
∫ R
0 ρW U r2 dr

R · 2π
∫ R
0 ρU2 r dr

(3)

where, W is the tangential velocity, U the axial velocity and R is the radius of the pipe. Since
S can be evaluated locally it can be used as a measure of local swirl downstream.
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The definition of swirl as described in the above equations (2 and 3) has been used in
the present work. The swirl numbers N = 1, 2, 4.4, 8.8 corresponding to S = 0.5, 1, 2.2, 4.4
respectively have been used in the present work. The swirl numbers are chosen in such a way
as to encompass the sub-critical and super-critical swirl intensities. In literature different values
can be found for the critical swirl intensity depending upon the inlet swirl condition and the
observed nature of the flow. The value for Scrit ranges from 0.6 (Wiedemann, 2001) to 0.95
(Genc et al., 2010).

The Direct numerical simulations (DNS) were carried out using commercial code STAR-
CCM+ c© which solves the time-dependent Navier-Stokes equations using Finite volume method.
The central- and upwind-differencing discretization schemes for space-discretization are used for
Case(II) and Case(I) respectively. Similarly implicit Crank-Nicolson scheme which is second-
order in time is used for time-discretization. The SIMPLE coupling algorithm (Patankar &
Spalding 1972) using the velocity under-relaxation factors 0.7 and 1.0 for Case(I) and Case(II)
respectively is implemented by the code to solve the equations numerically. In addition the
rotating motion is imparted in Case(I) to the fluid in contact with the surfaces of the body by
considering the actual displacement of mesh vertices in real time. All the above mentioned cases
are simulated for a total of 17.6 s.

3. Results and discussions

The simulation results are validated with the experiments carried out using the similar
experimental set-up by Genc et al. (2009, 2010). The analysis of the simulations are focusing
on the characteristics of the swirl decay as obtained from the simulations and visualization of
the corresponding vortex structures.

3.1. Comparison with the experiments
The flow profiles obtained from both the simulation cases are compared with the experiments
carried out using the similar set-up by Genc et al. (2009, 2010). Figure 3 emphasizes the
comparison between the axial and tangential velocity profiles obtained from the experiments
and the simulations. It can be inferred from the various experimental data in the literature that
the initially solid body rotation type vortex at the inlet converts itself to a Rankine type vortex.
However this peculiarity of such flows is somehow not captured by the numerical simulations with
Case(I). The turbulent intensities have been found to be extremely low. This indicates that the
turbulent nature of the flow has not been captured by the simulations. This can be attributed to
the fact that Case(I) was simulated using highly dissipative Upwind differencing scheme which
damps any turbulence generated. The experiments on the other hand show turbulent velocity
fluctuations. Also the transition from initial solid body type vortex to the Rankine type vortex
is seen in the experiments. This is an evidence that turbulence structures are introduced in the
flow due to the effect of swirl. Hence, the results discussed in the ongoing text predominantly
include those obtained from Case(II).

Case(II) shows similarity to a large extent with the experiments. As shown in the tangential
velocity profiles in figure 3 the solid-body to Rankine vortex transition is well captured. Also
similar to the experiments, turbulent intensities are captured by the Case(II) simulations. These
turbulent intensities are shown in figure 4 and figure 5.

3.2. Decay of swirl
It is already known that the swirl intensity introduced at the inlet decays downstream of the
pipe. Depending on the intensity of the inlet swirl, different decay characteristics are observed.
Figure 6 shows the time-averaged axial velocity contours as seen on the center plane section
of the pipe. Figure 7 illustrates the drop in the time-averaged axial velocity at the center of

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 062022 doi:10.1088/1742-6596/318/6/062022

4

http://www.cvisiontech.com/


r/R

U
z/
(U
z)
m
ea
n

N=1(case I)N=1(case I) N=1.2 (exp)

N=4.4 (case I) N=4.4 (exp)N=4.4 (case II)

N=8.8 (exp)N=8.8 (case II)

Comparison of axial velocity
 profiles at z/D=3

Comparison of axial velocity
 profiles at z/D=5

Comparison of tangential velocity
 profiles at z/D=3

Comparison of tangential velocity
 profiles at z/D=5

1.6

1.2

0.8

0.4

0

2

0 0.25 0.5 0.75 1

U
/(
U
z)
m
ea
n

3.0

2.25

1.5

0.75

0

3.75
U
z/
(U
z)
m
ea
n

1.6

1.2

0.8

0.4

0

2

r/R
0 0.25 0.5 0.75 1

r/R
0 0.25 0.5 0.75 1

r/R
0 0.25 0.5 0.75 1

3.0

2.25

1.5

0.75

0

3.75

θ

U
/(
U
z)
m
ea
n

θ

Figure 3: Comparison of the time-averaged velocity profiles with the experiments.

the pipe for higher swirl numbers. The tendency towards flow reversal starts at N = 4.4 and
becomes more prominent at N = 8.8. Further increase in N can be thought to cause vortex
breakdown designated by a flow reversal.

Similarly the time-averaged tangental velocity contours are shown in figure 8. The scale is
normalized with the local tangential velocity at the inlet. It clearly illustrates that the solid
body rotation at the inlet decays extremely faster for higher swirl intensities. Similar trend is
observed next to the wall too. For N =1 the swirl persists for a longer distance downstream of
the pipe before it dies out whereas for N =8.8 it subsides much earlier.

Turbulence intensity fields shown in figure 4 and figure 5 depict clearly that the turbulence
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Figure 4: Time-averaged Turbulent intensity contours
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Figure 5: Comparison of turbu-
lent intensities for various N at
z/D=3(Case II).
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Figure 7: Comparison of axial veloc-
ity for various N at z/D=3(Case II).

starts at the wall for N = 1 and penetrates to the core for higher swirl numbers. In this way the
momentum carried by the tangential velocity is transferred to the turbulent structures. This is
also one of the reasons why the swirl decays faster at higher inlet swirl.

Figure 10 shows the decay of the inlet swirl intensities as observed in the experiments and
simulations. As can be clearly seen, there is a deviation from the induced swirl at the inlet
(indicated by Theo. Max in the figure). As the inlet swirl intensity increases, the deviation from
the induced solid body rotation becomes more pronounced. The extent of deviation at higher
swirl intensities indicates faster decay of swirl.

3.3. Flow structures
The swirling flow can be divided into a core region and an annular region, characterized by
forced-vortex and free-vortex types, respectively (see tangential velocity profiles in figure 3.
As the flow progresses downstream, the core region shrinks while the annular region of free
vortex expands (Ayinde, 2010). As a result structures occur between the vortex-dominated core
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region and the strain-dominated outer wall region. The structures are first observed in the radial
velocity component as shown in figure 11. In this figure one pair of adjacent positive and negative
regions (shown by red and blue colour respectively) form a vortical structure. Radial velocity
component being the weakest shows the maximum fluctuations. It plays an important role in
the momentum transfer from the core to the wall and vive-versa. The occurrence of structures
between a rotating inner cone and a stationary outer cylinder in Taylor-Couette flows has been
illustrated by Sprague & Weidman (2009). From the simulations it has been observed that the
flow consists of a solid-body rotation at the inlet which disappears gradually downstream of
the pipe. This creates a tapering core which is rotating with the inlet rotation speed. Thus
this is similar to the arrangement as described by Sprague & Weidman (2009). As a result the
structures so obtained are found to be analogous to those obtained in the Taylor-Couette flows.
Figure 12 displays the sections at various z/D positions. Here we can clearly see the number
and distribution of these structures. These structures disappear at N = 4.4 and again reappear
at N = 8.8.
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Similarly figure 13 shows the helicity profiles for different N . The concept of normalized
helicity, as introduced by Levy (1990), is used here for detecting vortex cores. It is the cosine of
the angle between velocity(v) and vorticity(ω) . It makes use of the fact that near vortex core
regions, the angle between v and ω is small. Its sign indicates the direction of swirl (clockwise
or counterclockwise) of the vortex with respect to the streamwise velocity component (Jiang et
al., 2004).

Hn =
v · ω
|v||ω|

(4)

It can be observed that Hn = 1 at the core region which indicates that the vorticity is in the
same direction as the flow velocity. However this region shrinks with increasing N . Hence, as
the swirl intensity increases, the vorticity is less aligned with the flow velocity. The structures
observed in the wall region are the centers of vortices rotating in the counter-clockwise direction.
These structures appear to be analogous with those seen in the radial velocity profiles. Figure
14 elaborates the above mentioned vortex structures

Various streamlines describing the nature of the flow are shown in figure 15. The seeding
is done at positions on a x-y plane where the Hn=-1. The streamlines exhibit helical nature
which is common to such kind of flows. As N increases the pitch of these helical streamlines
decreases. The scale on the right corresponds to the x-y section and the colored streamlines are
used just to differentiate them. At higher N the core of the structures are not preserved. Hence
the streamlines disperse very fast downstream of the pipe inlet.

4. Conclusions

Conducted numerical simulations confirmed the observed turbulence and fast decay of Swirl
intensity in the experiments. Helical vortices are visualized between the conical core having
a solid body rotation and the pipe wall. These structures are analogous to those observed in
Taylor-Coutte flows with tapered inner cylinder.
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