
Department Informatik
Technical Reports / ISSN 2191-5008

Carsten Willems and Felix C. Freiling

Using Memory Management to Detect and
Extract Illegitimate Code for Malware Analysis

Technical Report CS-2012-02

January 2012

Please cite as:

Carsten Willems and Felix C. Freiling, “Using Memory Management to Detect and Extract Illegitimate Code for Malware

Analysis,” University of Erlangen, Dept. of Computer Science, Technical Reports, CS-2012-02, January 2012.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.informatik.uni-erlangen.de

Using Memory Management to Detect and Extract
Illegitimate Code for Malware Analysis

Carsten Willems
Ruhr-University Bochum, Germany
carsten.willems@rub.de

Felix C. Freiling
Dept. of Computer Science, University of Erlangen, Germany

felix.freiling@cs.fau.de

Abstract—Exploits that successfully attack computers
are mostly based on some form of shellcode, i.e., ille-
gitimate code that is injected by the attacker to take
control of the system. Detecting and extracting such code
is the first step to detailed analysis of malware containing
illegitimate code. The amount and sophistication of modern
malware calls for automated mechanisms that perform
such detection and extraction. In this paper we present
a novel generic and fully automatic approach to detect the
execution of illegitimate code and extract such code upon
detection. The basic idea is to flag critical memory pages
as non-executable and use a modified page fault handler
to dump corresponding memory pages. We present an
implementation of the approach for the Windows platform
called CWXDetector. Evaluations using a large corpus of
malicious PDF documents show that our system produces
no false positives and has a similarly low false negative
rate.

I. INTRODUCTION

A. Motivation

No matter what particular exploitation method or
target is used, the ultimate aim of an attacker is to
perform malicious computation on the target system, i.e.,
to execute machine instructions whose type and order
are under the complete control of the attacker. Usually,
malicious computation is caused by illegitimate code,
i.e., code that was not intended to be executed, neither
by the developer of the exploited process nor by the end-
user of the system. Such code is usually injected into the
target system using external data like network traffic or
application files.

This document is an extensive revision of a previous technical re-
port [1] and was extended in several ways. For example, we describe
more detection results and have revised the complete extraction result
section.

As a countermeasure to this increasing threat, op-
erating systems try to prevent the execution of ille-
gitimate code using techniques like Data Execution
Prevention (DEP) [2] and address space layout ran-
domization (ASLR) [3]. However, prevention alone does
not generally help in the analysis of illegitimate code.
Therefore, it is necessary to develop mechanisms that
detect and extract illegitimate code from malicious data.
A consecutive analysis of the extracted data then assists
in developing new protection techniques and creating
signatures for zero-day malware until patches are avail-
able.

In this work we present CWXDetector, a new tool
for the analysis of malware for the Windows operating
system. It performs a dynamic analysis for detecting
and extracting illegitimate code by instrumenting the
memory management features of the operating system
itself. Roughly speaking, the idea of the approach is
to mark critical memory pages as non-executable. This
ensures that upon execution of code in these regions the
page fault handler of the operating system is called. This
usually suffices to detect illegitimate code. However,
to extract illegitimate code, we modify the page fault
handler so that the memory page that caused the page
fault gets dumped for later analysis.

Note that CWXDetector is not meant to protect a
system, but to monitor and analyze the execution of il-
legitimate code. Our system even disables some security
measures like DEP for that. Nevertheless, there are some
similarities in other preventive and analysis techniques
that we now discuss.

B. Related Work

1) Preventive Measures: A large body of related
work mainly aims at the prevention of malicious code
execution, mostly following the reference monitor ap-

proach. Many such methods are directly integrated into
contemporary compilers and operating system [4]. How-
ever, often newly introduced protection techniques are
incompatible to existing old applications and, there-
fore, can be disabled by the applications themselves or
are deactivated per default. Microsoft’s EMET tool[5]
tries to overcome this problem by allowing a process-
specific configuration of these protection methods and
their enforcement. Other methods restrict memory write
operations or control transfers. Kiriansky, Bruening and
Amarasinghe [6] as well as Abadi et al.[7] use code
rewriting techniques to implement the monitoring. The
main difference to our work, is that those solutions
terminate the monitored process in the event of a security
violation, and are not able to produce any further analysis
data. Furthermore, they all lack of capability to handle
self-modifying or dynamically created code and they
are not able to handle specific types of exploits (like
SEH-related ones) under certain circumstances (e.g., if
libraries are involved that have the SafeSEH feature
disabled). Finally, all described measures aim solely
at the prevention of malware exceution, but offer no
assistance in their further analysis.

2) Detection of Illegitimate Code: The detection of
illegitimate code is an extremely difficult problem today.
Early attempts relied on static signatures [8], but those
had to be improved due to the heavy use of polymor-
phism, encryption and other obfuscation methods. More
enhanced methods try to detect certain invariant parts
of the shellcode, e.g., Akritidis et al. [9] search for
the typical “sled component” in such code. Others have
used heuristics in combination with dynamic analysis
methods to detect illegitimate code. For example, ma-
chine learning methods have been used to deal with the
variable parts, e.g., Payer, Teufl and Lamberger utilize a
neural network [10] in combination with execution chain
evaluation. Polychronakis, Anagnostakis and Markatos
[11] use emulation to detect an ongoing decryption
process which is typical for polymorphic shellcode. Also
Baecher and Koetter [12] use an emulated environment
to identify and isolate shellcode with the help of GetPC
heuristics. Overall, and in contrast to CWXDetector,
these signature- or heuristics-based approaches are not
fully generic and have to be extended when new anti-
detection measures of malicious code come up.

It has been observed before that memory management
can be used to detect illegitimate code execution. For
example, the PaX project [13] proposes several different
measures to implement non-executable memory — even
on architectures with no hardware support for that.

Also hardware-DEP utilizes the no-execute (NX) flag
in the Windows page table to make particular memory
pages non-executable. However, and in contrast to our
approach, these techniques do not allow to extract ille-
gitimate code since they totally block the execution of
illegitimate code.

3) Extraction of Illegitimate Code: There exist sev-
eral solutions aiming at the extraction of illegitimate
code, especially automated unpacking of malware. These
mechanisms usually interact deeply with the memory
management of the underlying operating system. In all
cases those solutions try to detect the execution of
memory regions which have been written to before-
hand. OllyBone [14] implements this by instrumenting
the translation lookaside buffer. Since OllyBone is a
debugger-plugin, it imposes all the disadvantages of
debugger-driven malware analysis, e.g., its detectability.
Another disadvantage that contrasts it to our approach is
that it is a semi-automated process, in which execution is
stopped at the first occurrence of malicious instructions
and the human analyst has to continue with further
extraction steps. Finally, it is not able to deal with
dynamically allocated memory regions (since it focuses
on Windows PE sections).

OmniUnpack [15] uses an approach similar to the
PAGEEXEC method proposed by PaX, i.e., the User/Su-
pervisor page table flag is used to automatically break
on the execution of certain monitored pages. In order to
decide whether executed and previously written memory
should be considered as malicious, an external detector is
used to scan unpacked memory for the existence of mali-
cious code. That detector, again, has to use signatures or
heuristics that generate a lot of false positives, especially
if a JIT-compiler is involved. Finally, executed memory
is only considered if a critical system call is executed
afterwards. Our approach uses a more effective heuristic
based on the concept of trusted callers that results in
much better detection results.

Renovo [16] runs the sample in an emulated environ-
ment (TEMU [17]) and maintains a shadow memory
to track written memory regions. Since this cannot be
done on a native system, the system cannot be realized
without system-emulation. Again, like with debuggers,
this enables the monitored malware to easily detect the
synthetic environment.

C. Contributions

CWXDetector is a new dynamic approach for detect-
ing and extracting illegitimate code. The power of the
approach stems from its simplicity in using the page

fault handler of the operating system itself. Therefore,
the challenge is to evaluate its effectiveness in practice.
This means to evaluate it for the Windows platform
of operating systems, since this platform is still the
major target of illegitimate code today. Unfortunately,
Windows is not an open source operating system and
without proper documentation it is a tremendously diffi-
cult task to integrate custom functionality into the kernel.
Therefore, we had to perform a lot of substantial reverse
engineering regarding the internal memory management
mechanisms of the Windows kernel [4]. Based on these
insights, we modified the kernel of a x86 Windows XP
operating system by establishing a custom page fault
handler and intercepting some essential memory related
system functions.

We evaluated our approach by considering the task
of detecting and extracting illegitimate code in/from a
particulary relevant class of application files, namely
those in Adobe’s portable document format (PDF) [18].
Our approach proves to be very effective. We analyzed
a set of 7,278 malicious PDF documents using a set
of vulnerable versions of Adobe Reader and achieved a
detection rate of 93.2%. This can be regarded as a lower
bound for our method since many of the investigated
PDF files appeared to be broken although they were
flagged as malicious by Antivirus products. We also
analyzed the same amount of benign PDF documents,
resulting in a (false positive) detection rate of 0%.
Furthemore, our detection results compare favorably to
those of application specific detection tools like Wepawet
[19], PDF Examiner [20] and ADSandbox [21], but
outperforms them by being generic and -to some extent-
also being capable of detecting zero-day exploits. To
further demonstrate the universality of our approach we
also used it to detect shellcode execution in Flash Player,
RealVNC client and VideoLan Client.

To summarize, the contributions of this paper are
twofold:
• We present a generic and fully automatic approach

to detect the execution of illegitimate code and
extract such code upon detection.

• We successfully evaluate our approach using mali-
cious PDF documents as example and show that we
can improve state-of-the-art tools.

To some extent our approach is similar to DEP [2],
which totally disables the execution of certain memory
regions. This is accomplished by employing the NX flags
of the related page table entries in a similar way like we

do it. Nevertheless, there are big differences between
DEP and our system: first we do not completely prohibit
the execution of illegitimate code, but we intentionally
allow it in order to get detailed analysis results. On the
attempt to execute non-executable memory, we dump the
memory page that contains the code, and then continue
execution in order to obtain more information. Secondly,
we do not only take the type of memory into account
when deciding which should be monitored respectively
executed, but we also check the initiator of memory
related modifications and allocations. As an effect we
are able to correctly handle cases in which malicious
executable modules are mapped into memory, or when
DEP-conquering shellcode allocates regular executable
memory.

To some degree our system also constitutes a refer-
ence monitor, that is restricted to monitor accesses to
executable memory. In contrast to the inline solutions
proposed in the past [6], [7], we do not modify the
monitored application itself, but the underlying operating
system and incorporate hardware features to perform
the monitoring. This has several positive effects: it is
much easier to extract the executed memory, since we
are already residing within the page fault handler. Fur-
thermore, we do not have any problems with dynamically
created or self modifying code. Finally, we do not have
to manually track any control transitions, i.e., some of
the related work in this topic is unable to detect control
flow transitions that occur due to structured exception
handling and not due to a regular branch instruction.

D. Limitations

Our method is solely based on dynamic analysis of the
examined malware samples. Therefore, it suffers from
all the drawbacks and limitations of dynamic analysis
in general. Since during each code execution only one
particular control path is taken, the gained results always
may be incomplete. If a required environment condition
is not met and, therefore, a certain malicious functional-
ity is not triggered during execution, dynamic analysis is
unable to reveal any information about it. Accordingly,
our system is incapable to detect malicious code which
is embedded in arbitrary data in general, but only detects
such code when it gets executed.

Furthermore, the existence of malicious computation
does not always imply the existence of illegitimate code.
Therefore — and similar to DEP — our approach has
problems with novel exploitation techniques like return
oriented programming (ROP) [22] or JIT-spraying [23],
[24]. However, advanced attacks usually consist of multi-

ple stages of which only the first uses ROP/JIT-spraying
to set up a later stage comprising regular illegitimate
code which then can be detected and extracted using
our method.

Obviously, our system is not meant to protect end con-
sumer hosts, but its sole purpose is to support malware
analysis on dedicated analysis systems.

E. Structure of this Paper

This paper is organized in the following way: Section
II defines our attacker model and some necessary terms.
In Section III we describe our approach in general,
whereas Section IV illustrates an implementation for
the Windows XP operating system. In Section V we
explain how our system can be applied to the analysis
of malicious PDF documents. We evaluate our approach
and present the detection results in Section VI and the
extraction results in Section VII. Section VIII concludes
this paper and gives topics for future work.

II. MODEL AND DEFINITIONS

In this section we specify our attacker model, define
the term illegitimate code and further concretize our two
aims: the detection and extraction of executed illegiti-
mate code.

A. Attacker Model

In this work we assume a remote attacker that provides
some malicious piece of data in order to exploit a
vulnerability in some handling application resulting in
the execution of shellcode. This data may have arbitrary
form, e.g., a specially crafted PDF document or a mali-
cious input packet to some network application.

As mentioned above, we are aware of the threats posed
by ROP [22] or JIT-spraying [23], [24] techniques, but
nevertheless assume that an attack does not fully consist
of such code. To the best of our knowledge, we are
not aware of any documented instance of such a single
staged full-ROP/JIT-sprayed attack in the wild.

B. Illegitimate Code

Our approach enforces the partitioning of executable
memory into regions that contain legitimate code and
those that may contain illegitimate one. Additionally, it
monitors and restricts the execution of instructions that
are located in illegitimate code regions. Intuitively all
code that belongs to the operating system or to a known
application is legitimate. For realizing this distinction,
we first partition the files of a system into a set of
trusted files and a set of untrusted ones. We assume
that such a distinction is given, e.g., by defining all

files in a freshly installed system as trusted. For dealing
with dynamically created code, we identify those code
portions contained in trusted files that should be allowed
to allocate executable memory. Accordingly, we parti-
tion each trusted file into trusted memory modification
functions and untrusted ones. Again we assume such a
distinction is given, e.g., by defining all required code
emitting memory functions of the operating system as
trusted and all others as untrusted. Then, legitimate code
(LC) is code which is either contained in a trusted (sys-
tem or application) file or it is code that was dynamically
created by any of the trusted functions from one of those
files.

We now define illegitimate code (ILC) as code that
is not legitimate. Intuitively, ILC is code which would
not be executed if the operating system and the installed
applications would function properly. In practice it is
code that is either injected by or constructed on behalf
of an attacker by some malicious piece of software or
data. Therefore, ILC is similar to shellcode in its current
understanding.

C. Problem Statement

The aim of the system described in this work is to
perform two tasks automatically:

1) We wish to detect the execution of illegitimate
code, and

2) to extract it, i.e., dump all relevant memory pages
to disk, for a later in-depth analysis.

III. APPROACH: INSTRUMENTING THE PAGE FAULT

HANDLER

In the following we describe our approach and how it
can be applied to the dynamic analysis of malware.

A. Enforcing an Invariant

Based on our attacker model, no matter what kind of
exploit is used in an attack, the resulting effect is always
the execution of illegitimate code like we have defined
above. When a vulnerability is exploited, the control flow
is redirected to one of the following locations:

1) ILC on the stack (buffer overflow),
2) ILC in the heap (heap-spraying), or
3) ILC in a static data area (exploiting a static data

buffer).
Throughout our approach, we establish and maintain

the following invariant condition:
All ILC resides in non-executable memory.

As an effect to this invariant, all execution attempts
of ILC will result in the invocation of the page fault

handler of the operating system. By implementing our
own custom page fault handler, we are able to react on
such attempts appropriately.

B. Trusted Files and Functions

To establish the invariant, we need to identify the set
of trusted files and functions. For simplicity we trust all
files which have been already existing when we start
our analysis, and distrust all files which were created or
modified during later system operation. To achieve this,
we need to keep track of file manipulation operations.
Therefore it is necessary to intercept (“hook”) the system
service that is used to create files or open them with
write-access.

For each trusted file we further define a set of trusted
memory modification functions, which contains all the
functions that are allowed to dynamically create exe-
cutable memory or modify the protection settings of
already existing memory to being executable. The set of
all such functions from all trusted files is called trusted
callers.

Trusted Files

1 2

Trusted Memory
Modification Functions
(= Trusted Callers)

Untrusted Files

M

Userspace Memory

1

2

M

LC location

ILC location

Fig. 1: Trusted Memory Modification Functions

Figure 1 illustrates our understanding of trust, showing
an example with two trusted and one untrusted file.
While trusted file 1 contains two trusted memory modifi-
cation functions, trusted file 2 only has one. Obviously,
the untrusted file can not contain any trusted function
at all. The simplified version of the userspace memory
shows that all three files have been mapped into the
virtual address space. The memory related to the trusted
files only contains trusted code, hence constitutes LC
memory, whereas that memory of the untrusted file may
contain illegitimate code. Furthermore, each mapped
module has allocated one dynamic memory area, pointed

to by the corresponding arrow. That area belonging to
file 1 was created by a trusted caller and, hence, may
contain legitimate executable code. But the memory
created by the untrusted caller from file 2 as well as
the region created by the untrusted file may contain ILC
and, therefore, are marked as ILC locations.

C. Memory Protection Modifications

Obviously it is necessary to intercept attempts to
modify the memory protection, because this can result in
executable memory. This is realized by hooking critical
system calls. Inside these hook functions we enforce the
following points to maintain our invariant:
• only trusted callers can allocate executable memory,
• only trusted callers can modify existing memory to

being executable, and
• only trusted files can be mapped into executable

memory.
All attempts that violate these rules are intercepted and
the resulting memory regions becomes non executable.

In summary, only trusted files can be loaded into
executable memory and only trusted callers can create
executable memory. There is one exception: even if a
trusted caller tries to modify the memory protection,
intervention may be necessary under special circum-
stances: if the related target memory belongs to a mapped
trusted file and should become writable, the executable
right has to be removed. This enforces the W ⊕ X
property [2]. In general, all legal linkers should produce
files which fulfill this requirement anyway. Nevertheless,
we enforce it on our own to also handle files securely
which violate it by intent or accident.

The realization of making memory non-executable
strongly depends on the underlying system architecture
and also on the operating system. Many contemporary
CPUs offer an execute disable (NX) protection flag on
a page level. Nevertheless, this feature can be only used
for valid page table entries (PTEs) and, therefore, in most
cases some additional OS memory objects may have to
be modified as well.

D. Custom Page Fault Handler

The heart of our detection method is the custom
page fault handler, which reacts on the attempt to
execute memory regions which we have marked non-
executable beforehand. As described above, all necessary
prerequisites are already done when new memory is
allocated or the protection of already existing one is
tried to be modified. Accordingly, the custom page fault
handler only has to wait until a protection-related page

fault is triggered. In that event, we have to check if
the occurred page fault is really related to our system
modifications. If so, we have detected the execution of
illegitimate code and, as a result, we dump the related
memory page to hard disk. After that, the related memory
region is modified by us to being executable, such that
the current and all further execution attempts for this
page will become successful. This is done because we
do not want to stop our analysis process once the first
illegitimate instruction is found. Finally, we resume the
current process and wait for the next fault.

E. Multi Version Dumping

In order to avoid detection, shellcode very often is
built by multiple stages that are organized like a russian
stacking doll (matrushka). Each stage is only a small
stub that deobfuscates or decrypts the next stage and
then transfers control to it. Since the effective malicious
instructions are mostly contained in the final stage, it is
desirable to unpack it automatically. Therefore, we apply
a feature called multi version dumping (MVD), in which
different versions of each executed page may be created.
To that end, an internal copy of each dumped memory
page content is stored and if the content is modified
later on, another dump file is created. By comparing two
consecutively created dumps, we can easily isolate those
parts that have been modified and infer the decrypted
shellcode instantly.

Notice, that not every shellcode is multi-staged. There-
fore, sometimes only one dump file is created for a de-
tected ILC containing memory page, and sometimes two
or more. If multiple versions are created, we normally
are only interested in the final one, since we assume that
it contains the fully decrypted code.

IV. WINDOWS-BASED IMPLEMENTATION

In the following section we illustrate CWXDetector,
which is the concrete implementation of our approach
for the x86 version of Windows XP. We utilize the
PAE kernel version of Windows, since only this one
supports the NX page table flag that we utilize to realize
non executable memory. Although that kernel version
was originally intended to support physical memory
that is larger than 4 GB, it is nowadays used on all
installations of the 32 bit Windows XP version that have
DEP enabled.

In summary, to realize our approach we need to
• define trusted files and trusted callers,
• implement hook functions for memory allocations

and protection modifications,

• implement a custom page fault handler to detect and
react on ILC execution, and

• additionally modify essential system functions to
support our approach.

Since Windows is not an open source operating sys-
tem, a lot of reverse engineering had to be performed
previously, especially on the underlying memory objects
like VADs and PPTEs. The resulting findings are ex-
plained in detail in an additional technical report [4].
Though the implementation of CWXDetector seems to
be straight-forward, the unavailability of the Windows
source code poses enormous difficulties when intercept-
ing kernel system calls, customizing the page fault han-
dler and patching OS-controlled memory management
resources.

A. Memory Function Hooks

In order to ensure that only legitimate code resides
in executable memory, we redirect the calls of NtAl-
locateVirtualMemory, NtProtectVirtualMemory and
NtMapViewOfSection to custom hook functions in or-
der to fulfill the invariant from Section III-A. On a lower
level we realize non-executable memory by modifying
the related memory structures, i.e., the execute disable
(NX) flag of the related page table entry as well as the
VAD entry and the prototype PTEs of the corresponding
memory regions. Section A in the appendix presents
more implementation details of the hook functions.

B. Checking the Caller

In order to restrict the memory creation and protection
modification attempts of executable memory, we need to
check the particular initiator of such operations against
the set of trusted callers. For that we have to walk the
usermode call stack to a certain depth and inspect the
saved return addresses. Since our hooks functions reside
in the kernel, we therefore need to gather information
about the current usermode context, from which the
kernel call has been performed. This kind of information
is stored within the trap frame, which can be accessed
from kernel mode via the KTHREAD structure that
exists for each thread. Section A in the appendix gives
further information on how the caller function chain can
be obtained from this structure.

C. Custom Page Fault Handler

We hook the Windows system function MmAccess-
Fault to implement our custom page fault handler. The
code of this hook function is rather short, since all
necessary prerequisites are already done by the other

hook functions. First, we call the original page fault
handler to actually resolve the fault, e.g., validate the
related PTE. Then we check if the fault was caused by
an execute operation and if the faulting address resides in
user space. If so, we further verify if the target address is
valid, which can be determined easily by inspecting the
values of the related PDE and PTE. If all these conditions
are met, a dump file of the related memory page is
created and the protection settings of the associated PTE
are modified to executable. A further modification of
the PPTE and VAD entry is not necessary here, since
protection settings stored with those objects are never
used again, once a PTE was created from them.

D. Additional System Modifications

For distrusting all files which were created or modified
during our analysis, we hook the system service NtCre-
ateFile, which has to be called to create new and open
existing files. Furthermore, we hook NtCreateProcess
to monitor and restrict the creation of new processes.

V. APPLICATION TO THE ANALYSIS OF PDF
DOCUMENTS

Our approach is completely generic and can be used
in different scenarios. In order to further illustrate it and
evaluate its effectiveness we apply our tool CWXDetector
to the field of dynamic analysis of malicious PDF doc-
uments. Malicious documents as attacking vector have
become very popular in the past few years, and especially
the portable document format (PDF) is a commonly used
medium for malicious content.

One reason for that is the extensive feature list of PDF
documents. It offers the two programming languages
Javascript and Actionscript and the possibility to embed
many different object types like images, sounds and even
executables. Another reason for the increasing number
of exploitation attempts is the complexity, and hence
error-proneness, of the PDF format itself and its viewer
applications. For example, the latest PDF reference [25]
from 2008 contains 756 pages and Adobe already has
published several extensions to it meanwhile.

A. Dynamic PDF Analysis

During dynamic malware analysis in general the ob-
ject under investigation is not disassembled, but viewed
as a blackbox and actually used in its intended way: an
executable is run, a document is opened in its associated
viewer application and so forth. This has several negative
impacts: first of all the testing environment may get
infected, since the malicious code actually is executed.

Secondly, it may happen that though real malware is
analyzed, no malicious operation may be observed at
all. There are always some necessary requirements to
the environment, under which particular exploits may
only work, e.g., a vulnerability may be fixed in a newer
version of the affected application or an exploit aims
only at a particular language version of a software.
Accordingly, dynamic analysis in general is incomplete
and we try to address this disadvantage by testing each
PDF sample in different viewer applications and then
combine all the findings. Though not usual, a malicious
functionality may only be triggered on a certain user
action or input. In order to correctly analyze those files
as well, user-simulation could be employed[26] as an
extension to the existing functionality.

In order to analyze PDF documents with our system,
we have set up multiple virtual machines with 32 bit
Windows XP SP2 and installed a different PDF viewer
application on each of them. In particular we have used
the Adobe Acrobat Reader versions 6.0.0, 7.0.0, 7.0.7,
8.1.1, 8.1.2, 8.1.6, 9.0.0, 9.2.0 and 9.3.0. For comparison
we also have set up one machine with Foxit Reader ver-
sion 3.0.0 for which also some vulnerabilities are known.
This particular application and version set have been
chosen to cover the most of the known vulnerabilities
for PDF documents, but it should be mentioned, that it
may not be optimal nor have full coverage for all known
existing exploits.

Each PDF sample is analyzed in all of those machines
in parallel. During the analysis we performed the follow-
ing steps on each machine separately:
• We installed our customized page fault handler and

our system hooks.
• We started the particular viewer application.
• We disabled DEP for the viewer application, since

otherwise the execution attempt of non-executable
code would crash the process and we would not
have any possibility to intercept it in our custom
page fault handler.

• We opened the PDF document in the viewer appli-
cation.

• If new memory was allocated or existing memory
was modified during execution, we enforced the
invariant from Section III-A.

• If the execution of illegitimate code was detected,
we dumped the associated memory page to a file,
created a describing log entry, and modified the
related PTE to being executable. We then checked
the dumped memory page for typical patterns of
illegal code (appendix A). In case these could be

found we marked this case as “PATTERN” in the
log file.

• If a new process was created by the PDF viewer, we
created an entry marked “PROCESS” in the log file.
We prevented the spawning of additional processes
since we are only interested in analyzing exploits
in the PDF viewer application itself.

• If a dialog window was shown by the PDF viewer,
we created an entry marked “DIALOG” in the log
file and additionally logged the contents of the
window. We then simulated a user input to close the
window and continue viewing the PDF document.

For scalability reasons the analysis process was stopped
after a specific timeout, which was set to two minutes in
our experiments. As mostly all known malicious PDFs
trigger their malicious operations instantly when viewing
the first page of the document, it is safe to assume that
we will have seen mostly all malicious shellcodes after
this amount of time. In many cases that timeout was not
reached, because the PDF viewer application terminated
prematurely. In that case we marked this execution as
“CRASH” in the log file. Finally, and if none of the
aforementioned special cases above have been occurred
(PATTERN, DIALOG, PROCESS, CRASH), the case was
labeled as NOTHING.

After the analysis we extracted the dump and log files
from the machine and then reverted it back to a clean
state. What we finally got as result is a set of dump
files that contain the memory contents of each page from
which illegitimate code was executed. Furthermore, we
got a logfile that contains information about:

• All attempts to allocate executable memory which
are not invoked by a trusted caller,

• all attempts to modify existing memory to being
executable, which are not invoked by a trusted
caller,

• all attempts to execute memory that contains ille-
gitimate code,

• all created files (needed during analysis to maintain
the list of untrusted files),

• all created processes (needed for evaluation and
debugging purposes), and

• all shown user dialog windows.

Overall, every PDF file ended up with a combination
of two labels (d, c): the first label d determined whether
illegal code was detected or not, and the second label
c was either PATTERN, CRASH, PROCESS, DIALOG,
NOTHING as defined above. Since different PDF viewers
can react differently to a single PDF file, we needed to

aggregate all the different results into one overall value.
We defined a lexicographic total order on the tuples as
follows: (d, c) > (d′, c′) if and only if either d had
detected illegal code and d′ not, or (if d = d′) c > c′

according to the following ordering:

PATTERN > CRASH > PROCESS > DIALOG > NOTHING

We used the highest occurring value as combined overall
value.

In Section VI and VII we describe our findings and
the results of our experiments in detail. Nevertheless, in
general we are interested in the fact if a viewed PDF
document triggers the execution of ILC or not. If we
are able to detect such an attempt, we call our result
a true positive. If we fail to detect it, we call it a false
negative. If on the other hand, a benign PDF document is
analyzed and in reality no ILC is executed at all, but our
system erroneously reports ILC execution, we call this a
false positive. Finally, a true negative stands for such a
case, in which our system correctly does not report ILC
execution.

B. Determining Trusted Files and Callers

As explained in Section II-B we have to define the set
of trusted files and the set of trusted memory modification
functions (trusted callers) for each of them. The set of
trusted files is easy to determine. Since we perform each
analysis on a clean and uninfected system, we simply
define all existing files as trusted ones and all files that
are created or modified during the analysis as untrusted
ones.

For specifying the trusted callers, we have to identify
all the functions from all trusted files that are used to
produce executable memory, e.g., we have to search for
all calls of memory-related APIs and inspect the used
parameters that specify the protection settings of the
resulting memory. This may be done fully-automated,
but we have used a semi-automated process, in which
we have started with a white-list that only contained
the loader-related function from ntdll.dll. Then we have
loaded benign PDF documents into the different PDF
viewer applications and if we have encountered a false
positive, we have manually inspected the disassembly
of the related function call and extended the white list
appropriately. This process is fail-safe, since we may
only get false positives if we have forgotten particular
trusted callers, but will never create false negatives if
we set up our trusted caller list correctly.

In the end we came up with only three files that
had to be taken into account: ntdll.dll, AcroRd32.exe

and authplay.dll. All of those contain functions that
allocate executable memory or modify existing one to
being executable. ntdll.dll contains the Native API and
especially the Windows loader functionality, which of
course, has to be able to create executable memory. For
the particular Windows version we are using, this is
done from two different locations within LdrpSnapIAT
and LdrpSetProtection. Acrobat Reader from version
9 on upwards contains a JIT-compiler that also allocates
executable memory. We have checked the affected library
authplay.dll and verified that the VirtualProtect API is
called from two different places. Since only one of those
calls is used with an executable protection value, we only
have to put this one on to the list of trusted callers. Fi-
nally, we have observed Acrobat Reader in version 7.xx
to allocate executable memory from an MFC function
CLangBarItemMgr::CreateInstance. Hence, we also
take care of these calls.

VI. DETECTION EVALUATION

We have evaluated the detection quality of our system
by means of two different experiments. First, we have
performed a comprehensive analysis of PDF documents.
For that purpose we have created two sets of PDF doc-
uments of size 7,278 each (a benign set and a malicious
set) and used CWXDetector to analyze these files. We
have developed heuristics to measure the correctness and
completeness of our findings. We further have compared
our generic system against several other analyzers, that
use application-specific knowledge to analyze PDF doc-
uments. In a second experiment we briefly illustrate the
universality of our approach by applying our tool on
malicious Flash documents and network packets.

A. Benign PDF Sampleset

In order to test the false positive rate of our approach,
we obtained a set of known benign documents, which
contain as much different PDF features as possible. Ac-
cordingly, analyzing them enables us to monitor various
different behaviors, in form of code coverage of the PDF
viewing application. We constructed this set using the
following method:
• We retrieved URLs of the TOP 5000 Internet sites

from www.alexa.com.
• We queried Google for the first 10 PDF documents

on each site and downloaded them.
• Using the tool pdfid [27], we selected all documents

which contained JavaScript, OpenActions or some
other extended PDF features.

• We uniformly picked random samples from the
other downloaded files until the total set of files
consisted of 7,278 samples (the same size of the
malicious sample set, see below).

The final set has the following characteristic: altogether it
contains 7,278 samples, 600 of which contain Javascript,
782 contain AcroForms, 1,573 samples have an OpenAc-
tion and 751 some AdditionalAction.

All samples have been verified by Virus Total [28] and
in 3 cases one or more AV scanner delivered a positive
result. We checked those samples by hand and did not
find any malicious content within them. Therefore, most
probably these detections are AV false positives.

We ran our system on the benign sample set. As a
result, we did not detect any single ILC execution, hence
we have a false positive rate of 0%.

To speed up the analysis, we only used the three “most
vulnerable” PDF viewer applications for the benign
sample set (namely Adobe Acrobat Reader 7.0.7, 8.1.1
and 9.0.0). Since the achieved false positive rate of our
experiments was so low, we can assume that it will not
increase dramatically by using more different viewers.

B. Malicious PDF Sampleset

We obtained a set of 7,278 known malicious PDF
documents from a well-known AV vendor. The set
consisted of all their valid incoming PDF samples from
January 2011. These samples originated from different
sources as shown in Table I. We checked all samples
with the publicly available service Virus Total [28] which
confirmed that all of them were indeed malicious.

TABLE I: AV Sample Sources

Source Fraction
AV Sample Sharing 70.0%
Found in the Wild 24.0%
Multiscanner projects 4.8%
Intercepted botnet traffic 1.2%

We ran our tool on the malicious sample set and were
able to detect and extract executed ILC in 93.2% of all
cases. The detailed analysis results are shown in Table II
and are explained in the following section.

C. Discussion

Given the benign and malicious data sets as stated
above we end up with a false positive rate of 0%
and a false negative rate of 6.8%. However, we have
seen a lot of samples which were broken and, though
containing malicious content, were not able to produce
malicious functionality when loaded into a PDF viewer.

TABLE II: Overall Detection on Malicious Samples

ILC detected no ILC detected
Samples Fraction Samples Fraction

PATTERN 6,658 91.5% — —
CRASH 20 0.3% 15 0.2%

PROCESS 83 1.1% 33 0.4%
DIALOG 0 0.0% 295 4.1%

NOTHING 20 0.3% 154 2.1%
Total 6,781 93.2% 497 6.8%

Furthermore, some samples only triggered their exploit
when using a particular PDF application that was not
contained in our application set. Finally, there exist some
samples that perform malicious behaviour that is not
based on shellcode, but instead uses built-in features of
the PDF viewer application. For instance some samples
redirect to malicious websites or exploit software bugs
in third-party applications, which can be started directly
from within a PDF document. To fortify our results and
argue why we assume an effective false positive rate that
is much lower than the measured one, we analyzed the
documents from the malicious data set in more detail.

1) Results without ILC Execution Detection: We in-
vestigated the 497 PDF documents for which no ILC
execution was detected. If we would be able to prove
that none of them have executed any ILC within our
used environments, our detection rate would increase
to 100%. However, since we are not able to manually
analyze about 500 samples, we developed heuristics to
find at least hints that lead to the assumption that these
samples really failed to perform malicious computation.

We first checked those 15 files that crashed the PDF
viewer. We verified if the crashing operation is contained
in any of the regular modules that belong to the PDF
viewer. In that case most probably some exploit went
wrong or the PDF consisted of an invalid structure,
which lead to an erroneous termination of the parsing
application. Of course, we cannot be completely sure
that no illegitimate code has been executed beforehand,
but since we have seen many corrupt and broken PDF
documents, it is very probable that we have not missed
anything but the viewer just has crashed before any
illegitimate code could be executed. After manually
checking all 15 samples we found that indeed all of them
performed invalid memory accesses. So overall those
samples are malicious too but simply fail to execute their
shellcode due to incompatibilities with the underlying
PDF viewer or other aspects of the environment.

We then examined those 33 samples that created a new
process. At first view one could suppose that starting

a new process is a sure sign for a malicious activity.
However, we discovered that in all cases regular built-in
features of the PDF viewer were used for that and no
illegitimate code was involved. The started applications
are Internet Explorer (iexplore.exe), Outlook Express
(msimn.exe) and the Command Shell (cmd.exe). In most
cases the parameters used when starting the Internet
Explorer or Outlook Express are specially crafted to
enforce a parsing error and arbitrary code execution.
Section A in the appendix gives examples of those used
parameters.

After that we investigated the 295 cases that where
classified as “DIALOG”. Most of the dialogs contained
error messages of the parsing engine, which state that the
PDF structure itself or some embedded JavaScript-code
was invalid. We assume that either the corresponding
PDF documents were corrupted or that we simply have
not used the expected environment to trigger the ma-
licious functionality. In addition to this, there are some
PDF exploits that solely are based on social engineering,
in which the user is tricked to respond in a particular way
to the shown dialog. For example the warning message
for starting a new process is obfuscated in a way such
that the user will not notice that a new process will
actually be spawning when he clicks the OK button [29],
[30]. In Section A of the appendix we present some
examples of the encountered dialog messages. Overall,
it is unclear whether these files are indeed malicious.
However, it is also highly probable that none of them
executed any form of ILC during execution.

Finally, 154 samples did not perform any suspicious
activity at all. Obviously, this does not mean necessarily
that the samples are harmless. It just means that under
the given environment they behave benign. One reason
for not triggering detection could be that we have not
used the correct PDF viewer environment which is
necessary to trigger the exploit. We manually checked a
representative random set of 30 samples of this class and
we found that they do not contain any working exploit
at all. A reason for the AV scanners to mark them as
malicious may be that they contain pattern from their
virus signature databases. This may be either a pure
coincidence, or it may be the result of a failed attempt
to create a working malicious PDF document.

Overall, given the above findings, it is safe to assume
that in all 497 cases no ILC was executed. So while
our method failed to flag these samples as malicious,
it succeeded in detecting the execution of ILC: since
no ILC was executed no detection was triggered. In this
sense all negatives are true negatives, and so after careful

consideration one could also claim a false negative rate
of 0% for our approach and the examined sample set.

2) Results with ILC Execution Detection: For com-
pleteness, we also discuss the cases where our method
detected ILC execution. In order to show that these
cases are correct, we have to ensure that all dumped
memory really consists of illegitimate code and that no
prior ILC execution has been missed. Again, confirming
this for each individual case is impossible due to time
restrictions and, therefore, again we used heuristics to
get trustful hints for the correctness. In the 6,658 cases
that are flagged PATTERN we confirmed the presence of
known shell code patterns in the dumped memory pages.
Therefore, we can be sure that in fact ILC was executed.

We checked those 20 samples that crashed the PDF
viewer after the ILC detection. This is also a clear sign
for (a partly failed) malicious behavior. In such cases
the exploit did not work well, either because it was
badly programmed or because it did not discover the
environment which was needed to work correctly. Even
if the samples do not succeed to perform any reasonable
malicious operation, we know that the observed code
execution really is related to ILC and, accordingly, is
no false positive. All of the 20 samples crashed due to
an access violation when performing reading, writing or
executing memory operations on invalid regions.

Next we investigated those 83 PDF documents that
spawned new processes after the ILC execution. This
is clear sign of beforehand executed ILC since the test
system was set up in a way that prevented new processes
from being spawned “legally” as an effect of just viewing
a PDF document. One exception to this are the applica-
tions mentioned in section VI-C1 that are an effect of
performing built-in features. We have verified that none
of the spawned processes belong to those exceptions, but
all fall into one of the following three categories: it is
either tried to perform malicious operations from within
a second extracted or downloaded malware, to open a
benign PDF document in order to hide the maliciousness
of the initial document or to gather essential information
about the exploited system. Accordingly, we can be sure
that all of these samples really have executed shellcode.
Section A in the appendix contains examples of the
processes from all three categories.

Finally there are 20 remaining samples with ILC
execution, for which all of our previously described
heuristics fail. Hence, we are not able to tell anything
automatically about their maliciousness and, therefore,
we have checked them manually. All of them really
execute illegitimate code, from which some is simply

not working correctly and other does not even consist of
valid machine instructions at all. We can only guess the
reasons for that: most probably some of these samples
just were written badly or got corrupted due to some
transmission error. Others may find some unexpected
environment and, accordingly, do not function well.
Anyway, we have manually assured ourselves that in
all cases ILC was executed, no matter if the resulting
operations were valid or not.

3) Detection Summary: Though we are not able to
manually verify all the samples we have analyzed with
our system, the results shown in the previous subsections
lead to the conclusion that our approach works well.
If we aggregate all our findings with illegitimate code
execution, we get a minimum detection rate of 93.2% for
our particular set. If we furthermore assume that there is
a serious fraction of samples that do not contain working
shellcode for any of our used environments, we get a
much higher detection rate.

4) Detection per Viewer Application: Table III and
Figure 2 summarize and visualize all ILC detections and
present the detection rates per PDF viewer. Note that
these rates are heavily depending on the sample set, and
do not necessarily reflect the quality of the PDF viewers
or the number of exploits that exist for them in the wild.
What definitely can be seen, is the unsurprising fact that
combining the partial results of our detection scheme
yields a higher detection rate. Furthermore, it is obvious
that each single PDF viewer instance is vulnerable to
a significant amount of malicious PDFs. One single ex-
ception to this is the Foxit Reader. Since this application
is not nearly as widespread as the Acrobat Reader, not
much effort has been invested by attackers into building
exploits for it. Accordingly, the very low detection rate
for this viewer does not necessarily mean that it has less
critical software bugs.

5) Detection Results of Other Analyzers: In order to
evaluate the effectiveness of our solution, we compared
our results against those from the popular application
specific analyzers Wepawet [19], PDF Examiner [20]
and ADSandbox [21]. All of these analyzers combine
static and dynamic approaches, i.e., they parse the PDF
document structure, extract potential malicious pieces
and then analyze them by different means. Depending
on the severity of the findings, each analyzed sample
is then labeled either benign, suspicious or malicious.
Furthermore, additional comprehensive analysis data is
generated, i.e., information about the embedded objects,
like PE files or URLs, or contained known exploits.

Wepawet [19] combines machine learning techniques

TABLE III: Detections per Viewer

Viewer Samples Fraction
Foxit 3.0.0 17 0,25%

Adobe 6.0.0 2036 30,03%
Adobe 7.0.0 4592 67,72%
Adobe 7.0.7 4727 69,71%
Adobe 8.1.1 5355 78,97%
Adobe 8.1.2 4994 73,65%
Adobe 8.1.6 1941 28,62%
Adobe 9.0.0 4994 73,65%
Adobe 9.2.0 1974 29,11%
Adobe 9.3.0 1672 24,66%
Combined 6781 100,00%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Foxit
3.0.0

Adobe
6.0.0

Adobe
7.0.0

Adobe
7.0.7

Adobe
8.1.1

Adobe
8.1.2

Adobe
8.1.6

Adobe
9.0.0

Adobe
9.2.0

Adobe
9.3.0

Com-
bined

N
um

be
r

of
 IL

C
 D

et
ec

tio
ns

PDF Viewer

Fig. 2: Visualization of Detections per Viewer

with emulation. It extracts specific features while emu-
lating Javascript code and then compares them against a
set of previously learned known benign profiles. It also
uses a set of signatures to detect anomalities, which are
not based on Javascript. The author has supported our
project by analyzing our samples with the new version
of his tool, which currently is not available yet. A better
detection rate in comparison to the current available
version could be achieved with that.

PDF Examiner [20] as well extracts all embedded ob-
jects and streams from the PDF document and decrypts
them if necessary. Then, signature scanning is used to
detect known malicious patterns and libemu [12] is used
to detect shellcode. From all the findings a score value is
calculated, that decides about the ultimate outcome of the
analysis. Besides this value, a sophisticated GUI report is
generated that highlights suspicious and malicious parts
of the PDF document.

In contrast to the two aforementioned analyzers, AD-
Sandbox [21] solely aims at the detection of malicious
Javascript. For that purpose, all Javascript code objects

are extracted from a PDF sample and then executed in
an isolated environment. Finally, heuristics are used to
decide from the executed operations and the involved
data about the maliciousness of the particular sample.
ADSandbox can be used with several different con-
figurations settings, but we have used the defaults for
simplicity.

When comparing the results of such application spe-
cific analyzers to those created by CWXDetector, one
have to take into account that our tool only triggers
on the actual execution of ILC. Accordingly, it is only
capable to label a sample as benign or malicious, but not
as suspicious.

Table IV summarizes all results for the detection of
malicious samples. Interestingly, our approach yields
even better results than those of the application specific
analyzers if only taking those samples into account
which were labeled as being malicious. But still when
considering also the suspicious samples, our results are
comparable, i.e., 89.0% (Wepawet) and 98.9% (PDF
Examiner) vs. 93.2% (CWXDetector). Furthermore, we
know that a significant part of those malicious samples
which have been not detected by CWXDetector are
corrupted and, hence, not executable at all. A signature
scanning based approach is obviously also able to detect
malicious parts within those broken files, but our method
obviously fails on them. ADSandbox does not deliver
a very high detection rate on our malicious sample set
since its main focus is to analyze Javascript only.

TABLE IV: Detection Results on Malicious Sampleset

Malicious Suspicious
Analyzer Samples Fraction Samples Fraction
Wepawet 4,737 65.1% 1,739 23.9%
PDF Examiner 6,089 83.7% 1,108 15.2%
ADSandbox 2,360 32.4% 255 3.5%
CWXDetector 6,781 93.2% 0 0.0%

When it comes to the false positive rate, the compari-
son is rather simple (see in Table V). As described above
our approach does not produce any false positive. Also
the other three analyzers generate good results: 0 false
positives for Wepawet as well as for ADSandbox. There
is a trade-off in detection accuracy of PDF Examiner,
since this detector has the best detection rate but also
produces the most false positives of around 4.5%, which
still is an acceptably low number.

D. Additional Experiments

In order to emphasize the universality of our ap-
proach we briefly present detection results from different

TABLE V: Detection Results on Benign Sampleset

Malicious Suspicious
Analyzer Samples Fraction Samples Fraction
Wepawet 0 0.0% 0 0.0%
PDF Examiner 82 1.1% 246 3.4%
ADSandbox 0 0.0% 3 <0.1%
CWXDetector 0 0.0% 0 0.0%

applications. We have used CWXDetector to analyze
malicious Flash documents as well as malicious network
packets that exploit vulnerabilities in the Real VNC
viewer and the VideoLan Client (VLC).

1) Flash Documents: As additional example for shell-
code containing documents we have analyzed two ma-
licious Flash files. The first one was created with the
help of the Metasploit Framework[31] and the other one
was found in the wild and contained in the Contagio
Dump Archive[32] and named JOB DESCRIPTION.doc.
Both samples exploit the CVE-2011-0611 vulnerability
of the Flash Player version 10.0.45 by executing an
ActionScript that performs an invalid object type usage,
resulting in arbitrary code execution. Since both Flash
samples are embedded into a Word document, we have
used Microsoft Word Professional 2010 to actually open
them.

Both samples were detected by our tool and in both
cases the ILC containing memory pages were dumped.
In the following we give a brief discussion of the
findings from the real-world example. As in most cases
all pages but the last ones contain a nop sled. The sled
is built by the operation adc [ecx], edx, which is the
assembly representation of the value 0x1111. After a
huge amount of such instructions, the real shellcode
starts by locating the required API functions. By walking
the Export Address Table of the kernel32.dll module,
the entry points of roughly a dozend system functions
obtained, e.g. LoadLibraryA, GetFileSize, CreateFileA,
WinExec, CreateFileMappingA, ...

The code then tries to locate the memory region into
which the initial Word document was loaded, since be-
sides the shellcode it also contains a second malware as
well as a benign Word document that should be dropped.
For that purpose GetFileSize is called with all possible
handle values, starting from 0 and increasing it by a
value of 4 for each iteration. A simple heuristic is used
to identify the correct file by comparing the result value
of GetFileSize with a minimum size of 0x7000. The
resulting handle is then used to create a memory section
by calling CreateFileMappingA and MapViewOfFile for

accessing the embedded objects easily.
After that two new files are created in the system’s

temporary folder and the embedded objects are copied to
them. The first file is called scvhost.exe, which obviously
should look similar to the Windows service host process
svchost.exe. We have not performed a detailed analysis
of this dropped file, but obviously it comes the real
malware. After creation it is executed via the WinExec
API. The second file is named AAA and in fact is a valid
Word document without malicious content.

Finally, the WinExec API again is called to execute
a batch of shell operations and the Word process is ter-
minated. The shell operations first perform some delay,
then overwrite the original .doc file with the dropped
AAAA file and then load it into a new Word instance.

2) VNC Client: The traditional way to inject shell-
code into systems has been to embed it into network
packets and exploit vulnerabilities in the parsing server
application. Only the increased awareness and improved
security of contemporary server applications and operat-
ing systems has driven the attackers to shift to malicious
documents. In order to illustrate the effectiveness of
our generic approach we show that it is capable to
detect malicious code execution also in this context.
Therefore, we have used the Metasploit Framework to
setup a network server that accepts connections from
remote VNC clients. After executing the RealVNC client
version 3.3.7 in combination with our CWXDetector,
we connected to that server and received a specially
crafted network packet. This packet contains an exploit
for the CVE-2001-0167 vulnerability of the RealVNC
application. Of course, CWXDetector detects the execu-
tion attempt of the first contained shellcode instruction
and dumps the related memory to a file. Since we have
created the shellcode on our own and it only contains
the functionality to show a small user dialog it does not
make any sense to further analyze it here.

3) VideoLan Client: One additional analysis of a
network application exploited by a malicious network
packet was performed with help of the CVE-2010-3275
vulnerability, which exists in the versions 1.1.4 up to
1.1.7 of the VideoLan Client (VLC). By accessing a
specially crafted .amv file, VLC can be crashed by the
usage of an invalid pointer and arbitrary code can be
executed. With the help of Metasploit we again have set
up a web server that generates such a malicious data
and offers it over the network for downloading. Unsur-
prisingly, our detection mechanism triggers again and
extracts the malicious instructions once the embedded
shellcode is about to be executed.

VII. EXTRACTION EVALUATION

In this section we try to measure the quality of the ex-
tracted shellcode chunks. To that purpose we determine
the percentage of contained x86 instructions (code ratio)
and the amount of data in terms of embedded strings
(data ratio). Since shellcode often uses encryption and
code obfuscation to avoid detection, we expect only
poor quality when investigating the initially created
dump files. To encounter this problem, we had applied
the MVD feature described in section III-E. With that
functionality, additional dump file versions are created
when memory is modified, e.g. self-modifying code is
executed. By considering the final version of a dumped
memory page, chances are high to get a fully decrypted
version of the shellcode. By further comparing it with
the initial dump, one can easily identify the modified
code parts.

Our original PDF analysis from section VI has been
done without the MVD feature, because it increases the
size of the resulting data enormously. Accordingly, we
had to perform another experiment, now with MVD
enabled. In order to reduce the amount of information
that has to be examined afterwards, we have only used
a subset of the malicious PDF documents and used only
one particular PDF viewer. In fact, we have chosen the
Adobe Acrobat Reader 9.00 and those 4,869 samples,
for which ILC execution has been detected in that PDF
viewer in the first experiment.

A. Quality of Shellcode Chunks

Obviously, we are not able to manually examine all
the dumped files and also have no way to actually under-
stand the semantics of shellcode in an automated way.
Therefore, we measure their quality by the percentage
of valid x86 instructions (code ratio) and the amount
of contained strings. To that end, we have utilized the
IDA Pro Disassembler[33] to measure the percentage of
bytes from each dump that can be disassembled correctly.
There are several problems with that proceeding. On the
one hand, shellcode often uses indirect and obfuscated
control transfers, which disturbs the correct operation of
a disassembler. On the other hand, also random binary
data can be disassembled into valid x86 instructions to
some amount. However, we are aware that the resulting
code ratio is only a rough approximation of the real code
amount, but it enables us to analyze several ten thousand
dumped instruction chunks in an automated way. Besides
the code, we also try to measure the amount of valid
data, namely the contained strings. Therefore, we have
identified and counted all strings from the dumps and

applied some easy heuristics to restrict the resulting set
to only obvious valid ones, e.g. we only kept those with
a length greater than 8 or those which contain special
keywords like .exe or .dll.

B. Shellcode Partitions

We have not examined each dumped page separately,
but we have concatenated all consecutive pages to parti-
tions first. One advantage of this concatenation is that it
mitigates the effect of the fact that on x86 architecture
there is no memory alignment required for instructions.
If a particular operation is placed on a page boundary,
it gets split when each page is dumped separately. If
multiple versions of the same page were dumped during
analysis, we only examine the initial and the final one.
By comparing them with each other, we are able to
evaluate the effectiveness of our automated unpacking
technique by comparing the amount of valid code and
contained data. The example in Figure 3 shows that ILC
execution was detected in five different pages. Therefore,
all of them have been dumped on the initial detection.
Page III has been modified twice and, accordingly, two
additional dump files were created that contain the mod-
ified version of the memory content. After the analysis
is finished, all consecutive pages are concatenated into
partitions. Partition A contains the pages I, II and III
and partition B the pages IV and V. Since there is a
multiversion page in partition A, two different versions
of it are created: one that contains all the initial versions
of the dumps (partition A initial), and another one with
the final version of each page (partition A final).

Userspace
Memory

I

II

III

IV

V

I.1

Pages
with ILC

Execution

II.1

III.1 III.2 III.3

IV.1

V.1

Initial
Dump

Versions

Additional
Dump

Versions

I.1 II.1 III.1

partition_A_initial:

+ +

I.1 II.1 III.3 + +

partition_A_final:

IV.1 V.1 +

partition_B_initial:

Resulting
Partitions

Fig. 3: Dumps and Partitions

C. Discussion

In particular we have performed the following steps
to measure the quality of the extracted ILC:

• we analyzed 4,869 PDF samples in Acrobat Reader
9.00 with enabled MVD,

• all consecutive memory pages were concatenated
to partitions, resulting in either one or two versions
each:

– one initial partition, if only one dump version
of each contained memory page exists,

– and additionally one final partition, if more
than one dump version exists for at least one
contained page

• the code ratio of each partition was determined by
using IDA Pro, and

• all valid strings from each partition were extracted
and counted.

We then selected those partitions for which an initial
and a final version existed, i.e. those which contain self-
modifying code. We found 2,534 partitions of this kind.
Figure 4 illustrates the code ratio for the initial and
final partitions respectively. One can easily see that the
percentage of valid instructions increases dramatically
when applying the MVD feature. Figure 5 shows the
improvement of the data ratio - in terms of valid strings
- when the shellcode is automatically unobfuscated.
When compared with the code ratio the bettering is
only marginal. Nevertheless, in sum we extracted 7,807
strings and 1,866 URLs from the initial partitions, and
8,676 strings and 2,280 valid URLs from the final ones.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

< 10% 10-19% 20-29% 30-39% 40-49% 50-59% 60-69% 70-79% 80-89% >= 90%

N
um

be
r

of
 P

ar
tit

io
ns

Code Ratio

Initial
Final

Fig. 4: Distribution of Code Ratio

VIII. CONCLUSIONS

In this paper we presented a generic and automatic
method to detect and extract illegitimate code. We pre-
sented CWXDetector, an implementation of our approach
for the x86 Windows XP version, and evaluated it by

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 1 2 3 4 5 6 7 8 >= 9

N
um

be
r

of
 P

ar
tit

io
ns

Number of Strings

Initial
Final

Fig. 5: Distribution of Data Ratio

analyzing a large corpus of malicious PDF documents.
Our system turns out to be very effective in supporting
malware analysis, since the detection rates are very good
and it directly supports the analyst by extracting a small
set of memory pages for manual inspection. This further
inspection has not been part of our work and opens
new fields of investigation. Especially the contained
URLs and server host addresses that point to additional
malware sites are valuable resources. Furthermore, the
insights gained by a post processing analysis may assist
in developing new protection techniques and creating
signatures for zero-days until patches are available. We
have also shown how the quality of the extracted ILC
can be increased dramatically by applying multi-version
dumping to automatically deobfuscate it.

ACKNOWLEDGMENTS

Thanks to Tilo Müller and Thorsten Holz for reading
earlier versions of this document and making helpful
suggestions for improvements. Additional thanks go to
Andreas Dewald, Marco Cova and Tyler McLellan for
their great support while using their analysis tools.

REFERENCES

[1] C. Willems, “Using memory management to detect and extract
illegitimate code for malware analysis,” Technical Report TR-
2011-002, University of Mannheim, Tech. Rep., 2011.

[2] MSDN, “A detailed description of the data execution prevention
(DEP) feature,” http://support.microsoft.com/kb/875352/en-us,
2006.

[3] T. P. team, “PaX address space layout randomization (ASLR),”
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[4] C. Willems, “Windows memory management internals (not
only) for malware analysis,” Technical Report TR-2011-001,
University of Mannheim, Tech. Rep., 2011.

[5] Microsoft, “Enhanced mitigation experience toolkit (EMET),”
http://support.microsoft.com/kb/2458544/de.

[6] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure ex-
ecution via program shepherding,” in Proceedings of the 11th
USENIX Security Symposium, 2002, pp. 191–206.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM conference
on Computer and communications security, ser. CCS ’05.
New York, NY, USA: ACM, 2005, pp. 340–353. [Online].
Available: http://doi.acm.org/10.1145/1102120.1102165

[8] C. Jordan, “Writing detection signatures,” USENIX ;login:,
vol. 30, no. 6, pp. 55–61, 2005.

[9] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnos-
takis, “Stride: Polymorphic sled detection through instruction
sequence analysis,” in 20th IFIP International Information
Security Conference, 2005.

[10] U. Payer, P. Teufl, and M. Lamberger, “Hybrid engine for poly-
morphic shellcode detection,” in Proceedings of the GI/IEEE
SIG SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), 2005, pp. 19–31.

[11] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos,
“Network-level polymorphic shellcode detection using emula-
tion,” in Proceedings of the GI/IEEE SIG SIDAR Conference
on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), 2006, pp. 54–73.

[12] P. Baecher and M. Koetter, “libemu - x86 shellcode detection
and emulation,” 2007, http://libemu.carnivore.it/.

[13] P. Team, “Documentation for the PaX project - overall descrip-
tion,” http://pax.grsecurity.net/docs/pax.txt, 2008.

[14] J. Stewart, “Ollybone: Semi-automatic unpacking on ia-32,”
Defcon 14, 2006.

[15] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack:
Fast, generic, and safe unpacking of malware,” in Proceedings
of the Annual Computer Security Applications Conference (AC-
SAC), 2007.

[16] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: a hidden
code extractor for packed executables,” in Proceedings of the
2007 ACM workshop on Recurring malcode, ser. WORM
’07. New York, NY, USA: ACM, 2007, pp. 46–53. [Online].
Available: http://doi.acm.org/10.1145/1314389.1314399

[17] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, N. James, P. Poosankam, and
P. Saxena, “Bitblaze: A new approach to computer security
via binary analysis,” in Proceedings of the 4th International
Conference on Information Systems Security, ser. ICISS ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1–25. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-89862-7 1

[18] K. Selvaraj and N. F. Gutierrez, “The rise of PDF malware,”
http://www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/the rise of pdf malware.pdf,
2010.

[19] M. Cova, C. Kruegel, and G. Vigna, “Detection and
analysis of drive-by-download attacks and malicious javascript
code,” in Proceedings of the 19th international conference
on World wide web, ser. WWW ’10. New York, NY,
USA: ACM, 2010, pp. 281–290. [Online]. Available: http:
//doi.acm.org/10.1145/1772690.1772720

[20] M. Tracker, “pdf examiner,” http://www.malwaretracker.com/
pdf.php.

[21] A. Dewald, T. Holz, and F. C. Freiling, “ADSandbox:
Sandboxing JavaScript to fight malicious websites,” in
Proceedings of the 2010 ACM Symposium on Applied
Computing, ser. SAC ’10. New York, NY, USA: ACM,
2010, pp. 1859–1864. [Online]. Available: http://doi.acm.org/
10.1145/1774088.1774482

[22] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in Pro-
ceedings of CCS 2007.

[23] D. Blazakis, “Interpreter exploitation,” in Proceedings of the 4th
USENIX conference on Offensive technologies, ser. WOOT’10,
2010, pp. 1–9.

[24] A. Sintsov, “Writing JIT-spray shellcode for fun and profit,”
http://dsecrg.com/pages/pub/show.php?id=22, 2010.

[25] A. S. Incorporated, “Document management, portable document
format, part 1: Pdf 1.7,” 2008.

[26] M. Engelberth, F. C. Freiling, J. Goebel, C. Gorecki, T. Holz,
R. Hund, P. Trinius, and C. Willems, “The InMAS approach,” in
1st European Workshop on Internet Early Warning and Network
Intelligence (EWNI), 2010.

[27] D. Stevens, “pdfid,” http://blog.didierstevens.com/programs/
pdf-tools/.

[28] H. Sistemas, “Virus total,” http://www.virustotal.com/.
[29] D. Stevens, http://blog.didierstevens.com/2010/03/29/

escape-from-pdf/, 2010.
[30] ——, http://blog.didierstevens.com/2010/03/31/

escape-from-foxit-reader/, 2010.
[31] Rapid7, “The metasploit framework,” http://metasploit.com/.
[32] contagio Website, “Malware sample dump for cve-2011-0611

flash player zero day,” http://contagiodump.blogspot.com/2011/
04/apr-8-cve-2011-0611-flash-player-zero.html, April 2011.

[33] Hex-Rays, “Ida pro disassembler,” http://www.hex-rays.com/.

APPENDIX

We now present more details on the Windows-based
implementation from Section IV. We first present the
details of the hook functions used by CWXDetector.

The hook of NtAllocateVirtualMemory first checks
the caller and the wanted memory protection. If the caller
is not trusted, that protection value is modified such that
the allocated memory becomes non-executable. Then the
original system service is invoked to actually perform
the allocation operation. All this happens transparently
to the caller, i.e., no error result is returned in case of a
modified protection parameter.

The proceeding within the NtProtectVirtualMemory
hook is rather similar. Again, for all untrusted callers
the protection parameter is manipulated to being non-
executable. Since this system service can be used to
modify the protection settings of already loaded mod-
ules, we also have to intercept when it is invoked by
trusted callers. In that case it is first checked if the
affected module belongs to a trusted file or not. If it
is not trusted, the protection value again is modified to
non-executable. The reason behind this is to block the
execution of untrusted files.

The hook function of NtMapViewOfSection ensures
that after mapping a file into address space, all containing
memory fulfills our requirement. Since we cannot sim-
ply modify a call parameter like within the previously
mentioned hook functions, but have to operate directly
on the VAD [4] respectively PPTE entries, the hook first
calls the original system function. After that, different
actions are performed, depending on the fact if a data or
an image file was mapped.

For image files the effective page protection is taken
from the related PPTE. Therefore, our hook enumer-
ates all executable subsections of the related segment
object and manipulates their PPTEs. In case of trusted
files, only those PPTEs are modified which also indi-
cate writable memory. In such case the PPTEs remain
writable, but are no longer executable. Otherwise it
would be possible for an attacker to modify the in-
structions which are contained in memory that is asso-
ciated with legitimate code. By removing the execution
property, an attacker is still able to modify it, but we
detect the approach to ultimately execute the overwritten
instructions. In general, a PE file should never contain
executable sections which are also writable, but due to
the procedure described above we are able to detect those
as well.

If a data file is mapped, the situation is a bit different.

For those kind of files the effective protection setting is
taken from the associated VAD entry. When the related
memory is actually accessed, the PTEs are created and
their protection settings are directly taken from the VAD.
Therefore, again we check if the section belongs to a
trusted file or not. If it belongs to an untrusted file, the
VAD is modified to non-executable. If it is trusted, the
VAD protection is only modified if it is writable and
executable.

In addition to Section IV-B, we now present additional
details on how we check the caller. Figure 6 shows an ex-
ample to illustrate the relationship between the usermode
stack layout and trapframe values, when performing a
system call. The native API functions KiFastSystemCall
and NtCreateFile use frame pointer omission (FPO),
which means that they do not set up a full stack frame.
Therefore, the saved frame pointer EBP cannot be used
to locate their saved return addresses on the stack.
Nevertheless, those saved RET addresses can be obtained
from the raw usermode stack by inspecting the slots
pointed to by the stack pointer ESP and ESP+4. As
shown, the first usermode function with a full stackframe
can be reached via the saved EBP. All further calling
functions can then be enumerated by using the saved
EBP values, as long as they do not perform FPO. In that
case we would have to involve additional information
about the function’s prototype and local variable area in
order to further enumerate the stack frames. However,
all trusted callers we are using in our experiments set up
a full stack frame.

 RET of KiFastSystemCall

KiFastSystemCall: RET of NtCreateFile

NtCreateFile: Parameters
 RET of CreateFileW

CreateFileA:

Local variables
Saved EBP
RET of CustomFunction
Parameters

CreateFileW: Local variables
 Saved EBP
 RET of CreateFileA
 Parameters

Local variables
Saved EBP
RET of CreateFileA
Parameters

CustomFunction:

Local variables
Saved EBP
RET of caller
Parameters

TrapFrame

ESP

ESP + 4

EBP

FPO

Fig. 6: Stack Frames and Trap Frame

In order to verify that extracted ILC dumps really
consist of shellcode, we have used different methods.
One was to identify known shellcode instruction pat-

terns, which have been gathered from different sources.
Besides our experiences from other work in the past, we
also have analyzed the Windows shellcode stubs from the
Metasploit Framework[31], and we have manually ana-
lyzed all instruction sequences that have been dumped
by our system and that did not contain any of the already
known patterns. Examples of those patterns are:
• GetPC heuristics, e.g. jmp/call or fsetenv
• Memory Scanning techniques, e.g. directly calling

the system function NtAccessCheckAndAuditA-
larm with the int 0x2e instruction (Egg Hunting)

• very long nop-sleds followed by valid code
Some malicious documents use built-in features to

start a new process while using specially crafted pa-
rameters in order to exploit it. We have seen three
different applications that have been started in such
way: Internet Explorer (iexplore.exe), Outlook Express
(msimn.exe) and the Command Shell (cmd.exe). Two
examples of the used malicious parameters are shown in
Figure VI. Looking at these parameters it indeed seems
that these documents are malicious.

We have seen a lot of known malicious PDF docu-
ments that failed to execute ILC, but instead presented
some user dialog. Those dialogs can be either an error
message as a result of a broken PDF document or it can
be a specially crafted dialog which is shown on behalf
of the PDF document itself. Table VII presents some of
the most seen dialog messages.

The processes which have been started by the mali-
cious PDF documents fall into three classes: it is either
tried to perform malicious operations from within a sec-
ond extracted or downloaded malware, to open a benign
PDF document in order to hide the maliciousness of the
initial document or to gather essential information about
an exploited system. Table VIII enumerates examples
from each of those three classes.

mailto:
%/../../../../../Windows/system32/cmd".exe"" /c /q \"@echo off
&netsh firewall set opmode mode=disable&echo o 127.0.0.1>1
&echo binary>>1&echo get /ldr.exe>>1 &echo quit>>1
&ftp -s:1 -v -A>nul&del /q 1 &start ldr.exe&\" \"&\" "nul.bat

mailto:
%../../../../../windows/system32/mshta"" javascript:e=String.fromCharCode;
new ActiveXObject\(’wscript.shell’\).Run\(’cmd /c for /F %i IN
\(’+e\(39\)+’dir /b/s %Tmp%or˜1\\\\content.ie5*.pdf’+e\(39\) +’\)
DO findstr /B CZY %i>c:/a.vbs&c:/a.vbs’,0\);\.close\(\)//.cmd)

TABLE VI: Malicious Process Parameters

PDF parsing error messages:
• A 3D data parsing error has occurred
• An unrecognized token ’aaaaaaaaa’ was found
• The application is being terminated because of memory corruption

JavaScript errors messages:
• line 3 - GeneralError: Operation failed
• var ZUl8cVPKM33; var MpuldZ90lGs = new Array(); ...

Failed exploitation attempt messages :
• The application ”C:\AAAAA...” is set to be launched by this PDF file...
• Could not open the file ’/C/AAAAAAA AAAAAAAAAAAAAAAAAAAAAA...

TABLE VII: Dialog Messages of Malicious Samples

Obviously malicious processes:
• c:\a.exe
• c:\DOKUME∼1\user\LOKALE∼1\Temp\HotPAtcher.exe

New instances of the PDF viewer:
• c:\Programme\Adobe\Acrobat7.0\Reader\AcroRd32.exe”c:\DOKUME∼1\user\LOKALE∼1\Temp\ASA2010.final1.pdf”
• cmd.exe/cstartAcroRd32.exe”c:\DOKUME∼1\user\LOKALE∼1\Temp\1465.pdf”

Common Windows system information tools:
• c:\WINDOWS\system32\winver.exe
• c:\WINDOWS\system32\whoami.exe

TABLE VIII: Started Processes

