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Abstract

The Web’s functionality has shifted from purely server-side code to rich client-side
applications, which allow the user to interact with a site without the need for a full
page load. While server-side attacks, such as SQL or command injection, still pose
a threat, this change in the Web’s model also increases the impact of vulnerabilities
aiming at exploiting the client. The most prominent representative of such client-
side attacks is Cross-Site Scripting, where the attacker’s goal is to inject code of
his choosing into the application, which is subsequently executed by the victimized
browsers in the context of the vulnerable site.

This thesis provides insights into different aspects of Cross-Site Scripting. First, we
show that the concept of password managers, which aim to allow users to choose
more secure passwords and, thus, increase the overall security of user accounts, is
susceptible to attacks which abuse Cross-Site Scripting flaws. In our analysis, we
found that almost all built-in password managers can be leveraged by a Cross-Site
Scripting attacker to steal stored credentials. Based on our observations, we present a
secure concept for password managers, which does not insert password data into the
document such that it is accessible from the injected JavaScript code. We evaluate
our approach from a functional and security standpoint and find that our proposal
provides additional security benefits while not causing any incompatibilities.

Our work then focusses on a sub-class of Cross-Site Scripting, namely Client-Side
Cross-Site Scripting. We design, implement and execute a study into the prevalence
of this class of flaws at scale. To do so, we implement a taint-aware browsing en-
gine and an exploit generator capable of precisely producing exploits based on our
gathered data on suspicious, tainted flows. Our subsequent study of the Alexa top
5,000 domains shows that almost one out of ten of these domains carry at least one
Client-Side Cross-Site Scripting vulnerability.

We follow up on these flaws by analyzing the gathered flow data in depth in search of
the root causes of this class of vulnerability. To do so, we first discuss the complexities
inherent to JavaScript and define a set of metrics to measure said complexity. We
then classify the vulnerable snippets of code we discovered according to these metrics
and present the key insights gained from our analysis. In doing so, we find that the
reasons for such flaws are manifold, ranging from simple unawareness of developers
to incompatibilities between, otherwise safe, first- and third-party code.

In addition, we investigate the capability of the state of the art of Cross-Site Script-
ing filters in the client, the XSS Auditor, finding that several conceptual issues exist
which an attacker to subvert of its protection capabilities. In total, we show that the
Auditor can be bypassed on over 80% of the vulnerable domains in our data set, high-
lighting that it is ill-equipped to stop Client-Side Cross-Site Scripting. Motivated by
our findings, we present a concept for a filter targeting Client-Side Cross-Site Script-
ing, combining taint tracking in the browser in conjunction with taint-aware HTML
and JavaScript parsers, allowing us to robustly protect users from such attacks.





Zusammenfassung

Das Web hat sich gewandelt: von rein server-seitig implementierter Funktionalität
zu mächtigen client-seitigen Applikation, die einem Benutzer die Interaktion mit
einer Seite ohne Neuladen ermöglichen. Obwohl server-seitige Angriffe, wie etwa
SQL- oder Command-Injections, weiterhin ein Risiko darstellen, erhöht sich durch
die Änderung am Konzept des Webs auch die Auswirkung von client-seitigen An-
griffen. Der bekannteste Vertreter solcher Verwundbarkeiten ist Cross-Site Script-
ing (XSS), eine Code-Injection-Attacke, die darauf abzielt, dass der vom Angreifer
eingeschleuste Code im Browser seines Opfers mit der verwundbaren Applikation
interagieren kann.
Diese Arbeit beschäftigt sich mit verschiedenen Aspekten von Cross-Site Script-
ing. Zuerst legt sie die Funktionsweise von Passwort-Managern dar, die Benutzer
bei der Wahl sichererer Passwörter unterstützen sollen. Eine Analyse des Konzepts
an sich und aktueller Browser zeigt jedoch auf, dass Passwort-Manager anfällig
für Cross-Site Scripting-Angriffe sind, die das Stehlen von gespeicherten Zugangs-
daten ermöglichen. Basierend auf den Erkenntnissen stellt diese Arbeit daraufhin das
Konzept eines Passwort-Managers vor, der Zugangsdaten für eingeschleusten Code
unerreichbar macht. Die Evaluation in Hinblick auf Funktionalität und Sicherheit
zeigt, dass sich durch den vorgestellten Ansatz Vorzüge für die Sicherheit bieten und
der präsentierte Ansatz keinen negativen Einfluss auf bestehende Applikationen hat.
Anschließend liegt der Fokus dieser Arbeit auf einer Unterklasse von XSS, dem
Client-Seitigen Cross-Site Scripting. Sie präsentiert das Design, die Implementierung
und die Durchführung einer Studie, deren Ziel es ist, die Verbreitung von Client-
Seitigem XSS im Web zu erforschen. Dazu kombiniert die Arbeit einen Browser,
der Taint Tracking unterstützt, und einen Exploit-Generator, der basierend auf den
gesammelten Datenflüssen Exploits erzeugen kann. Die daraufhin durchgeführte
Studie zeigt auf, dass fast jede zehnte Webseite in den Alexa Top 5000 Domains
anfällig für Client-Seitiges Cross-Site Scripting ist. Anschließend analysiert diese
Arbeit die gefundenen Schwachstellen ausführlich, um die zugrunde liegenden Ur-
sachen von Client-Seitigem XSS zu erkunden. Dazu erläutert sie die Komplexität von
JavaScript, leitet daraus Metriken zur Messung der Komplexität von verwundbarem
Code ab, klassifiziert die erkannten Verwundbarkeiten und präsentiert die Schlüssel-
erkenntnisse. Dabei zeigt sich, dass Client-Seitiges Cross-Site Scripting sowohl durch
Unwissen von Entwicklern, aber auch durch die Kombination von inkompatiblem
eigenen und fremden Code verursacht wird.
Im Anschluss analysiert diese Arbeit aktuelle XSS-Filter und zeigt auf, dass mod-
erne Filter, wie der XSS Auditor, konzeptionelle Probleme aufweisen, die es einem
Angreifer erlauben, den Filter auf 80% der verwundbaren Domains zu umgehen.
Diese Arbeit präsentiert daraufhin ein neues Konzept, welches auf Taint Tracking
basierend von einem Angreifer eingeschleusten Code im HTML- und JavaScript-
Parser erkennt und stoppt. Dies ermöglicht es, Client-Seitiges XSS zu unterbinden,
wobei ein akzeptabler Performanz-Verlust und geringe False Positives entstehen.
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Chapter 1

Introduction

With the advent of the so-called Web 2.0, the Web has witnessed a shift from
purely server-side applications to the implementation of mature applications, such
as Google Mail, on the client side. This change in the client/server paradigm is
naturally accompanied by an increase in complexity of client-side code and, thus, a
higher potential for vulnerabilities in said code. As Michael Zalewski put it in his
book The Tangled Web (the de facto standard in browser security handbooks): “The
design flaws and implementation shortcomings of the World Wide Web are those
of a technology that never aspired to its current status and never had a chance to
pause and look back at previous mistakes.” (Zalewski, 2012).

The most prominent representative of the such flaws is Cross-Site Scripting (XSS),
a type of code injection vulnerability which allows an attacker to execute arbitrary
JavaScript code in the victim’s browser, enabling him to interact with a vulnerable
application in the name of his victim. Given the right circumstances, these attacks
can have an even more severe impact, as is highlighted by the Ubuntuforums.org
hack (Leyden, 2013). The attacker leveraged multiple Cross-Site Scripting flaws to
steal authentication tokens for an administrative interface, allowing him full access
to the SQL database containing, among other data, usernames and hashed passwords
for all users of the site. In addition to this high-profile case, Cross-Site Scripting is an
issue affecting even the most visited and audited sites, such as Google (Juenemann,
2012), Facebook and Twitter (Kafle, 2014).

In the most famous scenarios, an attacker tries to abuse a Cross-Site Scripting flaw
to extract authentication tokens, as witnessed in the Ubuntuforums.org hack. The
attacker may, however, also use a Cross-Site Scripting flaw towards other ends. As
the attacker’s code is executed in the browser of the victim, he can modify the
page’s content and script markup to his liking. Examples of such attacks range from
defacements or placing of fake content (Heise online, 2006) to phishing attacks (Heise
Security, 2006). This thesis investigates a different scenario, in which XSS can be
abused to steal stored credentials from password managers.

Cross-Site Scripting has been a known issue for almost 15 years at the time of
this writing (Ross, 2009). Around the year 2000, security engineers at Microsoft
coined the term for what is known today as Reflected Cross-Site Scripting. While
initially, Cross-Site Scripting was believed to be a server-side issue, Klein (2005)
later discussed another variant of XSS, namely DOM-based Cross-Site Scripting,
also referred to as Client-Side Cross-Site Scripting. Research in the previous years
has mostly focussed on detection and mitigation of the two server-side variants, i.e.,
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reflected and persistent XSS. These approaches range from static (Wassermann and
Su, 2008; Tripp et al., 2014) and dynamic analysis (Bisht and Venkatakrishnan,
2008) of code to the detection of malicious, injected code on the server (Johns et al.,
2008; Louw and Venkatakrishnan, 2009), in transport (Kirda et al., 2006) or in the
client (Ismail et al., 2004; Maone, 2007; Nadji et al., 2009; Bates et al., 2010; Pelizzi
and Sekar, 2012).

Only few researchers, however, have focussed on the detection and examination of
DOM-based Cross-Site Scripting (Saxena et al., 2010a,b; Criscione, 2013). Therefore,
this thesis, in addition to the highlighted attacks on password managers, focusses
on the exploration of Client-Side XSS. Our motivation is to gain insights into the
prevalence and nature of such flaws and, after having identified unique features of
this class of vulnerability, design a filter capable of robustly stopping Client-Side
Cross-Site Scripting attacks.

1.1 Contributions

This work consists of four major parts: we first present an analysis of browser-based
password managers with respect to their susceptibility against Cross-Site Scripting
attacks and propose a new design for more secure password managers. We follow
this discussion with the design, implementation and execution of a study aimed at
gaining insights into the prevalence of Client-Side Cross-Site Scripting in the wild
and provide an in-depth analysis of real-world flaws. Based on this knowledge, we
analyze the state of the art in Cross-Site Scripting filtering and after showing that
it is inadequate to protect users against this class of attacks, we discuss the concept
and evaluation of a new XSS filter. To summarize, this thesis makes the following
contributions.

Exemplifying the Impact of Cross-Site Scripting Flaws After presenting the
inner workings of the current generation of browser-based password managers, we
highlight the potential for Cross-Site Scripting attackers to leverage the password
managers’ features to their advantage. We outline that the fill-in behavior of pass-
word managers can be categorized in four dimensions and analyze several browsers
according to these categories. After this analysis, we present a study on observable
characteristics of real-world login forms. Doing so, we find that password managers
built into modern browsers are susceptible to an XSS attacker trying to extract
stored credentials from them. In addition, our analysis shows that Web application
developers do not deploy measures which would provide additional security against
such attacks. Based on these observations, we present the concept and implementa-
tion of a new type of password manager, which ensures that an injected Cross-Site
Scripting payload is unable to extract the stored login credentials. We evaluate our
approach with respect to the added security and also conduct a functional evalu-
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ation, showing that our approach is in no way inferior to the currently deployed
solutions, while effectively stopping the described attacks.

Investigating the Prevalence of Client-Side Cross-Site Scripting in the
Wild While research has focussed on the server-side variants of Cross-Site Scripting,
not much attention has been given to a sub-class of XSS, which was first discussed
by Amit Klein in 2005 and dubbed DOM-based or Client-Side Cross-Site Script-
ing (Klein, 2005). In order to gain an understanding of how prevalent this class of
vulnerabilities is on the Web, we present the design of a study aimed at determining
the number of vulnerable applications. To this end, we employ taint tracking inside
the Chromium browsing engine to allow for a precise tracking of data flows from
attacker-controllable sources to security-sensitive sinks. By combining the gathered
flow information with a precise exploit generator, we are able to find such flaws at
scale. Our empirical study on the Alexa top 5,000 domains discovered that almost
one out of ten domains carries at least one Client-Side Cross-Site Scripting vulnera-
bility, showing that this type of flaw is a serious risk to Web applications and their
users.

Analyzing the Causes for Client-Side Cross-Site Scripting Based on the
results from our empirical study, which allowed us to find a large body of real-world
vulnerabilities, we aim at finding out what the underlying issues causing this class of
Cross-Site Scripting are. To do so, we implement an infrastructure which allows for
persistent storage of vulnerabilities for later analysis as well as normalization of the
vulnerable code. After identifying metrics which allow us to measure the complexity
of the discovered flaws in different dimensions, we use our infrastructure to classify
each vulnerability in our data set. Doing so, we find that while a significant number
of flaws have a low complexity score, several real-world flaws exist which are hard to
spot and understand even by seasoned analysts. Based on key insights we gathered
throughout the execution of our study, we find that the underlying causes vary
from security-unaware developers and exploitable third-party libraries to complex
combinations of incompatible first- and third-party code.

Protecting Users from Client-Side Cross-Site Scripting Given the knowledge
that Client-Side Cross-Site Scripting is a severe and wide-spread issue, the final pillar
of this thesis analyzes protection schemes which are deployed in modern browsers.
We discover several issues related to the concept and placement of these measures,
which allow us to bypass their protection capabilities on 776 out of 958 vulnerable
domains in the Alexa top 10,000. After discussing the identified problems, we pro-
pose a new means of thwarting Client-Side Cross-Site Scripting in the browser. To
do so, we extend the taint tracking scheme used to discover the vulnerabilities to
ensure that taint is propagated into the JavaScript and rendering engines’ parsers.
In the JavaScript parser, we deploy a policy which allows user-provided data to only
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produce data tokens, i.e., string, numeric or boolean literals. Similarly, we ensure
that remote content can not be included from a remote host for which the origin is
derived from user-provided input. By doing so, we ensure that attacker-controllable
data may not be interpreted as code, thus stopping any XSS attack. We evaluate
our proposed filter with respect to false negatives, false positives and performance
overhead and find that it provides robust protection capabilities while only causing
low false positives and a runtime overhead between 7 and 17%.

1.2 Publications

This thesis is based on different papers from which at the time of this writing all but
one have been accepted to peer-reviewed conferences. This research was conducted
in collaboration with several co-authors. Therefore, in the following, we will discuss
the papers underlying each of the chapters and will state which parts of the research
were conducted by others than the author of this thesis.

Chapter 3 presents joint work with Martin Johns, which was accepted at AsiaCCS
2014 in Kyoto, Japan (Stock and Johns, 2014). In this publication, a conceptual
overview over server-side defenses, which is not part of this thesis, was conducted
by Martin Johns. The basis for Chapter 4 is the publication 25 Million Flows Later:
Large-Scale Detection of DOM-based XSS, which was accepted and presented at CCS
2013 (Lekies et al., 2013). The implementation of the exploit generation scheme,
which we briefly discuss in this thesis to allow for a complete understanding of the
work, was conducted by Sebastian Lekies. The same work was later presented at GI
Sicherheit 2014, providing additional insights into the vulnerabilities (Stock et al.,
2014a).

Chapter 5 is based on the publication From Facepalm to Brain Bender: Exploring
Client-Side Cross-Site Scripting to appear in CCS 2015 (Stock et al., 2015). The
implementation of the taint-aware Firefox engine was carried out by Stephan Pfist-
ner and, therefore, the details of this engine are kept to a necessary minimum in
this thesis. Lastly, the concept of a taint-aware Cross-Site Scripting filter was pub-
lished at USENIX Security 2014 (Stock et al., 2014b), whereas the investigation of
Auditor flaws was conducted by Sebastian Lekies and Tobias Müller worked on the
implementation of the filter itself. Therefore, the explanation of bypassable flaws is
abbreviated and no implementational details are presented.

In addition to the papers presented in this thesis, we have co-authored three more
papers. The work Eradicating DNS Rebinding with the Extended Same-Origin Policy
has been accepted and presented at USENIX Security 2013 (Johns et al., 2013),
discussing an extended concept of the Same-Origin Policy which robustly stops DNS
rebinding attacks.
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1.3 Related work

Considerable research has been conducted in almost all areas covered in this the-
sis. Rather than presenting several single results, this thesis presents a consecutive
discussion of threats caused by Cross-Site Scripting, studies into the prevalence and
nature of Client-Side Cross Site Scripting and, finally, a means of robustly stopping
such attacks. Thus, we opt to not interrupt this discussion with a presentation of
related work in each chapter.

Therefore, in the following, we present relevant related work on password manager
security, the detection of Client-Side Cross-Site Scripting vulnerabilities and analysis
of vulnerable JavaScript code as such. This is followed by work aiming at filtering
Cross-Site Scripting as well as the general idea of utilizing taint tracking to prevent
injection attacks.

1.3.1 Password Manager Security

Most research in the area of password managers focussed mainly on three different
aspects: generating pseudo-random and unique passwords for each single Web ap-
plication based one some master secret (Halderman et al., 2005; Ross et al., 2005;
Chiasson et al., 2006), storing passwords in a secure manner (Zhao and Yue, 2013;
Bojinov et al., 2010; Karole et al., 2010; Gasti and Rasmussen, 2012) and protecting
users from phishing attacks (Wu et al., 2006; Ye et al., 2005).

The problem of weak password manager implementations with respect to their vul-
nerability towards Cross-Site Scripting attacks has been discussed by browser ven-
dors since 2006 (O’Shannessy, 2006). However, researchers did not re-evaluate pos-
sibilities in terms of adopting new concepts to protect users from these kinds of
attacks. In a recent blog post, Ben Toews again brought up the issue of password
managers that were prone to XSS attacks (Toews, 2012). However, the question on
how to improve the security of password managers remained unanswered.

Furthermore, Gonzalez et al. (2013) present an attack similar to the scenario we
present in Chapter 3. They describe a network-based attacker that can inject code
of his own choosing into any unencrypted HTTP connection. To leverage this, they
injected multiple invisible frames into pages loaded by the victim and iterated
through the login pages of different domains. They automated their attack using
a self-developed tool called Lupin and were able to extract 1,000 passwords in 35
seconds from a victim’s machine. In their follow up work, as a countermeasure, they
block any JavaScript access to a password field once this has been filled by a pass-
word manager, therefore ensuring that the credentials can not be extracted in this
manner (Silver et al., 2014).
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1.3.2 Finding DOM-based Cross-Site Scripting Vulnerabilities

After its initial discovery by Amit Klein in 2005 (Klein, 2005), no large-scale studies
have been conducted to ascertain the prevalence of DOM-based Cross-Site Scripting.
The concept of FLAX, presented by Saxena et al. (2010b), is closest to the work we
present in Chapter 4. The authors utilize byte-level taint tracking to discover insecure
data flows in JavaScript. To achieve this goal, they translate the JavaScript code
under investigation to an intermediary language denoted JASIL which expresses
the operational semantics of a subset of JavaScript operations. This is contrary to
our approach, which relies on taint tracking embedded into a real browsing engine,
allowing us to achieve full language and API coverage. Apart from this difference,
they do not aim to generate exploits in a precise manner. Rather, based on the
observed data flows, they apply fuzzing to discover vulnerabilities.

Saxena et al. (2010a) also presented a concept of using symbolic execution to detect
DOM-based XSS vulnerabilities. Given a URL, they automatically generate test
cases to “systematically explore its execution space”. Rather than using existing
solvers, they propose a solver dubbed Kaluza which specifically aims at relevant
JavaScript operations such as string modification or regular expressions. They apply
their proposed tool Kudzu to 18 live Web applications, discovering two previously
unknown vulnerabilities as well as nine additional flaws previously contained in a
manually constructed test suite. Contrary to our approach, however, they do not
conduct an empirical study on a large set of real-world Web sites.

The concept of using taint tracking in the browser to detect Client-Side Cross-
Site Scripting was first pursued by DOMinator, developed by Di Paola (2012).
Similar to our approach, Di Paolo enhanced the underlying JavaScript engine —
SpiderMonkey inside Firefox — to allow for tracking of tainted data throughout
the execution of a JavaScript program. His work, however, does not rely on a byte-
level approach. Instead, DOMinator employs a function tracking history to store
the operations which were called on the original, tainted input, transforming it into
the final, still tainted string flowing into a security-critical sink. Therefore, contrary
to our presented work, this scheme does not allow for the automated generation
of exploit candidates and, thus, cannot be used to detect Client-Side Cross-Site
Scripting at scale.

Another approach which tries to detect DOM-based Cross-Site Scripting at scale
was presented by Criscione (2013). Criscione employs a fuzzing scheme inside a large
number of Chrome browsing instances to discover such flaws. Rather than generating
a precise payload, the goal here is to cause a parsing error which is caught by the
JavaScript debugger. If such an error occurs, the author assumes that an exploitable
flaw exists. His work also only aims at detecting such flaws in Google products and,
thus, no information is provided on how well this approach worked on real-world
applications.
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A special class of flaw related to DOM-based XSS was investigated by Son and
Shmatikov (2013). In their work, they focus on the newly added postMessage API of
HTML5, which allows Web pages to communicate across domain boundaries when
loaded in the same browsing instance. The API provides the developers with a
secure way of determining the origin of such a message. The authors, however,
analyzed postMessage receivers from the Alexa top 10,000 domains and found that
“many perform origin checks incorrectly or not at all”, allowing them to exploit
vulnerabilities on 84 popular sites. Doing so, they were able to conduct Cross-Site
Scripting attacks and inject arbitrary content into local storage. As our analysis in
Section 4.3.5 shows, these types of message are rarely encoded or sanitized and, thus,
might cause even more issues on the Web.

1.3.3 Analysis of Vulnerable JavaSript Code

In our work, we present an analysis of real-world vulnerable JavaScript code re-
sponsible for a number of Client-Side Cross-Site Scripting flaws. While no work has
focussed specifically on such flaws, previous research has been conducted in the area
of analysis of JavaScript errors.

Yue and Wang (2009) have conducted an empirical study aimed at characteriz-
ing insecure JavaScript practices on the Web, focussing on JavaScript inclusion and
dynamic generation of JavaScript and HTML code. To achieve this goal, they instru-
ment a Web browser to execute all discovered JavaScript code and record execution
trace information, which can be analyzed offline. In their study, they found that
96.9% of all Web pages use JavaScript and that 44.4% of the analyzed Web pages
utilize eval to generate code at runtime. In addition, they discovered that Web
developers tend to use document.write and innerHTML rather then their secure
equivalent createElement. Furthermore, their work revealed that 66.4% of the in-
vestigated Web applications include third-party script content, thereby increasing
the attack surface.

The inclusion of third-party content is also the focus of You Are What You Include:
Large-scale Evaluation of Remote JavaScript Inclusions (Nikiforakis et al., 2012).
The authors studied the Alexa top 10,000 domains for relations between the sites
and third-party content, also monitoring the evolution of included script content. In
doing so, they discovered that the amount of domains from which third-party content
is included has risen by more than 400% in the time between 2001 and 2010 and that
the Alexa top 10,000 domains include content from 2,249 unique domains. In several
cases, the domain names from which the content was to be included contained typos,
allowing an attacker to register these mistyped domain names and host malicious
script code on them, thereby providing him with the equivalent of a stored Cross-Site
Scripting flaw. In addition, they discovered that more than every fourth included
script uses document.write or eval and, thus, may introduce Client-Side Cross-
Site Scripting vulnerabilities.
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Other studies have focussed more on the use of eval in Web applications. Richards
et al. (2011) present different strategies to explore the JavaScript code contained
in applications and find that “between 50% and 82% of the most popular websites
used eval”. They find that the most common usage for eval is the parsing of JSON,
although the JSON.parse method provides an equivalent, yet secure functionality.
In addition, they identify a number of patterns for the use of eval and provide
functionally equivalent, but secure alternatives to use in Web applications. Similar to
this work, Jr. et al. (2011) studied the reliability of JavaScript Web 2.0 applications
in order to identify common errors. They found that regardless of the matureness
of an application, the same categories of errors were discovered on all analyzed
pages, but that there was no direct correlation between the use of eval and the
encountered errors. They did, however, find evidence to suggest that more complex
pages (such as news sites) are prone to contain more errors, i.e., determining that
code complexity is correlated to the number of discovered flaws.

In 2011, Guarnieri et al. (2011) discussed their tool Actarus which uses static ana-
lysis techniques to identify flawed JavaScript code. In their study, which analyzed
9,726 Web pages, they discovered 526 vulnerabilities contained in eleven domains,
which allow for JavaScript execution if exploited. To rid an application of insecure
uses of eval, Meawad et al. (2012) present their work dubbed Evalorizer. Based
on the patterns detected by Richards et al. (2011), they rewrite JavaScript code in
a semi-automated manner, replacing eval with functionally equivalent constructs.
To do so, they first instrument eval to log all calls to it in a proxy. Secondly, based
on the gathered information on the strings passed to eval, they patch the discov-
ered code. In total, they were able to successfully replace 97% of the encountered
eval calls, incurring virtually no overhead when running the patched code.

1.3.4 Filtering and Mitigating Cross-Site Scripting

Researchers have spent considerable time on ways of detecting, stopping or at least
mitigating Cross-Site Scripting exploits. This work has been conducted both on
the server (Ismail et al., 2004; Mui and Frankl, 2011; Bisht and Venkatakrishnan,
2008; Wassermann and Su, 2008; Louw and Venkatakrishnan, 2009; Johns et al.,
2008; Jovanovic et al., 2006) as well as the client side. As our work is contained
to client-side solutions, we limit the presentation of related work to client-side or
hybrid filtering approaches.

One of the first client-side mitigation schemes was presented in 2006 by Kirda et al.
(2006) in their work called Noxes. Rather than following a browser-based approach,
Noxes act as a Web proxy which can be configured system-wide and, thus, protects
the user while “requiring minimal user interaction and customization effort”. In
order to ensure protection, they use a combination of automatically generated and
user-provided rules which are enforced in their proxy system. Due to the fact that
it is located on the network layer, they are not able to provide protection against
Client-Side Cross-Site Scripting, in which the payload does not traverse the server.
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In their work Regular expressions considered harmful in client-side XSS filters, Bates
et al. (2010) analyze the concept employed by Internet Explorer’s Cross-Site Script-
ing filter. Doing so, they find that the used approach comes with several pitfalls
such as a high performance overhead, circumventable protection when using UTF-7
characters and even vulnerabilities which are caused by the filter. To tackle these
issues, they propose a new design for a Cross-Site Scripting filter, which is inlined
during HTML parsing and allows for “high performance and high precision”. In con-
trast to previous approaches, which used regular expressions to detect and block
Cross-Site Scripting payloads, they hook into the parser to conduct checks only for
dangerous elements, e.g., a script tag or an event handler. When such an element
is discovered, they use string matching to determine if the payload was contained in
the request and, if so, replace the payload with benign JavaScript code. We provide
more details on the inner workings of the Auditor in Section 6.1. They evaluated the
implemented filter — called the XSS Auditor — and found that in contrast to IE’s
filter, false positives are hard to induce and more importantly, no vulnerabilities can
be caused by the filtering approach. The XSS Auditor is currently deployed in all
WebKit- and Blink-based browsers such as Chrome or Safari, showing the maturity
of the approach.

On the basis of the XSS Auditor and several bypasses they identified, Pelizzi and
Sekar (2012) propose an extension of the aforementioned concept. Instead of search-
ing for the payload in the request, they split the request up into its parameters and
subsequently try to detect the parameter values inside the rendered document, i.e.,
determine if a request parameter is a substring of the payload rather than to check if
the payload is a substring of the request. They evaluated their approach in compari-
son to both NoScript (Maone, 2007) and the XSS Auditor, finding that it does incur
a higher number of false positives but decreases the number of false negatives. Their
evaluation, however, has a major drawback: as they only analyze Web sites in the
absence of an attacker, they do not account for induced false positives, which are
easy to achieve by appending parameters that contain snippets of code contained in
the legitimate response to a request.

A hybrid approach to a Cross-Site Scripting filter has been proposed by Nadji et al.
(2009). Based on their attacker model, in which an attacker tries to inject elements
or at least attributes into the DOM, they introduce the notion of Document Struc-
ture Integrity (DSI). To achieve its protection capabilities, the server-side code of
DSI separates trusted and user-provided data and serializes the document’s struc-
ture information for transfer to the client. In the client, they propose to patch the
JavaScript and HTML parsers such that quarantined data, i.e., data which was pro-
vided by the user, does not cause changes to the document’s structure. If any such
structural change is detected, they abort the parsing process. Their approach, how-
ever, lacks a means of protecting against Cross-Site Scripting attacks which occur by
insecure uses of eval, as these do not require a change in the document’s structure.
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1.3.5 Utilizing Taint Tracking to Combat Injection Attacks

The concept of using taint tracking has been applied by several research groups
to thwart different types of injection attacks, such as SQL injection, buffer over-
flow attacks and Cross-Site Scripting. In the following, we will discuss the use this
technique in previous research.

The Perl programming language has a built-in option that allows a programmer to
attach taint to user-controllable input (Allen, 1989). Also, taint mode is enabled by
default if a program is run under an effective user id different from the real user id.
Whenever a security-sensitive function such as system is called, Perl checks whether
the string originated from a user-controllable source, and, if so, refuses to conduct
the insecure function call.

In their work Diglossia, Son et al. (2013) propose a byte-level taint tracking ap-
proach built into PHP to track the flow of user-provided data through a Web appli-
cation to the SQL parsing engine. In the engine, they ensure that the user-provided
data can not be interpreted as code, thereby enforcing that no SQL injection attack
can occur. Rather than using additional storage to persist the taint information,
they translate each character of user-provided data to a specific character set which
is otherwise not used at runtime. This way, operations such as concatenation and
substring access can be conducted without the need to patch the underlying PHP
functions. Similar approaches to protect applications from SQL injections have been
followed by Pietraszek and Berghe (2005), Halfond et al. (2006), Xu et al. (2006),
Chin and Wagner (2009) and Papagiannis et al. (2011).

Rather than trying to prevent Cross-Site Scripting flaws from being exploited, Vogt
et al. (2007) attach taint information to critical data, such as form input or cookies.
They track the flow of such sensitive data throughout the application and patch all
means which an attacker might use to leak this data back to him such that no tainted
data may leave the client. While this allows them to thwart the extraction of secret
information, it does not mitigate the risks of an attacker controlling the victim’s
browser, e.g., by posting on a social network or interacting with an application in
any other way.

1.4 Outline

This thesis is structured into seven chapters. Chapter 1 presents the contributions
and publications of this thesis, discusses related work, and outlines the remainder
of the thesis. Following that, we give an overview over the technical background
required for a complete understanding of this work in Chapter 2.

Subsequently, Chapter 3 highlights an attack scenario in which Cross-Site Script-
ing can be used to extract stored credentials from password managers. After an
introduction to the concept of these attacks and browser-based password managers
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themselves, we report on an analysis of both password managers and fields on the
Web, finding that built-in password managers are prone to the outlined attacks and
that Web sites often do not properly protect their login fields. Based on our find-
ings, we then provide a secure and functionally equivalent concept to shield users
from such attacks. In the following Chapter 4, we present the implementation of an
infrastructure capable of detecting Client-Side Cross-Site Scripting at scale as well
as the execution of an empirical study on the Alexa top 5,000 domains. In doing
so, we find that almost every tenth domains carries at least one DOM-based XSS
vulnerability. Based on this study, Chapter 5 presents an in-depth analysis of the
discovered vulnerabilities by discussing and applying metrics aimed at quantifying
the complexities inherent to these vulnerabilities. Chapter 6 then highlights draw-
backs of currently deployed filtering approach and discusses the concept of a new,
taint-aware Cross-Site Scripting filter, capable of robustly protecting users against
DOM-based XSS. Finally, Chapter 7 discusses limitations and interesting paths for
future work, summarizes the thesis and concludes.
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Chapter 2

Technical Background

In this chapter, we lay the technical foundation for the remainder of this thesis.
First, we introduce common Web technologies such as HTML, JavaScript and the
interconnecting Document Object Model. We then follow with the discussion of the
Web’s principal security policy, namely the Same-Origin Policy. Based on these, we
then discuss the concept of Cross-Site Scripting attacks, which aim at bypassing
the Same-Origin Policy. In doing so, we discuss server- and client-side variants and
highlight their differences. We conclude the chapter with an introduction into the
concept of taint tracking.

2.1 Web Technologies

This section presents an overview over relevant Web technologies, namely HTML,
JavaScript and the DOM API, which acts as an interconnecting component between
HTML and JavaScript realm.

2.1.1 HTML and Browsers

In 1989, Tim Berners-Lee – at that time working for CERN – wrote a document
called Information Management: A Proposal, outlining his idea on how to keep up
with managing the large amounts of information acquired throughout CERN without
losing any of said information (Berners-Lee, 1989). Three years later, his proposal
was extended and enhanced, resulting in the first specification of the Hypertext
Markup Language, or short HTML (Connolly, 1992). In this initial specification,
HTML only consisted of a few tags, allowing the author of an HTML document to
set titles for documents, use anchors to link to other documents and use lists. Over
the years, HTML evolved to allow for inclusion of images, tables, forms and numerous
other entities. In recent years, HTML5 has been proposed and partially implemented,
adding powerful features such as video and audio elements and semantic elements
like header, footer or section (Hickson et al., 2014).

HTML itself is a text-based markup language, i.e., it contains information which
is parsed by a document viewer (more specifically, a browser) and subsequently
rendered according to the markup language’s rule set. Throughout the course of
this thesis, we will refer to the rendering window as a viewport. In their implementa-
tions, modern browsers allow for different types of these viewports, namely complete
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pages, popup windows and frames. A frame is an HTML element containing another
document, whereas frames can be stacked on top of each other.

In the form specified by the W3C and WHATWG (Web Hypertext Application
Technology Working Group, 2015), HTML as such is a static markup language.
This means that a server sends a static document to the browser, which subsequently
renders it according to the specification. As such, this does not allow for interaction
of the user with the document itself other than submitting a form to the server or
clicking a link. To allow for dynamic interaction with the document, JavaScript was
proposed and implemented.

2.1.2 JavaScript

The most commonly used scripting language in today’s Web applications is Java-
Script. Studies have shown that almost 90% of the top ranked Web sites use Java-
Script to enhance the user experience (W3Techs, 2015a; Richards et al., 2011). It
was initially designed for and built into a beta version of Netscape Navigator 2.0 in
1995 and called LiveScript then. Its target use was to allow interaction with other-
wise static HTML document, such as client-side verification of form inputs. Before
Netscape Navigator 2.0 left its beta stages, the scripting language was renamed and
hence forward called JavaScript. The term itself is nowadays trademarked by Sun
Microsystems, whereas the name of the specification of the language is ECMAScript.
Nevertheless, the commonly used term still is JavaScript and, thus, we will refer to
it as such through this thesis.

JavaScript is a scripting language which is shipped with every modern browser.
Even more so, it is nowadays also used to power server-side applications such as
node.js (Joyvent, Inc., 2015). In the browser, it provides a programmer with ample
means to execute complex programs. Although single-thread, it allows for a smooth
execution of a Web page’s code by employing an event-based concurrency model,
making it well-suited for the deployment inside a Web browser. We will discuss
more on the details of this model as well as other complexities inherent to both the
programming language and the browser as an environment in Chapter 5.

2.1.3 Document Object Model

On its own, JavaScript is not a very powerful language to be used in the browser.
In order to achieve its designated task, i.e., interact with the document, the need
for an API capable of accessing the rendered document occurs. Therefore, browsers
implement the so-called Document Object Model (DOM ), which serves as just this
API between JavaScript and the document. When an HTML document is parsed, it
is stored as a tree-like structure in the browser. The DOM provides functionality that
allows JavaScript to access and modify this structure as well as additional properties
such as cookie belonging to the current domain.
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URL access reason
http://example.org:8080/page1.html ✗ port mismatch
https://example.org/page1.html ✗ protocol mismatch
http://sub.example.org/page1.html ✗ domain mismatch
http://example.org/page2.html ✓ path not considered

Table 2.1: Same-Origin Policy in relation to http://example.org/page1.html

By combining the three components, namely the HTML rendering, the DOM API
and the JavaScript runtime engine, a programmer can easily create dynamic Web
applications, such as Facebook or Twitter. These powerful features, however, need
to be contained such that no program may interact with other pages, rendered in
the same browser. Therefore, the need for isolation emerges, which today is ensured
by the Same-Origin Policy, which we will outline in the following.

2.2 The Same-Origin Policy

With upcoming dynamic client-side technologies such as Java and JavaScript, the
need for protection between different applications arose. Although not using the
exact term, Netscape built a security policy into their Navigator 2.0, allowing only
resources of the same origin to interact with each other (Zalewski, 2012). The exact
source of the term Same-Origin Policy is unknown and browser vendors implemented
different concepts of origins for different parts of their engines. The W3C summarizes
this in their wiki, stating “There is no single same-origin policy”. The concept of an
origin was only formalized by Adam Barth in 2011 under the RFC 6454, denoting
that “two URIs are part of the same origin [..] if they have the same scheme, host,
and port” (Barth, 2011). This policy is enforced in both major browsing components,
namely the HTML rendering and the JavaScript engine.

The basic concept of the Same-Origin Policy for JavaScript is straight-forward: only
resources with the same origin, defined by the protocol, the domain and the port,
may interact with each other. Table 2.1 shows the different scenarios which require
checking by the Same-Origin Policy. If no port is explicitly provided, HTTP uses port
80 to establish a connection. Since the first listed resources is located on port 8080,
the ports mismatch and, thus, access is restricted. Similarly, the second URL points
to an HTTPS-hosted document, i.e., the protocol (as well as the port) mismatch. In
the next case, the domains do not match, although the shown URL is a sub domain
of example.org. Finally, for the last shown resource, access is granted although the
path differs, since this is not part of the Same-Origin Policy’s decision process.

The Same-Origin Policy therefore implements protection to resources of applications
that do not share the same boundaries (as denoted by their origin) and should
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therefore by definition not trust each other. There are, however, options to relax
this strict policy, allowing interaction even if the involved resources do not match.
Among these are domain relaxation (Zalewski, 2012), a way for domains located
under the same second-level domain to relax their origins to just this second-level
domain. To opt-in to this relaxed Same-Origin Policy, both involved documents
must explicitly set their document.domain property. In these cases, access is granted
across the sub-domain boundary. In addition, HTML5 introduced the concept of
postMessages (Hickson, 2015), which allow documents rendered in the same browser
to exchange message across domain boundaries. This allows, if used correctly, for a
secure means of exchanging data between these documents while not providing full
access to the other document, respectively.

In addition to the Same-Origin Policy for JavaScript interaction and DOM ac-
cess between documents, other types of Same-Origin Policies exist for XmlHttpRe-
quests (van Kesteren et al., 2014) or Flash (Zalewski, 2009b). For XmlHttpRequests,
the policy can be relaxed using Cross-Origin Resource Sharing (van Kesteren, 2014)
to allow cross-domain communication. Similarly, Flash provides a mechanism which
governs HTTP connections across domain boundaries, for which a Web site may
host a cross-domain policy file (Lekies et al., 2011), specifying which remote host
may connect to the target server.

Summarizing, the Same-Origin Policy for DOM access provides a basic security
measure that isolates mutually distrusting Web applications from each other, i.e., it
ensures that code hosted on an attacker’s site can not access sensitive data from a
different site, even though both sites are rendered in the victim’s browser at the same
time. Similarly, other such policies exist for XmlHttpRequests as well as third-party
plugins, such as Silverlight or Flash.

2.3 Cross-Site Scripting

The term Cross-Site Scripting was first used in a CERT report in 2000 (Ross, 2009),
to describe an attack in which an adversary is capable of injecting either HTML or
script code of his choosing into a Web site. Essentially, this type of attack constitutes
a bypass of the Same-Origin Policy since the code injected by the attacker is used to
gain access to resources which would normally not be accessible to it. More precisely,
the attacker’s code is injected into the context and, thus, origin of the vulnerable
Web application and can fully interact with the flawed domain (see above). The term
Cross-Site Scripting is often abbreviated as XSS rather than the apparently more
logical CSS. This, however, is done to ensure that no confusion can occur between
Cross-Site Scripting and Cascading Style Sheets (Etemad, 2011).

Over the years, three main forms of this attack have presented themselves. In the
following, we will briefly outline types of Cross-Site Scripting which are caused by
server-side vulnerabilities and will follow this with a presentation of vulnerabili-
ties caused by client-side vulnerabilities. Although literature (Cook, 2003; Kirda
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et al., 2006) usually refers to all client-side vulnerabilities as DOM-based Cross-
Site Scripting, we believe that a distinction must be made between non-persistent
and persistent vulnerabilities on the client side as well, since, e.g., the Web Storage
API provides a means of persistently storing data on the client, which may even-
tually cause a vulnerability. Important to note in this is the fact that – regardless
of whether the vulnerability is caused by server-side or client-side code – Cross-Site
Scripting ultimately leads to execution of attacker-chosen JavaScript code in the
victim’s browser and under the origin of the vulnerable Web site.

2.3.1 Server-Side Cross-Site Scripting

On the server side, we distinguish between two types of Cross-Site Scripting, namely
non-persistent and persistent XSS, which we will discuss in the following.

Non-persistent Server-Side Cross-Site Scripting As the name of this type of
Cross-Site Scripting, which is also often referred to as Reflected Cross-Site Scripting,
correctly suggest, this variant does not persistently store the attacker’s XSS payload
on the server. In contrast, vulnerabilities of this kind are caused by Web pages which
consume user-provided input (such as a GET parameter) and subsequently reflect
or echo it back to the user. Once an attacker has discovered such a vulnerability in
a Web service and built the appropriate payload, he has different options of luring
victims to the crafted URL. The first means to do so is by sending the resulting
URL to his victims, e.g., by e-mail spam. This, however, requires the victim to click
on a link containing the payload, which might be too obvious. The second way of
attacking his target is to lure them to a seemingly benign Web site under the control
of the attacker, and including a hidden iframe pointing to the crafted URL.

The stages of this attack are outlined in Figure 2.1. Initially, the attacker ensures
that the victim visits the crafted URL as discussed before. In the second step,
the victim’s browser loads the vulnerable Web page, including the attacker-chosen
payload as part of the URL. The server then reflects the user-provided (and attacker-
chosen) input back to the victim, whose browser ultimately executes the malicious
code. Depending on what the attacker wants this code to accomplish, it might either
extract sensitive information from the victim’s browsing session on the target site
or interact with the site in the name of the victim.

This form of Cross-Site Scripting requires some form of targeting by the attacker. He
can abuse such vulnerabilities only if the victim either clicks on an attacker-provided
link or visits an attacker-controlled Web site.

Persistent Server-Side Cross-Site Scripting In contrast to the previously men-
tioned, non-persistent Cross-Site Scripting flaws, persistent XSS (or Stored Cross-
Site Scripting) vulnerabilities occur when attacker-provided data is stored in the
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Figure 2.1: Stages of a Reflected XSS attack

target application. Common examples for such vulnerabilities include forum posts,
news comments or even attacker-chosen usernames for arbitrary services.

Figure 2.2 shows the way in which such an attack occurs. In the first step, after
having identified a vulnerable target application, the attacker sends his malicious
payload to be stored in that service. In an optional second step, the attacker then
tries to make his victims visit that page. Note, that this step can be omitted, as the
stored payload will be sent to any user of the vulnerable Web service. Subsequently,
any victim visits the Web service which now—rather than just serving the content
as intented by the Web page’s administrator—also contains the attacker-injected
payload. Therefore, this code is executed in the victim’s browser, potentially leaking
back sensitive information to the attacker.

The most notable differences between reflected and persistent Cross-Site Scripting
attacks are the fact that persistent XSS attacks can easily reach a wider range of
victims and, more importantly, the victim has no way of discerning the attacker-
provided code from the code that actually is part of the application. In cases of
reflected Cross-Site Scripting attacks, this is part of the request which is sent out
by the victim’s browser. Since the injected payload is not part of the request in
persistent XSS attacks, it is almost impossible for purely client-side based XSS
filters to detect and stop such attacks.

2.3.2 Client-Side Cross-Site Scripting

Next to server-side Cross-Site Scripting vulnerabilities, a second class of XSS flaws
exist: Client-Side Cross-Site Scripting. Initially formalized by Klein (2005), these
types of Cross-Site Scripting have also become known under the then-coined term
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Figure 2.2: Stages of a Stored XSS attack

DOM-based Cross-Site Scripting, and subsume all types of vulnerabilities that are
caused by client-side rather than server-side code. Similarly to server-side function-
ality which allows for dynamic generation of parts of the response based on user-
provided inputs, client-side JavaScript allows a programmer to dynamically change
a page’s content using either document.write, innerHTML (or its derivatives) as well
as execute dynamically generated JavaScript code using eval.

While this functionality allows for a great deal of flexibility on the part of the Web
programmer, improper use of user-provided data in conjunction with these sinks
can lead to Cross-Site Scripting vulnerabilities. Listing 2.1 shows an example of
such a vulnerability. The purpose of this snippet is to simply inform the user of the
current URL by writing it to the document. Although the example is fabricated,
we encountered real-world examples similar to this, especially in conjunction with
documents indicating that a URL was not found (see also Section 5.3.5).

document.write("The current URL is " + location.href);

Listing 2.1: Example of a Client-Side Cross-Site Scripting vulnerability

An attacker can abuse this flaw in a straight-forward manner: the used property href
of the location object contains the URL of the page which is being visited, includ-
ing the hash fragment. In Internet Explorer and Chrome, this is not automatically
encoded when retrieved from the DOM (Zalewski, 2009a). Therefore, the attacker
can lure his victim to the URL http://vuln.com/#<script>alert(1)</script>
to trigger execution of the alert function (or any other arbitrary JavaScript func-
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Figure 2.3: Stages of a Client-Side XSS attack

tion of his choosing), as highlighting in Figure 2.3 (1). In addition to the benefit
that the fragment is not encoded, it is also not sent to the server when the client
conducts the request (2). This way, the injected payload is not visible in the server
logs, severely limiting the chances of attack detection by the server administrator.
In the stage (3), the vulnerable code is retrieved from the server. We assume that
the code shown in Listing 2.1 is now executed in the browser of the victim. Rather
than simply opening an alert box, the attacker may now use this to leak data, such
as session cookies, back to his server (4).

Apart from sinks like eval or document.write, which provide an attacker with a
means of directly injecting JavaScript code or HTML markup, the assignment of
attacker-controllable values to security-sensitive DOM properties, such as a script
tag’s src property also fall into the category of Client-Side or DOM-based Cross-Site
Scripting. In the specific case of script.src, an attacker can retrieve script code
from a server of his choosing without having to inject any HTML markup.

Although academia typically only distinguishes between three kinds of Cross-Site
Scripting, namely persistent, reflected and client-side XSS, we believe that an addi-
tional distinction must be made between reflected and persistent Client-Side Cross-
Site Scripting.

In the sense of Client-Side Cross-Site Scripting, additional security-sensitive sinks
exist, which — given the right circumstances — can be used by an attacker to
inject his malicious payload. Among these are assignments to cookies or the Web
Storage API (World Wide Web Consortium, 2013). The latter provides a means of
storing large amounts of data on the client. As Lekies and Johns (2012) observed,
this feature can be used to store code on the client, which is later passed to eval.
Thus, in cases where user-controllable input is provided to the Web Storage and
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subsequently passed to eval, an attacker can leverage this to conduct a persistent
client-side XSS attack. Similarly, cookies provide Web developers with a means of
storing (albeit smaller amounts of) data on the client. Thus, we consider these types
of exploitable flaws persistent Client-Side Cross-Site Scripting vulnerabilities.

Sources and Sinks As already mentioned, several sinks for a vulnerable flow of
attacker-controlled data exist. The DOM XSS Test Case wiki (Di Paola, 2010) lists
several vectors for data which might be controllable by an attacker, such as the URL,
the name of the current window, cookies or the referrer. Albeit not all of these are
easily controllable, they all provide a means for an attacker to potentially introduce
data of his choosing to a Web application. Therefore, we initially consider all these
sources in the sense of Client-Side Cross-Site Scripting.

Next to the sinks such as innerHTML, eval or the Web Storage API, other APIs exist
in the JavaScript and rendering engine which, if provided with attacker-controllable
data, may lead to undesirable results up to code execution. Although these sinks
do not directly lead to code execution, they may be abused to enforce changes in
the state of the application, which may eventually lead to a Cross-Site Scripting
vulnerability. Therefore, in the following, we will refer to all such functions as sinks.

2.4 Taint Tracking

The term taint tracking refers to a technique which is used to track the flow of data
throughout the execution of a program (Schwartz et al., 2010). The process can
conceptually be split up into three stages: taint introduction, taint propagation and
taint checking.

In order to track the flow of a piece of data, such as a string, throughout the program,
the object has to be tainted. Depending on the implementation and context of taint
tracking, this can either be done automatically, e.g., by tainting any data which
originated from a read system call (Bosman et al., 2011), or by manually tainting
it. Taint can be stored in different granularities, e.g., using only a single bit to mark
a string as tainted or employing a per-character tainting approach.

The next important aspect of taint tracking is the propagation of taint. Again,
depending on the context, different strategies can be applied to allow for tracking
of explicit and implicit flows (King et al., 2008). For explicit flows, especially in
regards to strings, only functions which modify strings must be patched. In contrast,
implicit flows, such as the assignment of a variable depending on whether a certain
character is upper or lower case, require a different strategy. For an XSS attacker
trying to inject his malicious code into an application, only explicit flows have to
be considered. Any protection or detection approaches are highly dependent on a
sound implementation of taint propagation, since loosing the taint would undermine
these undertakings.
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Finally, the last pillar of taint tracking is taint checking. In the scenario of a Cross-
Site Scripting attack, which we covered in the previous sections, taint checking must
be performed whenever a string is passed to a security-sensitive sink. Similarly, in the
realm of binaries, taint checking is often conducted when assinging the instruction
pointer (Bosman et al., 2011). The actions, which are taken when the taint check
confirms the presence of tainted data, are manifold, as we will discuss in Chapters 4
and 5.

2.5 Summary

In this chapter, we covered the technical background relevant to this thesis. First, we
introduced the Web technologies HTML and JavaScript as well as the bridge between
them, namely the Document Object Model. We then discussed the principal security
policy governing all client-side interaction, the Same-Origin Policy. Subsequently,
we introduced the term Cross-Site Scripting and outlined its server- and client-side
variants, specifically discussing the sources and sinks relevant for Client-Side Cross-
Site Scripting. Finally, we presented the concept of taint tracking, which we will
employ in Chapters 4, 5 and 6 for the detection, in-depth examination and blocking
of Client-Side Cross-Site Scripting exploits, respectively.
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Chapter 3

XSS in Action: Abusing Password Managers

The most commonly known attack scenarios for Cross-Site Scripting vulnerabilities
are the extraction of session credentials (typically in the form of cookies) as well
as the interaction with the application in the name of user, e.g., posting content
in a social network. However, XSS allows for injection of arbitrary JavaScript and
HTML, thus allowing an attacker to change the vulnerable Web site in a manner of
his choosing. This can potentially be abused to conduct phishing attacks, without
typical indicators such as an odd domain (Dhamija et al., 2006). While this type of
attack still requires the user to insert his credentials before they can be retrieved by
the attacker, password managers can be used to steal credentials without the user’s
knowledge.

In the following, we outline how password managers’ features can be leveraged to
retrieve stored passwords. After a discussion of the general attack pattern, we inves-
tigate the proneness of the current generation of browser-based password managers
to such attacks. Finally, we present an extension of the concept currently employed
by password managers which is not susceptible to such attacks.

3.1 Attacking Browser-based Password Managers

In this section, we first introduce the implementation of the current generation of
browser-based password managers. After that, we discuss the general attack pattern
usable for stealing passwords via Cross-Site Scripting vulnerabilities and follow up
with means of leveraging password managers to automate these kinds of attacks.
Afterwards, we give an overview of specific attack scenarios aiming to extract cre-
dentials from password managers.

3.1.1 Functionality of a Password Manager

As studies by Ives et al. (2004) and Mazurek et al. (2013) have shown, users tend
to choose bad passwords and/or reuse passwords over multiple sites, therefore un-
dermining the security of their login credentials. To support users in employing a
more secure password strategy, browser as well as third-party vendors have imple-
mented password managers capable of storing these secret credentials for the users.
This allows users to choose more complex and possibly random passwords by lift-
ing the burden of remembering numerous complicated passwords. Hence, password
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managers can be beneficial for supporting better security practices in password han-
dling.

Current implementations of password managers in browsers all work in a similar
manner. Just before a form is submitted, the form is checked for password fields.
If any such field exists, the username and password fields are determined and their
values are subsequently extracted. These extracted credentials are then – along with
the domain they were entered into – passed to the password manager. The password
manager’s database is subsequently checked for a matching entry, whereas no action
is taken if the extracted credentials already match the stored ones. If, however, no
matching entry is found, the user is prompted to approve storing of the password
data. Analogously to that, if an entry for the same username but different password
is found, the user is prompted to consent to updating the stored data. This pro-
cess only works with forms that are submitted, either by the user clicking a submit
button or by JavaScript invocation of the submit() method of that form. Accord-
ing to Mozilla (Dolske, 2013), storing passwords which are sent using JavaScript
XMLHttpRequests is not supported since no actual submission of the form takes
place.

In turn, if the user opens a page containing a username and password field, the
password manager is queried for entries matching the URL (or domain, depending on
the implementation). If an entry is found, the fields on that page are automatically
filled with the previously persisted credentials. Hence, the user then only has to
submit the form to log into the application.

3.1.2 Stealing Passwords with XSS

Cross-Site Scripting gives an attacker ample opportunity to steal secret data from
his victim. Typically, login forms for Web applications are realized using two input
fields, which the user fills with his username and password, respectively. By design,
JavaScript may interact with the document and thus is also capable of accessing the
username and password field. This feature is often used by applications to verify that
certain criteria are met, e.g., ensuring that the username is a valid e-mail addresses.
However, this functionality also allows an attacker to retrieve the credentials utilizing
Cross-Site Scripting. If the attacker can successfully inject his own JavaScript code
into the login page, that code can extract the credentials entered by the user and
subsequently leak them back to the attacker. This kind of vulnerability obviously
only works if the user is not yet logged in when clicking on a crafted link. However,
this is where password managers come to the aid of the attacker, as we discuss in
the following.

3.1.3 Leveraging Password Managers to Automate Attacks

Password managers provide a convenient way for users to automate parts of logins
into Web applications. To make the login as simple and comfortable as possible,
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Matching Requirements for the URL and Form The first factor we examined
was the way in which password managers react to changes both to the URL and the
form itself. Password managers often fill passwords regardless of the context, as long
as the domain matches, and, potentially, other easily fabricated indicators such as
field names and types or form action are present.

When a password manager does not explicitly store the complete form the creden-
tials were stored for, but rather only the origin, an attacker can easily extract the
credentials. To achieve this, he can abuse a Cross-Site Scripting vulnerability on an
arbitrary part of the application to inject his form and corresponding JavaScript
code. This form is then filled by the password manager and the stolen data can be
sent to the attacker. In cases where a password manager also does not store the
names of the fields the data was stored from, the attack is even easier since an at-
tacker does not need to craft a form specifically mimicking the login page of the
target application, but may use a generic form. This allows him to automate the
attack for multiple vulnerable pages in a very simple manner.

Viewports If a password manager explicitly checks the URL rather than the origin,
the attacker has to force the victim’s browser to load the original login page to make
the password manager fill out all the relevant fields. Hence, the second criterion we
found is the difference in handling viewports. In our notion, a viewport can either be
a top frame, a sub frame or a popup window. With respect to that, the interesting
question is whether a password manager still fills out forms if they are not located
in the top frame of a page.

If login field data is inserted regardless of the viewport, an adversary can place a hid-
den frame, pointing to the login page, inside the vulnerable document. As enforced
by the Same-Origin Policy, any page may only access another document’s content
and resources if the protocol, the domain and the port of both involved documents
match. As we assume the attacker has control over some page inside the vulnerable
Web application, he can therefore access the aforementioned frame’s content, thus
enabling extraction of the credentials that were filled in by the password manager.
If a password manager does not automatically fill in the values of interest to the at-
tacker, or the application itself forces not to be framed using the X-Frame-Options
header (Microsoft, 2009) or the Content Security Policy frame-ancestors direc-
tive (World Wide Web Consortium, 2015), the login page can be opened in a popup
window. Still operating under the assumption that vulnerable and login page are of
the same origin, the attacker’s code can retrieve the data from the opened popup.

User Interaction As a third distinguishing feature of the examined password man-
agers, we identified user interaction, i.e., whether the user has to somehow interact
with the password manager before it fills out the forms, e.g., by clicking or typing
into the password field. If a given password manager requires such interaction, fully
automated XSS password stealing attacks are not feasible.
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However, in such cases, an attacker can attempt to conduct a ClickJacking (Rydst-
edt et al., 2010) attack. ClickJacking attacks work by tricking the user to interact
with a security-sensitive Web UI without his knowledge. In the general attack case,
the adversary loads the document which contains the security-sensitive UI into an
iframe and hides the frame from the user’s eyes via CSS properties, such as opacity.
Subsequently, he overlays the targeted (and now invisible) UI elements with unsus-
picious elements and motivates the user to click them, for instance in the context
of a game or a competition. If the user falls for the adversary’s bait, he involuntary
interacts with the hidden UI.

Using this attack, the adversary can trick the victim to interact with the password
field in the required fashion, thus, causing the password manager to fill the field with
the stored value.

Adherence to the Autocomplete Attribute The fourth and last dimension we
found was the adherence to the autocomplete attribute for fields. According to the
W3C standard (Hickson, 2005), a browser must not store data that is inserted into
input fields which have autocomplete set to off.

From the attacker’s point of view, this feature is very interesting. If a password
manager does not respect the autocomplete value when storing the credentials
but only when later filling out the input fields, it is still susceptible to attacks. In
order to extract password data from clients, the adversary can simply add a second
form with the same names and input types to the document, this time without the
autocomplete attribute, which is then filled with the persisted credentials.

After having outlined the four dimensions in which a password manager’s behavior
can be categorized, the following section discusses in detail how the browser we
examined behaved with respect to these dimensions.

3.2 Exploring the Password (Manager) Landscape

As explained above, several potential XSS attack patterns on password managers
exist. To examine the degree to which these theoretic attacks are applicable with
the currently deployed password managers and Web sites, we conducted two com-
prehensive studies. For the first, we systematically examined the built-in password
managers of the current browser generation. Furthermore, we conducted a large scale
study on how password fields are used by existing, real-world Web applications.

3.2.1 Password Managers

In this section we present the results of our experiments on the behavior of different
modern browsers. Our tests were aimed in the four different dimensions previously
discussed in Section 3.1.4.
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To ensure a broad coverage of internet users, we opted to examine Google Chrome
(version 31), Mozilla Firefox (version 25), Opera (version 18), Safari (version 7),
Internet Explorer (version 11) and the Maxthon Cloud Browser (version 3). Although
the latter one might not be as well-known as the other candidates, it is one of the
options that is shown to users installing the latest Windows versions. Hence, we
looked at the behavior of this browser along with the previously named.

Before investigating the behavioral changes when tampering with the form or the
URLs the form was located in, we first analyzed the general fill-in behavior of our
test subjects according to the specific attacks discussed in Section 3.1.4.

Filling only in the Top Frame To assess whether password managers would fill
out forms only in top frames, we created a page that framed the original, unchanged
login page we had initially stored our credentials for. Apart from Internet Explorer,
which refused to insert any data, all browsers filled in the username and password
field.

Explicit User Interaction Next, we investigated whether a browser would ac-
tually require any interaction from the user to fill in passwords. Again, Internet
Explorer was the positive outlier, being the only browsing engine that required any
form of interaction. In Internet Explorer, the user has to manually put the focus to
the username field and is then presented with a dropdown menu allowing him to
select which credentials he wants to insert. The user then has to explicitly click on
an entry to trigger the browser’s fill-in action. Also, this is done properly outside
of the DOM, thus the ClickJacking attacker discussed in Section 3.1.4 can also not
force the filling of password fields.

URL Matching We assume that the attacker wants to steal the credentials from
his victim in a stealthy manner. We consider the following example: an application
hosts its login at /login. The attacker has found a XSS vulnerability at /otherpage
which he wants to abuse to steal the stored credentials. Hence, if a password manager
only supplies the password to the exact URL it stored the passwords for, the attacker
would have to open a popup window or embed a frame to the login page to steal the
secret data. However, opening a popup window is very suspicious and therefore not
desirable. Also, framing the login page in an invisible frame might not work due to
X-Frame-Options headers. In our study, which we discuss in Section 3.3.3, we found
that only 8.9% of login pages make use of this header to ensure that they are not
framed. Thus, in our work, we wanted to determine how easy it was to make password
managers fill in the stored credentials into forms if the URL did not match the one
the password was originally stored for. To examine the browsers’ behaviours, we
created a simple Web application with a login form. We visited this login and let the
password manager under investigation save the credentials that we entered. We then
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created multiple other pages running under different protocol (HTTP vs. HTTPS),
different ports, different (sub-)domains as well as changing paths to determine what
the implemented matching criteria were for all our test subjects. In the following,
we discuss the results of the analysis of the aforementioned browsers.

• Google Chrome: Our tests showed that changing the protocol, sub domain or port
lead to the password to not be filled in anymore. In contrast, when visiting a
form running under a different path, Chrome still inserted the stored credentials.
This leads us to reason that Chrome stores the password alongside their origin
in the sense of the Same-Origin Policy, namely the tuple of protocol, domain and
port, which is also supported by the source code (Chromium Developers, 2009).

• Our second candidate was Firefox. Similar to the behaviour Chrome exhibited,
Firefox also refused to fill out login fields if either protocol, (sub-)domain or port
were changed. It also behaved in a similar manner to Chrome with respect to
a change in the path – still automatically setting the username and password
fields to the stored values.

• Both, Opera and Safari behaved in a similar manner. With changed origins, they
refused to fill out forms, whereas the path was not taken into consideration in
the decision whether to insert the stored credentials or not.

• Internet Explorer: In contrast to all the aforementioned, Microsoft’s Internet
Explorer apparently stores the complete URL of the form it saved the password
data for. In our tests, it showed to be the only browser that did not insert stored
credentials even if only the path changed.

• Maxthon Cloud Browser: Most interestingly, in this browser the passwords were
apparently only stored coupled with the second-level domain they stemmed from.
In our tests, the browser would still fill in password fields even if the protocol,
sub domain, port or path changed.

Summarizing, our tests showed that out of the most commonly used browsers on
the Web, all but Internet Explorer gladly fill forms on any part of the same Web
application, whereas the application borders are determined by the Same-Origin
Policy. The Maxthon Cloud Browser even fills in credentials if only the same second-
level domain is visited – ignoring both the protocol and the port of resource – making
it even easier for an attacker to extract the passwords from its storage.

Form Matching After having examined how browsers treat changes in the URL
with respect to their password managers, we analyzed what kind of information
browsers would store on the actual form. To gain insight into this, we built another
set of test pages – this time with different modifications to the login form itself. Our
test pages were different from the original form in several aspects, which we discuss
briefly in the following.
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For the first test case, we removed the action and the method of the form. Our second
modification was the removal of the names of all fields in the form, whereas the third
change was to only change the names of all fields rather than removing them. For the
next part of our analysis, we removed the types from all fields, essentially resetting
them all to type=text. We then derived a minimal form as shown in Listing 3.2,
only consisting of two input fields with random names, no action or method as well
as no additional submit buttons. After these changes to the form fields, we build a
final testing page, setting the autocomplete attribute for the password field to off.
According to the W3C specification (Hickson, 2005), this value indicates the browser
should neither store the data inserted into that field nor automatically fill it in later.

<form>
<input name="random1">
<input name="random2" type="password">
</form>

Listing 3.2: Minimal HTML form used in our tests

Utilizing the different created forms, we now discuss the matching criteria with
respect to the structure of the form presented to the password manager.

• Google Chrome: We observed that neither action nor method of the form were
criteria in the decision, whereas the same held true for changes to the names
of the fields we provided. However, if we presented Chrome with fields without
any name, it would not provide the credentials to the form. Chrome did not
strictly adhere to the autocomplete setting of the password field, prompting the
user to save the password nonetheless. It did however adhere to the setting when
inserting the password into the form – nevertheless, we could extract secret data
by adding a second form, as described in Section 3.1.4. Since the matching is
done on a structural basis, the minimal form shown in Listing 3.2 was sufficient
for this attack.

• Firefox also only performed matching against a form’s structure, not the content
itself. In contrast to what we had seen with Chrome, Firefox did, however, also
insert credentials into forms that only contained input fields without names. Also
unlike Chrome, Firefox adhered to the autocomplete attribute – if either field
had this set to off, Firefox would not store any data. Due to these factors, inject-
ing the minimal form would still trigger the auto-fill functionality of Firefox’s
password manager.

• Opera and Safari again behaved alike, filling in passwords into the minimal
form but not into forms containing only input fields without names. On our test
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machine, a Macbook running OS X Mavericks, we discovered that both Opera
and Safari also use the OS X keychain to store their passwords. Thus, after having
stored a password in Opera, Safari automatically filled out our fields although we
had not previously stored a password in its database. While Opera – similar to
Chrome – also offered to store passwords if at least one of the posted fields did not
have autocomplete set to off, Safari behaved like Firefox and did not save any
data in that case. Again, the test subjects only performed structural rather than
content matching, leading to both of them also auto-filling the minimal form.
Contrary to Firefox, both browsers would not fill input fields without names.

• Internet Explorer: As explained in Section 3.2.1, Internet Explorer was the only
browser that required any form of user interaction to fill in the passwords. To
nevertheless check the functionality, we manually interacted with the browser
to ensure that it would fill in the username and password. In that, we discov-
ered that Internet Explorer applies matching criteria in the same manner as
Firefox, namely inserting passwords even into forms containing only input fields
without any name. In terms of adhering to the autocomplete attribute, Internet
Explorer did respect the value by not saving any information if either field had
the autocomplete value set to off.

• Maxthon Cloud Browser: Not unlike the insecure behaviour it showed regarding
matching the URL, the Maxthon Cloud Browser was not at all strict in matching
the form, even filling in input fields that had no name and – most notably – that
had autocomplete set to off.

To sum up: Most browsers are very relaxed in terms of matching criteria. All but
Internet Explorer would still fill in passwords if only the origins matched, whereas the
Maxthon Cloud Browser even only took the second-level domain into consideration
for its decision. Similar to that, matching against a form was mostly performed
on a structural level, i.e. meaning that any two fields were filled out if the latter
was a password. According to Mozilla (Dolske, 2013), this is done by design as a
convenience feature. Looking at the results, the tests with different forms showed
that the attacker only has to create a minimal form as shown in Listing 3.2 to trick
the browser’s password managers into providing the stored passwords from any site
that uses two input fields for its login dialogue.

All the previously discussed results are depicted in Table 3.1, in which ✓denotes
that the criterion must match. For the minimal form, ✓denotes that the minimal
form was sufficient, whereas ✓for autocomplete means that the browsers would not
save passwords if the autocomplete attribute was set to off.

3.2.2 Password Fields

To obtain a realistic picture on how password fields are currently used in practice and
to which degree real-world password dialogs are susceptible to the attacks discussed
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sub any name name input type min. auto-
port path domain required match match form complete

Chrome 31 ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗
IE 11 ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
Firefox 25 ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓
Opera 18 ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗
Safari 7 ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓
Maxthon 3 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Table 3.1: Overview of tested browsers and their matching criteria

in Section 3.1, we conducted a survey on the password fields of the top ranked Web
sites according to the Alexa index (Alexa Internet, Inc., 2015).

Methodology To locate and analyze password fields in real-world Web sites, we
conducted a lightweight crawl of the top 4,000 Alexa sites. As many modern sites rely
on client-side markup creation and DOM manipulation via JavaScript, we chose a
full-fledged browser engine as the technical foundation of our crawling infrastructure:
We implemented an extension for the Chrome browser, that pulls starting URLs from
a backend component, which are subsequently visited by the browser. This way, we
can not only examine the same final DOM structure that is also presented to the
browser, but this also gives us the opportunity to observe client-side actions after a
password has been entered (more on this below). Our Chrome extension consists of
the following JavaScript components:

• A single background script, which is able to monitor network traffic and distribute
the crawling process over multiple browser tabs.

• Multiple content script instances, one for each Web document that is rendered
by the browser. A content script is instantiated as soon as a new document is
created by the browser engine. This script has direct access to this document’s
DOM tree. However, the script’s execution context is strictly isolated from the
scripts running in the document.

• Thus, the content script injects a user script directly into the page’s DOM.
Unlike the content script, which is cleanly separated from the document’s script
environment, the user script runs directly in the same global context as the
document’s own script content. This in turn grants us the ability to wrap and
intercept native JavaScript functions, such as XMLHttpRequest or getter/setter
properties of HTML objects (Magazinius et al., 2010).

Using this infrastructure, our extension conducted the following steps: The home-
page URL of the next examination candidate is pulled from the backend and loaded
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criterion number of sites % rel. % abs.
Password found 2143 100,0 % 53,6 %
PW on HTTPS page 821 38,3 % 20,5 %
Secure action1 1197 55,9 % 29,9 %
autocomplete off 293 13,6 % 7,3 %
X-Frame-Options 189 8,9 % 4,7 %
JavaScript access 325 15,1 % 8,1 %

Table 3.2: Recorded characteristics of the Alexa top 4,000 password fields

into one of the browsers tabs. After the rendering process has terminated, the DOM
tree is traversed to find password fields. However, most sites do not immediately
contain the login dialog (if they have one at all) on their homepages. Instead, it is
usually contained in a dedicated subpage, linked from the homepage. Hence, in case
no password field could be found on the homepage, all hyperlinks on this page are
examined, if they contain indicators that the linked subpage leads to the site’s login
functionality. This is done via a list of indicative keywords, consisting of, e.g., “sign
in", “login", or “logon". If such a link was found, the browser tab is directed to the
corresponding URL and this document is examined for password fields. While this
methodology is apparently incomplete, e.g., due to the keyword list only contain-
ing terms derived from the English language, turned out to be sufficient to find a
representative number of password fields, as we discuss in Section 3.2.2.

If at least one password field was found, important characteristics of the document
were recorded, including the hosting document’s URL, the corresponding HTML
form’s action attribute, as well as the presence of autocomplete attributes and
X-Frame-Option headers.

Furthermore, to observe potential client-side processing after a password has been
entered, we instrumented the get-property of discovered password fields using Java-
Script’s Object.defineProperty API (Mozilla Developer Network, 2013), after the
page’s rendering process has terminated, but before the page’s own scripts are ex-
ecuted. This allows us to intercept, record and then forward all requests to access
the value of the field.

Subsequently, after the page’s scripts have been run, the user script simulates user
interaction with the password field to potentially activate JavaScript snippets that
access the password value legitimately. More precisely, our script triggers JavaScript
events, that would occur if a user clicks into the field, changes its values, and leaves
the password field, i.e., moves the focus to a different field. Finally, the script submits
the form, in order to activate any JavaScript that is tied to the onsubmit event.

1 Password form submitted to an HTTPS URL
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Results During our crawl, we could successfully detect a login form on 2,143 of
the 4,000 domains. In the following, we outline the analysis of the data we gathered
from these fields with respect to different, security-relevant questions. An overview
of the results is depicted in Table 3.2.

As discussed in Section 3.1.4, the use of the autocomplete attribute on input fields
allows an application to ensure that no data is persisted into the password manager’s
storage. We therefore investigated how often this was explicitly set to off, essentially
instructing the browser to neither store login data nor to automatically fill these
forms. Out of the 2,143 domains we examined, a total of 293 domains prohibited
password managers from storing the credentials this way.

With respect to the ClickJacking attack on a password manager that requires user
interaction, an applicable remedy is the usage of the X-Frame-Options HTTP re-
sponse header (Rydstedt et al., 2010). By using this header an application can ex-
plicitly tell the browser that a page may not be rendered inside a frame. However,
this only helps against the discussed attacks if the header is set to DENY, since we
must assume that the XSS attacker is capable of positioning an iframe containing
the login form on a page located in the same application, thus running under the
same origin. In our investigation, we found that only 189 domains set the header to
DENY, while another 173 had set it to the SAMEORIGIN, which is useless in the context
of the discussed attacks.

Furthermore, to gain insight on the extent of legitimate client-side functionality that
uses JavaScript to read password fields, we instrumented the password field, such
that we were able to record read access (see above). For a total of 325 password
fields, we were able to witness read operations via JavaScript.

Finally, we examined to which degree the sites were potentially susceptible to net-
work attackers. To do so, we checked how many forms containing password fields are
delivered via plain HTTP rather than HTTPS. While this distinction is not relevant
to a Cross-Site Scripting attack on the password manager, a similar attack scenarios
was described by Gonzalez et al. (2013). Instead of exploiting a vulnerable applica-
tion, they propose to conduct a man-in-the-middle attack to inject arbitrary content
into targeted applications. This way, similarly to the attack we outlined, they can
gain access to the stored credentials. Therefore, enabling HTTPS effectively blocks
their outlined attacker model. In our study, we found that only 821 domains utilize
HTTPS when transmitting the password field itself. The remaining 1,289 domains
are hence susceptible to the network-based attacker who directly inserts JavaScript
into the server’s response to retrieve the password data from the victim.

Additionally, a network-based attacker may also retrieve passwords from users once
they log in to an application if the credentials are sent to the server using HTTP
and not HTTPS. Investigating how many applications send out secret login data in
an unencrypted manner, we found that in total, 1,197 sites used HTTPS to send the
password data to the server, leaving 946 sites with unencrypted communication.
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3.2.3 Assessment

As shown in Section 3.2.1, most browsers only store the origin of a password and
not the complete URL of the form it was initially stored from. Thus, placing a form
on an arbitrary page with the same origin as the login form is sufficient to extract
credentials from the victim.

The Cross-Site Scripting attacker, which we discussed in the previous sections, is
capable of injecting his malicious payload into applications that are delivered via
HTTP as well as over HTTPS. Thus, the only line of defense in this case is the
autocomplete feature. As discussed earlier, this is only used in 293 login pages,
thus resulting in a total number of 1,850 out of 2,143 domains which are potentially
vulnerable to password stealing by an XSS attacker. This amounts to a total of
86.3% of analyzed pages which are susceptible to the attack scenario we outlined.
Apart from Microsoft’s Internet Explorer, the built-in password managers of all
browsers we examined automatically filled out forms presented to them and would
also behave in the same manner if the login page was put into a frame. In order
to successfully conduct an attack on Internet Explorer, the attacker would have to
have found a vulnerability on the exact login page and would also have to rely on
the victim actively selecting the credentials to insert.

The network-based attacker, who is only capable of injecting his malicious payload
into login pages which are not served using HTTPS, can only successfully attack
1,029 different domains, summing up to 48% of all applications we analyzed. These
observations lead us to the conclusion that the current implementation of browsers’
password managers is highly vulnerable with respect to password stealing – both
by a network and an XSS attacker. Also, we find that server-side measures such as
the autocomplete attribute are not employed in prevailing web applications in a
satisfactory manner. Therefore, in the following section, we discuss a new approach
to the concept and implementation of a password manager capable of tackling these
issues.

3.3 Client-Side Protection

Our analysis has shown that popular browsers implement password managers in a
way that is susceptible to Cross-Site Scripting attacks. We have shown that most of
the browsers neither save information on the URL the password was initially stored
for nor do they require user interaction to fill out forms. This allows the attacker
to retrieve passwords in the presence of an XSS vulnerability. In the following, we
propose a simple yet effective solution to counter these types of attacks on password
managers.
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3.3.1 Concept

The common enabling factor of the attack types we documented in Section 3.1 is the
fact that the secret data is directly inserted into the forms when the page is loaded,
and can subsequently be retrieved by JavaScript.

The underlying problem is that concept and implementation of password managers
are not aligned. Abstracting what a password manager’s task is, we see that it should
aid users in the login process to Web applications. This process can be seen as the
credentials being sent to the server. The implementation of that paradigm, however,
aims at filling out forms before the actual, clear-text login data is required. An XSS
attacker aims specifically at this conceptual flaw, extracting the credentials from the
auto-filled form. In our notion, a password manager should ensure that only once the
login data is sent to the server, the plain-text password is contained in the request.
Hence, in the following, we propose an enhanced password manager which tackles
this conceptual flaw.

Our proposal is that a password manager should only insert place-holding nonces
into a form. Once the user then submits the form towards the application, the
password manager replaces the nonce with the original, clear-text password. Thus,
if an attacker can extract the content of this form utilizing a XSS vulnerability, he
is nevertheless unable to retrieve the real password of the targeted user.

Furthermore, our mechanism requires strict matching of the password field name at-
tribute and the corresponding POST value. For better understanding of the rationale
behind this, consider the following scenario: The attacker is able to inject a new field
called query into the form. Once the password manager has filled in the placeholder
into the password field, the attacker’s code copies the value of that field into the
newly added query field. He then changes the action of the form to the application’s
search functionality. If the password manager now replaced all occurrences of the
placeholder in the request, the query parameter would also contain the clear-text
password. Under the assumption that a search page will in some manner reflect the
search term back to the user, the attacker could then extract the password from
this response. Therefore, making sure that the password manager only exchanges
the correct field is essential.

3.3.2 Implementation

To investigate the soundness of our proposal, we implemented a proof-of-concept
password manager. Since completely changing the implementation of one of the
built-in password managers in the modern browsers would have been to complex,
we opted to instead build an extension for Firefox. The extension is built upon
the original, built-in password manager which is used to only store the placeholder
values. The clear-text passwords in turn are stored in a separate storage located
inside the extension. For our prototype, we did not implement any form of encryption
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examined sites utilize HTTP instead of HTTPS to transmit the credentials to the
server. In these cases, the network-based attacker can simply wait for the form to be
submitted and subsequently retrieve the secret login data from the traffic capture.
Nevertheless, this kind of attack does not specifically target password managers and
can therefore not be fully prevented by a secure password manager in any case.

Functional Evaluation From the user’s point of view, nothing changes compared
to the behavior of the current generation of deployed password managers: After page
load, the password field is automatically filled with characters, which are presented
to the user with masquerading asterisks. After form submit, the browser exchanges
the password nonce with the actual values, before it is sent to the server.

Our approach aims at only putting the real password of a user in the outgoing
request to the server and not into the password field. This however leads to potential
problems with Web applications that perform some transformation on the original
field’s value before submitting it. For instance, an application might derive the hash
sum of the user-provided password on the client-side before submitting it.

In the evaluation of the top 4,000 Alexa sites, we detected 325 JavaScript accesses to
password data (cp. Table 3.2). We then manually analyzed the snippets responsible
for these accesses and detected that a total 96 domains used client-side function-
ality such as XmlHttpRequests to transmit the password data to the server. Out
of these 96 cases, 24 pages transformed the provided password before forwarding it
to the server, whereas 23 employed hashing functions like MD5 and SHA1 and the
remaining case encoded the password as Base64. Of the remaining 72 pages that did
not post the form directly to server, only 6 pages employed HTTP GET requests to
transmit the credentials, whereas the rest used HTTP POST in their XmlHttpRe-
quests. Our proposed approach would obviously not work in these 30 cases, since our
extension neither exchanges passwords directly in the input field nor does it mod-
ify HTTP GET requests. However, the current implementations of the password
managers do not support storing passwords that are not sent via submitting HTML
forms and, thus, our approach is in no way inferior to the currently deployed con-
cepts (Dolske, 2013). Also, if the built-in password manager stored these credentials,
there is no way of detecting whether access to a given password field is conducted
by the legitimate page or is a Cross-Site Scripting attack. Hence, we deliberately fail
in the aforementioned scenario by not replacing the nonce in the input field with
the real password. Therefore, our approach is secure by default and can also not be
undermined by an unknowing user.

The purpose of the remaining 229 scripts was to verify that certain criteria had been
met in filling the user and password field, e.g., the username being an e-mail address
or the password consisting of at least a certain amount of characters.
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3.4 Summary

This chapter highlighted the attack potential inherent to Cross-Site Scripting vulner-
abilities. We discussed the general attack pattern of leveraging password managers
to leak sensitive information in the presence of an XSS vulnerability. We then pre-
sented an empirical study on password fields on the Alexa top 4,000 Web pages,
finding that at least 2,143 contain password fields. Based on the specific attack pat-
terns and the knowledge of how password fields are used in the Web, we outlined
an extension of existing browser-based password managers that is not susceptible to
XSS-enabled attacks. We evaluated the concept with respect to the password fields
we discovered in our study and found that our proposed approach only causes issues
with 30 of the investigated sites. More to the point, these sites utilize a non-standard
means of submitting password and, thus, password managers lack support for these
sites to begin with. Our approach is therefore in no way inferior to existing imple-
mentations, but provides a password manager that is secure by default with respect
to the outlined attacks.

While our presented solution provides robust protection against Cross-Site Scripting
attacks targeting password managers, a large number of additional scenarios exist
in which the presence of an XSS vulnerability can be abused. Therefore, in the
following chapter, we present a study aimed at determining the prevalence of a sub-
class of Cross-Site Scripting, namely Client-Side or DOM-based Cross-Site Scripting,
on real-world Web applications.
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Chapter 4

Detecting Client-Side Cross-Site Scripting on the Web

In the previous chapter, we discussed an attack scenario in which a Cross-Site Script-
ing attacker can leverage a discovered vulnerability to retrieve credentials from
browser-based password managers. Apart from this specific attack, a plethora of
additional techniques exist which an attacker can use to cause harm using an XSS
flaw. Therefore, one goal of our research is to determine how frequent these kinds
of vulnerabilities occur on real-world applications. While previous research has fo-
cussed on server-side code causing exploitable issues, the focus of this work is on the
sub-class of Cross-Site Scripting resulting from insecure client-side code: Client-Side
or DOM-based Cross-Site Scripting.

In this chapter, we outline an empirical study aimed at determining how prevalent
this class of Cross-Site Scripting is on the Web. To do so, we first discuss the im-
plementation of a taint-aware browsing engine, which allows for precise tracking of
data originating from an attacker-controllable source to a security-sensitive sink.
We then present details on an exploit generator, which takes into account the taint
information from our browsing engine to precisely generate potential exploits. On
the basis of these two core components, we present the results of our study of the
Alexa top 5,000 domains and show that almost one out of ten domains in our data
set carries at least one client-side XSS vulnerability.

4.1 Vulnerability Detection

To automatically detect the flow of potentially attacker-controllable input from a
source into a sink in the sense of DOM-based XSS, we decided to implement a
dynamic taint tracking approach. To ensure that edge cases, which might not be
implemented properly in pure testing engines like HTMLUnit, were to be properly
executed, we chose to implement taint tracking into a real browser. For this, we
modified the open-source browser Chromium in such a manner that its JavaScript
engine V8 as well as the DOM implementation in WebKit were enhanced with taint
tracking capabilities. For both components of the browser, we selected to use a byte-
wise taint tracking approach built directly into the respective string representations.
In this fashion, we enabled our tool to not only distinguish between a completely
untainted string and a string containing any potentially harmful content, but also
to specifically retain information on the origin of each character in a given string.
In the following, we discuss the implementation details of our patched browsing
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pure ASCII or two-byte strings, the required size differs and on creation of a string
object, the necessary memory is allocated. The address of this newly created space
is then written to one of the offsets in the header. Along with the information that a
string is tainted, we also need to store the taint bytes described above. To do this, we
changed the string implementation such that additional length bytes are allocated.
Since we wanted to keep the changes to existing code as small as possible, we chose
to store the taint bytes into the last part of the allocated memory. This way, the
functionality for normal access to a string’s characters did not have to be changed
and only functionality for taint information access had to be added.

As mentioned before, the V8 engine is optimized for performance. It therefore em-
ploys so-called generated code which is assembler code directly created from macros.
This way simple operations, such as string allocation, can be executed without us-
ing the more complex and, thus, slower runtime code written in C++. However,
for our approach to easily integrate into the existing code, we chose to disable the
optimizations for all string operations such as creation or substring access.

After patching the string implementation itself, we also instrumented the string
propagation functions such as substring, concat or charAt to ensure to ensure that
the byte-wise taint tracking information is also propagated during string conversions.

4.1.3 Patching the WebKit DOM Implementation

In contrast to the V8 engine, WebKit makes frequent use of the concept of member
variables for its classes. Therefore, to allow for the detection of a tainted string, we
were able to add such a member denoting whether a string is tainted or not. The
string implementation of WebKit uses an array to store the character data. Hence,
we added a second array to hold our taint bytes. Since strings coming from V8 are
converted before being written into the DOM, we patched the corresponding func-
tions to allow the propagation of the taint information. This is necessary because
tainted data might be temporarily stored in the DOM before flowing to a sink, e.g. by
setting the href attribute of an anchor and later using this in a document.write. To
allow for correct propagation of the taint information, we not only needed to change
the string implementation but also modify the HTML tokenizer. When HTML con-
tent is set via JavaScript (e.g. using innerHTML), it is not just stored as a string but
rather parsed and split up into its tree structure. Since we want to ensure that taint
information is carried into the tag names and attributes in the generated tree, these
changes were also necessary.

4.1.4 Detection of Sink Access

Until now we discussed the tracking of tainted data inside the V8 JavaScript and
WebKit rendering engine. The next step in our implementation was to detect a
tainted flow and to generate a corresponding report. Therefore, we modified all
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Figure 4.2: Report functionality

DOM-based Cross-Site Scripting sinks – such as document.write, innerHTML or
eval. We changed them in such a way that a reporting function is called each
time a tainted string is passed to such a sink. In order to pass on the report to
the user interface, we implemented a Chrome extension, that injects the JavaScript
reporting function into the DOM. As such a function is callable from inside the
runtime engine, we are able to report the flow to the extension. The details on the
layout and implementation of this extension are presented in Section 4.3.1.

In WebKit’s API used to provide access to the DOM tree for V8, the passed ar-
guments are of V8’s string type and are then converted to WebKit’s string type.
Hence, we chose to implement our reporting function into V8’s string class, there-
fore allowing us to invoke it from the DOM API as well as directly from V8 using
the provided string reference. When called, this function gathers information on the
code location of the currently executed instruction and reports these alongside the
taint information and details on the type of sink to the extension.

Figure 4.2 depicts this layout. Both indicated functions eval and document.write
use the reference to the passed string to invoke the reporting function which in turn
passes on the information to the Chrome extension shown at the top. Analogous
to the depicted functions, all relevant sinks were patched to ensure proper taint
reporting.

4.2 Automated Exploit Generation

While the fact that a flow of data occurs from an attacker-controllable source to
a security-sensitive sink might constitute a vulnerability, not every flow is actu-
ally exploitable. Listing 4.3 shows an example of such a flow. When visiting this
site without trying to actively exploit it, our browsing engine would gather infor-
mation indicating that a string, which is completely controllable by an attacker,
was passed to document.write. Note that, however, in this case, the access to
document.write only occurs if the string matches the regular expression ˆa-z0-9$,
i.e., only lowercase alphanumerical values are allowed. Thus, this flow does not con-
stitute a vulnerability.
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if (/^[a-z0-9]+$/.test(location.hash.slice(1))) {
document.write(location.hash.slice(1));

}

Listing 4.3: Non-vulnerable flow example

As the previous example has shown, we must verify that a flow is an actual vulner-
ability. Given the fact that we employ dynamic analysis techniques, a natural next
step is to verify the vulnerability by exploiting it. To do so at scale, we chose to
implement an exploit generator capable of precisely producing URLs crafted such
that they allow for exploitation of a vulnerability. To generate the appropriate in-
put needed to trigger a vulnerability, the exploit generator takes into account the
exact taint information provided by the browsing engine as well as the parsing rules
for HTML and JavaScript, respectively. In the following, we explain the process of
generating a potential exploit for a discovered flow of data.

Listing 4.4 shows a vulnerable snippet of JavaScript code. When executed inside
our taint-aware browser, the access to eval emits a report showing that a partially
tainted string was passed to it. We assume the user visited http://example.org
and, thus, the passed string is function x() { var y="http://example.org";},
whereas the highlighted part denotes the attacker-controllable substring.

eval(’function x() { var y = "’ + location.href + ’";}’);

Listing 4.4: Vulnerable JavaScript snippet

Figure 4.3 shows the resulting JavaScript tokens generated when parsing the passed
string, highlighting the user-controlled part in red. In order to allow for the execution
of a payload of our choosing, we need to break out of the existing context, i.e., close
the string literal and complete the declaration and assignment of y. In this case,
however, we can not ensure that our injected code will be executed. Rather, this code
shows the declaration of function x and we cannot be sure that this function is going
to be called by the normal execution path taken by the vulnerable application. Thus,
we opt to break out to the top execution level, i.e., out of the function declaration.
Hence, we need to craft our URL such that we can:

• Break out of the string literal: "
• Break out of the declaration of y: ;
• Close the block: }
• Append our payload: alert(1);
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FunctionDeclaration
Identifier : x
FunctionConstructor

Identifier : x
Block

Declaration
Identifier : y
StringLiteral : "http://example.org"

Figure 4.3: Parsed JavaScript tokens

The payload alert(1); is to be considered arbitrary JavaScript code of the at-
tacker’s choosing. Combining these components and appending them to the URL,
however, does not suffice to exploit the vulnerability as the remaining, hard-coded
characters ";} would cause a parsing error. In such a case, rather than executing
the code until a parsing error occurs, the JavaScript engine throws an exception and
no code is executed (Ecma International, 2011). Therefore, we need to ensure that
these trailing characters do not cause any parsing errors. A straight-forward solution
to this problem is to comment out the remaining string by simply appending // to
the payload.

Thus, our crafted input now consists of a sequence of characters to break out of the
existing context, our arbitrary payload, and a comment. To ensure that the payload
is not encoded automatically by Chrome, we prepend it with a hash mark (Za-
lewski, 2009a). To exploit the vulnerability, the attacker has to lure his victim to
http://example.org/#";}alert(1);//. Listing 4.5 shows the code which is exe-
cuted in this case, indented for better readability. As we can observe, our injected
call to alert is contained in the top level of execution, and, thus, will be executed
regardless of whether function x will ever be called.

function x() {
var y="http://example.org/#";

}
alert(1);
//";}

Listing 4.5: Exploited eval vulnerability from Listing 4.4

Similarly to the process outlined here to exploit a vulnerable flow of attacker-
controllable data to eval, the exploit generator is capable of generating exploits
for HTML contexts, i.e., flows to document.write and innerHTML. As the exploit
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generation is not a major contribution of this thesis, we refer the reader to Lekies
et al. (2013) for a more detailed explanation of this process.

4.3 Empirical Study

An important motivation for our work was to gain insight into the prevalence of po-
tentially insecure data flows in JavaScript applications and moreover, the number of
exploitable flows. Therefore, based on the components we presented in the previous
section, we decided to create a Web crawling infrastructure capable of gathering flow
information and, after the generation of exploit candidates, verifying the vulnerabil-
ities on a large set of real-world Web sites. In the following, we give an overview of
our study’s methodology and used architecture, followed by the results and insights
we gathered.

4.3.1 Architecture Overview

One key aspect of getting a grasp on the prevalence of client-side XSS on the Web is
to sample a sufficiently large set of real-world Web sites. We therefore designed our
experimental set-up to meet this requirement, utilizing the developed and previously
presented components.

First, we use our taint-aware browsing engine to gather flow information. In order
to do this in an automated and unsupervised manor, we set up a control backend
to provide URLs to crawl and store reported flows. We then deploy the Chrome
extension, which we discuss in the following, to the browser, allowing it to drive
the engine to visit a page, collect all links contained in it and recursively crawl the
discovered pages, while also reporting back all observed data flows. After this initial
data gathering phase, we pass the acquired flows to our exploit generator and use the
browsing engine to subsequently crawl the produced, potentially exploitable URLs.

In the following, we discuss details of the central backend and the Chrome extension,
depicted in Figure 4.4. After that, we present results on the number of observed data
flows and, subsequently, on the amount of discovered, exploitable vulnerabilities.

Central Server Backend The central backend’s main task is two-fold: it dis-
tributes the URLs which are to be analyzed to the browsing instances and collects
the reports of flows which occurred in the engines when crawling these pages. An
initial set of URLs is therefore stored in the backend’s database and subsequently
crawlers retrieve a single URL at a time. When a single browsing instance has fin-
ished analysis of a given URL, it reports back the discovered flows. Due to the
fact that a single URL may contain more than one frame (e.g., if it includes ad-
vertisements in frames), the report is divided on a per-frame basis. This way, if a
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As intended by the general architecture of Chrome’s extension model (Google Devel-
opers, 2012), our extension is divided into two components: the background and the
content script (cp. Figure 4.4). The purpose of the background script is to communi-
cate with the central backend (retrieving URLs and reporting flows) and controlling
the crawl conducted by the browser. To do so, it opens a predefined number of
browsing tabs, assigns a URL to analyze to each tab and, after the analysis of said
page has finished, collects the newly discovered links and stores them in its local data
storage. Note that the background script cannot execute any code in the context of a
rendered page, but has to rely on the content script to gather the links contained in
a page and report them back to the background script. Whenever the content script
sends a raw taint report, it is initially post-processed by the background script before
being sent to the central backend server.

Due to the message-driven concept employed in Chrome extensions, a page cannot
directly communicate with the background script, but rather has to use an inter-
mediary content script. Rather than running once in the extension, this script is
injected into each page which is rendered. This enables the content script to run
arbitrary JavaScript code in the context of the analyzed page, i.e., it can gather the
taint reports from the browsing engine, collect anchors and the URLs they reference,
and invoked events on the target page. To ensure that crawling can be conducted
without interruption, the content script also overwrites blocking modal functions
such as alert or prompt.

Whenever the background script assigns a URL to a tab, effectively invoking the
analysis of that page, the page’s HTML and JavaScript code is retrieved and exe-
cuted. All data flows which occur during this execution are buffered in the content
script. To allow for execution of script code not contained in the initial HTML doc-
ument (i.e., scripts which reference external content), the page is executed for a
fixed amount of time. When the timeout is triggered, the content script packs all
information on the occurred flows and sends a message containing said data to the
background script for further processing (see above).

4.3.2 Observed Data Flows

The initial data set for our study were all domains contained in the Alexa top 5,000.
For each of these domains, we conducted a crawl with a depth of one, i.e., analyzing
the main page and all same-domain links contained on this initial page. In total, this
resulted in access to 504,275 URLs, whereas, on average, each contained 8.64 frames.
Thus, our analysis engines gathered flow information on 4,358,031 (not necessarily
unique) documents.

In total, these documents caused 24,474,306 data flows from tainted sources to
security-sensitive sinks, which were observed by our instrumented browsers and sub-
sequently stored in our central database. Table 4.1 shows the distribution of sources
and sinks, respectively. The majority of all flows originates from cookies and also
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document window post- Web
URL cookie referer name Message Storage sum

HTML 1,356,796 1,535,299 240,341 35,466 35,103 16,387 3,219,392
JavaScript 22,962 359,962 511 617,743 448,311 279,383 1,728,872
URL 3,798,228 2,556,709 313,617 83,218 18,919 28,052 6,798,743
Cookie 220,300 10,227,050 25,062 1,328,634 2,554 5,618 11,809,218
Web Storage 41,739 65,772 1,586 434 194 105,440 215,165
postMessage 451,170 77,202 696 45,220 11,053 117,575 702,916

sum 5,891,195 14,821,994 581,813 2,110,715 516,134 552,455 24,474,306

Table 4.1: Data flow overview, mapping sources (top) to sinks (left)

ends in the cookie sink, and thus, is not directly exploitable. Similarly, several com-
binations of sources and sinks exist which do not allow for an automated generation
and verification of exploits (e.g., flows starting from the Web Storage API). There-
fore, in the following, we shed light on the process of selecting flows for exploit
generation.

4.3.3 Selective Exploit Generation

As we have shown in the previous section, the total number of potentially vul-
nerable data flows from attacker-controllable sources to security-sensitive sinks is
surprisingly high, i.e., averaging 50 flows per analyzed URL. While our vulnerability
verification method using a generated exploit allows us to confirm the existence of a
flaw in roughly the same time it takes the engine to gather the flow information in
the first place, doing so for almost 25 million URLs is unfeasible. Thus, in order to
balance cost and benefit of such a verification, we selected to only generate exploits
for a subset of all recorded data flows, based on the following criteria:

C1: The data flow originates from a source that can be directly controlled by an ad-
versary, i.e., this excludes all such flows that originate from second-order sources,
such as cookies or Web Storage as well as flows from the postMessage API.

C2: The data flow ends in a sink that allows for direct execution of the injected
payload, i.e., all flows into sinks like cookie, Web Storage, postMessage or DOM
APIs are excluded.

C3: The data which is passed to the sink is not encoded by any of the built-in
encoding functions provided by JavaScript. While the application of the incorrect
encoding function can still result in a vulnerability in very rare cases (such as
the use of encodeURI in conjunction with a flow to eval), the benefit of finding
a small number of additional vulnerabilities is far outweighed by the cost of
crawling a sufficiently larger set of URLs. Thus, we exclude all flows which passed
through any encoding function.
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C4: For each of the remaining data flows, we generate an exploit prototype. As
Web applications may incorporate the same piece of vulnerable JavaScript code
more than once in a single page, multiple flows on such a page would lead to
the generation of the same exploit prototype URL more than once, as all these
flows require the same break out sequence and payload. To decrease the overall
overhead of testing the exploits, we opt to only generate one exploit in the
outlined cases.

We successively applied these criteria to the 24,474,306 flows we initially gathered,
establishing the relevant set of flows and, thus, candidate exploits:

24, 474, 306 C1−−→ 4, 948, 264 C2−−→ 1, 825, 598
C3−−→ 313.794 C4−−→ 181, 238

Thus, in total we generated 181,238 test payloads, which we passed on to our verifi-
cation step. In the following section, we discuss the results of this exploit verification
phase.

4.3.4 Discovered Vulnerabilities

In the next step, we needed to determine how many of the 181,238 candidate ex-
ploits would trigger our injected payload. For 43,412 of the exploits, the source of
data was either location.search or document.referer. While our methodology
uses Chromium to detect vulnerable flows, it cannot be used to verify these ex-
ploits due to the fact that these values are automatically encoded by Chromium. In
contrast to Chromium, Internet Explorer does not apply any encoding when retriev-
ing the data from these sources (Zalewski, 2009a). Thus, we opted to implement
a minimalistic crawler for Internet Explorer to verify those vulnerabilities. For the
remaining 137,826 URLs, we relied on our existing crawling infrastructure using
Chromium and the outlined control backend.

Using this two-pronged approach, a total of 58,066 URLs tested in Chromium trig-
gered our verification payload. Additionally, we could exploit 11,921 URLs visited
in Internet Explorer, resulting in a total of 69,987 successfully exploited flaws. This
corresponds to a success rate of 38.6% in total, and a success rate of 42.1% when
only considering vulnerabilities exploitable in Chromium.

As outline before, our crawler followed all links discovered on the entry page. We
assume that a high number of Web sites utilize content management systems and
thus include the same client-side code in each of their sub pages. Hence, to zero in on
the number of actual vulnerabilities we decided to reduce the data set by applying
a uniqueness criterion.
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For any finding that triggered an exploit, we therefore retrieved the URL, the used
break out sequence, the type of code (inline, eval or external) and the exact loca-
tion of the executed instruction. Next, we normalized the URL to its corresponding
second-level domain. To be consistent in regards to our selection of domains, we
used the search feature on alexa.com to determine the corresponding second-level
domain for each URL. We then determined for each of the results the tuple:

{domain, break out sequence, code type, code location}

With respect to the code location, we chose to implement the uniqueness to be the
exact line and column offset in case of external scripts and evals, and the column off-
set in inline scripts. Applying the uniqueness filter to the complete dataset including
those pages only exploitable on Internet Explorer, we found a total of 8,163 unique
exploits on 701 different domains, whereas a domain corresponds to the aforemen-
tioned normalized domain. Due to the nature of our approach, among these were
also domains not contained in the top 5,000 domains. Thus, we applied another
filter, removing all exploits from these domains outside the top 5,000.

This reduced the number of unique exploits to 6,167, stemming from 480 different
domains. With respect to the number of domains we originally crawled, this means
that our infrastructure found working exploits on 9.6% of the 5,000 most frequented
Web sites and their sub-domains.

When considering only exploits that work in Chromium, we found 8,065 working ex-
ploits on 617 different domains, including those outside the top 5000. Again filtering
out domains not contained in the 5000 most visited sites, we found 6,093 working
exploits on 432 of the top 5,000 domains or their sub-domains.

Among the domains we exploited were several online banking sites, a poplar social
networking site as well as governmental domains and a large internet-service provider
running a bug bounty program. Furthermore, we found vulnerabilities on Web sites
of two well-known AntiVirus products.

4.3.5 Insights of our Study

In the following, we want to discuss select insights gained in our study. Doing so,
we analyze the usage of encoding functions with respect to the sources of data, the
origin of vulnerable code as well as multi flows, which combine several sources in a
single sink access.

Encoding with respect to Data Sources When analyzing our data set we found
significant differences in the way the user-provided input was handled. In almost
65% of flows originating from the URL, an encoding function was applied before the
data eventually ended in a sink. Similarly, almost 84% of all flows which began in
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document.referer, i.e., the URL, which contained a link to the currently analyzed
page, that our crawler followed, were encoded. In contrast to this, only about 1.5%
of all flows originating from postMessages were encoded. The postMessage API
allows browser windows to communicate across domain boundaries by exchanging
messages, which may contain arbitrary JavaScript objects. While the API offers a
means for the receiving window to ensure that a message was sent by a page on
a specific origin, this check is often omitted (Son and Shmatikov, 2013). Although
our work did not aim at exploiting these kinds of flows, the work conducted by Son
and Shmatikov (2013) highlights the fact that this feature is not well understood,
allowing them to exploit 84 popular sites.

Origin of Vulnerable Code Web applications may include third-party code such
as advertisement or analytics code. When this code is included from a remote origin,
it inherits the origin of the including application, i.e., flaws in third-party code can
cause vulnerabilities in the including Web app. Therefore, another dimension of
our analysis focussed on the source of vulnerable code. We found that in 13.09%
of the cases, third-party code was responsible for the sink access with attacker-
controllable data. As we discuss in Section 5.3.5, this does not necessarily constitute
that the vulnerability is caused only by third-party code, but may also be the result
of incompatible first- and third-party code. The biggest portion of vulnerable code,
namely 79.64%, was contained in external script files which were hosted by the Web
application itself. In contrast, a comparably small number of vulnerabilities were
caused by inline script code (3.81%). The remaining 3.46% of vulnerabilities were
caused by code which was created at runtime using eval — for this kind of code,
our analysis engine was unable to provide the exact location, i.e., whether the call
to eval occurred inline or in external JavaScript files.

Multiple Sources in Single Sink Access In our study we found that for each
call to a sink, on average three substrings consisted of tainted data. Contained in
these were cases in which the same value was concatenated more than once (such
as appending the URL multiple times) as well as flows, that utilized several sources.
An example for such a flow is the extraction of different parameters from the URL
and combining them into a new URL, possible appending strings from other sources
such as cookies. We deem such vulnerabilities multi flows, as they allow an attacker
to construct his attack payload by combining multiple sources of data. An example
of such a snippet is shown in Listing 4.6. In the depicted code, the URL of the img’s
source is derived by combining both the current URL and the URL of the referring
page. An attacker might therefore use the URL to inject parts of his payload and
append the remainder of it to the referer. As we discuss in Chapter 6, this can be
used to fool and, thus, circumvent the XSS Auditor deployed in Google Chrome.
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var ref = document.referer;
var url = document.location.href;

document.write("<img src=’//advert.ise/?url=" + url + "&referer=" + ref +
"’>");↪→

Listing 4.6: Example of a multi flow vulnerability

4.4 Summary

In this chapter, we presented the design, implementation and results of an empirical
study to detect Client-Side Cross-Site Scripting vulnerabilities on the Web. This
was motivated by the fact that although this form of XSS attacks has been known
since 2005, no previous research had tried to determine to number of vulnerable
sites. Therefore, after implementing a taint-aware browsing engine, we developed an
exploit generator capable of precisely crafting prototypical exploit payloads based
on the taint information provided by our engine. Using this methodology, we con-
ducted an empirical study on the Alexa top 5,000 domains, analyzing over 500,000
URLs, containing more than 4.3 million documents and causing almost 25 million
potentially harmful data flows. Focussing on directly exploitable data flows, we eval-
uated a set of 181,238 exploit candidates, out of which 69,987 successfully triggered
our injected payload. Filtering out any exploits on domains outside the Alexa top
5,000, we found that 9.6% of these domains carry at least one Client-Side Cross-Site
Scripting vulnerability.

While this study allowed us to gain a glimpse into the prevalence of DOM-based
Cross-Site Scripting vulnerabilities on the Web, it did not provide us with additional
insight into the nature of such exploits. Therefore, in the following chapter, we ex-
plore the complexities behind modern day Web applications and investigate whether
these are a root cause of Client-Side Cross-Site Scripting, or if these flaws are caused
by developers unaware of the risks that accompany the use of user-provided data in
such applications.
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Chapter 5

On the Complexity of Client-Side Cross-Site Scripting

In the previous chapter, we outlined the results of an empirical study aimed at finding
Client-Side Cross-Site Scripting vulnerabilities on the Web. In total, we discovered
that 9.6% of the Alexa top 5,000 Web pages carry at least one client-side XSS flaw.
While this study allowed us to approximate a lower bound for the number of flaws
currently in existence on the Web, it did not provide us with any information on the
root causes of such flaws. Therefore, in the following, we outline an empirical study
aimed at determining just these causes. To do so, we first discuss the inherent com-
plexities of JavaScript and present metrics that allow us to measure this complexity.
Subsequently, we present the infrastructure necessary to conduct an analysis of the
complexities of real-world vulnerabilities, followed by the discussion of the empirical
study executed using that infrastructure. We conclude this chapter by discussing
the key insights gathered from our study, showing that while client-side XSS is often
easy to spot and remove, a notable number of flaws shows a significant complexity.

5.1 The Inherent Complexities of JavaScript

JavaScript offers a plethora of powerful languages features that make it well-suited
for usage in a dynamic environment such as a Web browser. While these features,
such as the ability to use eval to generate and execute code at runtime, allow a
programmer to perform manifold actions on the client side, they also increase source
code complexity and, thus, the potential for security problems. In the following, we
briefly outline some of these complexities.

JavaScript’s Concurrency Model Unlike other programming languages, Java-
Script specifically limits the amount of threads which may be run in parallel to
one (Mozilla Developer Network, 2015a). In contrast, a Web browser often retrieves
content from remote servers, i.e., conducts I/O-intensive operations. Given the fact
that JavaScript is single-threaded, the need for a model arises that allows for a con-
tinuous execution of such parts of the script code which are not waiting for any
I/O response. Therefore, JavaScript employs an event-driven concurrency model. In
the concrete case of a request to an external resource, the JavaScript snippet can
register a callback function, which is invoked when the response arrives. This way,
it can yield to the remaining JavaScript code waiting to be executed. The execu-
tion of code is interrupted whenever a callback function is called (Mozilla Developer
Network, 2015a).
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The exact timing of that invocation is based on a number of factors, such as the
latency of the network connection, the load of the remote server or a local cache
hit. Hence, there is no guarantee when a callback function will be invoked. More
importantly, there is no guarantee that the control flow follows the linear structure
in which the code was defined in a file. Thus, when inspecting a piece of JavaScript
code, an analyst has to be aware of this event-driven model and take into account
all potential temporal execution sequences.

JavaScript’s Global Object Although single script blocks or external files can
be viewed as distinct JavaScript programs, they are executed in the context of the
same Web page. Therefore, they all operate on the same global object, which in
the case of the browser is the window object (Mozilla Developer Network, 2014a).
These script resources may be included from third-party sites and, thus, origin from
different developers. Yet, whenever such a resource is included in a page, it inherits
the origin of the including page and operates on its global object.

To allow for different pieces of code to interact with each other, programmers may
choose to do by using global variables, which are accessed by one another or by
defining global functions, which act as an API. While this allows for easy interaction
between different libraries, it may also cause unwanted side effects. One example of
such a side effect is the assignment of a global variable called name. As all variables
are allocated in the window namespace, this registers the variable window.name,
which is actually a property that can be read and written across domain bound-
aries (Mozilla Developer Network, 2014b). Thus, relying on such a variable may
allow attackers to inject their malicious code into it.

Generating Code at Runtime using eval According to Richards et al. (2011),
up to 82% of the most popular Web sites utilize the eval function to construct and
execute code at runtime. As discussed in the previous chapter, the use of eval can
lead to security vulnerabilities, as the code is often assembled using runtime infor-
mation that is controllable by the user, e.g., using parts of the URL or window.name.
Therefore, the code which is evaluated at runtime does not exist in full at devel-
opment time of application. Even if no attack is conducted when initially calling
eval, using the function makes it harder for analysts to understand the code that
is actually executed by the application. One way of doing this is to overwrite the
eval function and watch its inputs at runtime. This task, however, is often hard to
do from browser extensions or the JavaScript console due to the lexical scoping of
JavaScript. Therefore, overwriting eval can only be done effectively within a proxy
at the network level or by hooking the native implementation of eval within the
browser’s JavaScript engine.
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5.1.1 Observing JavaScript Execution

When it comes to the automated analysis of security vulnerabilities, two basic ap-
proaches exist: dynamic analysis, which records the effects of JavaScript execution
during runtime, or static analysis, that examines the source code. In case of find-
ing security vulnerabilities, static analysis has the advantage of providing superior
coverage but is prone to false positives. Since for this study, we already had a data
set of existing real-world vulnerabilities, code coverage was of no concern. Thus, we
chose a dynamic technique to precisely monitor the execution of code that causes
the vulnerability without false positives or the collection of unrelated information.

When executing JavaScript code, various information can be gathered in the Java-
Script engine. In the context of client-side XSS, portions of the code which operate on
the attacker-provided string data on its way from the source to the security-sensitive
sink are of special interest. In addition, all functions that the data passes through
including their invocation contexts and code origin provide further intelligence on a
flow. In the following section, we highlight which of these observable characteristics
can be measured using a set of presented metrics.

5.1.2 Towards Measuring JavaScript Code Complexity

Based on the discussed observations regarding the complexity of JavaScript, we now
derive a set of metrics that aid in measuring how complex a given vulnerable data
flow is.

M1 Number of String-accessing Operations When thinking about the com-
plexity of a flow of data from a source to a sink, one necessary consideration is that
each operation on this data naturally increases the complexity as more lines of code
have to be understood by the analyst. We therefore define our first metric to be the
number of string-accessing operations which occur throughout the flow of data from
source to sink. In order to not over-approximate this number, we join the same type
of operation on a per-line level, i.e., several concatenating operations on a single line
are treated as one operation. Therefore, the example shown in Listing 5.7 consti-
tutes three distinct operations, namely the source access, the joined concatenation
of three strings, and the sink access. Listing 5.8 shows the same syntactical content
as interpreted by our metric. The smallest possible number of observed operations
is two, i.e., source and sink access. As outlined in Section 4.3.5, a sink access may
occur with data from several sources, on which a different number of operations may
have been conducted. Therefore, we define this metric to measure the longest path
from any involved source to the sink.
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document.write("<a href=’ " + location.href + "’>this page</a>")

Listing 5.7: Single line example

var x = location.href; // source access
var y = "<a href=’" + x + "’>this page</a>"; // joined concats
document.write(y); // sink access

Listing 5.8: Example as interpreted by our metric

M2 Number of Functions Involved In addition to the number of operations that
are passed when a flow of data occurs, the number of functions which are traversed
is an indicator for the complexity of a flow or a vulnerability. Naturally, the analyst
has to understand and audit each of those functions to ensure that a flow of user-
controlled data is not exploitable. Thus, we define the second metric as the amount
of functions that are traversed, whereas the minimum number must always be one.

M3 Number of Contexts Involved We define an execution context as either the
script block or the external file a given piece of codes resides in. The number of such
contexts which are involved is therefore relevant to the complexity of a vulnerability,
since the analyst has to view all blocks to fully understand the flow. Our third metric
thus counts the number of contexts which are involved when executing the complete
flow from source to sink.

M4 Relation of Source to Sink Another factor which potentially makes the
analysis of any code harder is the relation between the source of data and the sink
it flows into. The term relation in this case refers to the positioning of the two op-
erations in the call stack of the executed program. In the following, we describe the
five different relations between source and sink which may occur, underlined by Fig-
ure 5.1. The top-level main is an abstraction of the top execution level of JavaScript
and, thus, to be understood as a virtual main. All of the following relations are to
be interpreted such that the sink access has occurred in the green Snippet #3 of
the figure.

The first identified case occurs if both source and sink are accessed within the same
function. In the cases, an analyst only has to analyze this one function to determine
whether a flow might be dangerous. Thus, this relation, which we refer to as R1, is
shown in the green snippet in Figure 5.1.

The second possible relation between source and sink can be observed if the source
access is conducted in the orange box, i.e., Snippet #1. As shown in the figure,
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Figure 5.1: Relations between source and sink access

the sink access is conducted in a snippet which is lower in the call stack. In this
case, the analyst can observe the potentially dangerous data being passed to the
called function and, thus, can investigate said function with the knowledge that the
parameters passed are unsanitized (Source > Sink, R2).

In the third variant, the source access is lower in the stack than the sink access. In
Figure 5.1 this is shown in the yellow box of Snippet #4. Therefore, the analyst
has to explore the function containing the sink access, check whether data might be
provided by the user and subsequently continue his analysis of the previous function.
This complicates the analysis, as the analyst has to switch back and forth between
functions, and potentially contexts/files (Sink > Source, R3).

As a fourth case, we identify flows in which the source and sink share a common
ancestor in the stack, but neither is in the call stack of the other. This scenario occurs
if the source was accessed by Snippet #2 and the data ended in a security-sensitive
sink in Snippet #3. In these situations, an analyst must follow the path from the
common ancestor to the source and up again, subsequently having to analyze the
path to the sink. (Common Ancestor, R4).

Finally, the most complex type of flow occurs when there is no relation between the
sink and the source. An example of such a case is depicted in Listing 5.9. We assume
that the external script register_var.js assigns any user-provided data (such as
the URL) to the global variable global_var. As previously discussed, all JavaScript
code which is executed within a document shares a global scope. Therefore, the
inline script uses global_var, which was previously set by the external script, in
the call to document.write, thus completing the flow. In order to understand that
this constitutes a vulnerability, the analyst must examine both the external script
files to determine in which of them global_var was assigned. In these cases, the
operations which access sink and source, respectively, have no common ancestor in
the call stack. (No relation, R5). This is depicted in Figure 5.1 by the grey Snippet
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#0, as both source and sink accessing operations have the virtual main function as
their only common ancestor.

<script src="/unrelated.js"></script>
<script src="/register_var.js"></script>
<script>

document.write(global_var);
</script>

Listing 5.9: Example outlining the most complex relation between source and sink

M5 Code Locality In order to understand that a certain flow constitutes a vulnera-
bility, an analyst has to inspect all the code between the source and respective sink
access. Therefore, if the corresponding instructions have a high code locality, i.e.,
are within a few lines of one another, this eases his task (and vice versa). Thus, as
a fifth metric, we calculate the difference between source and sink access. Naturally,
this is only sensible for cases in which both source and sink accessing operation are
located in the same file, i.e., in the same external JavaScript or HTML file (spread
across one or two script blocks).

5.2 Infrastructure

In the following, we outline the initial data set and associated challenges we had to
overcome. Afterwards, we discuss the infrastructure we developed to conduct our
study.

5.2.1 Initial Data Set and Challenges

The basis of the results we present in this chapter is a set of exploits detected with
the methodology outlined in Chapter 4. Since this data set was slightly outdated, we
first verified all of the exploits to identify vulnerabilities which were still in existence.
Only verified vulnerabilities, i.e., cases in which a payload existed that reliably lead
to JavaScript execution, were included in the data set.

In order to analyze this set of data in a sound and reproducible way, we had to
overcome several challenges. First and foremost, interaction with live Web servers can
induce variance in the data, as no two responses to the same requests are necessarily
the same. Causes for such behavior might reside in load balancing, third-party script
rotation or syntactically different versions of semantically identical code. Secondly, to
gain insight into the actual vulnerabilities, we needed a means of gathering detailed
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information on flows of data, such as all operations which were executed on said
data.

Modern Web applications with complex client-side code often utilize minification
to save bandwidth when delivering JavaScript code to the clients. In this process,
space is conserved by removing white spaces as well as using identifier renaming.
As an example, jQuery 2.1.3 can be delivered uncompressed or minified, whereas
the uncompressed version is about three times as large as the minified variant.
Our analysis, however, requires a detailed mapping of vulnerabilities to matching
JavaScript code fragments and, thus, minified code presents another obstacle to
overcome.

Finally, in our notion, if access to a sink occurs in jQuery, we assume that this is
not actually a vulnerability of that library but rather insecure usage by the Web
application’s developer. Thus, to not create false positives when determining the
cause of a vulnerability, we treat certain jQuery functions, such as html or append,
as a direct sink and remove any following function calls to internal jQuery functions
from the trace information we collect.

5.2.2 Persisting and Preparing Vulnerabilities

To allow for a reproducible vulnerability set, we first needed to implement a proxy
capable of persisting the responses to all requests made by the browser when visiting
a vulnerable site. To achieve this, we built a proxy on top of mitmproxy (Cortesi
and Hils, 2014) which provides two modes of operation. We initially set the mode to
caching and crawled all exploits which had previously triggered their payload and
stored both request and response headers as well as the actual content. To ensure for
proper execution of all JavaScript and, thus, potential additional requests to occur,
we conducted the crawl in a real browser rather than a headless engine. Also, this
allowed us to send an additional header from the browser to the proxy, indicating
what kind of resource was being requested (e.g., HTML documents, JavaScript or
images), as content type detection is inherently unreliable (McDaniel and Heydari,
2003).

As previously discussed, our analysis requires precise information on the statements
that are executed. In order to ensure that a mapping between all operations which
are involved in the flow of data and their corresponding source line can be achieved,
we need all JavaScript to be beautified. Therefore, using the information provided by
the browsing engine regarding the requested type of content, we first determine the
cached files which were referenced as external JavaScript. We use the beautification
engine js-beautify to ensure that the code is well-formatted and each line consists
only of a single JavaScript statement (Daggett, 2013). Subsequently, we parse all
HTML on disk, beautifying each script block contained in the files and finally, save
the files back to disk.
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We now switch the operation mode to replay, i.e., all responses are served from disk
and not from the original server. To do so, the proxy simply queries its database for
a matching URL and returns the content from disk, while attaching the response
headers as originally retrieved from the remote server. Some requests that are con-
ducted at runtime by JavaScript (such as jQuery XmlHttpRequest with the JSONP
option) carry a nonce in the URL to avoid a cached response (The jQuery Founda-
tion, 2015b). Therefore, if the proxy cannot find the requested URL in its database,
it employs a fuzzy matching scheme which uses normalized URLs to determine the
correct file to return. Since our initial tests showed that nonces in all cases consisted
only of numbers, we normalize URLs by simply replacing each number in the URL
with a fixed value.

5.2.3 Taint-aware Firefox Engine

The taint-aware browsing engine we presented in Chapter 4 allowed us to find client-
side Cross-Site Scripting vulnerabilities at scale. Due to memory allocation strate-
gies, we were not able to gather additional information on any given flow, such
as the location of the source access or functions which were called with tainted
data as parameters. In contrast, Firefox allowed us to allocate additional memory
and more easily change the underlying string implementation, such that the engine
could gather this additional data on all observed flows.

Apart from our previously presented concept, which allows to pinpoint the source
of each character in a string, the taint-enhanced Firefox engine is also able to store
a trace of all JavaScript statements which occurred throughout a data flow. To
achieve this goal, for each operation which consumes at least one string and produces
another string, such as string concatenation, our engine stores a reference to the
strings, which were passed as input, in the resulting string resource. This way, at
the time of the sink access, the analysis can trace back through all previous strings.
Alongside these shadowed strings, the exact JavaScript operation, e.g., function call
or concatenation, and source line is accessible, thereby allowing us to collect precise
information on all stages of a data flow.

Our detection methodology uses Chromium to find and verify vulnerabilities. Fire-
fox, however, behaves differently with respect to automatically encoding certain
DOM values such as the location (Zalewski, 2009a). To be coherent with the pre-
vious analyses, we therefore decided to align the implementation of Firefox with
Chromium’s, i.e., it does not automatically encode the hash fragment of the URL.

5.2.4 Post-processing

Before the raw data gathered by our engine can be analyzed, it needs to be processed
to ensure a subsequent, correct analysis. In the following, we illustrate the steps taken
by our infrastructure.
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Identifying Vulnerable Flows As we outlined in Section 4.3.4, only a fraction of
all flows which occur during the execution of a Web application are vulnerable. Our
browsing engine collects all flows which occur and sends them to our backend for
storage. Thus, before an analysis can be conducted, we need to identify the actual
vulnerable flows. We therefore discard all flows which do not end in document.write,
innerHTML or eval, as our exploit generation specifically targets these, directly
exploitable sinks. In the next step, we determine whether the combination of break
out sequence, payload, and comment sequence was completely contained in the string
which was passed to the sink, i.e., we ensure that the filtered data only contains
actual exploitable flows.

jQuery Detection and Removal One of the most commonly used libraries in
many Web applications is jQuery (BuiltWith, 2015; W3Techs, 2015b). It provides
programmers with easy access to functionality in the DOM, such as a wrapper to
innerHTML of any element. When analyzing the reports gathered from our taint-
aware browsing engine, the calls to such wrapper functions increase the number of
functions traversed by a flow and, thus, increase the perceived complexity. Therefore,
we select to filter jQuery functions and use them as sinks, i.e., the html and append
functions of jQuery (The jQuery Foundation, 2015a) are treated like an assignment
to an element’s innerHTML property.

To allow for this process to work properly, we needed to implement a detection
mechanism to pinpoint which functions were provided by jQuery. The flow chart in
Figure 5.2 shows this process. Initially, we iterate over all entries in the stack traces
collected by our taint-aware browser and determine the file in which each line is
contained. We then check the hash sum of that file against known jQuery variants
(1). If no hash match is found, we utilize the methodology used by Retire.js (Oftedal,
2013) to detect whether jQuery is contained in that file at all (2). If this step indicates
that the file contains jQuery, we proceed to gathering script statistics (such as the
number of strings, identifiers and functions) and comparing them to known versions
of jQuery, to assess whether the script solely consists of jQuery (3). If this does not
produce a conclusive match, we resort to a full-text search of the line of code in a
database of all lines of all known versions of jQuery (4). If no match can be found,
we mark the generated report for later manual analysis. This effect occurs due to
the use of custom packers by Web site owners, which make even a full-text search
infeasible.

If any of the aforementioned checks indicate that the analyzed stack entry points to
code located within jQuery, we remove said entry from our trace both at the bottom
and the top of the stack. This allows to remove artifacts from sink-like operations
such as html and jQuery-enabled uses of events.

Stack Gap Detection and Removal After this process has been finished, we
proceed to the next phase of post-processing. Our taint-aware engine is able to
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Runtime-generated Code Through the use of the eval function, JavaScript code
can be dynamically created at runtime and executed in the same context. While
this enables programmers to build flexible Web applications, it also complicates an
analyst’s task of understanding a given piece of code. Apart from the exploitable
flaws which were the result of insecure use of user-provided data in eval as a sink,
we also found that eleven traces contained calls to eval, i.e., parts of the code which
contributed to the vulnerable flow were dynamically generated at runtime.

5.3.4 Analysis

In Section 5.1.2, we defined a set of metrics which aim at measuring the complexity
of a vulnerable flow. In the following, we introduce the classification boundaries for
these measures; based on these boundaries, we then classify each of the vulnerable
flows in our data set to either have a low, medium or high complexity with respect to
each metric. Finally, we combine the classification results and highlight the necessity
for a multi-dimensional classification scheme.

Quantifying Complexities To better quantify the complexity of a flaw, we need
to translate the numeric values derived by our metrics into a classifying scheme. We
set boundaries for all of the metrics, such that any value maps to either a low (LC ),
medium (MC ) or high (HC ) complexity. The overall complexity is then deduced
from the highest rating by any classifier.

The boundaries are derived from our experience with the analysis of client-side
XSS vulnerabilities and are shown in Table 5.1 for M1 (Number of string-accessing
operations), M2 (Number of functions), M3 (Number of contexts) and M4 (Relation
between source and sink). Note, that since the locality metric (M5) can only be
applied to a subset of the vulnerabilities in our data set, we opted not to add it to
our complexity classification.

The results of our classification scheme are depicted in Table 5.2. We observe that
for each metric, the classification results are similar for their corresponding low
complexity cases, assigning this complexity score to around 1,100 vulnerabilities

LC MC HC
BM1 string-accessing operations <=10 <=25 25+
BM2 involved functions <=5 <=10 10+
BM3 involved contexts <=2 <=3 3+
BM4 source to sink relation R1, R2 R3, R4 R5

Table 5.1: Classification boundaries
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LC MC HC
CM1 string-accessing operations 1,071 163 39
CM2 involved functions 1,118 98 58
CM3 involved contexts 1,161 87 25
CM4 source to sink relation 1,094 120 59

Combined 893 236 144

Table 5.2: Classification by applied metrics

each. When combining all classifiers to form the final complexity score, only 893
flows are marked having a low complexity. This highlights the fact that while a flow
might be simple in terms of a single metric, flows are actually more complex if all
metrics are evaluated.

Correlation between Metrics Our classification scheme aims at combining dif-
ferent classified measurements to produce a single rating of a vulnerability. The
underlying metrics, however, are not necessarily orthogonal. Table 5.3 shows a com-
parison between different context lengths and the minimum, median, and maximum
number of string-accessing operations that were conducted. Considering the median
value, the number of string-accessing operations appears to be correlated to the
number of involved contexts. While this seems to be natural, the maximum number
of operations occurred in a flow which only traversed two contexts, highlighting the
need for the second classification to mark such a flow as highly complex.

Table 5.4 shows the comparison of the results of metric M4 to functions and contexts,
respectively. There is no correlation between the relation of source to sink and either
function or context counts. This again highlights the fact that classification must be
done in several different dimensions to get an accurate rating of the complexity of a
vulnerable flow.

Contexts Amount Minimum Median Maximum
1 782 2 4.0 54
2 379 2 6.0 291
3 87 3 7.0 50
4 20 2 7.0 32
5+ 5 4 20.0 36

Table 5.3: Contexts v. operations
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Functions Contexts
# Minimum Median Maximum Minimum Median Maximum

R1 914 1 1.0 21 1 1.0 5
R2 180 2 4.0 19 1 2.0 5
R3 71 2 3.0 23 1 2.0 4
R4 49 3 7.0 31 1 3.0 5
R5 59 2 3.0 16 1 2.0 6

Table 5.4: M4 (source to sink relation) v. functions and contexts

Table 5.5 shows the comparison between the rating of complexity using only M1
(string-accessing operations) and the code locality. Note, that this table only con-
tains all those flows for which source and sink access occurred in the same file. At
first sight, the median value of the code locality appear to be related to the classifi-
cation by M1, as the larger number of string-accessing operations also yields in more
distance between source and sink (in terms of lines of code). In contrast, the case in
which these lines were farthest away from each other falls into the LC category. In
that specific case, just four operations were conducted, spread across 6,831 lines of
code.

Non-linear Flows An additional important observable characteristic of client-side
XSS is a classification of the vulnerability’s data and control flows in respect to their
linearity:

In the context of this work, we consider a data flow to be linear if on the way from
the source to the sink the tainted value is passed to all involved functions directly,
i.e., in the form of a function parameter. In consequence, a non-linear data flow
includes at least one instance of transporting the tainted value implicitly, e.g., via
a global variable or inside a container object. Manual identification of vulnerable
data flows in case of non-linear data flows is significantly harder, as no obvious
relationship between the tainted data and at least one of the flow’s functions exist.

Furthermore, non-linear control flows are instances of interrupted JavaScript execu-
tion: A first JavaScript execution thread accesses the tainted data source and stores

CM1 # Minimum Median Maximum
LC 993 0 3.0 6,831
MC 130 0 43.5 3,159
HC 29 7 100.0 1,974

Table 5.5: CM1 (string-accessing operations) v. code locality
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linear non-linear
control flow control flow Sum

linear data flow 1,116 —1 1,116
non-linear data flow 98 59 157
Sum 1,214 59 1,273

Table 5.6: Data and code flow matrix

it in a semi-persistent location, such as a closure, event handler or global variable,
and later on a second JavaScript thread uses the data in a sink access. Instances of
non-linear control flows can occur, if the flow’s code is distributed over several code
contexts, e.g., an inline and an external script, or in case of asynchronous handling of
events. Similar to non-linear data flows, the inspection of such flows is significantly
more difficult.

Table 5.6 shows the results of that classification for our data set. Note, that a linear
data flow cannot occur with a non-linear control flow, since this implies no relation
between source and sink accessing operations, and, thus violates the previous stated
criterion of a linear data flow, i.e., that the tainted string is always passed on as a
parameter. Therefore, the value for non-linear data and control flows matches the
value for source/sink relation R5.

Code Origin and Sink Distribution Table 5.7 depicts the distribution of the
origin of the involved code with respect to their complexity classification. Naturally,
vulnerabilities for which the flow traverses both self-hosted and third-party code
have a higher complexity due to the fact that at the very least two contexts must
be involved. This is underlined by the fact that over 20% of these flows are marked
to have a high complexity. In contrast, more than 75% of the vulnerabilities caused
only by self-hosted code have a low complexity score and only less than 9% are
ranked as being highly complex.

1 A linear data flow cannot occur with a non-linear control flow

LC MC HC Total
self-hosted 627 75.1% 135 16.2% 73 8.7% 835
third-party 173 63.4% 65 23.8% 35 12.8% 273
mixed 93 56.4% 36 21.8% 36 21.8% 165

Table 5.7: Code Origin v. Complexity Classification
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LC MC HC Total
document.write 568 77.6% 113 15.4% 51 7.0% 732
innerHTML 293 59.2% 112 22.6% 90 18.2% 495
eval 32 69.6% 13 28.2% 1 2.2% 46

Table 5.8: Sink v. Complexity Classification

Additionally, Table 5.8 shows the distribution of sinks with respect to the complexity
rating. For all sinks we analyzed, the largest number of flows falls into the low
complexity category. Interestingly, only one vulnerability which was caused by eval
has been ranked as having a high complexity, whereas more than 18% of flows to
innerHTML are marked as being complex.

Summary of our Findings In summary, we find that when combining all of our
classifiers, approximately 70% of all flows expose a low complexity (cp. Table 5.2).
Taking into account only single classifiers, we find that this fraction is even larger,
which shows that the combination of different metrics is necessary to correctly assess
the complexity of a flow. This is, for instance, exhibited in Table 5.5: In one of the
analyzed flows, the distance between source and sink spanned 6,831 lines of code,
containing only limited number of string altering operations in between. If regarded
exclusively under M1, the vulnerability would have ended in the LC bucket, which
does not accurately mirror the vulnerability’s character.

5.3.5 Key Insights

While the previous section outlined the classification derived from our metrics in
combination with their corresponding classification boundary, it lacked the analysis
of the underlying issues. Therefore, in this section, we outline our key insights moti-
vated by a select number of vulnerabilities we encountered in our study, highlighting
the causes of client-side XSS vulnerabilities.

Improper API Usage In our data set, we found a vulnerability in the snippet
shown in Listing 5.10. In this case, the user-provided data is passed to the out-
lined function, which apparently aims at removing all script tags inside this data.
The author of this snippet, however, made a grave error. Even though the newly
created div element is not yet attached to the DOM, assigning innerHTML will
invoke the HTML parser. While any script tag is not executed when passed to
innerHTML (Hickson and Hyatt, 2008), the attacker can pass a payload containing
an img with an error handler (Mozilla Developer Network, 2015b). The HTML
parser will subsequently try to download the referenced image and in the case of a
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failure, will execute the attacker-provided JavaScript code. While the effort by the
programmer is commendable, this filtering function ended up being a vulnerability
by itself.

function escapeHtml(s) {
var div = document.createElement(’div’);
div.innerHTML = s;
var scripts = div.getElementsByTagName(’script’);
for (var i = 0; i < scripts.length; ++i) {

scripts[i].parentNode.removeChild(scripts[i]);
}
return div.innerHtml;

};

Listing 5.10: Improper use of innerHTML for sanitization

In addition to this flaw, which was caused by the misinterpretation of the functional-
ity of innerHTML, we discovered another interesting code snippet, which is shown in
Listing 5.11. The intent of the author of this script is quite clear. To ensure that no
Cross-Site Scripting attack can occur, the code aims at replacing all opening HTML
brackets (<) in the URL with their HTML entity equivalent, &lt;. While at first,
the presented code appears to achieve just this, the developer made a very subtle
mistake. The first parameter to replace in the example is a regular expression, which
does not include the global flag. Therefore, the replace function only replaces the
first match rather than all of them (Mozilla Developer Network, 2015c). Thus, the
attacker simply has to prepend an additional < to exploit the vulnerability despite
the attempted filtering effort. This example, which we discovered on a top 1,000
domain, clearly shows missing knowledge on the part of the developer, underlined
also by the fact that jQuery provides a safe means of writing user-provided input
into the document, using the text function (The jQuery Foundation, 2015a).

jQuery("#warning404 .errorURL").html(location.href.replace(/</,"&lt;"))

Listing 5.11: Improper use of replace

Vulnerable Libraries The popular library jQuery provides a programmer with
the $ selector to ease the access to a number of functions inside jQuery, such as
the selection by id (using the # tag) as well as the generation of a new element in
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the DOM when passing HTML content to it. Up until version 1.9.0b1 of jQuery,
this selector was vulnerable to client-side XSS attacks (jQuery Bug Tracker, 2012),
if attacker-controllable content was passed to the function—even if a # tag was
hard-coded in at the beginning of that string. Listing 5.12 shows an example of
such a scenario, where the intended use case is to call the fadeIn function for a
section whose name is provided via the hash. This flaw could be exploited by an
attacker by simply putting his payload into the hash. In our study, we found that 25
vulnerabilities were caused by this bug, although the vulnerability had been fixed
for over three years at time of writing this thesis. This highlights that programmers
should regularly check third-party libraries for security updates or only embed the
latest version of the library into their pages.

var section = location.href.slice(1);
$("#" + section + "_section").fadeIn();

Listing 5.12: Vulnerable code if used with jQuery before 1.9.0b1

Incompatible First- and Third-party Code One of the most complex vulner-
abilities we encountered utilized meta tags as temporary sinks/sources. Listing 5.13
shows the code, which extracts the URL fragment and stores it into a newly created
meta element called keywords. Since this code was found in an inline script, we
believe that it was put there with intend by the page’s programmer.

var parts = window.location.href.split("#");
if (parts.length > 1) {

var kw = decodeURIComponent(parts.pop());
var meta = document.createElement(’meta’);
meta.setAttribute(’name’, ’keywords’);
meta.setAttribute(’content’, kw);
document.head.appendChild(meta);

}

Listing 5.13: Creating meta tags using JavaScript

This page also included a third-party script, which for the most part consisted of
the code shown in Listing 5.14. This code extracts data from the meta tag and
uses it to construct a URL to advertisement. In this case, however, this data is
attacker-controllable (originating from the URL fragment) and thus this constitutes
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a client-side XSS vulnerability. This code is an example for a vulnerability which is
caused by the combination of two independent snippets, highlighting the fact that the
combined use of own and third-party code can significantly increase complexity and
the potential for an exploitable data flow. In this concrete case, the Web application’s
programmer wanted to utilize the dynamic nature of the DOM to set the keywords
on-the-fly (from user-provided input), while the third-party code provider reckoned
that meta tags would only be controllable by the site owner.

function getKwds() {
var th_metadata = document.getElementsByTagName("meta");
...

}
var kwds = getKwds();
document.write(’<iframe src="...&loc=’ + kwds + ’"></iframe>’);

Listing 5.14: Third-party code extracting previously set meta tags

Explicit Decoding of Otherwise Safe Data As outlined in Section 5.2.3, the
automatic encoding behavior of data retrieved from the document.location source
varies between browsers: Firefox automatically escapes all components of the URL,
while Chrome does not encode the fragment, and IE does not encode any parts
of the URL. In consequence, some insecure data flows may not be exploitable in
all browsers, with Firefox being the least susceptible of the three, thanks to its
automatic encoding.

As mentioned above, the data set underlying our study was validated to be ex-
ploitable if Chrome’s escaping behavior is present, which leaves the fragment portion
of the URL unaltered. Thus, although our taint-aware version of Firefox mirrored
the behavior of Chrome, we wanted to investigate how many vulnerabilities would
actually work in any browser, i.e., in how many cases data was intentionally de-
coded before use in a security-sensitive sink. Using an unmodified version of Firefox,
we crawled all vulnerable URLs again and found that 109 URLs still triggered our
payload. This highlights the fact that programmers are aware of such automatic en-
coding, but simply decode user-provided data for convenience without being aware
of the security implications.

5.4 Summary

After having developed an infrastructure capable of detecting client-side XSS vul-
nerabilities at scale, this chapter presented the results of an in-depth analysis of

78



5.4 Summary

real-world vulnerabilities. To quantify the complexity of the discovered flaws, we
derived a set of metrics that allowed us to measure several features of the code
under investigation. We enhanced our existing infrastructure to allow for a more
comprehensive analysis of the vulnerable code and conducted an empirical study
on 1,293 distinct vulnerabilities. Applying the metrics we discussed and combining
the complexity scoring assigned by each of the metric’s values, we found that while
the largest fraction of all vulnerabilities are straight-forward and easy to spot, a
significant number of flaws show a high complexity, making them hard to detect
even for seasoned security analysts. Finally, this chapter discussed the key insights
we gained in our study, showing that non-trivial vulnerabilities are often caused by
improper API usage, vulnerable libraries, the combination of incompatible first- and
third-party and even explicit decoding of otherwise safe data.

Even though our analysis gives us an understanding of how these issues came into
existence, the flaws need to be handled by the developers of the vulnerable applica-
tions. In order to also enable a user to have an effective remedy against this class
of vulnerability, in the next chapter, we outline an analysis of currently deployed
countermeasures against Cross-Site Scripting, showing that they are inadequate to
protect users against these attacks. Subsequently, we present the design, implemen-
tation and evaluation of an XSS filter that is capable of robustly stopping Client-Side
Cross-Site Scripting attacks.

79





Chapter 6

Precise Client-Side Cross-Site Scripting Protection

After we presented a methodology to find Client-Side Cross-Site Scripting flaws at
scale, the previous chapter discussed the root causes of client-side XSS as discovered
by an empirical study on a set of 1,273 unique, real-world vulnerabilities. Motivated
by our insights on both the prevalence and complexity of such flaws, this chapter
presents an analysis of the current generation of client-side XSS filters, aimed at
determining how well existing approaches can protect users against this type of
attack.

In this chapter, after discovering and discussing several drawbacks of current ap-
proaches, we propose the conceptual design of a new XSS filter, specifically aiming
at blocking DOM-based Cross-Site Scripting. The discussion of the design is fol-
lowed by an evaluation of its compatibility with current Web pages, the protection
capabilities, and its performance. We conclude this chapter with a discussion of the
feasibility of the proposed filtering approach.

6.1 Drawbacks of Current Approaches

In recent years, browser vendors and third-party programmers have developed client-
side filters against Cross-Site Scripting attacks. While Firefox does not ship a built-in
filter, the extension NoScript, which was first introduced in 2007, not only allows
users to completely deactivate JavaScript, but also provides protection against XSS
attacks (Maone, 2007). Internet Explorer (Maone, 2008) as well as all WebKit/Blink-
based browsers (such as Chrome or Safari) on the other hand run a built-in filter.
The latter implement the filter described by Bates et al. (2010) under the name
XSS Auditor, which we consider to be the best and most widely deployed protection
scheme. In the following, we highlight the functionality of the XSS Auditor und
discuss several issues which allow an attacker to bypass the protection provided by
it.

6.1.1 Inner Workings of the XSS Auditor

In contrast to the concept employed by NoScript and Internet Explorer, which try to
detect the injected payload in the outgoing request, the XSS Auditor is only invoked
when the resulting HTML response is parsed. To allow for fast and precise detection
of Cross-Site Scripting payloads, it is located inside the HTML parser. A general
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Figure 6.1: Conceptual overview of XSS Auditor (Bates et al., 2010)

overview of the XSS Auditor’s concept is shown in Figure 6.1. Since one of the main
design goals was performance, the Auditor has several checks in place to ensure that
it is not invoked in cases where an attack is unlikely to happen. One of the first
checks is whether the request contains characters that are deemed necessary for a
successful attack by the Auditor, i.e., <, >, ‘, and “. If neither of those characters is
found, the Auditor is shut off. Also, in order to optimize performance, the Auditor is
switched off when parsing so-called document fragments, i.e., HTML which is passed
from JavaScript using innerHTML and its derivatives (Chromium Developers, 2015a).
In these cases, the transition between HTML parser and XSS Auditor, as depicted
in the center of Figure 6.1, does not occur.

If both these checks are passed, the Auditor is enabled for the current document.
During the parsing process, the Auditor checks for potentially dangerous elements,
i.e., such elements that allow for JavaScript execution. These can either be injected
inline script tags, elements with event handlers or elements that can reference
external content, e.g., script tags which have their src attribute set. Depending on
the discovered element, the Auditor then applies a set of matching rules to locate
the payload in the request (abstracted in the XSS? stage of Figure 6.1), and, if the
payload is found, replaces the injected code with benign code, such as a call to the
void function.

When the Auditor decides that no XSS attack has occurred, it passes the dis-
covered script content to the JavaScript engine. If the executed code then uses
document.write to add additional HTML to the DOM during runtime, the HTML
parsing process is re-invoked and, thus, the Auditor’s workflow starts again from the
beginning.
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6.1.2 Limitations of the Auditor

In the following, we highlight properties of the XSS Auditor’s design which allow an
attacker targeting client-side XSS vulnerabilities to bypass its protection capabilities.
These range from conceptual issues due to placement of the Auditor to problems
with the employed string matching scheme.

In our work, we discovered several conceptual problems with the Auditor, that al-
low an attacker to bypass the protection scheme. First and foremost, the Auditor
is switched off for snippets of HTML which are passed via innerHTML, as these
checks incur a significant performance overhead (Kling, 2013). As our results in Sec-
tions 4.3.4 and 5.3.4 have shown, a large portion of the discovered vulnerabilities
are caused by flows of data to this sink. Thus, any vulnerability that is caused by
an insecure flow to this sink allows for a bypass of the filter to begin with.

Similarly, all vulnerabilities caused by the insecure usage of eval do not even pass
the HTML parser, and therefore are also out of scope for the Auditor. Next to
these, Client-Side Cross-Site Scripting may also occur if attacker-controllable data
is directly assigned to a DOM property such as the src attribute of a script tag.
As this kind of flow also occurs purely inside the JavaScript engine, the Auditor
again has no means of detecting and defending against such an attack.

In order to approximate the flow of data provided by the user back to the rendered
document, the Auditor relies on string matching, i.e., tries to find the strings it en-
countered when parsing the HTML in the original request. Next to the issues caused
by performance concerns and placement of the XSS Auditor, we discovered several
problems related to this string matching approach. As an example, we consider the
snippet shown in Listing 6.15. The hash property of the location object denotes
attacker-controllable input. In a typical attack, the goal of an attacker is to break
out of the existing HTML element and append his own script element.

var val = location.hash.slice(1);
var code = "<script>var x = ’" + val + "’;</script>";
document.write(code);

Listing 6.15: Inscript injection vulnerability

The Auditor assumes such an attacker model and, thus, when detecting any script
element during HTML parsing, looks for both an opening script tag and the con-
tained payload in the request. In this concrete example, the attacker does not need
to break out of the existing script context. Rather, he can leverage the fact that
his controllable input is inserted between opening and closing script tags, by sim-
ply breaking out of the assignment of the variable x and appending a payload of his
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choosing. Let us assume the attacker wants to execute the function evilcode; he can
thus modify the URL such that the hash fragment’s value is ’; evilcode();y=’,
i.e., he lures his victim to http://vuln.com/#’; evilcode();y=’.

Listing 6.16 shows the resulting HTML markup which is passed to document.write
in this attack scenario. When the HTML parser invokes the XSS Auditor to check
whether the script tag was injected, the Auditor applies the built-in matching rules
and hence, searches for an opening script tag in the request, i.e., the URL in this
case. Since no such tag is contained in the URL, the Auditor determines that no
XSS attack has occurred and passes the code to the JavaScript engine, where the
attacker’s injected payload is now executed.

<script>
var x=’’; evilcode();y=’’;

</script>

Listing 6.16: HTML passed to document.write when opening http://vuln.com/
#’;evilcode();y=’ and executing the code from Listing 6.15 (indented for read-

ability)

Next to this bypass, we discovered a significant number of flaws related to string
matching as well as conceptual flaws which assume that user-provided data must be
contained in the request. In the following, we only briefly cover these topics, as this
analysis is not a major contribution of this thesis and refer the interested reader to
Stock et al. (2014b).

Trailing Content When trying to determine if a snippet of JavaScript code was
injected by an attacker, the Auditor terminates the string to match at certain com-
ment sequences, such as //. These comment characters, however, are also part of
the string that is matched against the request. We consider the example shown in
Listing 6.17. In this case, a viable option for an attacker is to break out of the ex-
isting script tag and inject his own, new script element. If this script is, however,
completely contained in the request, the Auditor blocks it.

var path = location.hash.slice(1);
// includes script.js from path on current domain
var code = "<script src=’/" + path + "/script.js’></script>";
document.write(code);

Listing 6.17: Trailing content vulnerability
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In this concrete case, the character which follows the attacker-controllable string is a
single forward slash. The attacker can use this trailing slash to inject his payload and
bypass the Auditor, using the injection vector ’></script><script>alert(1)/.
While this snippet appears like an incomplete script tag, Listing 6.18 shows the
actual HTML code which is written to the document. Given the trailing slash from
the original code, the single, appended slash at the end of our injected vector
now completes the comment sequence, essentially commenting out the remaining
script.js’>.

<script src=’/’></script><script>alert(1);//script.js’></script>

Listing 6.18: Resulting HTML code when exploit the flaw in Listing 6.17

The Auditor, however, searches for the content of the newly injected script up to
and including both slashes. As discussed above, the request only contains a single
slash and, thus, the matching fails, allowing us to bypass the Auditor’s protection
capabilities.

Double Injections Similar to the previous type of bypass, double injections also en-
able an attacker to fool the Auditor. In these scenarios, the attacker can control more
than one non-consecutive substring in a sink access. Given the right circumstances,
he can therefore split up the desired payload, e.g., in multiple GET parameters. As
a result, the complete payload is not contained in the request as such and, thus, the
matching fails.

Application-specific Input Mutation Another category of bypasses is the mutation of
input by the application. Such mutations may occur if the Web application tries to
perform filtering. In a concrete example we encountered in our analysis, we found a
snippet that would remove all double quotes from a string. In these cases, we simply
prepended such a quote to our payload, i.e., "alert(1). While normally, this would
cause a parsing error if executed by the JavaScript engine, the mutation allowed us
to execute our injected payload. In contrast, the Auditor would in these cases look
for an opening script tag and the truncated payload alert(1). As this combination
is not present in the request, we could successfully fool the matching algorithm.

6.1.3 Evaluating Bypasses of the Auditor

In order to evaluate how well the Auditor performs in detection and blocking of
real-world Client-Side Cross-Site Scripting vulnerabilities, we took a set of 1,602
vulnerabilities spread across 958 domains discovered by the methodology outlined

85



6 Precise Client-Side Cross-Site Scripting Protection

in Chapter 4. While these vulnerabilities had all been discovered when the Auditor
was manually disabled, we activated the Auditor to see how many would initially
pass, e.g., due to the fact that they exploited innerHTML or eval flaws.

In addition, we analyzed all the exploits which had been initially caught by the
Auditor. Based on the insights we gained from our analysis of the XSS Auditor’s
code we then specifically crafted our payload such that we could leverage one of the
discovered issues. Combining the bypasses caused by the placement of the Auditor
with those specifically crafted to fool the string matching algorithms, we were able
to exploit 1.168 vulnerabilities on 776 domains, i.e., 73% of all vulnerabilities and
81% of all domains, respectively.

6.1.4 Discussion

As our evaluation shows, the Auditor is not capable of robustly stopping Client-Side
Cross-Site Scripting attacks. Although it was never intended to provide protection
against this class of attacks, it is the most advanced and widely deployed XSS filter
on the Web. Our analysis has highlighted two important, conceptual issues which
caused the bypasses: placement of the Auditor and the employed string matching.

Placement Compared to the approaches used by NoScript and Internet Explorer,
the Auditor does not rely on regular expression matching on the outgoing request,
but gains a significant performance bonus by being part of the HTML parsing engine.
It is called before the JavaScript engine can be invoked by attacker-injected code. As
we have shown, however, all such flaws that exploit vulnerable code in conjunction
with eval are out of scope, i.e., the Auditor is not capable of stopping attacks in
which HTML parsing is not conducted before execution of the attacker-provided
code.

String Matching Even if the placement of the Auditor was to be changed to
allow for filtering of JavaScript-based sinks, the string matching algorithm is another
conceptual problem of the Auditor. In order to allow for covering of corner cases,
several patches have been committed to the Auditor’s code base to thwart specific,
known attacks (Chromium Developers, 2015b). However, our work has shown that
depending on the specifics of a piece of vulnerable code, the Auditor’s matching
algorithm can be fooled. In total, we discovered 13 such issues which allowed us
to bypass the Auditor. Thus, regardless of additional attempts to fix these specific
issues, the discussed issues are inherent to string matching and, thus, cannot be
tackled by the Auditor.
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6.2 Conceptual Design

As we shown before, the XSS Auditor is not able to provide adequate protection
against Client-Side Cross-Site Scripting attacks. The problems which allowed us to
bypass the Auditor are inherent to its design. Therefore, rather than enhancing the
existing approach, we now propose a solution specifically targeting client-side XSS.
In the following, we discuss the design and implementation of this new concept.

Cross-Site Scripting as such can be abstracted to an issue related to improper sep-
aration of code and data. As we have already outlined in Section 2.3, all types of
Cross-Site Scripting attacks have a common denominator: all of them are caused
by attacker-provided data which ends up being interpreted as code by the victim’s
browser, and more specifically JavaScript engine. This general attack pattern also
holds true for all types of injection attacks, such as SQL or command injection.

As we have demonstrated in Section 6.1.2, client-side XSS filters relying on string
comparison lack the required precision for robust attack mitigation. String compar-
ison as an approximation of occurring data flows is a necessary evil for flows that
traverse the server.

For Client-Side Cross-Site Scripting vulnerabilities, this is not the case. Instead,
the full data flow occurs within the browser’s engines and can thus be observed
precisely. For this reason, we propose an alternative protection mechanism that
relies on runtime tracking of data flows and taint-aware parsers and makes use of
two interconnected components:

• A taint-enhanced JavaScript engine capable of tracking attack-provided data
through the execution of a given document, both in the JavaScript and WebKit
realm and

• taint-aware JavaScript and HTML parsers which apply predefined policies on
how tainted data may be interpreted.

This way our protection approach reliably spots attacker-controlled data during the
parsing process and is able to stop cases in which tainted data alters the execution
flow of a piece of JavaScript. In the following, we discuss the general concept and
security policy as well as a means of opting out of our protection scheme.

6.2.1 Precise Code Injection Prevention

As we outlined in the previous section, our protection scheme relies on precise byte-
level taint tracking. In the following, we give an overview of the necessary changes we
performed in order to implement our filtering approach. More specifically, we made
changes to the browser’s rendering engine, the JavaScript engine and the DOM
bindings, which connect the two engines.
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JavaScript Engine When encountering a piece of JavaScript code, the JavaScript
engine first tokenizes it to later execute it according to the ECMAScript language
specification. While it is a valid use case to utilize user-provided data within data
values such as String, Boolean or Integer literals, we argue that such a value should
never be turned into tokens that can alter a program’s control flow such as a func-
tion call or a variable assignment. We therefore propose that the tokenization of
potentially attacker-provided data should never result in the generation of tokens
other than literals. As our JavaScript engine is taint-aware, the parser is always
able to determine the origin of a character or a token. Hence, whenever the parser
encounters a token that violates our policy, execution of the current code block can
be terminated immediately.

Rendering Engine Besides injecting malicious JavaScript code directly into an
application, attackers are able to indirectly trigger the execution of client-side code.
For example, the attacker could inject an HTML tag, such as the script or object
tag, to make the browser fetch and execute an external script or plugin applet.
Hence, only patching the JavaScript engine is not sufficient to prevent DOM-based
XSS attacks. To address this issue, we additionally patched the HTML parser’s logic
on how to handle the inclusion of external content. When including active content we
validate the origin of a script’s or plugin applet’s URL based on our taint information.
One possible policy is to reject URLs containing tainted characters. However, as
we assess later, real-world applications commonly use tainted data within URLs
of dynamically created applets or scripts. Therefore, we allow tainted data within
such a remote URL but do not allow the tainted data to be contained either in the
protocol or the domain of the URL. The only exemption to this rule is the inclusion
of external code from the same origin. In these cases, similar to what the Auditor
does, we allow the inclusion even if the protocol or domain is tainted. This way,
we make sure that active content can only be loaded from hosts trusted by the
legitimate Web application.

DOM Bindings Similar to the previous case, the execution of remote active content
can also be triggered via a direct assignment to a script or object tag’s src
attribute via the DOM API. This assignment does not take place within the HTML
parser but rather inside the DOM API. Thus, to ensure that no malicious code
can be executed following such an assignment, we patched the DOM bindings to
implement the same policy as mentioned above.

Intentional Untainting As our taint-aware browser rejects the generation of code
originating from a user-controllable source, we might break cases in which such a
generation is desired. A Web application could, for example, thoroughly sanitize the
input for later execution. In order to enable such cases, we offer an API to taint and
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untaint strings. If a Web application explicitly wants to opt-out of our protection
mechanism, the API can be used to completely remove taint from a string.

6.2.2 Handling Tainted JSON

While our policy effectively blocks the execution of attacker-injected JavaScript, only
allowing literals causes issues with tainted JSON. Although JavaScript provides ded-
icated functionality to parse JSON, many programmers make use of eval to do so.
This is mainly due to the fact that eval is more tolerant whereas JSON.parse ac-
cepts only well-formed JSON strings. Using our proposed policy we disallow tokens
like braces or colons which are necessary for the parsing of JSON. In a preliminary
crawl, we found that numerous applications make use of postMessages to exchange
JSON objects across origin boundaries. Hence, simply passing on completely tainted
JSON to the JavaScript parser would break all these applications whereas allowing
the additional tokens to be generated from parsing tainted JSON might jeopardize
our protection scheme. In order to combat these two issues, we implemented a sepa-
rate policy for JSON contained within postMessages. Whenever our implementation
encounters a string which heuristically matches the format of JSON, we parse it in
a tolerant way and deserialize the resulting object. In doing so, we only taint the
data values within the JSON string. This way incompatible Web applications are
still able to parse JSON objects via eval without triggering a taint exception. Since
we validated the JSON’s structure, malicious payloads cannot be injected via the
JSON syntax. If a deserialized object’s attributes are used later to generate code,
they are still tainted and attacks can be detected. If for some reason our parser fails,
we forward the original, tainted value to the postMessage’s recipient to allow for
backwards compatibility.

6.3 Practical Evaluation

After the implementation of our modified engine as well as the augmented HTML
and JavaScript parsers we evaluated our approach in three different dimensions. In
this section, we shed light on the compatibility of our approach with the current
Web, discuss its protection capabilities, and evaluate its performance in comparison
to the vanilla implementation of Chromium as well as the most commonly used
others browsers. Finally, we summarize the results of said evaluation and discuss
their meaning.

6.3.1 Compatibility

While a secure solution is desirable, it is not going to be accepted by users if the
protection mechanism negatively affects existing applications. Therefore, in the fol-
lowing, we discuss the compatibility of our proposed defense to real-world applica-
tions. We differentiate between the two realms in which our approach is deployed –
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namely the JavaScript parser and the HTML/DOM components – and answer the
questions:

1. In what fraction of the analyzed applications do we break at least one function-
ality?

2. How big is the fraction of all documents in which we break at least one function-
ality?

3. How many of these false positives are actually caused by vulnerable pieces of
code which allow an attacker to execute a Cross-Site Scripting attack?

Analysis Methodology To answer these questions for a large body of domains, we
conducted a crawl of the Alexa top 10,000 domains (going down one level from the
start page) with our implemented filter enabled. Rather than just blocking execution
we also sent a report back to our backend each time the execution of code was
blocked. Among the information sent to the backend were the URL of the page
that triggered the exception, the exact string that was being parsed as well as the
corresponding taint information. Since we assume that we are not subject to a DOM-
based XSS attack when following the links on said start pages, we initially count all
blocked executions of JavaScript as false positives.

In total, our crawler visited 981,453 different URLs, consisting of a total of 9,304,036
frames. The percentages in the following are relative to the number of frames we
analyzed.

Compatibility of JavaScript Parsing Rules In total, our crawler encountered
and subsequently reported taint exceptions, i.e., violations of the aforementioned
policy for tainted tokens, in 5,979 frames. In the next step, we determined the Alexa
ranks for all frames which caused exceptions, resulting in a total of 50 domains.
Manual analysis of the data showed that on each of these 50 domains, only one
JavaScript code snippet was responsible for the violation of our parsing policy. Out
of these 50 issues, 23 were caused by data stemming from a postMessage, whereas the
remaining 27 could be attributed to data originating from the URL. With respect
to the analyzed data set this means that the proposed policy for parsing tainted
JavaScript causes issues on 0.50% of the domains we visited, whereas in total only
0.06% of the analyzed frames caused issues.

To get a better insight into whether these false positive were in fact caused by
vulnerable JavaScript snippets, we manually tried to exploit the flows which had
triggered a parsing violation. Out of the 23 issues related to data from postMessages,
we found that one script did not employ proper origin checking, allowing us to exploit
the insecure flow. We then manually analyzed the remaining 27 scripts which had
caused a policy violation and found that out of these, we could successfully exploit
an additional 21 domains.
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Summarizing, our study has shown that the JavaScript parsing rules cause issues
with 50 of the domains under investigation, while 22 contain an actual, exploitable
vulnerability which triggered the exception.

As we outlined in Section 6.2.2, we allow for postMessages to contain tainted JSON
which is automatically selectively untainted by our prototype. To motivate the ne-
cessity for this decision, we initially also gathered taint exceptions caused by tainted
JSON (stemming from postMessages) being parsed by eval. This analysis showed
that next to the 5,979 taint exceptions we had initially encountered, 90,937 viola-
tions of our policy were reported for JSON from postMessages. On the one hand,
this puts emphasis on the necessity for our proposed selective untainting, whereas
on the other hand, it also shows that programmers utilize eval quite often in con-
junction with JSON exchanged via postMessages, even though secure alternatives
like JSON.parse exist.

Compatibility of HTML Injection Rules As discussed in the previous section,
our modified browser refuses to execute external scripts if any character in the
domain or protocol is stemming from an untrusted source. Analogous to what we had
investigated with respect to the JavaScript parsing policy, we wanted to determine in
how many applications we would potentially break functionality when employing the
proposed HTML parsing policy. We therefore implemented a reporting feature for
any tainted HTML and a blocking feature for policy-violating HTML. This feature
would always send a report containing the URL of the page, the HTML to be parsed,
as well as the exact taint information to the backend. We go into further detail on
injected HTML in Section 7.1.3 and now focus on all those tainted HTML snippets
which violate the policy we defined in Section 6.2.1.

During our crawl, 8,805 out of the 9,304,036 documents we visited triggered our
policy of tainted HTML whereas the 8,805 reports were spread across 73 domains.
Out of these, 8,667 violations (on 67 domains) were caused by script elements with
src attributes containing one or more tainted characters in the domain of the in-
cluded external script. Out of the remaining six domains, we found that three utilized
base.href such that the domain name contained tainted characters and thus, our
prototype triggered a policy exception on these pages. Additionally, two domains
used policy-violating input.formaction attributes and the final remaining domain
had a tainted domain name in an embed.src attribute. In total, this sums up to
a false positive rate of 0.09% with respect to documents as well as 0.73% for the
analyzed domains.

Subsequently, we analyzed the 73 domains which utilized policy violation HTML
injection to determine how many of them were susceptible to a DOM-based XSS
attack. In doing so, we found that we could exploit the insecure use of user-provided
data in the HTML parser in 60 out of 73 cases.
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blocked blocked exploitable
documents domains domains

JavaScript 5,979 50 22
HTML 8,805 73 60
DOM API 182 60 8

sum 14,966 183 90

Table 6.1: False positives by blocking component

Compatibility of DOM API Rules As we discussed previously, we also examine
assignments to security-critical DOM properties like script.src or base.href and
block them according to our policy. In our compatibility crawl, our engine blocked
such assignments on 60 different domains in 182 documents, whereas the largest
amount of blocks could be attributed to script.src. Noteworthy in this instance
is the fact that 45 out of these 60 blocks interfered with third-party advertisement
by only two providers.

After having counted the false positive, we yet again tried to exploit the flows that
had been flagged as malicious by our policy enforcer. Out of the 60 domains our
enforcer had triggered a block on, we verified that eight constitute exploitable vul-
nerabilities. In comparison to the amount of exploitable blocks we had encountered
for the JavaScript and HTML injection polices this number seems quite low. This
is due to the fact that both the aforementioned advertisement providers employed
whitelisting to ensure that only script content hosted on their domains could be
assigned. In total, this sums up to 0.60% false positives with respect to domains and
just 0.002% of all analyzed documents.

Summary In this section, we evaluated the false positive rate of our filter. In
total, the filtering rules inside the JavaScript parser, the HTML parser and the
security-sensitive DOM APIs caused issues on 14,966 document across 183 domains.
Considering the data set we analyzed this amounts to a false positive ratio of 0.16%
for all analyzed documents and 1.83% for domains. Noteworthy in this instance is,
however, the fact that out of the 183 domains on which our filter partially impaired
the functionality, 90 contained actual verified vulnerabilities in just that function-
ality. Table 6.1 shows the distribution of blocked documents and domains over the
different policy-enforcing components as well as the amount of domains in which the
blocked functionality caused an exploitable vulnerability.
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6.3.2 Protection

To ensure that our protection scheme does not perform worse than the original
Auditor, we re-ran all exploits that successfully triggered when the Auditor was
disabled. All exploits were caught by the JavaScript parser, showing that our scheme
is at least as capable of stopping DOM-based Cross-Site Scripting as the Auditor.

To verify the effectiveness of our proposed protection scheme, we ran all generated
exploits and bypasses against our newly designed filter. To minimize side-effects, we
also disabled the XSS Auditor completely to ensure that blocking would only be
conducted by our filtering mechanism. As we discussed in Section 6.1.2, alongside
the scoping-related issues that were responsible for the successful bypassing of the
Auditor by the first generation of exploits, other issues related to string matching
arose. In the following, we briefly discuss our protection scheme with respect to
stopping these kinds of exploits.

Scoping: eval and innerHTML In contrast to the XSS Auditor, our filtering
approach is fully capable of blocking injections into eval due to the fact that it
is implemented directly in the JavaScript parser. Another issue that impairs the
protection capabilities is the fact that innerHTML is not checked for performance
reasons. In our implementation, conducting this check in the HTML parser is not
necessary. To check whether a given token was generated from a tainted source, a
simple boolean flag has to be checked. Therefore, our engine does not incur similar
performance overhead issues and can robustly block exploits targeting innerHTML.

Injection Attacks Targeting DOM APIs In our experiments, we did not specif-
ically target the direct assignment to security-critical DOM API properties. Inside
the API, analogous to the HTML parser, assignment to one of these critical prop-
erties might cause direct JavaScript execution (such as a javascript: URL for
an iframe.src) or trigger loading of remote content. For the first case, our taint
tracking approach is capable of persisting the taint information to the execution
of the JavaScript contained in the URL and hence, the DOM API does not have
to intervene. For the loading of remote content, the rules of the HTML parser are
applied, disallowing the assignment of the property if the domain name contains
tainted characters.

Partial Injection One of the biggest issues, namely partial injection, was stopped
at multiple points in our filter. Depending on the element and attribute which could
be hijacked, the attack vector either consisted of injected JavaScript code or of an
URL attribute used to retrieve foreign content (e.g. through script.src). For the
direct injection of JavaScript code, the previously discussed JavaScript parser was
able to stop all exploit prototypes whereas for exploits targeting URL attributes, the
taint-aware HTML parser successfully detected and removed these elements, thus
stopping the exploit.

Trailing Content and Double Injection The bypasses which we categorized
as trailing content are targeting a weakness of the Auditor, specifically the fact

93



6 Precise Client-Side Cross-Site Scripting Protection

that it searches for completely injected tags whereas double injection bypasses take
advantage of the same issue. Both trailing content and double injections can be
abused to either inject JavaScript code or control attributes which download remote
script content. Hence, analogous to partial injection, the filtering rules in the HTML
and JavaScript parsers could, in conjunction with the precise origin information,
stop all exploits.

Second-Order Flows and Alternative Attack Vectors Similar to injection
attacks targeting the direct assignment of DOM properties through JavaScript, we
did not generate any exploits for second order flows. Nevertheless, we persist the taint
information through intermediary sources like the WebStorage API. Therefore, our
prototype is fully capable of detecting the origin of data from these intermediary
sources and can thus stop these kinds of exploits as well. As for postMessages,
window.name and document.referer, our implementation taints all these sources
of potentially attacker-controlled data and is hence able to stop all injection attacks
pertaining to these sources.

Application-Specific Input Mutation Our engine propagates taint information
through string modification operations. Therefore, it does not suffer the drawbacks
of current implementations based on string matching. All exploits targeting vul-
nerabilities belonging to this class were caught within our HTML and JavaScript
parsers.

6.3.3 Performance

In order to evaluate the performance of our implementation we conducted experi-
ments with the popular JavaScript benchmark suites Sunspider, Kraken, and Octane
as well as the browser benchmark suite Dromaeo. Sunspider was developed by the
WebKit authors to “focus on short-running tests [that have] direct relevance to the
web” (Pizlo, 2013). Google has developed Octane which includes “5 new benchmarks
created from full, unaltered, well-known web applications and libraries” (Cazzu-
lani, 2012). Mozilla has developed Kraken which “focuses on realistic workloads and
forward-looking applications” (Jostedt, 2010). Dromaeo, which is a combination of
several JavaScript and HTML/DOM tests, finally serves as a measure of the overall
impact our implementation has on the everyday browsing experience.

All tests ultimately lead to a single numerical value, either being a time needed for
a run (the lower the better) or a score (the higher the better), reflecting the per-
formance of the browser under investigation. For runtime (score) values the results
were divided by the values obtained for the unmodified version of the Web browser
(vice versa). These serve as the baseline for our further comparisons. With the ob-
tained results we computed a slowdown factor reflecting how many times slower
our modified version is. To set these numbers into context, we also evaluated other
popular Web browsers, namely Internet Explorer 11 and Firefox 26.0. To eliminate
side effects of, e.g., the operating system or network latency, we ran each of the
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Kraken (ms) Sunspider (ms)
Baseline 1418.9 94.29 – 169.02 0.37 –
Tainted Best 1653.1 59.84 1.16 178.03 0.70 1.05
Tainted Worst 1814.4 64.55 1.27 192.66 0.26 1.14
Firefox 26.0 1291.3 1.14 0.91 171.86 0.65 1.02
IE 11 1858.5 4.16 1.31 78.05 0.13 0.46

Table 6.2: Benchmark results for Kraken and Sunspider, showing mean, standard
error and slowdown factor for all browsers

benchmarking suites locally ten times using an Intel Core i7 3770 with 16GB of
RAM. All experiments, apart from Internet Explorer, were conducted in a virtual
machine running Ubuntu 13.04 64-bit whereas IE was benchmarked natively running
Windows 7.

Tables 6.2 and 6.3 show the results of our experiments. To ascertain a baseline for
our measurements we ran all benchmarks on a vanilla build of Chromium. The table
shows the mean results (in points or milliseconds) as well as the standard error
and the slowdown factor for each test and browser. Internet Explorer employs an
optimization to detect and remove dead code, causing it to have significantly better
performance under the Sunspider benchmark than the other Web browsers (Windows
Internet Explorer Engineering, 2010). As the results generated by all browsers under
the Kraken benchmark were varying rather strongly, we ran the browsers in our
virtual machines 50 times against the Kraken benchmark. Regardless, we still see a
rather high standard error of the mean for all the browsers.

We chose the aforementioned tests because they are widely used to evaluate the
performance of both JavaScript and HTML rendering engines. These tests are, how-
ever, obviously not designed to perform operations on tainted strings. Our engine
usually only switches from the highly optimized generated code to the slower run-

Dromaeo Octane
Baseline 1167.4 1.89 – 20177.9 64.47 –
Tainted Best 1082.6 2.40 1.08 19851.0 54.54 1.01
Tainted Worst 1015.6 1.93 1.15 18168.7 70.24 1.11
Firefox 26.0 721.7 2.94 1.62 16958.5 97.40 1.19
IE 11 607.0 2.13 1.92 17247.2 47.15 1.17

Table 6.3: Benchmark results for Dromaeo and Octane, showing mean, standard
error and slowdown factor for all browsers
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time C++ implementation if an operation is conducted on a tainted string. In the
initial runs, which is denoted in Table 6.2 and Table 6.3 as Tainted Best, our en-
gine incurred slowdown factors of 1.08, 1.01, 1.16 and 1.05, resulting in an average
slowdown factor of 7%. Since the tests are not targeting the usage of tainted data,
we conducted a second run. This time we modified our implementation to treat all
strings as being tainted, forcing it to use as much of our new logic as possible. In
this, the performance was naturally worse than in the first run. More precisely, by
calculating the average over the observed slowdown factors for our modified (denoted
as Tainted Worst) version, we see that our implementation incurs, in the worst case,
an overhead of 17% compared to the vanilla version. Although the performance hit
is significant, other popular Web browsers have an even higher slowdown factor of
at least 1.19.

6.3.4 Discussion

In this section we evaluated compatibility, protection capability as well as perfor-
mance of our proposed filter against Client-Side Cross-Site Scripting. In the follow-
ing, we briefly discuss the implications of these evaluations.

In our compatibility crawl we found that 183 of the 10,000 domains we analyzed
had one functionality that was incompatible with our policies for the JavaScript
parser, the HTML parser and the DOM APIs. Although this number appears to be
quite high at first sight it also includes 90 domains on which we could successfully
exploit a vulnerability in just the functionality that was blocked by our filter. On
the other hand, the total number on domains which our approach protected from a
DOM-based XSS attack amounts to 958. Although the XSSAuditor is not designed
to combat DOM-based XSS attacks, it is the only currently employed defense for
Google Chrome against such attacks. As we discussed in Section 6.1.3, the Auditor
could be bypassed on 81% of these domains, protecting users on only 183 domains
in our initial data set. This shows that with respect to its protection capabilities our
approach is more reliable than currently deployed techniques.

Apart from reliable protection and a low false positive rate, one requirement for a
browser-based XSS filter is its performance. Our performance measurements showed
that our implementation incurs an overhead between 7 and 17%. Chrome’s Java-
Script engine V8 draws much of its superior performance from utilizing so-called
generated code, i.e., ASM code generated directly from macros. To allow for a small
margin for error, we opted to implement most of the logic — such as copying of taint
information — in C++ runtime code. We therefore believe that an optimized im-
plementation making more frequent use of said generated code would ensure better
performance.

Our approach only aims at defeating DOM-based Cross-Site Scripting while the
Auditor’s focus is on reflected XSS. We therefore believe that deployment besides
the Auditor is a sound way of implementing a more robust client-side XSS filter,
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capable of handling both reflected and DOM-based XSS. Also, compared to other
countermeasures such as the Content-Security Policy (World Wide Web Consortium,
2015), the burden of the proper implementation of a security mechanism is taken
from the developers of many Web applications to a few highly skilled browser vendor
programmers. Although approaches such as deDacota (Doupé et al., 2013) exist
which try to automate the process of re-writing applications to be compliant with
the Content-Security Policy, this task is very hard to accomplish for all vulnerable
applications we discovered in our study.

6.4 Summary

After the previous chapters covered attack scenarios of Cross-Site Scripting and
analyzed the prevalence and nature of Client-Side Cross-Site Scripting vulnerabil-
ities on real-world Web sites, this chapter first discussed an analysis of the state
of the art in Cross-Site Scripting filtering, namely the XSS Auditor. After having
discovered numerous conceptional flaws which allow us to bypass the Auditor on
more than 80% of the vulnerable domains in our data set, we presented the design,
implementation and evaluation of a Cross-Site Scripting filter specifically targeting
client-side XSS. In contrast to other, currently deployed, approaches, we rely on
precise taint tracking to observe the flow of attacker-controllable data throughout
an application into a security-critical sink, and, finally, to the JavaScript engine.
This precision is enabled by the fact that all data flows with respect to Client-Side
Cross-Site Scripting vulnerabilities occur within the browser and are thus trackable.
In the JavaScript engine, we apply a set of predefined policies to only allow tainted
data to produce boolean, numeric or string literals. Similarly, we deploy policies in
the HTML parser and DOM APIs which ensure that script content retrieved from
attacker-controllable URLs may not be executed. This allows for a precise and ro-
bust protection against Client-Side Cross-Site Scripting in the browser. Although
the approach adds overhead in both memory consumption and execution runtime, it
still outperforms any other browser without additional protection capabilities. Apart
from that, the potential for performance optimization exists, as our approach was
designed as a proof-of-concept rather than a production-ready browser.

This chapter concludes the research conducted throughout this thesis. In the follow-
ing chapter, we discuss limitations of the approaches described in this thesis and,
based on these, present potential future work. Following this, we finish our work
with a summary of our contributions and conclude.
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Chapter 7

Future Work and Conclusion

In this chapter, we discuss limitations of the presented work and potential future
work based on these limitations. We do so by outlining means of enhancing our
detection scheme (presented in Chapter 4), analysis metrics (Chapter 5) and discuss
the feasibility of using the taint-aware Cross-Site Scripting filter, which we presented
in Chapter 6, to not only block Cross-Site Scripting, but also arbitrary HTML
injection attacks. We end the chapter and this thesis with a conclusion of the research
explored throughout our work.

7.1 Limitations and Future Work

The approaches presented throughout this thesis have certain limitations. In the
following, we present these limitations, which allow us to propose future work aiming
at tackling these issues.

7.1.1 Enhancing Vulnerability Detection

Our analysis methodology to discover client-side XSS flaws on real-world Web sites
does not employ any techniques to ensure code coverage. Instead, the browsing en-
gine recursively follows the links it discovers in the analyzed pages, without attempt-
ing to conduct meaningful interaction (such as clicking elements and thus, triggering
event handlers) with the page under investigation. Similarly, we have anecdotal evi-
dence of vulnerabilities which are only triggered if a certain parameter exists in the
URL of the analyzed document.

Thus, we believe that our approach could be extended by combining it with analysis
techniques like static code analysis (Tripp et al., 2014). Another interesting approach
was followed by Kolbitsch et al. (2012) for ROZZLE: they utilize pseudo-symbolic
execution to cover both sides of branches dependent on the navigator object with
the goal of detecting malware which targets specific browser and plugin versions.
After all paths have been covered, they use a solver to determine versions which were
targeted by the malware. This approach could be adopted to branches dependent
on attacker-controllable data, allowing for a higher code coverage.

Web pages often use content management systems, that allow the administrator to
set-up templates which can be populated with content later on. We consider a news
site, which typically has a small number of templates, e.g., for news, live tickers or
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image galleries. If such a site is analyzed and all links are followed, the probability
of analyzing the same code multiple times is high, as the delivered JavaScript code
is most likely dependent on the template rather than the content, e.g., of a news
post. Thus, an interesting extension of our approach is to build an oracle capable
of determining whether a given link might be of interest to an analysis. Initial,
unpublished results have shown that the style properties and position of anchors on
a Web page are good indicators for the type of content they link to. An in-depth
investigation of these and other features is therefore desirable.

Another limitation of our detection approach is the fact that it allows us to only
analyze documents which are accessible without an active login session to the host-
ing site. An example for an application in which a significantly smaller portion of
JavaScript is executed when a user is not logged in is Google Mail: not a single
external JavaScript file is included when a user is not logged in, whereas 23 files
containing over 400kb of code are retrieved in case of an active login session. A
promising approach to solving this problem is the utilization of so-called social lo-
gins. Web pages may opt to implement their user management based on a user’s
account on a social network, such as Facebook, Twitter or Google+. By implement-
ing an automated process of discovering such logins and subsequently logging into
such applications, the amount of covered code may be increased. Initial results have
shown the approach bears its own issues: many sites only use the data provided by
the social network to gather information (such as the name or email address) on
the user, who subsequently has to register an account with the target site (Mueck,
2015). The process of completing this second phase of the registration is more com-
plex, as it is specific for each application under investigation rather than just for the
involved social login providers. Thus, we believe that the investigation of a means
of achieving this second stage in a generalized manner is worthwhile.

7.1.2 Observing Execution Traces

In our study into the nature of Client-Side Cross-Site Scripting vulnerabilities, we
analyzed the number of operations which were executed between source and sink ac-
cess as well as the lines of code between these operations. While both these numbers
allow us to approximate the number of lines of code which an analyst has to audit,
a better indicator might be the amount of code which is actually executed between
source and sink access. Therefore, instrumentation of the code (which is persistently
stored by our proxy) appears to be a valid extension of our work.

In initial tests, however, we found that blindly instrumenting all JavaScript code is
not feasible. We discovered that when instrumenting large libraries such as jQuery,
a significant runtime and memory overhead occurs, even leading to a completely un-
responsive browsing window. Thus, in order to apply instrumentation techniques to
our code base, a strategy must be derived which allows for a sound, yet undisturbed
analysis of the lines of executed code.
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7.1.3 Blocking HTML Injection

The filtering approach we presented in Chapter 6 allows us to precisely block in-
jected JavaScript. Apart from the false positives we discussed in Section 6.3.4, our
implementation lacks the ability to defend against other classes of injection attacks,
such as HTML injection. While this class of attack does not allow for direct exe-
cution of attacker-provided code, it might be abused to conduct phishing attacks,
i.e., by injecting an apparent login form which posts the entered credentials to the
attacker’s server. Therefore, a viable path for future research is to use the proposed
taint tracking approach to also block HTML injections. In the following, we discuss
initial, promising results we gathered in our study presented in Chapter 6.

As previously discussed, our engine allows for precise tracking of tainted data during
the execution of a program and, hence, also to the HTML parser. Therefore, our
approach also enables the browser to precisely block all attacker-injected HTML
even it is not related to Cross-Site Scripting. Although this was out of scope for this
work, we believe that it is relevant future work. Therefore, we give a short glimpse
into the current state of the Web in respect to partially tainted HTML passed to
the parser.

As outlined in Section 6.3.1, we conducted a compatibility crawl of the Alexa Top
10,000 in which we analyzed a total of 9,304,036 documents, out of which 632,109
generated 2,393,739 tainted HTML reports. Typically, each of the HTML snippets
contained the definition of more than one tag. In total we found that parsing the
snippets yielded in 3,650,506 tainted HTML elements whereas we consider an ele-
ment tainted if either the tag name, any attribute name or any attribute value is
tainted. Considering the severity of attacker-controllable HTML snippets, we distin-
guish between four types:

1. Tag injection: the adversary can inject a tag with a name of his choosing.

2. Attribute injection: injection of the complete attribute, i.e., both name and value

3. Full attribute value injection: full control over the value, but not the name

4. Partial attribute value injection: attacker only controls part of the attribute

We analyzed the data we gathered in our crawl to determine whether blocking of
tainted HTML data is feasible and if so, with what policy. Our analysis showed
that out of the Top 10,000 Alexa domains, just one made use of full tag injection,
injecting a p tag originating from a postMessage. This leads us to believe that full tag
injection with tainted data is very rare and not common practice. The analysis also
unveiled that the most frequently tainted elements – namely a, script, iframe and
img – made up for 3,503,655 and thus over 95% of all elements containing any tainted
data. Hence, we focused our analysis on these and examined which attributes were
tainted. Analogous to our definition of a tainted element, we consider an attribute
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full attr. value partial attr. value
Top 10k all Top 10k all

iframe.src 349 2,222 384,946 438,415
script.src 4,215 8,667 1,078,015 1,292,046
a.href 124,812 133,838 1,162,093 1,191,598
img.src 5,128 6,791 275,579 312,033

Domains 799 1,014 4,446 6,772

Table 7.1: Amounts of full and partial value injection for domains in the Alexa Top
10,000 and beyond.

to be tainted if either its name or value contains any tainted characters. Considering
this notion, we – for each of the four elements – ascertained which attribute is most
frequently injected using tainted data. For a elements, the most frequent attribute
containing tainted data was href whereas script, iframe and img tags mostly had
tainted src attributes. Although we found no case where the name of an attribute
was tainted, we found a larger number of elements with full attribute value injection.
The results of our study are depicted in Table 7.1, which shows the absolute numbers
of occurrences. We also gathered reports from documents on domains not belonging
to the Alexa Top 10,000 as content is often included from those. The first number
in each column gives the amount for documents on the Alexa Top 10,000, whereas
the second number shows the number for all documents we crawled.

Summarizing, we ascertain that taint tracking in the browser can also be used to
stop HTML injection. Our study on tainted HTML content on the Alexa Top 10,000
domains has shown that blocking elements with tainted tag names is a viable way of
providing additional security against attacks like information exfiltration Chen et al.
(2012) while causing just one incompatibly. We also discovered that the applications
we crawled do not make use of tainted attribute names, hence we assume that
blocking tainted attributes does also not cause incompatibilities with the current
Web. In contrast, blocking HTML that either has fully or partially tainted attribute
values does not appear to be feasible since our analysis showed that 8% of all domains
make use of fully tainted attribute values whereas more than 44% used partially
tainted values in their element’s attributes. As there is an overlap between these two
groups of domains, the total number of domains that would causes incompatibilities
is 4,622, thus resulting in more than 46% incompatibilities. Thus, we established
that although blocking HTML is technically possible with our implementation this
would most likely break a large number of applications.
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7.1.4 Holistic Approach to Cross-Site Scripting Filters

In this work, we presented the design, implementation and evaluation of a Cross-
Site Scripting filter which relies on precise taint tracking to block client-side XSS
attacks. The approach is tailor-made for the attack scenario of a client-side data
flow. However, the only restriction that this concept dictates is the existence of taint
information on attacker-controllable data. We therefore believe that the concept can
be extended to the server, such it acts as a “temporary sink”, i.e., is able to per-
sistent taint data. Server-side taint tracking has been proposed to solve a number
of security issues, such as SQL injections (Son et al., 2013) and Cross-Site Script-
ing (Vogt et al., 2007; Xu et al., 2006). Therefore, we believe that an extension of
our approach towards the server side is feasible. In this case, all user-provided input,
i.e., the complete request including all headers, could be marked as tainted on the
server side and tracked throughout execution of the server-side code. Whenever the
HTTP response is sent out to the client, an additional header containing information
on the tainted characters can be attached, allowing the client to recover the taint
information. Subsequently, execution of JavaScript can commence inside our engine
and protection can be achieved using the filter we proposed in Chapter 6.

7.2 Conclusion

This thesis conducted research in the area of Cross-Site Scripting, the most wide-
spread class of vulnerabilities on the Web’s client side. After discussing the technical
background in Chapter 2, we presented a new attack scenario in which XSS is used
to steal stored credentials from browser-based password managers in Chapter 3. Mo-
tivated by our findings, we proposed a new concept of password managers which are
not prone to such attacks, by ensuring that clear text credentials are not accessible
from JavaScript. This allowed us to stop all these attacks without inhibiting the
functionality of real-world sites.

After we exemplified the impact a Cross-Site Scripting flaw might have, we focussed
specifically on Client-Side Cross-Site Scripting, investigating the prevalence and na-
ture of such vulnerabilities and proposing an XSS filter capable of robustly stopping
attacks targeting such flaws. Using the combination of a taint-aware browsing en-
gine and an exploit generator, we conducted a study aimed at finding Client-Side
Cross-Site Scripting vulnerabilities on the Web at scale. In doing so, we discovered
that at least 9.6% of the 5,000 highest ranked domains contain one or more such
flaws, putting emphasis on the impact of such attacks.

Motivated by the high prevalence of these vulnerable code snippets, we then con-
ducted an in-depth analysis of the flaws, aimed at discovering the underlying causes
for this class of vulnerability. Therefore, we derived a set of metrics to measure the
complexities inherent to JavaScript and Client-Side XSS in particular, classifying
about 70% of all flaws to be of very simple nature. In doing so, we found that the
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reasons are manifold, ranging from developers who are clearly unaware of the dan-
gers of utilizing unfiltered, user-provided data and who lack knowledge of the exact
functionality of JavaScript and browser APIs to incompatibilities between first- and
third-party code.

Finally, we investigated whether currently deployed filtering mechanisms against
Reflected Cross-Site Scripting provide adequate protection to also stop Client-Side
Cross-Site Scripting exploits. Our analysis highlighted several conceptional issues re-
lated to the design of the state of the art in XSS filtering, the XSS Auditor, allowing
us to bypass its protection capabilities on more than 80% of the vulnerable domains
in our data set. Based on the identified conceptual flaws, we proposed a new design
for a filtering approach capable of robustly stopping client-side XSS attacks, which
relies on precise data flow tracking and taint-aware HTML and JavaScript parsers,
ensuring that attacker-injected code is detected before it can be executed. We built a
proof-of-concept of our proposal into Chromium, showing that it incurs a low perfor-
mance overhead and few false positives, while effectively stopping all exploits in our
data set. We therefore believe that it is feasible to adopt the concept to Chromium
and deploy it side-by-side with the XSS Auditor, allowing the combined detection
and stopping of both Reflected and Client-Side Cross-Site Scripting attacks.
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