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Abstract
Cutting forces play very important in designing the tool machine, cutting tool, and in optimization of machining processes. 

Modeling and prediction of cutting forces by theoretical methods are quite difficult, so, this study was focused on modeling the 
cutting force in face milling process using combination of theoretical and experimental methods. This study was performed to 
model the milling forces (MFs) and determine the milling force coefficients (MFCs) in the face milling process of aluminum alloy 
Al7075 using square inserts. From theoretical and experimental methods, the relationship of average milling forces (AMFs) and 
feed per flute (ft) were determined as the linear regression. Using experimental data, the linear regressions of AMFs and feed per 
flute were determined with high values of determination coefficients (larger than 95 %). MFCs were determined including shear 
and edge MFCs (tangential shear MFC (Ktc) of 538.127 N/mm2, radial shear MFC (Krc) of 185.967 N/mm2, axial shear MFC (Kac)  
of –691.297 N/mm2, tangential edge MFC (Kte) of 11.253 N/mm, radial edge MFC (Kre) of 6.991 N/mm, and axial edge MFC (Kae)  
of –32.971 N/mm. The MF models were successfully verified by comparing the measured and predicted MFs in face milling pro-
cess of Al7075. The tendency and shape of predicted MFs were quite close to the measured ones. The differences between the 
predicted and the measured MFs can be due to the several reasons such as the influence of vibrations, the influence of cutting 
heat, etc., and these are also the limitations of this study. The modeling and prediction methods of this study can be used to model 
and predict the cutting forces in face milling of other milling types and other pairs of cutting tool and workpiece material as well.

Keywords: modelling, MFs, MFCs, AMF, shear milling force, edge milling force, square inserts, prediction, aluminum 
alloy, Al7075.
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1. Introduction
Many studies were performed to model the MFs and to determine the MFCs [1–3]. MFs can  

be modeled from simple cutting processes [4], complex cutting processes [5] with different ap-
proaches such as theoretical modeling [6] or experimental modeling [7]. The theoretical models 
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are often very difficult to build because almost all parameters must be built based on physical, 
geometric, and mechanical phenomena. The experimental model can give quick prediction results. 
However, the predicted results are only representative values, not detailed values for the entire ma-
chining process. In addition, the experimental model can only be applied to each specific case and 
cannot be applied generally to many different cases.

The MF models are built for common types of milling methods like machining with com-
plex geometrical cutters [8]. Many studies were performed to model the MFs and predict the MFCs 
for the milling processes using flat-end mills [1], using ball-end mills [9], using parallelogram in-
serts [9], and so on. Applying the experimental method, the cutting forces were predicted in face 
milling processes using round inserts [10, 11]. However, modeling of MFs and determination of 
MFCs for some types of face milling using square inserts has not been mentioned.

With the milling process using a flat-end mill cutter, ball-end mill cutter, or using paral-
lelogram inserts, the previous studies showed that, by both theoretical modeling and experimental 
modeling, the average cutting forces (ACFs) can always be expressed as a linear function of the 
feed per flute (ft) [9]. This study was conducted to build the milling force models and determine 
the milling force coefficients by combining both theoretical and experimental methods in the face 
milling process of Al7075 alloy using square inserts.

There are two main sections of this study including the theoretical modeling section and the 
experimental one. In the first section, according to the geometrical, mechanical, physical pheno-
mena, the milling forces were modeled as the functions of cutter geometry parameters, cutting pa-
rameters, and the milling force coefficients. By theoretical method, the equations that were applied 
to calculate the cutting force coefficients were also built based on the cutter parameters, cutting 
parameters. In the second section, the milling force coefficients were determined using the expe-
rimental data of milling forces. Besides, the milling force models were also verified by comparing 
the predicted of milling forces with measured ones.

2. Materials and methods
2. 1. Theoretical modeling of milling forces in facing process using the square inserts
In the facing process, the components of the cutting process include cutter and work-

piece (Fig. 1, a), the shape and size of the cutting insert will determine the size and shape of the 
formed chip as described in Fig. 1, b.

The cutter rotation angle (ϕj) and the point position at z coordinate of cutting edge are calcu-
lated by (1) and described in Fig. 1, b, c, [9]:
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where ψ – the lag angle and β is the helix angle in milling process as shown in Fig. 1.
In face milling process, based on the cutter and workpiece interaction (Fig. 2, a), The thick-

ness of undeform chip and length of cutting edge were described in Fig. 2, b and calculated by (2):
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For each cutting edge element, the CF components (Fig. 2, c) are calculated by (3) [9]:
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where Ktc, Krc, Kac, Kte, Kre – milling force coefficients (MFCs).
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Fig. 1. Face milling model using square inserts: a ‒ milling components; b ‒ cutter positions  
in top view; с ‒ cutting edge positions with helix angle

Fig. 2. MF in face milling process: a ‒ cutter and workpiece interaction; b ‒ thickness and length 
of cutting edge; c ‒ MF components
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The differential milling force at each cutting point can be calculated by (4) and (5):
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In (4) and (5), the MFCs can be calculated by (6):
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In (6), the linear components (Ffc , Ffe , Fnc , Fne , Fac , and Fae) are determined depending on 
the linear relationship of average MFs and feed per flute. These values can be determined based 
on the milling experimental data of average MFs. The constants (C1 to C16) are determined based 
on the cutter geometry and the cutting condition parameters and can be calculated by (7) to (22):
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where ϕst – the start angle in milling processes and ϕex – the exit angle in milling processes.
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2. 2. Experimental method
A 5-axis CNC milling machine was used during the experimental processes with the fol-

lowing parameters: model: DMU 50 ECOLINE, the control system: SINUMERIK S840DSB,  
the table size: 500×630 mm, the X-axis travel: 500 mm, the Y-axis travel: 450 mm, the Z-axis travel: 
400 mm, and the maximum spindle speed: 10000 rpm. The experimental machine is shown in Fig. 3.

Fig. 3. Five-axis CNC milling machine

The dimensions of workpiece are 80×40×28 mm as shown in Fig. 4. The compositions of 
Al7075 alloy are listed in Table 1. The main several properties of this workpiece material were 
hardness of 60 HB, Young’s modulus of 70–80 GPa, density of 2.7 g/cm3.

Fig. 4. Experimental workpieces

Table 1
Composites of Al7075 alloy

Composition Cu Mn Mg Cr Zn Ti Al

% 1.2–2.0 0.3 2.1–2.9 0.18–0.28 5.1–6.1 0.2 remains

A cutter with diameter of 63 mm and with four Carbide square inserts (SEET13T3-HO-ECM100, 
ECHAIN-TAIWAN) was used in the face milling process. The insert noise radius of inserts was 
0.4 mm (r = 0.4 mm). The cutter helix angle was 30 degrees. The tool holder and inserts were de-
scribed in Fig. 5.

The dynamometer system (type Kistler 9139AA) from the Kisler company (Swiss) was 
used to measure the three components of cutting forces (Fx, Fy, Fz) in face milling processes as 
shown in Fig. 6. The force measurement ranges of this system are from –3 KN to 3 KN. The data 
acquisition and processing system (type 3160-B-042) with the computer and DynoWare software 
was used to collect and analyze the cutting force data in experimental processes.
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Fig. 5. Milling holder and inserts: a ‒ milling holder; b ‒ inserts

Fig. 6. Experimental system:  
a ‒ cutting process components; b ‒ signal collecting and processing

The experiments were selected with the constants of axial depth of cut (a), constants 
of radial width of cut (b), constants of spindle speed (n), and with the variation of feed per  
f lute ( ft) to determine the average milling force-feed rate relationship and to verify the MFMs 
as listed in Table 2.

Table 2
Experimental plan

No.
Cutter parameters Cutting parameters

D (mm) N (teeth) r (mm) β (°) a (mm) b (mm) f (mm/tooth) n (rpm)

1 63 4 0.4 30 0.4 28 0.10 1000

2 63 4 0.4 30 0.4 28 0.15 1000

3 63 4 0.4 30 0.4 28 0.20 1000

4 63 4 0.4 30 0.4 28 0.25 1000

5 63 4 0.4 30 0.4 28 0.30 1000

3. Results and Discussion
3. 1. Average milling forces (AMFs) and feed per flute (ft) relationship
Average MFs and feed per flute relationship was built in Fig. 7. It is clear that in all di-

rections, AMF-ft relationship was a linear function with high determination coefficients (larger 
than 95 %). Besides, in all three directions, if the ft increases, the absolute values of AMFs  
also increase.

Equation (6) was used to determine six MFCs and listed in Table 3. It is clear that the shear 
MFCs were the most important MFCs, because the absolute values of shear MFCs are larger more 
times than the absolute values of edge MFCs.

   

Cutter

Workpiece

Dynamometer

Signal Processing Box

PC and Software

a b

 

a

b

a

b
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Fig. 7. ACF-ft relationship

Table 3
Shear and edge MFCs

Shear MFC (N/mm2) Edge MFC (N/mm)

Ktc Krc Kac Kte Kre Kae

538.127 185.967 –691.297 11.253 6.991 –32.971

3. 2. Verification of MF model
The measured and predicted MFs were described in Fig. 8. It is clear that the tendencies 

of the predicted MFs and the experimental MFs are quite close to each other. However, the values  
of the predicted and experimental peaks of MFs are still quite different. This difference can be 
explained by the fact that there are many parameters that have not been included in the MF models 
in this study such as vibrations, heat, friction, etc. So, the proposed models of milling forces from 
this study can be used to predict the cutting forces in face milling processes using square inserts. 
Besides, the proposed equations of cutting force coefficients also can be applied to determine  
the milling force coefficients in face milling process using square inserts.

Fig. 8. Verification of MF model

3. 3. Limitations of the study and future directions
Although the cutting force model and cutting force coefficient have been determined 

through a combination of theoretical and experimental methods in this study, the research still has 
the limitations as listed below.

– in theory, the cutting force model in this study only focuses on the static models, so this 
proposed model is only suitable for application when machining with quite small values of speed;

y = 118.23x + 17.25 
R² = 0.953

y = 117.67x + 6.3844 
R² = 0.9797

y = 93.407x + 9.2017 
R² = 0.9763
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– many factors have not been mentioned in this study such as the dynamic structure of the tech-
nological system, temperature, tool wear, etc. These issues are also the cause of the difference between 
the predicted cutting forces and the measured ones as mentioned in the results and discussion section 
of this study. In fact, all these factors influence on the cutting force during machining processes.

In order to complete the theoretical system relative to this study, further research directions 
are proposed including the following issues:

– develop the cutting force model from static models to dynamic models to apply to many 
different machining conditions;

– add the influence factors such as the dynamic structure of the technological system, cutting 
heat, cutting tool wear, etc. into the cutting force model to improve the accuracy when using these  
models to predict cutting forces during machining processes.

4. Conclusions
The conclusions of this study have been drawn as following:
– in the face milling process of Al7075 using square inserts, the AMFs have been modeled 

as a linear regression of ft with high determination coefficients (larger than 95 %);
– MFCs have been determined including shear and edge MFCs. These values are the tan-

gential shear MFC (Ktc) of 538.127 N/mm2, radial shear MFC (Krc) of 185.967 N/mm2, axial shear 
MFC (Kac) of –691.297 N/mm2, tangential edge MFC (Kte) of 11.253 N/mm, radial edge MFC (Kre) 
of 6.991 N/mm, and axial edge MFC (Kae) of –32.971 N/mm;

– the MF models have been successfully verified by comparing the measured and predicted 
MFs in face milling process of Aluminum alloy Al7075. These cutting models and prediction me-
thod of cutting force coefficients in this study can be used to predict the cutting force coefficients and 
cutting forces in other milling types and other pairs of cutting tool and workpiece material as well.
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