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Abstract
The two-stroke engine boasts advantages in terms of simpler manufacturing and a smaller size when compared to the four-

stroke engine. Vehicles powered by two-stroke engines can thus effortlessly overcome road obstacles compared to their four-stroke 
counterparts. However, the use of a two-stroke engine results in higher carbon monoxide and hydrocarbon emissions than that of  
a four-stroke engine. This discrepancy places greater demands on the selection of lubricating oil for two-stroke engines compared to 
four-stroke engines. In market, there exists a multitude of lubricating oil options tailored for two-stroke engines, each characterized 
by varying technical parameters. These disparities are expressed through factors such as density, viscosity index, viscosity, and 
combustion temperature, among others. Consequently, the task of choosing the optimal lubricant becomes a complex endeavor for 
consumers. In this study, an examination of lubricant selection is presented using a Multi-Criteria Decision-Making (MCDM) ap-
proach. The MCDM method employed in this article is the Combined Compromise Solution (COCOSO) method. The selection of the 
best lubricant is based on an evaluation of four distinct types. Each type of oil is described by four key parameters (criteria): density, 
viscosity index, viscosity at 100 °C, and viscosity at 40 °C. The weights for these four criteria are determined through three different 
methods, including the Entropy method, Criteria Importance Through Intercriteria Correlation (CRITIC) method, and Standard 
Deviation (SD) method. Thus, the ranking of lubricants is conducted three times, corresponding to these three weighting methods. 
The results indicate that the best oil choice remains consistent regardless of the weighting method applied.
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1. Introduction
During engine operation, approximately one-third of energy loss is attributed to friction. 

Proper lubrication of machine parts is essential to minimize this level of loss. Lubricant is a crucial 
component, often likened to the circulatory system’s blood in an engine [1]. Each type of lubricant 
exhibits unique characteristics; some excel in lubricating properties, while others are known for 
their anti-clogging capabilities in pipes or their high combustion temperature resistance, or excel-
lent rust protection, among other features [2]. In general, the properties of each lubricant type differ 
and may even be contradictory [2]. This complexity makes the selection of the appropriate lubricant 
a demanding and intricate task.

For a two-stroke engine, lubricant must be mixed with gasoline during operation, creating  
a mixture that acts as a bloodstream, circulating through all engine parts to perform its critical 
function: reducing friction between contact surfaces. The effectiveness of the gasoline and lubri-
cant mixture in minimizing surface friction depends on the lubricant’s properties. Currently, the 
market offers a wide variety of lubricant types for use in two-stroke engines. However, no docu-
mentation exists that compares these types of lubricants, emphasizing the necessity for a well-in-
formed selection of the right lubricant.

Several recent studies on lubricant selection have been published. In [3], lubricant clas-
sification was conducted using spectral analysis, involving the use of infrared rays to examine  
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lubricant surfaces. Complex algorithms like Support Vector Machine (SVM) and Kennard-Stone (K/S) 
were employed to interpret the received signals, a task demanding a high level of expertise and 
modern equipment. In [4], lubricant selection was accomplished through experimental activities. 
The process involved a series of experiments to measure fluidity, viscosity, sensitivity to working 
conditions, oxidation levels, conductivity, and other factors. This is a complex and specialized 
task requiring highly qualified individuals. Thus, it is clear that these approaches face substantial 
challenges. In [5], lubricant types were selected based on their friction properties. This involved the 
use of a tribometer, mounted on a rotating disk to measure lubricant friction coefficients. However, 
this phase constitutes post-purchase testing, not the initial selection process. In [6], the selection of 
the best lubricant among four available types was based on experiments measuring friction coeffi-
cients, defect types, and product roughness when using each lubricant. This too happens after pur-
chasing all four types of lubricants. In [7], used lubricant classification was conducted, comparing 
the ability to regenerate used lubricants, a distinct task from selecting a new lubricant. In [8], the 
analysis of in-use lubricant quality was performed, involving measurements of indicators such as 
water content, viscosity, solid particle content, and acid index. This task also differs from selecting 
a new lubricant (unused lubricant). In [9], lubricant selection was based on its corrosion resistance 
to metal surfaces, an approach flawed because various parameters must be considered when se-
lecting a lubricant. In [10], lubricant selection centered on lubricating properties alone, which is an 
incomplete method, as several factors must be considered when making a selection.

Through the analysis of the above studies, it becomes evident that evaluations and selec-
tions of lubricants have been conducted in several studies. However, in all these cases, lubricant 
evaluations were performed after purchasing the lubricants. The initial ranking of brand-new lubri-
cants (unused lubricants) for purchase remains unaddressed in existing publications. This gap ne-
cessitates the ranking of lubricants for purchase, a Multi-Criteria Decision Making (MCDM) pro-
cess. COCOSO is a commonly used MCDM method today, and it is employed in this study to rank 
lubricating oil types. However, the choice of the best type can vary based on the method used to de-
termine criteria weights. Therefore, it is crucial to rank lubricating oils using different methods to 
assign criteria weights. The Entropy, SD, and CRITIC methods represent three distinct approaches 
for calculating criteria weights, with potentially significant variations in the weights they assign. 
Surprisingly, no existing documentation combines all three methods to determine criteria weights 
for a specific case. This study seeks to fill this void.

The study’s purpose is to compare the rankings of lubricating oils using the COCOSO 
method with various sets of criteria weights. This is achieved through the following objectives: 
calculating criteria weights using the Entropy method, calculating criteria weights using the 
CRITIC method, calculating criteria weights using the SD method, and ranking various types of 
lubricating oils using the COCOSO method with criteria weights determined through these three 
different methods.

2. Materials and methods
2. 1. Entropy method
Suppose there are m alternatives, each alternative includes n criteria, the value of the cri-

terion j in the alternative i is xij. Use the Entropy method to calculate the weights of the criteria 
following the steps below [11]: 

Step 1. Calculate the normalized value for the criteria:
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Step 3. Calculate the weight for each criterion, where n is the number of criteria:
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The above three formulas will be used to calculate the weights of the criteria of lubricant 
types in the next part of this article.

2. 2. CRiteria Importance Through Intercriteria Correlation method
The sequence for determining the weights for criteria using the CRITIC method is by ap-

plying the (4) and (5) [12]:
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In which sj is the standard deviation of the dataset for criterion j, rij is the correlation coef-
ficient between the two criteria.

2. 3. Standard Deviation method
The weight of the j th criterion is calculated in accordance with the (6) [13]:
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In which sj is the standard deviation of the dataset for criterion j.

2. 4. COmbined COmpromise SOlution method
In order to select the best alternative among the available ones, the application of COCOSO 

method is carried out in the following sequence [14]:
Step 1. Normalize the data in accordance with the (7) and (8). The (7) is applied to the as-

large-as-possible criteria, and the (8) is applied to the as-small-as-possible criteria:

 n
x x

x xij
ij ij

ij ij
=

−
−
min

max min
; (7)

 n
x x

x xij
ij ij

ij ij
=

−
−
max

min max
. (8)

Step 2. The two quantities Si and Pi are calculated in accordance with the (9) and (10).  
In which, wj is the weight of the j th criterion:
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Step 3. The values kia, kib, and kic are calculated in accordance with the (11)–(13):
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In (8), l is a coefficient, usually chosen to be 0.5 [14].
Step 4. Calculate the ki values in accordance with the formula:

 k k k k k k ki ia ib ic ia ib ic= ( ) + + +( )1 3 1

3
/ . (14)

Step 5. The best alternative is the one with the largest ki value.

3. Results of lubricant selection for two-stroke engines
3. 1. Calculation of weights for criteria using the Entropy method
Four types of lubricating oils commonly used for two-stroke engines are as follows: conven-

tional two-stroke engine oil (L1), Castor oil-based Biolubricant (L2), Palm oil-based Biolubricant (L3), 
and Waste cooking oil biolubricant (L4). These lubricating oil types are typically employed in small 
two-stroke engines found in various vehicles and equipment, such as motorcycles, water pumps, and 
grass trimmers, among others. The technical specifications for these four types of lubricating oils are 
provided in Table 1 [15], including data on density, viscosity index, viscosity at 100 °C, and viscosity 
at 40 °C. These four criteria are denoted as C1, C2, C3, and C4. Lower density is desirable for lubri-
cants, making C1 the «as-small-as-possible» criterion, while the opposite is true for C2, C3, and C4, 
which are in the «as-large-as-possible» form. The viscosity index (C2) is a dimensionless number used 
to assess the variation of the viscosity of lubricating oil with temperature. A higher viscosity index 
indicates that the lubricating oil maintains viscosity better as temperature changes. This makes oils 
with a high viscosity index suitable for use in environments with significant temperature fluctuations.  
The units of the other three parameters (C1, C3, and C4) are listed at the bottom of Table 1. CST is an ab- 
breviation for «CentiSTokes», a unit measuring the viscosity of oil and liquids in the centimeter-gram- 
second system. It measures the fluid’s ability to flow through a tube or its resistance to movement.

Table 1
Types of lubricants

Type
C1 C2 C3 C4

min max max max
L1 0.883 95 9 71.73
L2 0.953 82 8.67 75.82
L3 0.9058 390 4.9 12.67
L4 0.8316 166 2.67 8.04

Unit gr/cm3 – CST CST

Applying (1), the normalized values were calculated as shown in Table 2.
Applying (2), the ej values were calculated, the results are shown in Table 3.
The (3) was used to calculate the weights for the criteria. Accordingly, the weights of C1, C2, 

C3 and C4 are 0.33193, 0.20070, 0.25826 and 0.20911, respectively.
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Table 2
Normalized values in the Entropy method

Type C1 C2 C3 C4
L1 0.12264 0.00049 0.04704 0.00645
L2 0.13236 0.00042 0.04532 0.00682
L3 0.12581 0.00200 0.02561 0.00114
L4 0.11550 0.00085 0.01396 0.00072

Table 3
ej value in the Entropy method

C1 C2 C3 C4

–0.6897 –0.0216 –0.3147 –0.0645

3. 2. Calculation of weights for criteria using the CRiteria Importance Through Inter-
criteria Correlation method

The correlation coefficient between the criteria (rij) was calculated online, the results have 
been summarized in Table 4 [16].

The standard deviation (sj) was calculated. The Cj coefficients were also calculated in ac-
cordance with the (4). All calculated values have been summarized in Table 5.

Table 4
Correlation coefficient between criteria

Criteria
Criteria C1 C2 C3 C4

C1 1.00000 –0.06880 0.69190 0.61960
C2 –0.06880 1.00000 –0.53870 –0.73360
C3 0.69190 –0.53870 1.00000 0.96460
C4 0.61960 –0.73360 0.96460 1.00000

Table 5
Standard deviation and Cj coefficients in the CRITIC method

Criteria C1 C2 C3 C4

sj 0.49965 0.00565 0.18090 0.06735

Cj 0.87803 0.02453 0.34049 0.14476

The weights of criteria C1, C2, C3 and C4 were calculated in accordance with (5), with the 
corresponding values of 0.63267, 0.01767, 0.24534, and 0.10431.

3. 3. Calculation of weights for criteria using the Standard Deviation method
The quantities dj in (6) have been calculated, the values are summarized in the Table 6.

Table 6
dj values in the SD method

C1 C2 C3 C4

0.4327 0.0049 0.1567 0.0583

The (6) was used to calculate the weights of the criteria. Accordingly, the weight of C1 is 
0.66306, the weight of C2 is 0.00750, the weight of C3 is 0.24007, and the weight of C4 is 0.08938.



Original Research Article:
full paper

(2024), «EUREKA: Physics and Engineering»
Number 3

86

Engineering

3. 4. Selection of lubricant type using the COmbined COmpromise Solution method
The (7) and (8) were applied to calculate the normalized values, the results have been sum-

marized in Table 7.
The (9) and (10) were applied to calculate the values Si and Pi. This was carried out for the 

three different cases corresponding to the three weighting methods used. The results have been 
summarized in Table 8.

The coefficients kia, kib, and kic were calculated in accordance with the corresponding (11)–(13). 
This was also carried out three times corresponding to the three different weighting methods, the 
results have been summarized in Table 9.

Table 7
Normalized values in the COCOSO method

Type C1 C2 C3 C4
L1 0.57661 0.42339 0.04221 1.00000
L2 0.00000 1.00000 0.00000 0.94787
L3 0.38880 0.61120 1.00000 0.35229
L4 1.00000 0.00000 0.27273 0.00000

Table 8
Si and Pi values

Type
Entropy weight CRITIC weight SD weight

Si Pi Si Pi Si Pi

L1 0.49638 3.11610 0.48695 3.15077 0.48501 3.15546
L2 0.39890 1.98887 0.11654 1.99443 0.09222 1.99523
L3 0.58365 3.44074 0.53888 3.43831 0.53393 3.44180
L4 0.40237 1.71494 0.69959 1.72704 0.72853 1.73205

Table 9
kia, kib, and kic coefficents

Type
Entropy weight CRITIC weight SD weight

kia kib kic kia kib kic kia kib kic

L1 0.2975 3.0614 0.8976 0.2993 6.0026 0.8791 0.2993 7.0813 0.8729
L2 0.1967 2.1597 0.5933 0.1737 2.1548 0.5102 0.1716 2.1519 0.5005
L3 0.3314 3.4695 1.0000 0.3273 6.6146 0.9612 0.3268 7.7772 0.9533
L4 0.1744 2.0087 0.5261 0.1997 7.0027 0.5864 0.2023 8.9004 0.5900

The ki scores of the lubricants were calculated in accordance with the (14). The ranking of 
lubricants has also been determined in accordance with the value of their scores. This task was 
also carried out three times corresponding to the three weighting methods, the results have been 
summarized in Table 10.

Table 10
Scores and rankings of lubricant types

Type
Entropy weight CRITIC weight SD weight

ki Rank ki Rank ki Rank
L1 2.35392 2 3.55832 2 3.97879 3
L2 1.61487 3 1.52208 4 1.51101 4
L3 2.64798 1 3.91101 1 4.36230 1
L4 1.47213 4 3.53229 3 4.25122 2
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In Fig. 1, it is a chart showing the ranking results of lubricant types corresponding to the 
three different weighting methods.

Fig. 1. Ranking of lubricant types

Analysis of the chart in Fig. 1 reveals that, in all surveyed cases, L3 consistently emerges 
as the optimal lubricant type. In other words, the palm oil-based biolubricant (L3) proves to be 
the superior choice among the four oils analyzed in this study. As a result, the COCOSO method 
consistently identifies L3 as the best solution, regardless of the criteria weights used, under-
scoring the method’s effectiveness and robustness [14]. The ranking results for lubricant types 
may differ when using different weighting methods, a phenomenon also discussed in numerous 
pre vious documents [17–19]. A limitation of this method is its lack of consideration for envi-
ronmental factors in the use or recycling of lubricating oils. A drawback of this study is that it 
focuses solely on selecting lubricating oil based on its characteristics. After identifying the best 
type of lubricant, experimental studies are needed to validate the results. Verification will in-
volve assessing torque, capacity, fuel consumption, exhaust pollution levels, and other engine-re-
lated factors. To make lubricant selection more comprehensive, additional criteria should be 
considered for each product type. If the number of criteria for describing each type of lubricant 
changes, re-weighting the criteria becomes necessary. When qualitative criteria are introduced, 
calculating weights for these criteria using the Entropy, CRITIC, and SD methods can be chal-
lenging. In such cases, the PIPRECIA (PIvot Pairwise RElative Criteria Importance Assessment) 
method can be a viable alternative [20]. In the case where the number of lubricant types needs to 
be ranked either increased or decreased, combining the Design of Experiments (DOE) method 
with the COCOSO method can be applied to quickly rank the lubricant types without the need  
to redo the entire calculation process [21–23].

4. Conclusions
When employing the Entropy method, the weights for the criteria of density, viscosity in-

dex, viscosity at 100 °C, and viscosity at 40 °C were determined as 0.33193, 0.20070, 0.25826, and 
0.20911, respectively.

In the case of the CRITIC method, the weight assigned to density was calculated as 0.63267, 
while viscosity received a weight of 0.01767, viscosity at 100 °C was assigned 0.24534, and viscos-
ity at 40 °C received a weight of 0.10431.

Utilizing the SD method, the weights for the criteria, including density, viscosity index, 
viscosity at 100 °C, and viscosity at 40 °C, were determined as 0.66306, 0.00750, 0.24007, and 
0.08938, respectively.

Despite using different methods to determine criteria weights (Entropy, SD, and CRITIC), 
the COCOSO method consistently identifies a single best type of lubricant. The Palm oil-based 
Biolubricant stands out as the superior lubricating oil, boasting a density of 0.9058 g/cm³, a visco-
sity index of 390, a viscosity at 100 °C of 4.9 cSt, and a viscosity at 40 °C of 12.67 cSt.
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