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Abstract
We study nonclassical features ofmultiphoton light emitted by clusters of single-photon emitters. As
signatures of nonclassicality, we use violation of inequalities for normalized correlation functions of
different orders or the probabilities ofmultiphoton detection. In particular, for clusters of 2–14
colloidal CdSe/CdS dot-in-rods we observe antibunching and nonclassicality of up to the fourth-
order. Surprisingly, violation of certain classical inequalities gets evenmore pronounced for larger
clusters.

1. Introduction

Thedevelopment of quantum technologies requires advanced sources of nonclassical light. In particular, there is a
challenge to gobeyond single-photon states, two-photon states, and squeezed states, available at themoment.One
way is nonlinear optical interactions of higher orders, leading to the emission of photon triplets, quadruples and so
on [1]. Realizationof such processes remains a challenge, although there are several experimental attempts to
generate photon triplets through the third-order interaction innonlinear crystals [2], waveguides [3], andfibers
[4]. Generationof photon triplets from solid-state emitters, such as ‘quantumdotmolecules’ [5] is another option.
Finally,multiphoton states canbeproduced byheralding and interference applied to sufficiently bright twin
beams, obtained throughhigh-gainparametric down-conversion.Recent experimental achievements include
demonstrationof 10-photon entanglement [6] andup to 50-photonnonclassical states [7].

Here we consider amuch simplermethod, which is to combine single-photon emitters into a group (a
cluster) and obtain light with a limited number of photons [8]. For such a cluster, the number of photonswill not
significantly exceed the number of emitters, which suggests applications in quantumkey distribution (QKD) [9]
and quantummetrology [10], where a limit on themaximal number of the photons is highly relevant. Recently,
it has been predicted that even a large number of realistic single-photon emitters can produce nonclassical light
[8, 11]. Importantly, this way of obtainingmultiphoton quantum states does not require postselection or
heralding, unlikemethods based on nonlinear optical effects.

The focus of this work is on the quantumproperties of light emitted by clusters of colloidal quantumdots. By
independently estimating the number of emitters in a cluster, we study the nonclassical features as functions of
this number. Using different nonclassicality criteria, we see that all of them are satisfied for clusters of up to 14
emitters, and some of thembecome evenmore pronounced as the number of emitters grows.

The next section introduces different nonclassicality criteria used in this paper. They are formulated in terms
of correlation functions (CFs) of order higher than two aswell as in terms of the probabilities ofmultiphoton
detection. Section 3 describes the experiment on testing these criteria for clusters of semiconductor colloidal
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nanocrystals. The results are presented and discussed in section 4. Section 5 is the Conclusion. Some important
but bulky calculations aremoved into twoAppendices.

2.Witnessing nonclassicality

By definition, a nonclassical state is the onewhoseGlauber–Sudarshan (P) function is negative or singular
[12, 13]. However, because the P function is not directlymeasurable in experiment, various observable sufficient
conditions of nonclassicality have been formulated. Putting aside loss-sensitive features, like squeezing or
Wigner function negativity, here wewill focus on those accessible through direct detectionwith a limited
efficiency.

The simplest of them is antibunching, formulated in terms of the second-order normalized CF g(2),

g 1. 12 < ( )( )

Sometimes its analogs involving CFs of higher orders,

g k1, 2 2k < > ( )( )

are referred to as ‘higher-order antibunching’ [14]. Third-order antibunching has been observed in [14, 15] for a
single quantumdot coupled to a cavity.

More general inequalities indicating nonclassicality in terms of normalized CFs of different orders have been
formulated byKlyshko [13]:

g g g . 3k k k1 1 2<- + [ ] ( )( ) ( ) ( )

At k=1, equation (3) becomes the antibunching condition (1) because g(0)=g(1)=1. Accordingly, one
can introduce a nonclassicality parameter of order k+1, kNP 1+( ), corresponding to the order of the highest
CF it involves,

k g g gNP 1 . 4k k k1 1 2+ º -- +( ) [ ] ( )( ) ( ) ( )

Its negativity is an operational witness of nonclassicality [13].More insight is given by plotting g( k)(k) in the
logarithmic scale: inequality(3)means that the dependence is, around some k, convex [13]. This is an
approximation of the ‘extreme’ case where g( k) drops to zero at some k, whichmeans that there is a limited
number of photons emitted. This ‘drop’ of normalizedCFs starting froma certain value brings certain
advantages inQKDandmetrology, as we discuss later.

Wewould like to stress that conditions (3) are stronger than ‘higher-order antibunching’ (2) in the sense that
from all conditions (3) up to k+1 satisfied, all conditions (2) up to k+1 follow. For instance, g(2)<1 in
combinationwith NP 3 0<( ) leads to g(3)<1. To the best of our knowledge, these conditions have not yet been
tested in experiment.

Recently, alternative hierarchies of kth-order nonclassicality witnesses have been formulated, based on the
‘click’ statistics of on-off detectors [16–18]. Compared to the conditions on the ‘click’ statistics, an advantage of
conditions (3) is that they are formulated in terms of normalized CFs, which are invariant to optical losses or
detection inefficiency [13]. On the other hand, witnesses of nonclassicality [17] or quantumnonGaussianity [11]
formulated in terms ofmultiphoton detection probabilities aremore robust to noise than (3) [19].

In particular, the nonclassicality witnesses introduced in [18] are θ( k)<1, where
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P0 k⨂ is the probability that neither of k detectors ‘clicks’, andP0[i] is the probability that the ith detector does not
‘click’. They have been applied to observe the nonclassical features of emission from ensembles of color centers
in diamond [19] and ions in a trap [20]. However, the nonclassicality has beenwitnessed only for the case of
k=2. Inwhat follows, for the first timewe test conditions (3) and (5)with k=2, 3, 4 for clusters of up to 14
emitters.

3. Experiment

In our experiment we use colloidal semiconductor quantumdots [21]. These emitters, although featuring a
certain amount of blinking [22] and bleaching [23], and a non-negligible probability of two-photon emission,
are very convenient due to their room-temperature operation and relatively simple production. The ‘dot-in-rod’
(DR)modification [24] is especially promising because of reduced blinking and a high degree of polarization
[25–27]. Clusters are easily formed [8, 28] by dropping aDR solution onto a substrate and leaving the solvent to
evaporate, themean number ofDRs in a cluster depending on the solution concentration. For this workwe use
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CdSe/CdSDRswith 2.7 nm core diameter, 22 nm shell length and 4 nm shell width. TheDRs are dissolved in
toluenewith the concentration 10−14 mol/l−1 and coated onto a fused silica cover slip thus obtaining a surface
density of less than 0.1 μm−2.

In the experimental setup (figure 1), the excitation is with the pulsed third harmonic radiation ofNd:YAG
laserwith thewavelength 355 nm, pulse duration 18 ps and repetition rate 1 kHz. The energy per pulse can be
variedwith the help of a half-wave plate and a polarization beamsplitter; to reduce the probability of two-photon
emission, it is chosen to be at 20%of the saturation level. In this case, a singleDRmanifests strong antibunching.
Formore than 10 single DRswemeasured, the values of normalized CFswere below the upper boundaries
determined by themeasurement accuracy: g 0.05

1
2 ( ) , g 0.01

1
3 ( ) . A quarter-wave plateQWP transforms the

polarization into circular, in order to provide the same excitation efficiency for all DRs regardless of their
orientation. To uniformly excitemany clusters of different sizes, the laser radiation is focused through an
NA=0.65 objective (O)placed on top of the sample, the illuminated area being 0.13 mm large. A fused silica
cover slipwith theDRs on top is placed over anNA=1.3 oil immersion objective (IO). Because 86%of theDR
emission is directed into the substrate [29] and the objective collectsmost of it,more than 70%of the emission is
collected by the IO.Due to the use of thin fused silica cover slips the fluorescence noise is very low, leading to the
signal-to-noise ratio higher than 3 even for the smallest cluster under study.

TheDR emission is centered at 606 nmand has a full width at halfmaximum (FWHM) of 40 nm.A dichroic
mirror reflects the pump and transmits theDR emission into the registration part of the setup. A long-passfilter
(LF)with the cutoff wavelength 570 nm removes the remaining radiation of the pump. An intensifiedCCD
(ICCD) camera (Princeton Instruments PI-MAX3:1024i) after a flipmirror (FM) is used to observe the image of
several clusters and to choose ones containing different numbers ofDRs. The image is formed by lens Lwith the
focal distance 25 cm. As an example, figure 2(a) shows the images of several clusters. The radiation from the
chosen cluster is selected by an iris aperture I and sent, by removing the FMM, through amultimode fiber into
theHanbury Brown–Twiss (HBT) setup using two avalanche photodiodes (APDs) and timemultiplexing
[30, 31]. (Note that, although the ICCDcamera in single-photon regime can be used for theHBTmeasurement
[8], its low quantum efficiency [32] does not allow detection ofmultiphoton events within a reasonable
acquisition time.)The timemultiplexing scheme contains a 60 m fiber loop (figure 1), so that each of the APDs
can receive photons in one of the two time slots, separated by 300 ns. This scheme is then equivalent to aHBT
setupwith four detectors D1,D2,D3,D4, and enables the registration of up to four-fold coincidences and
measurement of CFs of orders 2–4 [33]. To prevent cross-talk between the APDs, caused by flashes of light
accompanying photon detections [34], 20 moffiber is inserted in front of eachAPD.

For eliminating background noise (caused by stray light and fluorescence of the substrate and other optical
elements),filters (F) are placed in front of both the ICCD and theHBT setup: another LF (cutoff wavelength
570 nm) and a bandpass filter (centered at 607 nm,with 42 nmFWHM). In addition, confocalmicroscopy

Figure 1.The experimental setup. DR clusters are excited by the 3rd harmonic of aNd:YAG laser through objectiveO. The emission is
collectedwith an immersion objective IO and sent either into an intensifiedCCDcamera, with aflipmirror FM, or into a fiber leading
to a time-multiplexedHBTdetection setup. For spatial filtering, a confocal scheme including lenses L1 and L2 and removable pinhole
P is used. Frequency filtering is performedwith long-pass filter LF and bandpass filters F.
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filtering is arranged in front of theHBT setup by placing a 100 μmpinhole P between two confocal lenses (L1,
L2)with focal lengths 7.5 cm. The image of a single cluster with the pinhole present is shown infigure 2(b).

4. Results and discussion

The data are taken for seven clusters, having different brightness in the ICCD image (figure 2(a)). After
subtracting the background noise, the integral output signal obtained for these clusters varies from1.7×105 to
1.1×106 analog-to-digital conversion units of the camera (figure 2(c)). As demonstrated in [8], this parameter
can be used as an indicator of the numberm ofDRs in a cluster. This, togetherwith themeasured value
g(2)=0.413±0.009 for the smallest cluster, allows us to conclude that the clusters contain from
m=1.7±0.2 tom=14±2DRs7. Themean number of photons per pulse detected from these clusters varies
from0.013 to 0.20. The lownumber of detected photons per pulse from a singleDR (about 0.01) is due to the
low excitation rate (10%) aswell as the limited collection and detection efficiency.

For this reason, and because of the low rate of data acquisition (1 kHz), nearly no four-fold coincidences are
acquiredwithin several hours.Meanwhile, the number of detected two- and threefold coincidences suffices to
measure the second- and third-order normalized CFs. This is done using the equation [35]

g
N

N N...
, 6k c

k

k1

= ( )( )
( )

whereNc
(k) andNi, i k1 ...= , are themean numbers of k-fold coincidences and photon counts in the ith

detector, respectively, during a single pulse. Note that because of the low excitation and detection efficiency,
Ni=1, hence the probabilities to have a ‘click’ in the ith detector during a single pulse isPi≈Ni=1, justifying
the validity of equation (6) [14].

Figure 3(a) shows the normalized CFsmeasured for different clusters and plotted as functions of their size,
estimated from their brightness. The lines show the theoretical fits with the relations for the normalized CFs of a
group ofm independent emitters. For the second-order CF of such a cluster, with the noise negligible, it is shown
in appendix A that [8, 28]

Figure 2. Several DR clusters imaged by the ICCD camera (a), the zoomed image of one of the clusters (red frame in panel a), selected
with the confocal pinhole (b), and the integral signal from each cluster, with the noise subtracted (c).

Figure 3.The second- (blue squares) and third-order (red circles)CFs (a) and the nonclassicality parametersNP(3) (red circles) and
θ(2)−1 (green squares) (b)measured for different clusters ofDRs , versus the effective numbersm ofDRs in these clusters.

7
A fractional number of DRsmeans that different DRs can have different emission efficiencies.
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where g
1

2( ) is the normalized second-order CF of a single emitter. The third-order CF of such a cluster is
calculated in appendix A to be
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where g
1

3( ) is the third-order normalizedCF of a single emitter.

Theoretical dependences (solid lines infigure 3(a)) are plotted using (7) and (8)with g 0.01
1

2 =( ) and

g 0
1

3 =( ) 8. The resulting curves are in a good agreement with the experimental points. All data points are below
the unity, demonstrating antibunching of the second and third orders.

Infigure 3(b), red points show the third-order nonclassicality parameter NP 3( ) for the same seven clusters,
plotted versus their estimated size. One can see that it is negative for all clusters. This clearly indicates the
nonclassicality; however, similarly to panel (a), the distance from the classical boundary decreases as the number
ofDRs in the cluster grows. This is shown by the theoretical dependence using expressions (7), (8) (solid line).
Accordingly, the experimental results show a violation of the classical boundary by 3 standard deviations for
small clusters and only 1–2 standard deviations for large ones.

The same panel shows the value of θ(2)−1 (5), plottedwith green empty squares. Here, unlike with the
antibunching andNP(3), the distance from the classical boundary should increase with the increase in the size of
the cluster. Indeed, we show in appendix B that if all emitters in a cluster have the same second-order CF, then

Cm g1 1 , 92
1

2q - = -( ) ( )( ) ( )

the parameterC scaling quadratically with the detection efficiency. This dependence is shown infigure 3(b)with
the dashed green line. Deviations of the experimental points from this line are due to the difficulty to control the
coupling of the emission into the fiber; the uncertainty inC reaches in this case 30%. Still, even for large clusters,
violation of the classical inequality is about 3 standard deviations. Note that if some of the emitters in a cluster
have g 1

1
2 >( ) , the dependence of θ(2) onm can be different (see appendix B). The obtainedmonotonic

dependence is an indication of the uniformity of the clusters.
Finally, for a chosen large cluster, containing 12±1DRs, during about 30 hours of acquisitionwe obtained

a set of datawith up to four-fold coincidences. These data enabled themeasurement of the normalized CFs g( k)

and the parameters NP(k).
The results are shown in figure 4. All three normalized CFs of orders 2–4 (blue filled squares) are well below

the unity, demonstrating, for the first time to the best of our knowledge, up to the fourth-order antibunching.
Meanwhile, the Klyshko nonclassicality parameters kNP( ) (red empty circles) shownegativity exceeding the
measurement error only for k=2, 3. Verification of nonclassicality for k=4 requiresmore experimental data.

At the same time, condition θ( k)−1<1 is satisfied for all k=2, 3, 4, its violation growingwith k. The
reason is that in the limit of low detection probabilities Pi, expressions (5) for k=3, 4 become (appendix B)

C
k k

m g1
1

2
1 , 10k

1
2q - »

-
-

( ) ( ) ( )( ) ( )

Figure 4.The second- to fourth-order nonclassical featuresmeasured for a cluster of 12±1DRs: kNP( ) (red empty circles), g( k)−1
(blue filled squares) and θ( k)−1 (green filled triangles) as functions of k. For better readability of the data, blue points are slightly
shifted to the left and green points, to the right.

8
The curve looks the same for any g 0.051

3 ( ) .
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the deviation from the classical boundary increases bothwith the number of emittersm andwith the order k.
Note that the latter tendency is the same for all nonclassicality parameters: the larger the order k, the larger the
deviation from the classical boundary. At the same time, conditions θ( k)<1 require less experimental data for
verification than other conditions.

5. Conclusion

In conclusion, we have tested higher-order nonclassicality for clusters of 2–14 colloidal semiconductorDRs.
Due to the use of both time-multiplexed APDs and an ICCD camera operating in single-photon regime, wewere
able to not only detectmultiphoton events with relatively high efficiency, but also assess the number ofDRs in a
cluster. In addition to antibunching and its third- and fourth-order analogs, we have observed third-order
Klyshko’s nonclassicality, which has been shown to be a stronger condition. Note that the fourth-order
antibunching and the third-order Klyshko nonlassicality, to the best of our knowledge, has been never observed
before.

The low rate of detected single-photon emission (1%per excitation pulse) does not allow us to test higher-
order antibunching or towitness fourth-order Klyshko nonclassicality. At the same time, for the nonclassicality
parameters (5) it was possible to overcome the classical boundary up to the fourth-order, the deviation growing
bothwith the order andwith the size of the cluster.

The observed nonclassical features are important forQKDand quantummetrology, where nonclassical light
with limited number of photons is required. Indeed, for light sources used in bipartiteQKD, a small value of g(2)

is required for the security against photon splitting attacks [36]; itmeans that an eavesdropper has little chance to
get, simultaneously with the legitimate receiver, a photon carrying the information . Similarly, inmultipartite
QKDa group of n photons can be distributed between n legitimate receivers; whenever g( n+1)=1, the chance
that an eavesdropper gets an additional photon carrying the information is small.

As tometrology, higher-order CFs are ameasure of noise with respect to lower-order CFs. For instance, the
simplest way tomeasure absorption is through intensitymeasurement. Then, the noise is determined by g(2) [37]
and the accuracy is considerably increased by reducing it. Butwhenever themeasurement is based on
correlations, it is a higher-order CF that determines the accuracy. Reduction in this higher-order CFwill
considerably improve themeasurement.

PossibleQKD,metrology, or imaging protocols based on suchmultiphoton sources are still to be developed.
But the observed nonclassical features are important prerequisites for these next steps.
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AppendixA. CFs of a cluster of similar emitters

A cluster of incoherently emitting nanocrystals can be treated as amultimode source if the radiation of separate
emitters is statistically independent. Herewe derive the expressions for normalizedCFs g( k) of different orders
for such a cluster.

A.1. Second-order CF
Consider a cluster ofm emitters generating photons incoherently. Assume that the emitters have the same value
of second-order CF g1

(2) and the samemean number of emitted photonsN0. The total photon-number operator
is the sumof the photon-number operators Ni

ˆ for different emitters

N N N N, . A.1
i

m

i i
1

0å= á ñ =
=

ˆ ˆ ˆ ( )

The normalized second-order CF for the cluster will be
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where the dots denote normal ordering.We obtain
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Thefirst sum in the numerator containsm terms, each of them equal to g N
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which coincideswith the expression for g(2) of light containingmmodeswith the same statistical properties [35].
Note that (A.4) can be extended to the case where the emitters have differentmean photon numbersNi, with

m redefined as the ‘effective’number of emitters
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This is in full analogywith the case ofm independentmodes with differentmean photon numbers and the same
CFs [38].

A.2. Third-orderCF
The third-order CF for a cluster ofm independent emitters with the samemean photon-numberN0 and third-
order normalized CF g

1
3( ) is
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with N̂ given by equation (A.1).
In this expression, the denominator is m N3

0
3. For calculating the numerator, wewill use themultinomial

formula,
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with x Ni i= ˆ and k=3.
We get
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3. Then, the third-order normalized
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Dependences (A.4), (A.9) of the normalized second- and third-order CFs of a cluster on the numberm of
emitters are plotted infigure A1(a) by blue and red lines, respectively. Solid blue and dashed red lines denote the
case of a cluster of ideal emitters (g g 0

1
2

1
3= =( ) ( ) ) and dotted blue and dashed–dotted red lines, the case of a

cluster of nonideal identical emitters, g g0.2, 0.05
1

2
1

3= =( ) ( ) [8, 14]. Note that all values of g 0.05
1

3 ( ) lead to
the curves that are indistinguishable in thefigure. In both cases, g(2)<1 and g(3)<1 for any number of emitters
in a cluster.

The third-order nonclassicality parameter, g gNP 3 3 2 2= -( ) [ ]( ) ( ) , is also negative for allm values (figure
A1(b)), both in the ideal case (red solid line) and for g g0.2, 0.05

1
2

1
3= =( ) ( ) (blue dashed line).
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Appendix B.Nonclassicality parameters of orders 2–4 for a cluster

Let us now consider the nonclassicality parameters θ( k) introduced in [18] for such a cluster. They are defined as

P
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[ ]
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where P0 k⨂ is the probability that neither of k detectors ‘clicks’ and P i0[ ] is the probability that the ith detector
does not ‘click’. As shown in [19]
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where Pi is the probability that the ith detector clicks,Pij is the probability that both detectors i, j click, and so on.
Because in our experiments, similarly tomany experiments with single-photon emitters, the click

probabilities are very small,

P 1, B.3i  ( )

one canwrite

P g P P

P g P P P

P g P P P P

,

,

. B.4

ij i j

ijk i j k

ijkl i j k l

2

3

4

=

=

= ( )

( )

( )

( )

As a result, it follows from (B.5) that
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Figure A1. (a) Second-order (blue) and third-order (red)CF calculated for a cluster of ideal single-photon emitters (solid and dashed
lines) and of nonideal emitters with g g0.2, 0.051

2
1

3= =( ) ( ) (dash–dot and dotted lines) as functions of the numberm of emitters;
(b) the nonclassicality parameter for ideal (red solid line) and nonideal (blue dashed line) emitters versus their numberm.
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Under condition(B.3)
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where the horizontal line denotes averaging over all combinations of detector pairs.
In the general case, the emitters forming a cluster can have different properties like, for instance, different g(2)

values.While theCFs of different orders always tend to the unity as the numberm of emitters increases, the
situation is different for the θ( k)nonclassicality parameters. As an example, figure B1 shows the parameter
θ(2)−1 simulated for clusters containing a large number of emitters with different values of g(2). In thefirst case,
the size of the cluster increases by adding emitters with g(2)<1 and in the second case, emitters with g(2)>1.
One can see that these two cases affect the resulting θ(2)−1 differently: in thefirst case, the parameter drops and
the nonclassicality getsmore visible, while in the second case, θ(2) grows and the nonclassicality disappears after a
certainm.

Two conclusions are important for the data analysis in themain text.

1. Because the detection probability scales as the detection efficiency η times the number of emitters in the
cluster, P mi hµ , and, according to equation (A.4), g g m1 12

1
2- = -( )( ) ( ) , it follows that

Cm g1 1 , B.7ij
2

1
2q- = -( ) ( )( ) ( )

whereC depends quadratically on the detection efficiency η. Thus, the second-order nonclassicality gets
more pronounced as the number of emitters grows.

Figure B1.The effect of the cluster size on the parameter θ(2)−1. The cluster consists ofm1 emitters with g(2)=0.4 andm2 emitters
with g(2)=1.6. The total number of emitters (horizontal axis) ism=m1+m2. Top:fixedm2=100, 200, 300, 400 and increasing
m1 result in the decrease of θ

(2). Bottom:fixedm1=100, 200, 300, 400 and increasingm2 lead to the growth of θ
(2).
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2.Due to equation (B.6) and their obvious extrapolation to higher orders, under low detection probabilities,
and provided that an averaging is performed over all detector combinations, nonclassicality parameters of
all orders are proportional to the second-order one,

k k
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2
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k
ij...
2

k1
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