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Abstract
In this study, an Adaptive Backstepping Sliding Mode Controller (ABSMC) is introduced based on the Radial Basis Func-

tion (RBF) neural network and a fuzzy logic modifier. The proposed method is used to control a Dual-Arm Robot (DAR) – a nonlinear 
structure with unstable parameters and external disturbances. The control aims to track the motion trajectory of both arms in the flat surface 
coordinate within a short time, maintaining stability, and ensuring that the tracking error converges in finite time, especially when influ-
enced by unforeseen external disturbances. The nonlinear Backstepping Sliding Mode Control (BSMC) is effective in trajectory tracking 
control; however, undesired phenomena may occur if there are uncertain disturbances affecting the system or model parameters change. 
It is proposed to use a neural network to estimate a nonlinear function to handle unknown uncertainties of the system. The neural network 
parameters can be adaptively adjusted to optimal values through adaptation rules derived from Lyapunov’s theorem. Additionally, fuzzy 
logic theory is also employed to adjust the controller parameters to accommodate changes or unexpected impacts. The performance of the 
Fuzzy Neural Network Backstepping Sliding Mode Control (FNN-BSMC) is evaluated through simulation results using Matlab/Simulink 
software. Two simulation cases are conducted: the first case assumes stable model parameters without uncertain disturbances affecting 
the joints, while the second case considers a model with changing parameters and disturbances. Simulation results demonstrate the ef-
fective adaptability of the proposed method when the system model is affected by various types of uncertainties from the environment.
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1. Introduction
Dual-Arm Robot (DAR), also known as a dual manipulator, can replace and assist humans in 

tasks that have heavy load, require high precision, or take place in challenging working environments.  
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They are widely utilized in industrial, medical, manufacturing, or construction settings. This type 
of robot has numerous outstanding advantages, such as flexibility, high precision, and suitability 
for lifting heavy objects when compared to other types of industrial robots. When considering the 
same task, the joints of a DAR operating in parallel will require lower torque than a single-arm 
robot. However, DARs pose challenges the much more complex in terms of dynamics and kinetics 
compared to conventional serial-link systems. Consequently, controlling DARs imposes higher 
requirements, laying the foundation for our research.

To date, numerous worldwide studies have been published to control the motion trajecto-
ry of this model. Sliding Mode Control (SMC) [1] has been applied to the robot’s load-carrying  
movement. Additionally, Adaptive Control (AC) methods have been applied to address disturban-
ces affecting DAR [2–5]. Besides, nonlinear backstepping control algorithm with adaptive fuzzy 
control laws to adjust controller parameters is proposed in [2]. In [3, 4], the application of neural 
network learning rules is suggested to control stable systems impacted by disturbances. In [6], the 
authors designed a Backstepping Sliding Mode Control via Nonlinear Disturbance Observer. How-
ever, no method has thoroughly addressed the issue of compensating for uncertain disturbances 
from the environment and sudden model changes simultaneously.

In other studies, trajectory tracking control problems for robots, including DAR, have been 
extensively studied, with various algorithms aimed at enhancing control quality. Novel and po-
werful control algorithms have been increasingly researched and applied based on nonlinear con-
trol algorithms and machine learning methods. Moreover, in the broader field of robot control, 
advanced control methods such as Model Predictive Control (MPC) [7, 8], Reinforcement learn-
ing [9, 10], Deep learning [11, 12], or Deep reinforcement learning [12, 13] have been employed. 
Some studies have explored an adaptive control approach using Radial Basis Function Neural 
Network (RBF) with online learning capability to estimate unknown nonlinear components of the 
model, enhancing control performance [14, 15]. In studies on intelligent control methods [16], the 
use of Recurrent Fuzzy Wavelet Neural Network (RFWNN) has demonstrated powerful learn-
ing capabilities. Research on model-independent controllers based on machine learning tech-
niques [9–13] can automatically adjust, improve control quality over time, and automatically find 
optimal control strategies.

Based on the analyses above, a backstepping sliding mode control algorithm integrated with 
neural network and fuzzy logic theory is proposed to control dual-arm manipulators, enabling them 
to operate efficiently in a short time, track trajectories, and maintain system stability. Furthermore, 
the proposed method can compensate for disturbances, allowing dual-arm manipulators to work 
and adapt to various types of disturbances affecting joint moments. This method stands out for its 
robustness due to the advantages of Sliding Mode Control (SMC) and simplicity in design using the 
recursive Lyapunov function of the Backstepping technique.

The remaining sections of the paper include: Section 2 presenting the construction of the 
mathematical model of the dual-arm robot, and discussing the adaptive Fuzzy Neural network 
Backstepping sliding mode algorithm, Section 3 outlining simulation steps and comments, and 
Section 4 providing conclusions.

2. Materials and methods
2. 1. Mathematical model of DAR
Considering the dual-arm robot (DAR) model with 2 degrees of freedom applied in the case 

of controlling an object with mass described in [3] as shown in Fig. 1. The structure of each robot 
arm consists of 2 revolute joints, where mi, Ii, Li, ki respectively representing the mass, moment of 
inertia, length of the link, and the distance from the center of mass of the link to a joint. Let’s as-
sume the load is securely held by the DAR, ensuring no sliding friction occurs between the load and 
the contact point with the robot. At the same time, let’s define d1 and d2, respectively, the parame-
ters representing the length of the load and the distance between the bases of the two robotic arms.

In this study, let’s consider activities on a flat coordinate surface xy, when the load is secure-
ly attached by two robot arms. The object will move by controlling the trajectory grasped by the 
dual-arms robot so that the object is held firmly as shown in Fig. 2.
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Fig. 1. The structure of a Dual-Arm Robot (DAR)

Fig. 2. Operational motions of dual-arm robot

Here, xm, ym represent the coordinates at the center of the load:
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During operation, the robot applies forces F1, F2 to the object as shown in Fig. 3. To prevent the 
object from rotating around the y and z axes, friction forces Fs1y = Fs2y and Fs1z = Fs2z are introduced.

In this case, the dynamic equation of the object is written as follows:

 mx F F
m
 = -2 1, (2)

 my F F
m s y s y = =2 1 2 . (3)

 mg F Fs z s z= =2 21 2 , (4)

where g = 9.8 m/s2. 
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Fig. 3. The forces acting on the object

The relationship between the applied forces and the frictional forces is represented by:
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When the direction of forces F1 and F2 always points towards the load, the load is effectively 
held by the two arms, and these forces must be positive. If ẍm(t) ≥ 0, then both applied forces F1 and 
F2 can be calculated:
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In the case of ẍm(t) < 0, these forces can be determined by:
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Applying the Euler-Lagrange equation with the form F t L q L qi i i= ∂ ∂ ∂ ∂( ) - ∂ ∂ ,  the dy-
namic model of a dual-arm robot controlling a load can be described as follows:

 M q C q G q J q F q Tq q q qT
d( ) ( ) ( ) ( ) ( )+ + = + - -   , , , ,t β  (9)

where τ being a control input vector representing torque in a 4×1 dimension, Td being a 4×1 vector 
indicating the influence of noise on the robot’s arms, and β representing the viscous friction force 
on all joints, described as follows:

q q q q q
T= [ ]1 2 3 4   ,

u u u u u
T= [ ]1 2 3 4   ,
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F F F F Fs y s y
T=  1 1 2 2   ,

T T T T Td d d d d
T= [ ]    1 2 3 4 ,

G q
T( ) = [ ]    0 0 0 0 ,

β = [ ]b b q b q b q
T

1 2 2 3 3 4 4      .

M(q) is a 4×4 matrix of mass dynamics, and its components are determined by:

m A A A q11 1 2 3 22= + + cos ,

m A22 2= ,

m m m m13 14 23 24 0= = = = ,

m A A A q33 4 5 6 42= + + cos ,

m m A A q34 43 5 6 4= = + cos ,

m A44 5= ,

m m m m31 32 41 42 0= = = = . 

With:

A m k m l I1 1 1
2

2 1
2

1= + + ,

A m k I2 2 2
2

2= + ,

A m l k3 2 1 2= ,

A m k m l I4 3 3
2

4 3
2

3= + + ,

A m k I5 4 4
2

4= + ,

A m l k6 4 3 4= . 

C(q ,q̇) is a 4×1 Coriolis matrix, its components are determined by:

c A q q q q b q11 3 2 2
2

1 2 1 1= - + +( ) sin ,   

c A q q b q21 3 1
2

2 2 2= + sin ,

c A q q q q b q31 6 4 4
2

3 4 3 3= - + +( )sin ,   

c A q q b q41 6 3
2

4 2 4= + sin . 

Additionally, J is a Jacobian matrix with a size of 4×4, and its components are calculated  
as follows:

J L q L q q11 1 1 2 1 2= - - +( )sin sin , 

J L q L q q12 1 1 2 1 2= - - +( )cos cos , 



Original Research Article:
full paper

(2024), «EUREKA: Physics and Engineering»
Number 2

84

Engineering

J J13 14 0= = ,

J L q q21 2 1 2= - +( )sin ,

J L q q22 2 1 2= - +( )cos , 

J J23 24 0= = ,

J J31 32 0= = ,

J L q L q q33 3 3 4 3 4= + +( )sin sin ,

J L q L q q34 3 3 4 3 4= - - +( )cos cos ,

J J41 42 0= = ,

J L q q43 4 3 4= +( )sin ,

J L q q44 4 3 4= - +( )cos . 

2. 2. Controller design
To design a closed-loop control system for effectively controlling the motion trajectory of 

the DAR, it is firstly possible to implement the design of a nonlinear controller presented in [1] 
based on the backstepping algorithm and sliding mode control.

However, during operation, the parameters of the controller are uncertain, and simultane-
ously, the joints of the robot may be influenced by various unknown external forces. Therefore, 
the authors propose a method to design an adaptive controller with parameter adaptation using 
fuzzy logic and an RBF neural network to compensate all the disturbances acting on the controller.  
The proposed control structure is shown in Fig. 4.

First, the dynamic model (9) of the system is rewritten as follows: x1 = (q1,q2,q3,q4)T is the 
state vector of the DAR model. Thus, the state equation is described by (10):

 


  

x x
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 (10)

where K q q q J q F q q q C q q G q TT
d, , , , , .    ( ) ( ) ( ) ( ) ( ) -= - - -β

Fig. 4. General diagram of the adaptive fuzzy neural network SMC system
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2. 2. 1. Backstepping Sliding Mode Control (BSMC) for DAR
The ultimate goal in controlling a DAR is to track the motion of the end-effectors along 

specified trajectories. In other words, when designing a Backstepping Sliding Mode Control-
ler (BSMC) to control the motion of the two arms along desired trajectories. z1 = x1–x1ref is the 
error between the current joint angle value and its desired value. Where x1ref = qref as the desired 
joint angle value. The nonlinear controller design steps are as follows:

Step 1: consider α as the virtual control signal described as (11):

 a = - +c z x ref1 1 1 . (11)

With a positive constant c1 for: 

lim .
t

z t
→∞

( ) =1 0

If z2 = x2–a and the time derivative of z1 is taken:

    z x x z x z c zref ref1 1 1 2 1 2 1 1= - = + - = -a . (12)

The first Lyapunov function can be defined as:

 V z zT
1 1 1

1

2
= . (13)

So, the derivative of V1 can be calculated as:

 

V z z z c z z zT T T
1 1 1 1 1 1 1 2= = - + . (14)

Step 2: to design the sliding control algorithm, the sliding surface can be formulated as follows:

 s z Mz= +λ 1 2. (15)

Where λ = diag(λ1, λ2, λ3, λ4) is a diagonal matrix with positive diagonal coefficients. If to 
derivative s with respect to time, the result will be:

         s z Mz z M x z M M K M z K= + = + - = + + - = + + -( ) ( )- -λ λ a λ t a λ t1 2 1 2 1
1 1

1 MM a. (16)

The second Lyapunov function can be defined as:

 V V s sT
2 1

1

2
= + . (17)

So, the derivative of V2 can be calculated as:

  

  V V s s z c z z z s z K MT T T T
2 1 1 1 1 1 2 1= + = - + + + + -( )λ t a . (18)

V2 can be rearranged by adding the signum function as follows:

 

V z c z s c s s
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s s
c s z K MT T T
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1 2
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sign λ t a








 . (19)
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With a positive constant c2. If the control input is selected as:

 t λ a= - + + + -








( )sz z

s s
c s z K M

T

T

1 2
2 1sign .   (20)

So,

V z c z s c sT T
2 1 1 1 2 0
.

.= - - <( )sign

As a result, the error between the output value and the desired value tends to approach zero. 
Let’s note that when the sliding surface es → 0, τ → –∞. Therefore, in practice, the control input for 
the BSMC is proposed as follows:

 t
s

λ a= -
+

+ + + -








( )sz z

s s
c s z K M

T

T

1 2
2 1sign   , (21)

where s is a very small positive constant.

2. 2. 2. Design a fuzzy logic modifier for updating model parameters
In this study, it is possible to add an adaptive fuzzy logic modifier to the BSMC. Let’s use 

Mamdani fuzzy logic structure. The inputs of fuzzy logic modifier are the error between the actual 
and desired values of joint angle 1, as well as their derivatives. Through this, it adjusts two control-
ler parameters.

The definition and fuzzification of the input and output fuzzy sets are represented in 
Fig. 5, 6, respectively. The fuzzy inference table is constructed in Table 1. This directly influ-
ences the effectiveness of the fuzzy logic algorithm and the stability of the system under various 
levels of noise.

Fig. 5. Membership function: a – eθ1
; b – eθ1

a

b
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Fig. 6. Membership function: a – c1; b – c2

Table 1
Fuzzy rule table

e
eθ1

NE ZR PO LPO

eθ1

NE LA SM SM SM
ZR LA BA LA LA
PO SM SM LA LA

2. 2. 3. Design a neural network estimator and system stability
As mentioned earlier, the intricate nonlinear dynamics represented by K in equation (21) 

lack a complete analytical model. Thus, in this study, let’s suggest utilizing a neural network with 
radial basis function to provide an approximate estimation of the unknown dynamic parameters.

Let f (Z): Ra → Rb represent the radial basis function network:

 f Z W H ZT( ) = ( ), (22)

where W = [W1, W2,…, Wi]T∈Rbxl is the ideal weight matrix, and l is the number of neurons in  
a hidden layer. H(Z) = [h1(Z), h2(Z),…,hi(Z)]T, where hi(Z) is an activation function. The activation 
function is described in detail in [14]:

 h Z

Z Z

Z Z
i

i i

i

j j

j

( ) =

- - + -













- - + -










exp

exp

µ µ
η

µ µ
η
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and

 0 1< ( ) £h Zl , (24)

where μi = [μi1, μi2,…, μia]T  is  the center vector of  the receptive field, and ηi is the width of the 
Gaussian function. ë is a matrix of the neural inputs. In this design, let’s define:

 Z x x x RT T T T
Z=   ∈ ⊂1 1 1

12; ; .  Ω  (25)

If Ŵ denotes estimation of the weight matrix, the output of the radial basis function f(Z) is 
approximated by:

 t
s

λ a= -
+

+ + + ( ) -








( )sz z

s s
c s z f Z M

T

T

1 2
2 1sign .� � �  (26)

It is noted that from now onward it is possible to define the control approach with a con-
trol input presented in (26) as the radial basis function network based backstepping sliding mode 
control (RBFN-BSMC). Now let’s check the stability of proposed approach with the Lyapunov 
function which is formulated by the equation (27):

 V V s s W WT
i
T

i
i2 1

1

1

41

2

1

2
= + + -

=
∑  Γ , (27)

where  Γ = diag(Γ1, Γ2,…, Γ4) is a positive definite diagonal matrix of the adaptation gains.  
W  = Ŵ–W is error between the estimated weights W  and the ideal weights W. Then, derivative of 

V2 can be computed by:

 � � � � � � �V V s s W W z c z z z s z K MT
i
T

i
i

T T T
2 1

1

1

4

1 1 1 1 2 1= + + = - + + + + --

=
∑ Γ λ t a(( ) + -

=
∑ � ��W Wi

T

i
iΓ 1

1

4

. (28)

Substituting the control law in (26) into (28) leads to:

 � � �� �V z c z s c s W W s H z WT T
i
T

i
T

i
2 1 1 1 2

1

1

4

= - - ( ) - ( ) -



+ -

=
∑sign Γ δ ,, (29)

where σ is a positive number. If the adaptation mechanism is chosen by:

 �� � �W W H Z s WT= = ( ) -



Γ δ . (30)

When the derivative of V2 can be rewritten as:

 V z c z s c sT T
2 1 1 1 2 0= - - ( ) <sign . (31)

In other words, the system stability holds if the estimated weights Ŵ are adaptively com-
puted by (30).

3. Results and discussion
3. 1. Trajectory and model parameters
To evaluate the proposed method, it is possible to perform the simulation under Mat- 

lab/Simulink software environment. In simulation, the manipulators initially follow reference tra-
jectories to reach the payload. The reference trajectories for the first 2 seconds are specified by:

 x t x x x ea f i f
t

1 1 1 1
10 2( ) = + -( ) - , (32)
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 y t y y y ea f i f
t

1 1 1 1
10 2( ) = + -( ) - , (33)

 x t x x x ea f i f
t

2 2 2 2
10 2( ) = + -( ) - , (34)

 y t y y y ea f i f
t

2 2 2 2
10 2( ) = + -( ) - , (35)

where xa1, ya1, xa2, ya2 are the trajectories of the manipulators. (xi1, yi1, xi2, yi2) and (xf1, yf1, xf2, yf2)  
are the initial and final positions of the end-effectors, respectively. Upon securely holding the 
object, the robot moves the payload along half of a circle to prevent collisions with obstacles.  
The anticipated path for the center of the object is described by the following curve,

 x t x r tmr m( ) = + ( )0 cos ,ϕ  (36)

 y t y r tmr m( ) = + ( )0 sin ,ϕ  (37)

where (x0, y0) is the position of the obstacle, this curve represents the center of the circle along 
which the object is in motion. rm denotes the radius of the circle, and θ is a polar angle ranging 
from −π to 0. It is essential to highlight that the joint angles between the link and the base, or its 
preceding link, were initially known at the starting point t = 0, q1 0 6( ) = π , q2 0 2( ) = π , q3 0( ) = π 
and q4 0 2 3( ) = - π .

Proceeding with simulations based on two cases as follows:
Case 1: all parameters of a dual-arm robot are accurately determined. Concurrently, the 

system is not affected by uncertain disturbances from the environment.
Case 2: the dual-arm robot will face a huge challenge when the model is subjected to sub-

stantial disturbances, which change over time and directly impact all four joint moments of the sys-
tem. The model parameters used in this case are provided in Table 2 and the trajectory parameters 
are shown in Table 3.

Table 2
Parameters of the dual arm robot system [3]

Parameters Symbols Values
Moment of inertia Ii (i = 1, 2, 3, 4) 0.18 kgm2

Length of the link Li (i = 1, 2, 3, 4) 1.2 m
The distance from the center of the link to a joint ki (i = 1, 2, 3, 4) 0.48 m

Friction coefficient bi (i = 1, 2, 3, 4) 110 Nm/s
The length of the object d1 0.25 m

The distance between the bases of the two arms d2 1.2 m
Confidence µ 0.35

Table 3
Parameter of reference trajectory

Parameter Symbols Values

Initial coordinates of the arm (xi1; yi1; xi2; yi2) (0.76; 0.6; −0.76; 0.6)

Desired value of the arm (xf1; yf1; xf2; yf2) (−0.275; 1.4; −0.525; 1.4)

Center of orbit (x0; y0) (0; 1.4)

Orbit radius rm 0.4 m

Initial values of the angles q(0) π π π π6 2 2 3; ; ;-( )
Initial angular velocity q 0( ) (0; 0; 0; 0)

Note: in simulation results shown in 3.2 and 3.3, we use «ABSP-SMC» to illustrate for controller system with adaptive fuzzy neural 
network backstepping sliding mode control, and «BSP-SMC» is only non-linear backstepping sliding mode control
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3. 2. Case 1: parameters of DAR model are constant and the system is not affected by 
disturbances

In this case, both the fuzzy neural network backstepping sliding mode controller and the 
nonlinear controller exhibit excellent control performance. The simulation results depicted in 
Fig. 7 show that the proposed method achieves fast convergence times, approximately 0.25 sec-
onds for joints 1, 2, and 4, while the convergence time for joint 3 is nearly instant. The system 
stability is maintained throughout the entire operating time. This outcome is similarly observed 
with the nonlinear Backstepping sliding mode control. Thus, it is evident that the adaptive Back-
stepping sliding mode controller based on fuzzy logic and neural network not only provides ex-
cellent control performance and rapid response times but also ensures stability throughout the 
entire operation.

Fig. 7. Joint angle trajectory response in the absence of disturbing influences: a – Joint angle 1, q1; 
b – Joint angle 2, q2; c – Joint angle 3, q3; d – Joint angle 4, q4

3. 3. Case 2: the dual-arm robot model has unstable model parameters, and uncertain 
disturbances affect the system

In this case, the system is influenced by uncertain noise signals from the environment as 
depicted in Fig. 8 and also gets the sudden change in mass as shown in Fig. 9.

Fig. 8. External disturbance affects the dual-arm robot system

a

c

b

d
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Fig. 9. Change of mass

From the simulation results, it is possible to see in Fig. 10 that the proposed method demon-
strates excellent control quality when faced with strong disturbances affecting joint moments and 
variations in model parameters, as compared to the nonlinear controller. In detail, the system shows 
the shorter convergence time at joint 1 compared to the BSMC controller, approximately 0.1 second; 
with joint 2, the convergence time of the disturbances one is nearly 0.2 second approaching the 
BSMC controller then becomes stable. The difference is observed at joint 3, where the nonlinear 
controller shows a slight deviation during operation, which does not occur with the adaptive con-
troller designed. Considering joint 4, it is shown that the difference between BSMC controller and 
the ones with disturbance signal at joint 4 is approximately 0.3 second to be stable.

It also can be seen that the control quality of the adaptive fuzzy neural network sliding mode 
control is excellent at 0.25 seconds, similar to the convergence time in Case 1, while addressing 
the drawbacks of the sliding mode control, where reluctance and errors persist due to continuous 
influences from uncertain disturbances on the joint moments of the system.

The high stability performance of closed-loop control systems forms the basis for practi-
cal applications. When a dual-arm robot is capable of meeting job requirements almost instantly,  
it enhances its practical utility.

Fig. 10. Joint angle trajectory response in the presence of disturbances: a – Joint angle 1, q1;  
b – Joint angle 2, q2; c – Joint angle 3; q3; d – Joint angle 4, q4sz

a

c

b

d
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3. 4. Limitations and directions for development of the study
To apply this algorithm in real-world conditions, it is necessary to face the challenges 

about mechanics, ensuring the accuracy of model parameters. Actual DAR model errors will 
lead to a change in the parameter set of the nonlinear controller, which in turn requires re-adjust-
ing the parameters. Additionally, external disturbances in the environment can affect the practi-
cal performance of the model during operation. However, reproducing this method and applying 
it to real-world scenarios for this robot is absolute possible.

In the future, it is possible to implement and test this algorithm on an experimental system 
and continue researching and developing this algorithm for various types of industrial robots cur-
rently available.

4. Conclusions
The study proposed adaptive backstepping sliding mode control algorithm combined with 

neural network and fuzzy logic theory for controlling the DARs, tracking different trajectories in 
a short time, maintain system stability, and overcome the limitations of sliding mode control when 
the system is influenced by unknown disturbances and variations in model parameters. Simulation 
results demonstrate that the control performance of the system is excellent. The motion of the DARs 
absolutely follow the desired trajectory and maintaining stability with a rapid establishment time 
of approximately 0.25 seconds for all 4 joints. With the help of Fuzzy Logic and Neural Network 
as shown above, the results of 4 joints with and without disturbances become nearly unchanged, if 
not faster, to compare the ones with disturbances to the ones without it. Clearly, even the ones with 
disturbance might be reluctant a little from the beginning, it still approaches the original trajectory 
faster than normal Backstepping for about 0.02 to 0.04 second.
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