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Abstract. The interaction of a cavity with an external field is symmetric
under time reversal. Thus, coupling to a resonator is most efficient when the
incident light is the time reversed version of a free cavity decay, i.e. when it
has a rising exponential shape matching the cavity lifetime. For light entering
the cavity from only one side, the maximally achievable coupling efficiency
is limited by the choice of the cavity mirrors’ reflectivities. Such an empty-
cavity experiment serves also as a model system for single-photon single-atom
absorption dynamics. We present experiments coupling exponentially rising
pulses to a cavity system which allows for high coupling efficiencies. The
influence of the time constant of the rising exponential is investigated as well
as the effect of a finite pulse duration. We demonstrate coupling 94% of the
incident TEM00 mode into the resonator.
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1. Introduction

Time-reversal symmetry is a fundamental concept in many branches of physics. A recent
overview of applications in optics can be found in [1]. For example, time-reversal symmetry
was exploited to achieve efficient absorption of a microwave by an antenna [2] or strong focus-
ing in the microwave domain [3] as well as in the optical domain [4, 5]. An early discussion
about focusing onto an atom utilizing time-reversal arguments can be found in [6]. Furthermore,
time-reversal techniques have found applications in light–matter interaction such as in the stor-
age and retrieval of photons in atomic ensembles [7–9]. Very recent experiments report on the
experimental realization of time-reversed lasing [10]. Others utilize a time reversible scheme to
optimize the quantum state transfer between two atoms trapped in distant cavities [11, 12].

Within the field of light–matter interaction, an experiment relying crucially on the
application of time-reversal arguments is the absorption of a single photon by a single two-
level system (TLS) in free space. Following the time-reversal argument given in [13, 14], the
absorption probability can reach unity if the photon’s shape is exactly the time reversed version
of a spontaneously emitted photon and the momentum transfer to the atom can be neglected.
For the temporal profile of the single-photon wavepacket this implies an exponentially rising
envelope with a time constant matching the lifetime of the TLS.

In recent experiments, time-reversal techniques were successfully applied to demonstrate
a high absorption probability of a single photon by an atomic ensemble [15]. The benefit of
pulse shaping in the case of single atoms and multi-photon pulses was demonstrated in [16].
However, experiments aiming at an efficient single-photon single-atom absorption process in
free space remain challenging. Until now, absorption probabilities of 0.03% have been reached
in a three-level system [17].

To demonstrate the dynamics of such a free-space single-photon single-atom absorption
experiment in a simple set-up, we make use of the analogy between a TLS and an empty optical
resonator which was highlighted in earlier work [18]. Following this analogy, the energy stored
inside the resonator is the equivalent to the probability of a single photon to be absorbed by
the TLS, i.e. to the TLS to be found in the excited state. The field which is directly reflected
by the cavity corresponds to the light transmitted by the atom. The field leaking from inside
the cavity through the incoupling mirror is the counterpart to the light coherently scattered
in direction of the transmitted beam while the cavity leakage through the end mirror is the
counterpart of the coherent scattering into all other directions. The cavity leakage through
the incoupling mirror and the direct reflection (respective forward scattered and transmitted
light) show destructive interference. In case of a perfectly reflecting end mirror (R2 = 1) and
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Figure 1. Schematic representation of the experimental set-up. The pulse shaping
is implemented by an AOM driven by an AWG. After transmission through an
optical fibre, two lenses and a pinhole are used for spatial mode matching of
the beam to the resonator. The detection of the cavity reflection is enabled by
the combination of a PBS and a quarter-wave plate (λ/4). Cavity reflection and
transmission are detected by the photodiodes PD1 and PD2, respectively.

an incident pulse with rising exponential shape matching the cavity lifetime these two fields
have equal amplitudes and the interference results in a zero net field amplitude during the
pulse time-span. Until the end of the pulse there is no cavity reflection and the complete
pulse energy is stored inside the resonator. An imperfect end mirror (R2 < 1) leads to
unavoidable losses to the stored energy because the leakage through the end mirror cannot
interfere with the incident light. This is equivalent to illumination of the atom from a limited
solid angle smaller than 4π while the scattering occurs into the full solid angle. More precisely,
the solid angle of illumination corresponds to the asymmetry T1/(T1 + T2) of the cavity mirrors,
with T1, T2 being the transmission coefficients of the incoupling and end mirror, respectively.

In this paper, we present the experimental implementation of such a coupling experiment,
demonstrating the power of time-reversal symmetry in optics.

2. Experimental set-up

Figure 1 shows a schematics of the experimental set-up. We use a frequency-doubled diode
laser operating at a wavelength of 370 nm. This is the transition wavelength of an Ytterbium ion
which is our target system for the equivalent experiment [19]. The desired pulses are cut out of
the continuous-wave laser beam by means of an acousto-optic modulator (AOM) working at a
centre frequency of 400 MHz. It is driven by an arbitrary-waveform generator (AWG) providing
the radiofrequency signal with a suitably shaped envelope according to the desired pulse shape.
The rise- and fall-time of the complete generation system amounts to 5 ns and the repetition rate
of the pulses is 200 kHz. Details about the generation and characterization of rising exponential
pulses can be found in [20]. Here we checked the pulse shapes with a fast photodiode (bandwidth
2 GHz).
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The pulsed beam is coupled to a single-mode optical fibre and sent to the resonator
set-up. Two lenses and a filtering pinhole ensure the spatial mode matching of the beam to
the cavity. The latter consists of two spherical mirrors at a distance of L = 12.5 cm, each
having a focal length of 7.5 cm. The reflectivity of the incoupling mirror is determined by
direct transmission measurements with a power metre. It amounts to R1 = (97.96 ± 0.07)%.
According to manufacturer information, the scattering and absorption losses of the mirrors
are two orders of magnitude smaller than T1 and can thus be neglected in this work. The
reflectivity of the end mirror is obtained from ring-down measurements of the asymmetric cavity
revealing a lifetime of τ = (39.3 ± 0.6) ns. In combination with the knowledge of R1 we deduce
a reflectivity of R2 = (99.94 ± 0.10)%. Since a reflectivity larger than one is unphysical, we
set the upper bound of R2 to 1 in the following. In order to tune the cavity length, the end
mirror is mounted on a ring-shaped piezo actuator. This cavity set-up corresponds to an atomic
experiment where the incident light is focused from 97% of the full solid angle. The lifetime of
the cavity used here is comparable with atomic lifetimes.

By means of a polarizing beam-splitter (PBS) followed by a quarter-wave plate the cavity
reflection is separated from the incident beam. The reflected signal is detected by the photodiode
PD1, amplified and finally recorded by a fast oscilloscope with a sampling rate of 25 GS s−1.
The detection bandwidth is limited by the bandwidth of the amplifier spanning the range from
0 to 200 MHz.

A second photodiode PD2 is installed to observe the cavity transmission. However, for an
asymmetric cavity the leakage through the end mirror is very weak, resulting in a signal to noise
ratio smaller than one when measuring with sufficient detection bandwidth for the coupling
experiment. Thus, the complete dynamics of the system is extracted from the reflection signal
PD1. PD2 in turn is used in 1 M� coupling to determine the spatial mode matching of the
incident beam to the cavity. For this purpose, the cavity length is scanned and transmission
spectra of a continuous wave beam are taken. In the measurements presented here, the fraction
η of the incident light found in the TEM00 mode lies between 94 and 96.5%.

3. Data analysis method

As mentioned above, the transmitted signal is too weak to be measured with the necessary
temporal resolution due to the asymmetry of the cavity. Consequently we have to reconstruct the
energy storage and the cavity leakage through the end mirror from the reflected signal making
use of the experimentally determined mirror reflectivities. In the following, we describe the data
analysis algorithm.

For each pulse shape we record two datasets: for the first one the cavity is tuned to
resonance, for the second one the cavity is tuned far off resonance. In the latter case the pulse is
reflected with hardly any interaction with the cavity. Thus, the corresponding dataset gives the
incident pulse shape. In the following, the two datasets will be referred to as reflected intensity
IR(t) and incident intensity II(t), respectively.

In a first step we need to correct the data for imperfect spatial mode matching because light
in higher-order spatial modes is not resonant with the cavity in either measurement. This fraction
of light will always be directly reflected and experiences no interference with the cavity leakage.
Thus, we replace the incident intensity by ηII and the reflected intensity by IR − (1 − η)II where
η is the intensity fraction of light in the TEM00 mode. For simplicity, II and IR will directly
denote the mode matching corrected quantities in the following.
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In the next step, we reconstruct the energy inside the cavity and the leakage through the end
mirror as a function of time. Let EI(t) denote the energy incident onto the cavity accumulated
until time t, ER(t) the energy which has left the cavity in reflection until time t and ET(t) the
corresponding quantity for the transmission. Then the energy stored inside the cavity can be
written as

EC(t) = EI(t) − ER(t) − ET(t) (1)

= A
∫ t

−∞

II(t
′) − IR(t ′) − IT(t

′) dt ′ (2)

with A being the cavity area and IT the transmitted intensity. II(t) and IR(t) are directly obtained
from the measurement. The unknowns EC(t) and IT(t) are linked to each other by the electric
field inside the cavity. Let UC(t) denote the amplitude of the field running in one direction.
The standing wave inside the resonator is then built up by two counterpropagating waves each
having the amplitude UC(t):

EC(t) = ALε0|UC(t)|2. (3)

The leakage through the end mirror is determined by its transmission coefficient T2,

IT(t) =
1

2
cε0|UC(t)|2T2. (4)

Plugging (3) and (4) into (2) leads to an integral equation for |UC(t)|2:

|UC(t)|2 =
1

Lε0

∫ t

−∞

II(t
′) − IR(t ′) −

1

2
cε0T2|UC(t ′)|2 dt ′. (5)

It is analytically solved yielding

|UC(t)|2 =
1

Lε0
exp(−T2t/trt)

∫ t

−∞

[II(t
′) − IR(t ′)] exp(T2t ′/trt) dt ′ (6)

with trt = 2L/c being the round-trip time.
Inserting this result into (3) we are able to reconstruct the energy stored inside the cavity

from the measurement

EC(t) = A exp(−T2t/trt)

∫ t

−∞

[II(t
′) − IR(t ′)] exp(T2t ′/trt) dt ′ (7)

Additionally we obtain the cavity transmission as

ET(t) =
T2

trt

∫ t

−∞

EC(t ′) dt ′. (8)

Finally, all energies are normalized to the total energy Etot incident onto the cavity. In the
implementation of this analysis, the lower bound of the integrals is set to the beginning of the
measurement window which was chosen to cover at least the complete incident pulse and ten
lifetimes of the cavity decay.

In the last step of the analysis process we search the maximum of EC. This quantity will
be referred to as energy coupling efficiency EC,max in the following.

Since no assumptions on the incident pulse shape are made, the above method is applicable
to any pulse shape.
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Figure 2. Intensity measurement and energy reconstruction for an exponentially
rising pulse matching the cavity lifetime. (a) Measured intensity of the incident
pulse (black) and cavity reflection when the cavity is tuned to resonance
(orange). Inset: same quantities after substraction of the non-mode-matched
light. (b) Accumulated energy of incident pulse (black, dash-dotted), cavity
reflection (blue, dotted) and cavity transmission (green, dashed) as well as the
energy stored inside the resonator (orange, solid). The spatial mode matching
amounts to η = 94.0% in this measurement. For clarity, the plots are restricted
to a time window shorter than the one used for measurement and analysis.

4. Results and discussion

First, we discuss the analysis method outlined above using the example of an exponentially
rising pulse with a time constant τP close to the cavity lifetime. All numbers given in this section
refer to the fraction of the light which is spatially mode matched to the cavity. Figure 2 shows
the measured intensity traces as well as the reconstructed energies for a τP = 39.6 ns pulse. If
the cavity is tuned into resonance (orange line), the reflection is strongly suppressed until the
end of the pulse. If plotting only the light in the TEM00 mode (inset), hardly any rising of the
photodiode signal can be observed until t = 0, indicating that a huge amount of the energy is
stored inside the cavity and only emitted after the end of the incident pulse. This is confirmed
by the energy reconstruction displayed in figure 2(b). The accumulated incident energy rises
until the end of the pulse and remains then constant. The stored energy fraction follows closely
nearly until the end of the pulse. The small difference can be explained by the finite fall time
of the incident field after the radiofrequency signal driving the AOM was switched off. The
reflected energy stays close to zero as long as the incident field is exponentially rising due to
the interference of direct reflection and cavity leakage. When the incident pulse is switched off,
the accumulated reflected energy amounts to only 1% of the incident energy and 94% are stored
inside the cavity. For t > 0 the cavity is decaying freely and most of the light is detected in
reflection because of the asymmetry of the mirrors’ reflectivities. In total, 7% of the incident
energy is transmitted through the cavity, partly already during the storage and partly during the
decay.

Next, we discuss the response of the cavity to exponentially rising pulses with different
time constants. Figure 3 shows the experimental results for pulses each having a total duration
of 10τP.
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Figure 3. Energy fraction coupled to the resonator for exponentially rising pulses
as a function of the time constant. Symbols: experimental values. Orange solid
line: simulation for perfect pulse shapes. Green dashed line: simulation using
the measured incident pulse shapes as input signal. The spatial mode matching
amounts to η = 94% in this measurement.
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Figure 4. Energy fraction coupled to the resonator for an exponentially rising
pulse as a function of the pulse duration. The time constant of the incident
pulse is fixed to τP = 36 ns. Symbols: experimental values. Orange solid line:
simulation for perfect pulse shapes. Green dashed line: simulation using the
measured incident pulse shapes as input signal. The spatial mode matching
amounts to η = 96.5% in this measurement.

The error bars are based on the uncertainty of the mirror reflectivities. In agreement with
the time-reversal argument, the energy coupling efficiency reaches a maximum when the time
constant equals the independently measured cavity lifetime. The orange solid line reflects the
theoretical prediction for perfect exponential pulses [18]. The green dashed line is the result of
a simulation which takes the measured incident pulse shapes as input signal. The outcome of
the latter simulation and the measured energy storage efficiencies agree very well quantitatively.
The difference to the first simulation can be explained by the finite fall time of the AOM causing
a smoothed edge at the end of the exponential pulse.

For a pulse with time constant equal to the cavity lifetime, the effect of an imperfect tem-
poral pulse shape can be described in a particularly simple way: it reduces to a single number,
namely the overlap of the incident field amplitude with the ideal one. In the measurement
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Figure 5. Energy fraction coupled to the resonator for rectangular pulse shapes.
Symbols: experimental values. Orange solid line: simulation for perfect pulse
shapes. The spatial mode matching amounts to η = 96.5 % in this measurement.

Table 1. Summary of the restrictions our experiment is subject to and deduced
energy coupling efficiencies. The experimentally achievable values refer to the
parameters used in this experiment.

Experimental restrictions

Asymmetry T1/(T1 + T2) 97%
Spatial mode matching η 94%
Temporal mode matching η2

t 97%

Coupling efficiency

Ideally 100%
For spatially mode matched fraction

Experimentally achievable 94%
Measured value 94+3

−5%
For total incident power

Experimentally achievable 88%
Measured value 88+3

−5%

presented here, this field overlap amounts to ηt = 98.6%. Following the reasoning of [20], this
implies an upper limit for the experimental energy coupling efficiency as EC,max 6 η2

t = 97%.
The same analysis could be performed for all other pulse shapes, bearing in mind that

this simplified method is only valid for comparison with an ideal pulse, i.e. a perfect rising
exponential pulse matching the cavity lifetime. Thus it does not reveal the difference to the
simulation given by the orange solid line, but rather to its maximum, that is to say the maximally
reachable coupling efficiency for a given pair of mirrors.

According to the time-reversal argument [18], the perfectly matched pulse has to start at
t = −∞ with an infinitely small intensity. However, in experiments pulse generation is limited
to a finite time window which we refer to as pulse duration. The influence of finite pulse
durations on the energy coupling efficiency is displayed in figure 4. For this plot, we created
exponentially rising pulses each having a time constant of τP = 36 ns with durations varying
between 0.5 and 10τP. For long pulses, the energy coupling efficiency shows an asymptotic
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behaviour. The asymptote is approached in good approximation for pulse durations of four
times the pulse time-constant or longer. Thus experiments as they underly figure 3 with pulses
of duration 10τP can be considered as experiments with practically infinitely long pulses.

Finally we measured the energy incoupling efficiency for rectangular pulses with different
durations (figure 5). In this case, the deviation of the incident pulse from a perfect rectangular
shape has hardly any influence. The measured energy coupling efficiency shows very good
agreement with the theoretical prediction.

5. Conclusion

We implemented a cavity set-up with an asymmetry of T1/(T1 + T2) = 97% to simulate the
absorption dynamics of a single photon by a single atom. Experiments with exponentially
rising incident pulses demonstrate the power of time-reversal arguments in optics: by choosing
a time constant matching the cavity lifetime, we achieved an energy coupling efficiency of
EC,max = 94%. As defined in section 3, this value refers to the fraction of the light which is
spatially mode matched to the cavity.

While for an ideal system the complete pulse energy can be coupled to the resonator, any
real implementation is subject to several restrictions as summarized in table 1. A conceptual
limitation is given by the choice of the mirror reflectivities. In an experiment as performed
here, the maximally attainable coupling efficiency is exactly the asymmetry of the mirrors’
reflectivities [18]. In an atomic absorption experiment, a similar constraint is given by the
geometry of the set-up limiting the solid angle used for focusing onto the atom. The spatial
beam shaping and the temporal pulse forming are technical restrictions for both kinds of
experiments. Taking into account also light in higher-order spatial modes, the experimentally
observed fraction of the total incident energy stored inside the resonator amounts to 88%.
Considering all these constraints to our implementation, the measured energy coupling agrees
very well with the theoretical prediction.
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Rempe G 2012 Nature 484 195–200
[13] Sondermann M, Maiwald R, Konermann H, Lindlein N, Peschel U and Leuchs G 2007 Appl. Phys. B

89 489–92
[14] Stobinska M, Alber G and Leuchs G 2009 Europhys. Lett. 86 14007
[15] Zhang S, Liu C, Zhou S, Chuu C S, Loy M M T and Du S 2012 Phys. Rev. Lett. 109 263601
[16] Aljunid S A, Maslennikov G, Wang Y, Dao H L, Scarani V and Kurtsiefer C 2013 Phys. Rev. Lett. 111 103001
[17] Piro N, Rohde F, Schuck C, Almendros M, Huwer J, Ghosh J, Haase A, Hennrich M, Dubin F and Eschner J

2010 Nature Phys. 7 17–20
[18] Heugel S, Villar A, Sondermann M, Peschel U and Leuchs G 2010 Laser Phys. 20 100–6
[19] Maiwald R, Golla A, Fischer M, Bader M, Heugel S, Chalopin B, Sondermann M and Leuchs G 2012

Phys. Rev. A 86 043431
[20] Golla A, Chalopin B, Bader M, Harder I, Mantel K, Maiwald R, Lindlein N, Sondermann M and Leuchs G

2012 Eur. Phys. J. D 66 190
[21] Wenner J et al 2013 arXiv:1311.1180v1

New Journal of Physics 15 (2013) 123008 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevLett.98.123601
http://dx.doi.org/10.1103/PhysRevLett.98.243602
http://dx.doi.org/10.1126/science.1200735
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1038/nature11023
http://dx.doi.org/10.1007/s00340-007-2859-4
http://dx.doi.org/10.1209/0295-5075/86/14007
http://dx.doi.org/10.1103/PhysRevLett.109.263601
http://dx.doi.org/10.1103/PhysRevLett.111.103001
http://dx.doi.org/10.1038/nphys1805
http://dx.doi.org/10.1134/S1054660X09170095
http://dx.doi.org/10.1103/PhysRevA.86.043431
http://dx.doi.org/10.1140/epjd/e2012-30293-y
http://arxiv.org/abs/1311.1180v1
http://www.njp.org/

	1. Introduction
	2. Experimental set-up
	3. Data analysis method
	4. Results and discussion
	5. Conclusion
	Acknowledgments
	References

