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Abstract
Determining weights for criteria is an extremely crucial step in the process of selecting an option based on multiple criteria, 

also known as Multi-Criteria Decision Making (MCDM). This article presents the combination of five objective weighting methods for 
criteria with three MCDM methods in the context of material selection. The five objective weighting methods considered are Entropy, 
MEREC (Method based on the Removal Effects of Criteria), LOPCOW (Logarithmic Percentage Change-driven Objective Weighting), 
CRITIC (Criteria Importance Through Intercriteria Correlation), and MEAN. The three MCDM methods employed are MARA (Mag-
nitude of the Area for the Ranking of Alternatives), RAM (Root Assessment Method), and PIV (Proximity Indexed Value). Material 
selection investigations were conducted in three different cases, including lubricant selection for two-stroke engines, material selec-
tion for manufacturing screw shafts, and material selection for manufacturing gears. The Spearman’s rank correlation coefficient was 
calculated to assess the stability of ranking the alternatives using different MCDM methods. The combinations of objective weighting 
methods and MCDM methods were evaluated based on factors such as consistency in identifying the best material type, range, average 
value, and median of each set of Spearman’s rank correlation coefficients. Two significant findings were identified. First, the weights of 
criteria calculated using LOPCOW method appear to be inversely related to those calculated using the Entropy method. Second, among 
the three MCDM methods used, MARA was identified as the most suitable for lubricant selection for two-stroke engines, RAM was 
found to be the most suitable for material selection for screw shafts and gears. The best material type in each case was also determined.
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1. Introduction
Multi-Criteria Decision Making (MCDM) methods are increasingly prevalent and effective 

for selecting optimal solutions across various fields such as economics, engineering, medicine, 
education, etc. [1, 2]. Two critical aspects in multi-criteria decision-making are the selection of 
methods to determine criterion weights and the choice of MCDM methods to be employed. These 
choices significantly impact the ranking of alternatives [3–5]. Weight determination methods are 
categorized into three groups: subjective methods, objective methods, and a combination of both, 
known as combined methods [6]. Among these, objective methods are the most commonly used 
because criterion weights remain uninfluenced by subjective judgments of decision-makers [7, 8]. 
Some objective weighting methods include Entropy [9], MEREC [10], LOPCOW [11], CRITIC [12], 
MEAN [13], CILOS (Criteria Impact LOSs) [14], IDOCRIW (Integrated Determination of Criteria 
Weight) [15], etc. So, one question arises: what are the differences in the weight values of the criteria  
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calculated by these methods? Finding the answer to this question is the first objective of this study. 
In this article, a comparison will be made of the weight values of the criteria when calculated by 
five objective weighting methods including Entropy method, MEREC method, LOPCOW me thod, 
CRITIC method, and MEAN method.

As mentioned earlier, besides selecting methods for determining criterion weights, the 
choice of MCDM methods plays a crucial role and significantly influences the ranking of alter-
natives. With over 200 existing MCDM methods, studying all of them in one research study is  
a massive and challenging task. Instead, in each case, only a few methods with distinct characte-
ristics should be chosen for investigation [15, 16]. The three methods used in this article are MARA, 
RAM, and PIV. The MARA method, discovered in 2022, focuses on calculating the area under the 
chart of each alternative on important criteria. This area reflects the importance of each criterion  
for each alternative [6]. RAM is a relatively new method, first discovered in September 2023,  
focusing on analyzing the decision system’s structure and defining the root factors influencing the 
decision. RAM prioritizes these root factors by evaluating their importance to the ultimate goal of 
the decision [17]. PIV is a well-known method with the advantage of minimizing the pheno menon 
of rank reversal. Although relatively new (introduced in 2018), it has attracted the attention of many 
scientists across various fields [18–21]. Some brief analyses above have shown different approaches 
when applying MARA, RAM, and PIV methods. So, when they are used together to make multi- 
criteria decisions for a specific issue, do these three methods all find the best solution? The second 
objective of this study is to find the answer to this question.

The five methods including Entropy, MEREC, LOPCOW, CRITIC, and MEAN each have their 
own characteristics in evaluating the weight of criteria. Their combination provides a solid foun-
dation for weight determination, helping to create a comprehensive and objective evaluation table.  
The three MCDM methods including MARA, RAM, and PIV also have different characteristics.  
Decision-making when applying them not only relies on weighted criteria but also integrates multi-
dimensional evaluation of multi-criteria decisions, creating transparency and efficiency. Combin-
ing weighting methods and MCDM methods not only proposes a comprehensive decision model but 
also demonstrates flexibility and practical application in selecting the best option among available 
options in various fields. All of these will confirm the accuracy of the answers to the two ques-
tions (corresponding to the two objectives) mentioned above.

The combination of weighting methods and MCDM methods is applied in material selection. 
The reason material selection is chosen as the problem in this study is because it is a complex task, 
and each type of material must be considered for many different criteria [22, 23].

This study was conducted with two aims: firstly, to compare the weight values of criteria 
when calculated using different methods, and secondly, to determine which MCDM method is  
suitable for selecting materials in each specific case.

2. Materials and Methods
2. 1. Objective methods for weight determination of criteria
Determining the weights of criteria using the Entropy method follows the following sequence [9]:
– Step 1. Construct a decision matrix with m rows and n columns, where m is the number of 

alternatives to be ranked, and n is the number of criteria for each alternative. Let yij represent the 
value of criterion j for alternative i, with j = 1÷n, i = 1÷m.

– Step 2. Calculate normalized values for the yij components:
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– Step 4. Calculate the weights for each criterion:
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The sequence for determining weights using the MEREC method is as follows [10]:
– Step 1. Construct a decision matrix, similar to Step 1 of the Entropy method.
– Step 2. Calculate normalized values for the yij components. Here, B and C correspond  

to criteria of benefit and cost types:
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– Step 3. Calculate the overall performance of alternatives:
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– Step 4. Calculate the performance of alternatives:
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– Step 5. Calculate the absolute values of deviations:
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– Step 6. Calculate weights for criteria:
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To calculate weights for criteria using the LOPCOW method, apply the following sequence [11]:
– Step 1. Construct a decision matrix, similar to Step 1 of the Entropy method.
– Step 2. Calculate normalized values for the yij components:
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– Step 3. Calculate PVij values for each component, where σ is the standard deviation:
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– Step 4. Calculate weights for criteria:
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The sequence for determining weights for criteria using the CRITIC method is as follows [12]:
– Step 1. Construct a decision matrix, similar to Step 1 of the Entropy method.
– Step 2. Calculate normalized values for the yij components:
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– Step 3. The weight of criterion j is calculated using formulas (15) and (16):
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where σj is the standard deviation of criterion j; rij is the correlation coefficient between two criteria.
Formula (17) is used to calculate weights for criteria using the MEAN method [13]:

 w w w w
nj n1 2
1

= = = = =... . (17)

Assigning weights to criteria using these subjective weighting methods will be applied in 
the subsequent sections of this study using the Excel software as the tool.

2. 2. MCDM methods used
The sequence for ranking alternatives using the MARA method is as follows [6]:
– Step 1. Construct a decision matrix, similar to Step 1 of the Entropy method.
– Step 2. Calculate normalized values using two formulas:
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– Step 3. Calculate normalized values considering the weights of criteria:

 g w nij i ij= ⋅ . (20)

– Step 4. Identify elements of the optimal solution:

 s g j n i mj ij= £ £ ∀ ∈max( ), , [ , ,... ].1 1 2  (21)

– Step 5. Determine the optimal solution:

 s s s s j nj= { } =1 2 1 2, ,..., , , ,..., . (22)
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– Step 6. Divide the optimal solution into two subsets S max and S min.

 S S S= ∪max min. (23)

– Step 7. Describe the optimal solution as in (24), where k is the number of criteria of  
type B, l is the number of criteria of type C, l = n–k:

 S s s s s s sk l= { } ∪ { }1 2 1 2, ,..., , ,..., . (24)

– Step 8. Divide substitute alternatives into two subsets T max and T min using the same pro-
cedure as in Steps 6 and 7:

 T T Ti i i= ∪max min, (25)

 T t t t ti t t i mi i i ik i il= { } ∪ { } ∀ ∈1 2 1 2 1 2, ,..., , ,..., , [ , ,... ]. (26)

– Step 9. Determine the magnitude of each component.
+For the optimal solution.

 S s s sk k= + + +1 2 ... , (27)

 S s s sl k= + + +1 2 ... . (28)

+For substitute alternative i.

 T t t t i mik i i ik= + + + ∀ ∈1 2 1 2... , [ , ,... ], (29)

 T t t t i mil i i il= + + + ∀ ∈1 2 1 2... , [ , ,... ]. (30)

– Step 10. Describe the magnitude of the constrained area of choices. This is done by con-
structing two linear functions.

+Linear function of the optimal solution:
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+Linear function of substitute alternative i:
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– Step 11. Calculate the area for alternatives.
+For the optimal solution:
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+For substitute alternative i:
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– Step 12. Calculate the magnitude of the area for alternative i:
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– Step 13. Rank substitute alternatives in increasing order of the Mi value.
To rank alternatives using the RAM method, the following sequence is applied [17]:
– Step 1. Construct a decision matrix, similar to Step 1 of the Entropy method.
– Step 2. Normalize the data for the yij components:
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– Step 3. Calculate normalized values considering the weights of criteria:

 k w nij j ij= × . (37)

– Step 4. Calculate the total normalized score considering the weights of criteria:
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– Step 5. Calculate the score for each alternative:

 RI Si i
S i= + +

+ - 22 . (40)

– Step 6. Rank the alternatives in decreasing order of their RIi scores.
The sequence for multi-criteria decision making using the PIV method is as follows [18]:
– Step 1. Construct a decision matrix, similar to Step 1 of the Entropy method.
– Step 2. Calculate normalized values:
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– Step 3. Calculate normalized values considering the weights of criteria:

 νij j ijw n= × . (42)

– Step 4. Evaluate the near-weight index:

 u v j Bi ij= - ∈νmax , , (43)

 u j Ci i= - ∈ν νmin, . (44)

– Step 5. Determine the overall range of values for each alternative:
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=
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. (45)

– Step 6. Rank the alternatives according to the principle that the best alternative is the one 
with the smallest di value.
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The Excel software has also been chosen as the tool to implement these MCDM methods  
in ranking the types of materials.

3. Results and Discussion
3. 1. Case 1: selecting lubricating oil for two-stroke engines
In this case, comparing the weight values of criteria calculated by different methods will 

be applied in selecting lubricating oil for two-stroke engines. The suitability or unsuitability of 
three MCDM methods including MARA, RAM, and PIV in selecting lubricating oil for two-stroke 
engines is also determined in this scenario. Selecting lubricating oil is particularly significant for 
the operation of two-stroke engines. The lubricating oil mixed with gasoline forms a mixture that 
reduces friction between contacting surfaces. Accurately selecting the type of lubricating oil will 
help equipment using two-stroke engines such as scooters, small-displacement motorcycles, por-
table generators, various types of saws, etc., operate most efficiently [24, 25]. In Table 1, data on 
four commonly used types of lubricating oil for two-stroke engines are summarized, denoted as 
options LO1, LO2, LO3, and LO4. Density, viscosity index, viscosity at 100 °C, and viscosity at 
40 °C are four criteria for evaluating each option. These criteria are also denoted as C1, C2, C3,  
and C4, respectively. Lubricating oil with lower density is better, meaning that C1 is a type C 
criterion. Conversely, all three criteria C2, C3, and C4 belong to type B. Table 1 summarizes data  
for these four types of lubricating oil [26].

Table 1
Types of lubricating oil for two-stroke engines [26]

Lubricant oil C1 C2 C3 C4
LO1 0.883 95 9 71.73
LO2 0.953 82 8.67 75.82
LO3 0.9058 390 4.9 12.67
LO4 0.8316 166 2.67 8.04

Lubricating oil LO1 has the smallest C1 compared to the other three options, C2 is the 
largest at 390 for option LO3, C3 is the largest at 9 for option LO1, and C4 is the largest at 75.82 
for option LO2. Therefore, it is clear that to choose the best option, multi-criteria decision-making 
techniques must be used.

The methods for calculating weights for criteria in Chapter 2 have been applied, and the 
results have been calculated for the weights of criteria using five different methods as in Table 2.

Table 2
Weights of criteria in Case 1

Weight method C1 C2 C3 C4 Max/min
Entropy 0.3319 0.2007 0.2583 0.2091 1.65
MEREC 0.8196 0.0601 0.0601 0.0601 13.64

LOPCOW 0.1326 0.4211 0.1371 0.3092 3.18
CRITIC 0.6327 0.0177 0.2453 0.1043 35.75
MEAN 0.2500 0.2500 0.2500 0.2500 1.00

Observing the data from Tables 1, 2 simultaneously provides clear insights into two issues. 
Firstly, the level of difference in the values of criteria when calculated by the CRITIC method 
is the largest (35.75 times), followed by the degree of variation in the weights of criteria when 
calculated by the MEREC method (13.64 times), the LOPCOW method (3.18 times), the Entropy 
me thod (1.65 times), and naturally, when using the MEAN method, the weights of criteria are al-
ways equal. Secondly, the weights of criteria when calculated by the LOPCOW method tend to be 
opposite to when calculated by the Entropy method. That is, if a certain criterion, when calculated  
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by the LOPCOW method, has a large weight, then when calculated by the Entropy method, its 
weight will be small, and vice versa. This observation is clearly seen in Fig. 1.

Fig. 1. Weights of criteria in Case 1 when calculated by Entropy and LOPCOW methods

However, this observation has only been made in one case. Whether this observation can 
be generalized for all cases or not requires further examination of other cases. This issue will  
be addressed in the subsequent examples in this article.

The formulas of the MARA method (from (18) to (35)) have been applied to calculate the 
magnitude of the Mi area for substitute options. This process is performed five times correspond-
ing to five sets of weights for criteria. The values of Mi and the ranking of each type of lubricating 
oil have been summarized in Table 3.

Table 3
Values of Mi and rankings of lubricating oils when ranked by the MARA method

Lubri-
cant oil

Weight method

Entropy MEREC LOPCOW CRITIC MEAN

Mi Rank Mi Rank Mi Rank Mi Rank Mi Rank

LO1 0.1486 2 0.4057 2 0.0876 2 0.2765 2 0.1080 2

LO2 0.1454 1 0.4046 1 0.0805 1 0.2757 1 0.1033 1

LO3 0.2944 3 0.4435 3 0.2005 3 0.4069 3 0.2652 3

LO4 0.3968 4 0.4719 4 0.3573 4 0.4488 4 0.3832 4

The formulas of the RAM method (from (36) to (40)) have been applied to calculate the  
RIi scores for each option. In Table 4, the scores and rankings of lubricating oils are summarized 
when the weights of criteria are calculated by five different methods.

Table 4
Values of RIi and rankings of lubricating oils when ranked by the RAM method

Lubri-
cant oil

Weight method

Entropy MEREC LOPCOW CRITIC MEAN

Mi Rank Mi Rank Mi Rank Mi Rank Mi Rank

LO1 1.4627 1 1.3868 1 1.4854 2 1.4213 1 1.4749 1

LO2 1.4604 2 1.3834 3 1.4841 3 1.4181 2 1.4730 2

LO3 1.4511 3 1.3837 2 1.4978 1 1.3988 3 1.4655 3

LO4 1.4236 4 1.3793 4 1.4493 4 1.3922 4 1.4324 4

Using the formulas from (41) to (45) to calculate the values of di for each lubricating oil. 
Table 5 summarizes these di values and ranks the methods using the PIV method.

Combining the data from Tables 3–5 results in the ranking of lubricating oils in all cases 
examined, as shown in Table 6.
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Table 5
Values of di and rankings of lubricating oils when ranked by the PIV method

Lubri-
cant oil

Weight method
Entropy MEREC LOPCOW CRITIC MEAN

di Rank di Rank di Rank di Rank di Rank
LO1 0.1516 1 0.0660 1 0.2968 2 0.0340 1 0.1837 1
LO2 0.1686 2 0.0990 4 0.3057 3 0.0612 2 0.1972 2
LO3 0.2164 3 0.0880 2 0.2317 1 0.1622 3 0.2350 3
LO4 0.3556 4 0.0969 3 0.4755 4 0.1895 4 0.4030 4

Table 6
Ranking of lubricating oils

Lubri-
cant oil

MARA RAM PIV
(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

LO1 2 2 2 2 2 1 1 2 1 1 1 1 2 1 1
LO2 1 1 1 1 1 2 3 3 2 2 2 4 3 2 2
LO3 3 3 3 3 3 3 2 1 3 3 3 2 1 3 3
LO4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4

Note: (1) = Entropy weight; (2) = MEREC weight; (3) = LOPCOW weight; (4) = CRITIC weight; (5) = MEAN weight

The chart in Fig. 2 illustrates the ranking results of the options in this case.

Fig. 2. Ranking of Lubricant Types

It is observed that when using five different methods to calculate weights, the rankings of lu-
bricant types are entirely consistent when ranked by the MARA method. According to this, LO2 is 
the best option, with lubricant types LO1, LO3, and LO4 ranked 2nd, 3rd, and 4th, respectively. When 
using the RAM and PIV methods to rank the options, if the weights of the criteria are calculated using 
the Entropy, MEREC, CRITIC, and MEAN methods, all methods identify LO1 as the best lubricant 
type. In the case of weighting criteria using the LOPCOW method, both the RAM and PIV methods 
indicate that LO3 is the best option. These differences are understandable, as many studies have shown 
that rankings of options depend heavily on the method used for weighting and the MCDM method 
employed [3–5]. To determine which MCDM method is more suitable than the other two, it is neces-
sary to test the stability of ranking options. The Spearman rank correlation coefficient (S) has been 
used for this task [27, 28]. This coefficient is calculated using formula (46), where Di represents the 
difference in the ranking of option i between scenarios, and m is the number of options to be ranked:
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Applying (46) has calculated the values of the S coefficient as shown in Table 7. After 
obtaining the values of the S coefficients, their distribution range, mean, and median values have 
been calculated for each MCDM method used. These values have also been synthesized in Table 7.

Table 7
Spearman rank correlation coefficient (S) for case 1

Method MARA RAM PIV
Si S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
S1 1 1 1 1 1 1 0.8 0.4 1 1 1 0.4 0.4 1 1
S2 1 1 1 1 1 0.8 1 0.8 0.8 0.8 0.4 1 0.6 0.4 0.4
S3 1 1 1 1 1 0.4 0.8 1 0.4 0.4 0.4 0.6 1 0.4 0.4
S4 1 1 1 1 1 1 0.8 0.4 1 1 1 0.4 0.4 1 1
S5 1 1 1 1 1 1 0.8 0.4 1 1 1 0.4 0.4 1 1

Range 1 0.4÷1 0.4÷1
Average 1 0.74 0.60
Median 1 0.8 0.4

When using the RAM and PIV methods, S values range from 0.4 to 1, while using the MARA 
method, all S values are equal to 1. This is the first point showing that the MARA method has an ad-
vantage over the other two methods. The mean values of S are 1, 0.74, and 0.6 for the MARA, RAM, 
and PIV methods, respectively. This is the second point showing that MARA is superior to RAM 
and PIV. Finally, the median of the S set is 1 when using the MARA method, higher when using the 
RAM method (0.8), and lowest when using the PIV method (0.4). This is the third point indicating 
that MARA is more advantageous than RAM and PIV. In summary, in this case, MARA is proven to 
be the best, and conversely, PIV is the least suitable. This also implies that LO2 is the best option 
among the four surveyed lubricant types.

3. 2. Case 2: selection of material for manufacturing screw shafts
In this case, the experimental subject selected is various materials for manufacturing screw 

shafts. The screw shaft is an indispensable component in gearboxes of worm gear screw jack, playing 
a crucial role in many industrial and mechanical applications. Additionally, worm gear screw jack 
gearboxes are also used in medical and scientific applications, where precision and accurate motion 
control are crucial. For example, in MRI machines or medical diagnostic equipment, worm gear 
screw jack gearboxes ensure smooth and reliable motion [29, 30]. Hence, the screw shaft is considered 
the soul of the worm gear screw jack gearbox [31]. The screw shaft, often subjected to heavy loads 
and high wear, requires a material with high hardness and strength to ensure stable performance 
and prolonged lifespan. The selection of screw shaft materials reflects not only mechanical factors 
but also relates to thermal resistance and dimensional stability under specific operating conditions. 
Six types of steel commonly used for manufacturing screw shafts are C35, C45, C50, 42CrMoS4, 
C15, and C10. Synthesized from various sources, six parameters were identified, each with different 
values for all steel types. These parameters include hardness (HB), tensile strength (kG/mm2), yield 
limit (Kg/mm2), relative elongation (%), relative contraction (%), and impact toughness (J). These 
criteria are denoted as C1, C2, C3, C4, C5, and C6, respectively. All these criteria belong to type B. 
Table 8 presents the types of materials for manufacturing screw shafts.

The largest value for criterion C1, 431, belongs to steel type C10. The largest value  
for C2, 77.6, belongs to steel type 42CrMoS4. Steel type C35 has the largest C3 value of 94.9 com-
pared to the other five types. The largest value for C4, 42, belongs to two types of steel, C35 and C45.  
C5’s largest value, 44, belongs to steel type C50. Steel type C35 has the largest C6 value of  
44 compared to the other five types. Thus, each type has only one or a few criteria that are the 
best compared to other steel types. This means that MCDM methods need to be used to determine 
the best steel type.



Original Research Article:
full paper

(2024), «EUREKA: Physics and Engineering»
Number 2

141

Engineering

Table 8
Types of materials for manufacturing screw shafts

Steel C1 C2 C3 C4 C5 C6

C35 242 55.9 94.9 42 41 44

C45 232 65.7 33.9 42 12 14

C50 234 39.4 68.2 23 44 43

42CrMoS4 213 77.6 61.4 32 33 34

C15 321 37.4 38.1 31 43 34

C10 431 24.3 76.8 24 24 14

Formulas for calculating weights using five different methods (Entropy, MEREC, LOPCOW, 
CRITIC, and MEAN) were applied to obtain weights for criteria, as shown in Table 9.

Table 9
Weights of criteria in Сase 2

Weight method C1 C2 C3 C4 C5 C6 Max/min

Entropy 0.1562 0.1657 0.1638 0.1722 0.1708 0.1713 1.10

MEREC 0.0758 0.2002 0.1602 0.0953 0.2747 0.1938 3.62

LOPCOW 0.2831 0.1700 0.1818 0.1068 0.1244 0.1339 2.65

CRITIC 0.1979 0.1888 0.1261 0.2161 0.1324 0.1388 1.71

MEAN 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 1.00

From the data in Table 9, two issues are observed. Firstly, the weights of criteria calcu-
lated by the MEREC method (3.62 times) vary more than when calculated by the LOPCOW me-
thod (2.65 times) and the Entropy method (1.10 times). Secondly, if a certain criterion has a weight 
calculated by the Entropy method that is large, then when calculated by the LOPCOW method, that 
criterion will have a smaller weight. For example, when using the Entropy method, criterion C1 has 
the smallest weight compared to the other five criteria, but when using the LOPCOW method, this 
criterion has the largest weight. Another example is criterion C4, which has the largest weight when 
calculated by the Entropy method but has the smallest weight when calculated by the LOPCOW 
method. Observing the graph illustrating the weights of criteria when calculated by the Entropy 
and LOPCOW methods in Fig. 3 clarifies this observation. This issue will be further discussed  
in another case of this article.

Fig. 3. Weights of criteria in Case 2 when calculated by entropy and LOPCOW Methods

Ranking of steel types for manufacturing screw shafts, similar to Case 1, resulted in the 
data presented in Table 10.
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Table 10
Ranking of steel types for manufacturing screw shafts

Steel
MARA RAM PIV

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
C35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C45 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6
C50 3 2 3 4 3 3 3 3 4 3 3 3 3 4 3

42CrMoS4 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2
C15 4 4 4 3 4 4 4 4 3 4 4 4 5 3 4
C10 5 5 5 6 5 5 5 5 5 5 5 5 4 5 5
Note: (1) = Entropy weight; (2) = MEREC weight; (3) = LOPCOW weight; (4) = CRITIC weight; (5) = MEAN weight

The chart in Fig. 4 illustrates the ranking results of the options in this case.

Fig. 4. Ranking of steel types for manufacturing screw shafts

All combinations of weighting methods and MCDM methods confirm that C35 is the best 
option. This allows to confidently conclude that C35 is the best steel type for manufacturing screw 
shafts among the six types surveyed. The differences in the rankings of the remaining mate rials 
are also explained by the fact that they were ranked using different MCDM methods [32, 33].  
To compare MCDM methods with each other, the Spearman rank correlation coefficient is used, 
and the results are shown in Table 11.

Table 11
Spearman rank correlation coefficient (S) for case 2

Method MARA RAM PIV
Si S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
S1 1 0.943 1 0.886 1 1 1 1 0.943 1 1 1 0.943 0.943 1
S2 0.943 1 0.943 0.771 0.943 1 1 1 0.943 1 1 1 0.943 0.943 1
S3 1 0.943 1 0.886 1 1 1 1 0.943 1 0.943 0.943 1 0.829 0.943
S4 0.886 0.771 0.886 1 0.886 0.943 0.943 0.943 1 0.943 0.943 0.943 0.829 1 0.943
S5 1 0.943 1 0.886 1 1 1 1 0.943 1 1 1 0.943 0.943 1

Range 0.771÷1 0.943÷1 0.829÷1
Average 0.9258 0.9772 0.9487
Median 0.9430 1 0.9430

Comparing quantities including the range, mean value, and median of the S set for the MARA, 
RAM, and PIV methods, it is observed that the RAM method outperforms the other two methods. 
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The median of the S set is equal to 0.9430 for both the MARA and PIV methods, but both the range 
and mean of the S set in the PIV method are larger than in the MARA method. This indicates that 
PIV is slightly better than the MARA method. In summary, in this case, RAM is confirmed to be the 
most suitable, while MARA is considered less suitable.

3. 3. Case 3: selection of material for manufacturing gears
The selection of heavy-duty load-bearing materials has been chosen as the experimental sub-

ject in this case. The choice of materials for heavy-duty load-bearing gears is extremely important as 
they must withstand large forces. Heavy-duty load-bearing gears are an essential component in many 
mechanical systems such as industrial machinery, automotive transmissions, and construction equip-
ment. These gears are designed to withstand strong impact forces and operate under harsh conditions, 
making material selection crucial to ensure durability, reliability, and performance. In industrial en-
vironments, heavy-duty load-bearing gears are used in heavy machinery such as cranes, excava-
tors, and mining equipment, where they transmit power and bear heavy loads. Similarly, heavy-duty 
load-bearing gears play a crucial role in the transportation sector, operating within the gearboxes 
of trucks, buses, and trains to efficiently move heavy cargo. In summary, selecting the appropriate 
materials for heavy-duty load-bearing gears not only enhances performance but also contributes to 
the safety and overall success of operations in demanding applications [34]. In Table 12, parameters 
for eight commonly used materials for manufacturing gears subjected to heavy loads are synthesized. 
These materials are denoted as MGi with i = 1÷8. Seven criteria are employed to describe each ma-
terial, including tensile strength (N/cm2), percentage elongation (%), reduction in area (%), melting 
point (MPa), hardness (HB), impact strength (KJ/m2), and cost (Vietnamese dong/kg), represented  
by corresponding letters C1, C2, C3, C4, C5, C6, and C7 [34]. Notably, C7 is a criterion of type C, 
while all other criteria fall under type B.

To determine the optimal material, Multi-Criteria Decision Making (MCDM) methods are 
employed. It can be stated that there is no single solution where all seven criteria are optimal. 
Specifically, MG6 excels in criteria C1 and C4, MG1 tops in criterion C3, MG5 leads in C5, C6’s 
highest value belongs to MG7, and C8 has the smallest value in MG8.

Weighting for the criteria using five methods: Entropy, MEREC, LOPCOW, CRITIC, and 
MEAN has also been conducted, and the results are summarized in Table 13. 

Table 12
Some materials for manufacturing heavy-duty gears [34]

Material C1 C2 C3 C4 C5 C6 C7
MG1 780 18 55 635 229 880 22000
MG2 880 15 50 735 225 390 30000
MG3 930 13 45 785 269 590 31000
MG4 980 15 45 785 217 600 22000
MG5 980 12 45 835 250 950 24000
MG6 1080 12 50 930 220 960 22000
MG7 885 12 40 685 195 970 21000
MG8 750 12 45 400 179 940 20000

Table 13
Weights of criteria in case 3

Weight method C1 C2 C3 C4 C5 C6 C7 Max/min
Entropy 0.1358 0.1706 0.1487 0.1360 0.1385 0.1359 0.1347 1.27
MEREC 0.0837 0.0536 0.0705 0.2640 0.0972 0.3077 0.1233 5.74

LOPCOW 0.1568 0.0652 0.0784 0.1622 0.1229 0.1674 0.2471 3.79
CRITIC 0.1303 0.1502 0.1297 0.0990 0.1007 0.2341 0.1561 2.36
MEAN 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 1.00
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A chart illustrating the criteria weights using the Entropy and LOPCOW methods is pre-
sented in Fig. 5.

Fig. 5. Weights of criteria in case 3 using Entropy and LOPCOW methods

Observing Table 13 and Fig. 5, it is once again noted that for a given criterion, if its weight 
is high when calculated by the LOPCOW method, then the weight becomes low when calculated 
by the Entropy method, and vice versa. For example, the weight of C7 is higher than the weights 
of the other six criteria when using the LOPCOW method, but if calculated by Entropy, the weight  
of C7 is lower than the weights of the other six criteria. Through comparing the weights of criteria 
using the Entropy and LOPCOW methods (review Fig. 1, 3, and 5), an objective observation can 
be made that if a criterion has a high weight when calculated by the LOPCOW method, then that 
criterion will have a low weight when calculated by the Entropy method, and vice versa.

Also, by examining the data in Table 13, it is evident that the weights of criteria when 
calculated by the MEREC method show a change of 5.74 times, which is higher than when calcu-
lated by the LOPCOW method (3.79 times) and higher than when calculated by the Entropy me-
thod (1.27 times). Thus, in all three cases studied, it is consistently observed that when the weights 
of criteria are calculated using the MEREC method, the change in their values across criteria is 
greater compared to the LOPCOW and Entropy methods.

The ranking of gear materials through the combination of five weighting methods and three 
MCDM methods has also been executed, with summarized data presented in Table 14.

Table 14
Ranking of heavy-duty gear steel types

Material
MARA RAM PIV

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
MG1 2 4 3 2 2 2 4 3 2 2 2 4 3 2 2
MG2 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7
MG3 6 6 7 7 6 6 6 6 7 6 6 6 7 7 6
MG4 4 5 5 5 4 4 5 5 5 4 4 5 5 5 4
MG5 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3
MG6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MG7 5 3 4 4 5 5 3 4 4 5 5 3 4 4 5
MG8 8 7 6 6 8 8 7 7 6 8 8 7 6 6 8

Note: (1) = Entropy weight; (2) = MEREC weight; (3) = LOPCOW weight; (4) = CRITIC weight; (5) = MEAN weight

The chart in Fig. 6 illustrates the ranking results of the options in this case.
In all scenarios conducted, MG6 is confirmed as the best option. This allows to confi-

dently conclude that MG6 is the best material for manufacturing gears among the eight options 
surveyed. The differing rankings of the remaining materials when ranked using different methods  
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are consistent with findings reported in recent published studies [32, 33]. The Spearman rank cor-
relation coefficient is calculated to compare the MCDM methods in this case. The values of S,  
as well as its range, mean value, and median, are calculated and summarized in Table 15. 

Fig. 6. Ranking of heavy-duty gear steel types

Table 15
Spearman rank correlation coefficient (S) for case 3

Method MARA RAM PIV

Si S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 1 0.857 0.881 0.905 1 1 0.857 0.929 0.905 1 1 0.857 0.881 0.905 1

S2 0.857 1 0.952 0.905 0.857 0.857 1 0.976 0.905 0.857 0.857 1 0.952 0.905 0.857

S3 0.881 0.952 1 0.976 0.881 0.929 0.976 1 0.952 0.929 0.881 0.952 1 0.976 0.881

S4 0.905 0.905 0.976 1 0.905 0.905 0.905 0.952 1 0.905 0.905 0.905 0.976 1 0.905

S5 1 0.857 0.881 0.905 1 1 0.857 0.929 0.905 1 1 0.857 0.881 0.905 1

Range 0.857÷1 0.857÷1 0.857÷1

Average 0.9119 0.9215 0.9119

Median 0.9050 0.9170 0.9050

The range of S values falls within the range of 0.857 to 1 for all three MCDM methods. 
When using the RAM method, both the mean and median values of S are higher compared to the 
other two methods (MARA and PIV). Therefore, in this case, it is asserted that RAM is the most 
suitable method to use.

3. 4. Limitations and development of this research
The five methods used, including Entropy, MEREC, LOPCOW, CRITIC, and MEAN, 

only calculate the weights of criteria based on dry numerical values without considering the de-
cision-maker’s opinions regarding the importance among criteria. When wanting to consider 
the decision-maker’s perspective on the importance of criteria while still ensuring an objective 
evaluation of the criteria, weights can be calculated using methods that combine subjective and  
objective aspects, known as combined weight methods such as the PIPRECIA method [35] and  
the SPC method [36].

The type of material considered best may change if additional criteria such as processing 
costs, recyclability, factors related to the supplier’s supply chain services, etc., are taken into ac-
count. If all these criteria are added to the list, the chosen material will ensure both economic and 
technical factors for the product simultaneously.

4. Conclusions
1. If a criterion has a high weight when calculated by the LOPCOW method, then that cri-

terion will have a low weight when calculated by the Entropy method, and vice versa. When using 
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three methods including Entropy, MEREC, and LOPCOW to weigh criteria, the greatest change 
in weight values occurs when using the MEREC method, followed by the LOPCOW method, and 
lastly, the Entropy method.

2. Although five different scenarios were considered, the Spearman rank correlation coef-
ficient consistently equals 1. This indicates that the MARA method is highly suitable for select-
ing lubricating oils for two-stroke engines. When using the RAM method, the average value of 
the Spearman rank correlation coefficient is 0.9772 in Case 2 and 0.9215 in Case 3, both higher 
than the average value of the Spearman rank correlation coefficient when using both the MARA  
and PIV methods. This indicates that the RAM method is most suitable for selecting materials 
for screw shaft fabrication and selecting materials for heavy load-bearing gear wheel fabrication.

3. Among six types of steel, including C35, C45, C50, 42CrMoS4, C15, and C10, C35 
is determined to be the best for manufacturing screw shafts. Among eight material options 
for manufacturing gears labeled as MG1, MG2, ..., MG8, MG6 is identified as the best option.  
LO2 is determined to be the best among the four lubricants surveyed.
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