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Abstract. We measure the transverse entanglement of photon pairs on their
propagation from the near to the far field of spontaneous parametric down-
conversion (SPDC). The Fedorov ratio, depending on the widths of conditional
and unconditional intensity measurements, is shown to be only able to
characterize entanglement in the near and far field zones of the source. Therefore
we also follow a different approach. By evaluating the first-order coherence
of a subsystem of the state we can quantify its entanglement. Unlike previous
measurements, which determine the Fedorov ratio via intensity correlations, our
setup is sensitive to both phase and modulus of the biphoton state and thus always
grants experimental access to the full transverse entanglement of the SPDC state.
It is shown theoretically that this scheme represents a direct measurement of the
Schmidt number.
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1. Introduction

Entanglement is an exciting phenomenon and a fundamental resource in quantum information
and quantum computation. One convenient source of entanglement are photon pairs (biphotons)
obtained by spontaneous parametric down-conversion (SPDC). These photons can be entangled
not only in discrete variables like polarization or photon number but also position and
momentum, which are continuous [1–4]. The case of continuous variables is especially
appealing for quantum informational tasks because it allows access to a larger Hilbert space [5].
This is why entanglement in the transverse wavevectors of SPDC biphotons is currently in the
focus of research [6–10]. Transverse entanglement can be understood in terms of the famous
Einstein–Podolsky–Rosen (EPR) scenario [11]. Consider a quantum state of two subsystems
with the positions and momenta perfectly correlated. In such a system a measurement of position
or momentum of one subsystem gives complete information about the corresponding variable in
the other subsystem. The authors of [11] argued that under the assumption of local reality, this is
in disagreement with Heisenberg’s uncertainty principle. As shown in [12] the state of biphotons
emitted by SPDC is an approximation of such an EPR state. In this context entanglement can
be identified by violation of the inequality

(1x)2 (1p)2 >

(
h̄

2

)2

, (1)

where (1x)2 and (1p)2 are the variances of a quantum system in position and momentum
respectively. The violation of equation (1) has been measured [12, 13] and even though it does
quantify the amount of transverse entanglement in the biphoton state, measurement in both
near- (position) and far field (momentum) of the source are necessary to obtain a value. Closely
related to the violation of (1) is the Fedorov ratio [14, 15] which is especially appealing because
it is an entanglement quantifier that can be directly measured. Unfortunately the Fedorov ratio
does vary while the state propagates from the near to the far field region [16] and even turns to
unity at some point, indicating no entanglement. Thus the Fedorov ratio cannot be considered
a measure for the full entanglement at any arbitrary position. In this work, we demonstrate a
measurement of the full evolution of the Fedorov ratio between those two regimes. Additionally
we implement a different scheme which has been proposed [16] to fully quantify the transverse
entanglement of the biphoton state. This measurement allows direct access to the Schmidt
number [1, 17], a quantity usually unattainable in the laboratory but always giving the full
amount of entanglement.

New Journal of Physics 15 (2013) 083015 (http://www.njp.org/)

http://www.njp.org/


3

2. Fedorov ratio

Consider the quantum state of a photon pair generated by SPDC at the distance z from the centre
of the crystal as [18]

|ψ (z)〉 =

∫ ∫
d Ep d Eq 8( Ep, Eq, z) â†( Ep) b̂†( Eq)|0〉, (2)

where Ep and Eq are the transverse wavevectors of the signal and idler photons and â†( Ep) and
b̂†(Eq) their respective creation operators. The properties of the state are governed by the two-
photon amplitude 8( Ep, Eq, z). The most widely used operational measure for the entanglement
in such a system is the Fedorov ratio, which is given by

R =
1p

δp
=
1q

δq
. (3)

Here1p is the standard deviation of the marginal angular distribution (or transverse wavevector
spectrum) of the two photon-amplitude P( Ep, z)=

∫
dEq |8( Ep, Eq, z)|2, which we will from here

on refer to as the unconditional distribution. The width δp is given by the standard deviation
of the conditional probability distribution P( Ep| Eq, z)= |8( Ep, Eq, z) |2 at a fixed value of Eq.
Analogous expressions hold for Eq. Another important feature of the two-photon amplitude is
that both transverse dimensions are independent so that the two-photon amplitude factorizes:
8( Ep, Eq)=8(px , qx)8(py, qy). This allows us to study the behaviour of the system utilizing
only the spatial degree of freedom in x-direction. An intuitive approach to the Fedorov ratio is
to think of entanglement as having two subsystems both of which are individually very uncertain
(broad unconditional distributions) but at the same time exhibit very strong correlations between
each other (narrow conditional distribution). In the EPR language this corresponds to having one
particle whose momentum is almost impossible to predict but as soon as the second particle is
measured the momentum of the first is precisely known.

The experimental setup is depicted on the right hand side of figure 1. In order to generate
biphotons we focus a cw laser with a measured beamwaist of 245µm onto a 2 mm BBO
crystal. By means of an interference filter of 6 nm bandwidth and apertures positioned at the
correct emission angle, we select the degenerate non-collinear type I down-conversion process:
404 → 808 nm. To select a certain part of the angular spectrum, we use slits of 30µm width
and several mm height. The height of the slit leads to an integration over the y direction in
both conditional and unconditional distributions which does not change the ratio between them.
Diffraction from the slits is compensated by cylindrical lenses before the light is fibrecoupled
into avalanche photodiodes. For the measurement one of the slits remains fixed at the maximum
intensity of the angular spectrum while the other one is scanned along transverse direction (in
figure 1 x , perpendicular to the propagation direction z) by means of a linear translation stage.
We utilize a coincidence electronic circuit to record the coincidence-rates as well as single
count rates of both detectors as a function of the transverse displacement. A pair of lenses
( f = 500 mm) is employed to obtain the far field distribution of the angular photon spectra
(which corresponds to the transverse momenta) in the focal plane. We apply Gaussian fits to
both the conditional and the unconditional distributions and use their respective variances to
calculate the Fedorov ratio via equation (3). A series of similar measurements is performed
at various distances z from the source up to the image plane of the lenses, where the near
field (where the coordinate is equivalent to the position quadrature) of the photon distribution
is found. The three measurements at positions of particular interest are shown in figure 2.
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Figure 1. Experimental setup to determine the Fedorov ratio. Measurements are
performed at different z positions by displacing the detectors. Inset on the left
shows the modified Mach–Zehnder interferometer we introduced in the signal
arm, for the Schmidt number measurement.
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Figure 2. Measured conditional (red) and unconditional (blue) photon
distributions with simulated two-photon amplitudes: (a) in the far field (here
the measured position x corresponds to the actual momentum p), (b) in
the intermediate field where R = 1 and (c) in the near field. (a) Far field
(z = 500 mm), (b) intermediate regime (z = 1440 mm) and (c) near field (z =

1550 mm).

In the same figure one also finds the numerical simulations of the two-photon amplitudes in
the position representation. It is evident that there are correlations in the near-field zone and
anti-correlations in the far field zone while no correlations are observed at a certain distance
from the crystal.
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Figure 3. Measurement of the Fedorov ratio from far- to near field: points show
measurements, the solid line is a numerical simulation.

The dependence of the Fedorov ratio on the distance is plotted in figure 3. Note, that
because of the effect of the lenses, the far field is obtained at a smaller distance (focal length)
than the near field (image plane). It can be clearly seen how the Fedorov ratio varies as the
state propagates through space. In the far field we obtain a Fedorov ratio R = 4.0 ± 0.3. As we
move our detectors towards the near field, the Fedorov ratio decreases. We even observe a drop
to R = 1 [16] at a certain distance from the crystal, which would indicate no entanglement at
this position before the complete entanglement emerges again in the near field. We additionally
compare our measurement results with a numerical simulation (figure 3) and find the curve in
good agreement with our measured data. An important issue with this kind of measure is that
the Fedorov ratio is defined for the widths of Gaussian functions. In reality, the shape of the
two-photon amplitude is better modelled by a Sinc function rather than a Gaussian and thus
the concept of a width is not well defined in this case any more. The most curious feature of
this experiment however is still the aforementioned decrease of the Fedorov ratio. Since we
observe that the amount of entanglement increases again after the drop and even is completely
restored in the near field, the entanglement cannot be lost due to decoherence. So the question
what happened to the ‘lost’ entanglement remains. The explanation, given by Chan et al [16], is
that upon propagation, the entanglement of the state migrates from the wavefunction’s modulus
to its phase and back. Thus, since in the intermediate zone between near- and far field, the
entanglement (or at least parts of it) resides in the phase of the state, it is inaccessible to
intensity measurements such as the one we use to determine the Fedorov ratio. This prediction
is clearly confirmed by our measurements. As shown by Tasca et al [19, 20], application of
different fractional Fourier transforms in signal and idler channels allows one to reveal intensity
correlations in the intermediate zone. This is similar to the generalized quadrature measurements
performed in [21, 22] and requires specific lens configurations for every distance z in both
signal and idler channels. In the following we present a more general approach, which works at
arbitrary distances in the same configuration.
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3. Interferometric scheme and measurement

Following a proposal by Chan et al [16], we introduced a Mach–Zehnder-like interferometer in
the signal channel. A sketch can be found in the inset on the left of figure 1. The interferometer
contains one dove prism in each arm, one of which is rotated by π/2 with respect to the
other. Furthermore the interferometer had to be balanced up to the order of a few wavelengths.
Due to internal reflection within the prisms, the beam in one arm of the interferometer is
‘spatially mirrored’ in one direction while the beam in the other arm is ‘mirrored’ orthogonally
compared to the first. As this is equivalent to the inversion operation, one can say the beam is
overlapped with its own inverted copy on the final beamsplitter. The output mode ĉ† denotes
the constructive output port of the interferometer while d̂† represents the destructive output
mode. This kind of setup allows one to infer the degree of entanglement of the joint system
from the coherence (or purity) of one of its subsystems. That way we utilize a much more
general entanglement quantifier, namely the Schmidt number K , which is connected to the
effective number of modes. In order to understand how this can be done, consider a pure
state |9〉 of a bipartite system. Any such state can be decomposed in a certain basis so
that [17]

|9〉 =

∑
n

√
λn|un〉|vn〉. (4)

The number of non-zero elements λn required to express the state vector in terms of the Schmidt
basis {|un〉|vn〉} is directly related to the lack of separability of the state as well as to the impurity
of the subsystems. For infinitely large Hilbert spaces the effective Schmidt number is defined
as K = 1/

∑
n

(
λ2

n

)
[23]. Unlike the Fedorov ratio, the Schmidt number will always give the

full amount of entanglement of a system. This is because a Schmidt number greater than one
is a direct consequence of the very definition of entanglement (non-separability of the state).
The Fedorov ratio relies on several assumptions (like Gaussian two-photon amplitudes for
instance) in order to quantify EPR like correlations and is, as we have seen, only applicable
under certain circumstances. The Schmidt number on the other hand is a more fundamental
quantity and does not suffer from any of those limitations. The drawback however is that K
is usually not considered an operational measure, meaning it cannot be easily obtained by a
direct measurement in many cases. Nevertheless, we were able to implement an experiment
which can achieve this. We can apply this Schmidt decomposition to our SPDC state (2) and
obtain

|9〉 =

∑
n

∫
drs

∫
driφn(rs)ψn(ri)â

†
rs

b̂†
ri
|0〉, (5)

where â†
rs

( b̂†
ri
) is the creation operators for a signal (idler) photon at position rs (ri). Hence the

Schmidt modes for the SPDC state in terms of the old modes are

Â†
n|0〉 =

∫
drsφn(rs)â

†
rs
|0〉, (6)

B̂†
n|0〉 =

∫
driψn(ri)b̂

†
ri
|0〉, (7)
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Figure 4. Schmidt decomposition of the biphoton state, obtained from
a numerical simulation. (a) First three Schmidt modes and (b) Schmidt
coefficients.

which correspond to |un〉 and |vn〉 in equation (4). Since the Schmidt decomposition is
orthonormal, the new operators also satisfy the commutation relation [ Ân, Â†

m] = δn,m . Thus
the state now takes the simple form

|9〉 =

∑
n

√
λn Â†

n B̂†
n |0〉. (8)

The main idea of the scheme is to obtain the degree of entanglement between signal and
idler photons by measuring the coherence (and thus the purity) of one subsystem. To this
end let us express the signal field in terms of the Schmidt basis Ê (−)

s (r)=
∑

n Â†
nφn(r)

(and Ê (+)
s (r)=

∑
n Ânφ

∗

n(r)) and consider the first-order correlation function of the signal
subsystem

G(1)
s (r, r

′)= 〈9|Ê (−)(r)Ê (+)(r ′)|9〉 =

∑
n

λnφn(r)φ
∗

n(r
′). (9)

The effect of the modified Mach–Zehnder interferometer is to overlap the signal with its
own spatially inverted copy. Mathematically this can be described as∫

drG(1)
s (r,−r)=

∑
n

λn

∫
drφn(r)φ

(∗)
n (−r). (10)

It has been shown that the Schmidt modes for the SPDC biphoton state are given by the Hermite
Gaussian polynomials [26, 27]. Therefore they show a certain symmetry:

φ2m(r)= φ2m(−r), (11)

φ2m+1(r)= −φ2m+1(−r). (12)

In order to illustrate this fact, a plot of the numerically obtained first three Schmidt modes for
the SPDC state is given in figure 4(a). Due to these symmetries it is convenient to take odd and
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even contributions to the sum (10) into account separately. It thus follows that∫
drG(1)

s (r,−r) =

∑
m

(
λ2m

∫
dr |φ2m(r)|

2
− λ2m+1

∫
dr |φ2m+1(r)|

2

)
=

∑
m

(λ2m − λ2m+1) . (13)

Since the eigenvalues of the Schmidt modes decrease exponentially (see figure 4(b)) with
increasing m [27], we can write λm = λ0α

m and further use the normalization condition∑
m λm = 1 to obtain λ0 = 1 −α. So we finally get∫

drG(1)
s (r,−r)= λ0

∑
m

(α2m
−α2m+1)=

∑
m

λ2
m =

1

K
. (14)

Thus the Schmidt number is inversely proportional to the first-order coherence and therefore
to the visibility of interference at the interferometer output which can be measured in the
laboratory. This result is in perfect agreement with [16] where it was suggested to measure

K =
(P+ + P−)

(P+ − P−)
, (15)

where P+ and P− are the conditional count rates

P+ =

∫ ∫
dxsdxi Pĉ†b̂† (xs, xi) , (16)

P− =

∫ ∫
dxsdxi Pd̂†b̂† (xs, xi) . (17)

Here Pĉ†b̂† (xs, xi) denotes the probability to observe the signal photon at the output ĉ†

(constructive port) of the interferometer at position xs and the idler photon at position xi in
the idler mode â†

i . Analogously Pd̂†b̂† (xs, xi) describes the joint detection probability between
the other interferometer output d̂† (destructive port) and idler â†

i at (xs, xi). Figure 5 shows
a numerical simulation of the two probability distributions at both interferometer outputs.
According to equation (15), the Schmidt number is given by the inverse visibility of those
coincidence probabilities integrated over xs and xi. We would like to remark that, using this
method, in general measurements on one subsystem is sufficient to determine the degree of
entanglement. Thus coincidence measurements as proposed by Chan et al [16] are not strictly
necessary. In a real experiment however it is absolutely crucial to reduce the amount of noise
as much as possible since naturally, the absence of visibility is very hard to detect. Accordingly
it is much more convenient to perform coincidence measurements. Unlike other schemes, our
setup enables one to measure the full amount of entanglement in any arbitrary position in a
single measurement without the need to perform measurements at specific positions, such as the
near and far field [24].

Instead of using two detectors as indicated in figure 1 we measured the visibility in
coincidences by scanning the phase of the interferometer with the help of a piezo attached
to one of the mirrors. This time we position two 200µm slits oriented along the x direction
in both signal and idler arms. This is equivalent to an integration along xs and xi in one
single measurement. Hence we are able to determine the Schmidt number simply by moving
the piezo from the position of maximum count rate to minimum count rate in one output
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Figure 5. Simulation of the two-photon intensities (z = 1440 mm) at both
outputs of the interferometer: panel (a) shows constructive interference and
panel (b) depicts the complementary destructive interference between the
interferometer arms. (a) Two-photon intensity Pâ†
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i
(xs, xi) and (b) Two-photon

intensity Pb̂†
s â†

i
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Figure 6. Circles are measurements of the Schmidt number, the solid red line
is the Schmidt number obtained from a numerical singular value decomposition
of the simulated state. For comparison the numerical simulation of the Fedorov
ratio is included as well (solid blue line).

of the interferometer and record the visibility. Both the results of the measurements as well
as the numerical predictions are depicted in figure 6. It is apparent that the measurement
points almost exclusively lie above the numerical calculation, which is not surprising
because the entanglement we are trying to determine actually manifests itself in the lack of
visibility. Accordingly any experimental imperfection always will lead to an overestimation of
entanglement and consequently a slightly increased Schmidt number. In figure 6 the numerical
Fedorov ratio does not agree with the Schmidt number even in near and far field. The reason
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for this is that the equality between the two measures only holds in the double Gaussian
approximation [28] (where it can even be proven analytically). In reality however, the shape
of the two-photon amplitude is governed by the product of a Gaussian and a sinc function,
which is taken into account by our numerical model.

4. Conclusion

As mentioned before, the reason for the breakdown of R is that upon propagation in free
space the two-photon amplitude acquires a quadratic phase [16]. Henceforth, this leads to a
shift of entanglement from the modulus to the phase of the quantum state at a certain position.
An interesting implication arises from the analogy, that this quadratic phase is mathematically
identical to the one acquired by the two-photon amplitude due to the group velocity dispersion
in an optical fibre [25]. Thus it should be possible to obtain similar results in the time-frequency
entanglement of SPDC photons using a fibre as dispersive medium. Such effects could be an
issue in quantum key distribution experiments where two-photon states are sent through very
long fibres.

In conclusion we have experimentally demonstrated that the Fedorov ratio cannot correctly
assess the entanglement in the transverse momentum of the biphoton state emitted by parametric
down-conversion at arbitrary distances from the source. Responsible for this is the fact that the
entanglement can partially (and under special circumstances even fully) reside in the phase
of the quantum state. Naturally the Fedorov ratio, being a measure of intensity correlation, is
therefore not sensitive to the full entanglement of the system. We present experimental and
numerical results showing the migration of entanglement from the modulus to the phase of the
two-photon amplitude upon free space propagation. Furthermore we implement a measurement
technique, which overcomes the shortcoming of the previous approach by taking into account
both phase and modulus of the state at the same time. It is shown that this scheme allows a direct
measurement of the Schmidt number and thus by definition of the degree of entanglement of
the quantum state in question. We believe that this kind of experiment provides useful insight
into the nature of the non-classical correlations of PDC which might be generalized to other
systems [29] in the future.

Acknowledgments

We thank Farid Khalili for many helpful discussions. This work is supported by the ERA-
Net.RUS (project Nanoquint).

References

[1] Law K and Eberly J 2004 Phys. Rev. Lett. 92 127903
[2] Strekalov D, Sergienko A, Klyshko D and Shih Y 1995 Phys. Rev. Lett. 74 3600–3
[3] Monken C, Souto Ribeiro P and Pádua S 1998 Phys. Rev. A 57 3123–6
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