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Abstract
In manufacturing practice, manufacturers always strive to achieve both quality and productivity targets simultaneously.  

In the first part, this study examines the relationship between input factors, including cutting speed, depth of cut, and feed rate, and 
the output response, which is surface roughness, when milling hardened SKD11 alloy steel under minimum coolant lubrication con-
ditions using SiO2 nanofluid. The input parameters are divided into four levels to determine their influence on surface roughness 
and to find the optimal conditions for achieving the minimum surface roughness. The experimental design was conducted using an 
L16 array. A second-order regression model was developed to describe the relationship between the input variables and the output 
response. In the second part, multi-objective optimization was performed to simultaneously achieve the minimum surface roughness 
and the maximum material removal rate (MRR). The Response Surface Methodology (RSM) was employed in this study. The results 
indicated that to achieve the minimum surface roughness, machining should be performed at a cutting speed of 100 m/min, a cutting 
depth of 0.2 mm, and a feed rate of 0.01 mm/tooth. With these settings, the predicted surface roughness could reach 0.0451 µm. On the 
other hand, for the multi-objective optimization, to achieve the minimum surface roughness and the maximum MRR simultaneously, 
machining should be carried out at a cutting speed of 100 m/min, a cutting depth of 0.36 mm, and a feed rate of 0.0168 mm/tooth. With 
this cutting condition, the predicted surface roughness could reach 0.1069 µm, and the predicted MRR could reach 775.06 mm3/min.

Keywords: SiO2 nanofluid, MQL, hard milling, surface roughness, multi-objective optimization, ANOVA, response surface 
methodology.
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1. Introduction
SKD11 steel, also known as cold work tool steel, is one of the widely used steel types in 

the field of mechanical mold making. It exhibits excellent wear resistance, high hardness, and low 
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toughness due to its high carbon and chromium content (12 % chrome), making it commonly em-
ployed in the production of various types of punching molds and cold work dies [1]. It can be heat 
treated to achieve a hardness of approximately 60 HRC.

With the traditional cutting process, the heat treatment to achieve the desired hardness is 
carried out after the cutting stages are completed. Once the cutting stages are finished, the work-
piece undergoes a series of heat treatment steps, such as annealing, quenching, and tempering, de-
pending on the specific material and hardness requirements. Annealing involves heating the work-
piece to a specific temperature and then slowly cooling it to reduce internal stresses and increase 
its ductility. After the heat treatment process, the workpiece is now ready for the final machining 
step: grinding. This process helps achieve the required dimensional accuracy, surface finish, and 
tight tolerances. However, it’s important to note that this traditional method of machining incurs 
costs and time due to the separate heat treatment and grinding processes [2].

In recent years, advancements in material science have paved the way for the development 
of cutting tools capable of machining workpieces with high hardness directly, eliminating the need 
for post-machining heat treatment. This approach, known as hard machining, offers several ad-
vantages, including reduced production time, cost savings, and improved process efficiency [3–6]. 
Two common forms of hard cutting are hard milling and hard turning. Hard milling involves using 
specialized milling tools with high-speed capabilities and wear-resistant coatings to remove mate-
rial from workpieces with a hardness of around 50HRC or higher. Both methods require robust ma-
chine tools, cutting tool technologies, and machining strategies to effectively handle the challenges 
posed by the high hardness of the workpiece materials.

The biggest drawback of the hard machining method is the generation of significant heat 
during the cutting process. Cutting tools used in hard machining require maintaining high hard-
ness and good resistance to wear under high cutting temperatures. The materials commonly used 
for cutting tools in hard machining, such as ceramics [7], coated carbide [8, 9], CBN (cubic boron 
nitride) [10], and diamond inserts [11], have high costs, which increases production expenses. The 
negative effects of high cutting temperatures need to be addressed through rapid heat dissipation and 
reduced friction in the cutting zone. The conventional solution is to flood the cutting zone with cut-
ting fluid. In milling processes, which are non-continuous machining processes, thermal shock can 
occur, reducing the tool life and diminishing the surface quality of the workpiece [8, 9]. In addition, 
the traditional flood coolant process has a major drawback of increased costs associated with coolant 
purchase and disposal, as well as its negative environmental and occupational impacts [3, 12–14].

Minimum Quantity Lubrication (MQL) is an innovative approach to lubrication that ad-
dresses the limitations of traditional flood coolant systems. It involves the precise application of  
a small amount of lubricant directly to the cutting zone, providing targeted lubrication and cooling. 
The benefits of MQL are numerous. Firstly, it significantly reduces lubricant consumption, result-
ing in cost savings and environmental advantages. Secondly, MQL enhances workplace conditions 
and promotes operator safety. Additionally, MQL improves machining performance by reducing 
friction and heat generation, thus extending tool life and enhancing surface finish quality. The con-
trolled lubricant application also aids in efficient chip evacuation, preventing chip buildup and fa-
cilitating optimal machining processes [12, 14–19]. The effectiveness of MQL is further enhanced 
by the addition of nanoparticles with sizes ranging from 10–100 nm into the cutting fluid. This 
is known as nanofluid-based MQL, an advanced lubrication technique. This innovative solution, 
initiated by Choi, has revolutionized the field of machining [20]. First and foremost, the addition of 
nanoparticles enhances the lubricating properties of the cutting fluid, resulting in reduced friction 
and wear between the cutting tool and workpiece. This, in turn, leads to prolonged tool lifespan 
and improved machining performance. Additionally, nanofluids demonstrate superior heat trans-
fer characteristics compared to conventional cutting fluids. The presence of nanoparticles in the 
lubricant facilitates efficient heat dissipation during the cutting process, thus preventing thermal 
damage to both the tool and workpiece. Consequently, this contributes to enhanced dimensional 
accuracy, reduced distortion, and improved surface finish quality of the machined components. 
Moreover, apart from their lubricating and heat transfer properties, the nanoparticles employed in 
the MQL process can also function as solid lubricants, minimizing the occurrence of adhesive wear 
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between the cutting tool and workpiece. As a result, cutting operations become smoother, and chip 
evacuation is improved [21–28].

Single-objective optimization problems focus on finding the best solution for a specific cri-
terion, disregarding other criteria. However, manufacturers aim to achieve multiple criteria simulta-
neously, even when they may conflict with each other. The objective of multi-objective optimization 
is to identify a solution that addresses these conflicting criteria and achieves a «win-win» outcome. 
In this context, researchers commonly utilize the Response Surface Methodology, a statistical tech-
nique widely applied in engineering, manufacturing, and quality improvement. RSM is specifically 
designed to optimize the relationship between input variables, also known as independent variables, 
and the corresponding output responses. It involves fitting a mathematical model, typically a poly-
nomial equation, to experimental data generated through a series of well-designed experiments.  
By analyzing the response surface derived from the model, RSM allows for the identification of 
optimal input settings that yield desired output responses [12, 29–32].

Some notable studies have focused on utilizing the RSM method for multi-objective optimi
zation. For instance, in a study conducted by [33], RSM was applied to optimize cutting parameters such 
as cutting speed, feed, nose radius, axial depth of cut, and radial depth of cut in milling P20 steel. The 
aim was to achieve both the minimum surface roughness and the maximum material removal rate. 
Through this approach, an optimized set of parameters was successfully determined. Furthermore, 
the authors concluded that there was good agreement between the results obtained using the Taguchi 
method and RSM. The multi-objective optimization aiming to achieve the best surface roughness and 
maximum material removal rate was conducted by [34]. RSM provided a predictive model for surface 
roughness and MRR with an error margin of 6 %. In another study utilizing RSM [35], Carmita Cam-
poseco-Negrete performed turning of AISI 6061 T6 aluminum to find the lowest energy consumption 
and the best machining quality. The relationship between machining parameters and three output 
factors, including energy consumption, surface roughness, and MRR, was established. The author 
concluded that the cutting feed rate was the most influential factor affecting the outcomes, which in-
cluded reducing energy consumption, improving surface roughness, and increasing MRR. In another 
study conducted by [27], the minimum surface roughness and the maximum MRR were successfully 
determined. A mutually beneficial solution was also identified by using RSM and variance analysis. 

In this study, sixteen SKD11 steel milling experiments were conducted, achieving a hardness 
of 50HRC under nanofluid based Minimum Quantity Lubrication conditions. The experimental de-
sign was carried out using the Taguchi Method. Three cutting parameters were considered as input 
factors, including cutting speed, cutting depth, and feed rate, each at four levels from low to high.

The Response Surface Methodology was employed to establish the relationship between the 
cutting parameters and the output responses, which were surface roughness and material removal 
rate. A second-order mathematical regression model was developed to describe the relationship bet
ween the three cutting parameters and the surface roughness. A multi-objective optimization was 
then performed to identify the optimal cutting parameters that yield the minimum surface roughness 
and the maximum MRR simultaneously.

2. Materials and methods
All the experiments were carried out on a state-of-the-art 5-axis CNC milling machine, 

DMU50, known for its high spindle speed and advanced capabilities. The cutting tool utilized 
was a TiAlN-coated f10 end mill, specialized for machining hard steel with a hardness capacity 
of up to 55HRC. The SKD11 alloy steel workpiece underwent heat treatment to achieve a hard-
ness of 50HRC (measured using Mitutoyo’s Rockwell hardness tester) and had dimensions of 
150×150×200 mm. Throughout the milling process, the workpiece was firmly clamped in place 
using a universal vise, which was securely mounted on the machine table.

The study involves the mixing of 100 nm-sized SiO2 nano particles with a base solution at 
a concentration of 4 %wt. To ensure the uniformity and stability of the solution, a magnetic stir-
rer is used for the mixing process. During the machining process, the cutting fluid flow rate and 
compressed air pressure are fixed at 100 ml/h and 3 kg/cm2, respectively. The MQL nozzle is po-
sitioned at a specific distance from the cutting tool, and groove milling is used as the milling type.
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For each experiment, a new cutting tool was employed, and its setup remained consistent 
across all experiments. Immediately after each machining operation, the surface roughness is mea-
sured using the SJ-401 roughness measurement device from Mitutoyo. The results of the surface 
roughness were obtained for each experiment as the average value of three measurements taken 
at three different positions on the machined groove surface. During the measurement process, 
the probing direction of the measuring head was aligned along the machined groove, as depicted  
in Fig. 1. Details about the experimental setup, materials, equipment, and software used in the 
study can be found in Fig. 1 and Table 1.

The cutting parameters, which include cutting speed, depth of cut, and feed rate, play a cru-
cial role as input factors. To select their levels, the authors considered the recommendations from 
cutting tool manufacturers, drew on our own expertise, and referred to previous research studies. 
Table 2 presents these parameters along with their corresponding four levels.

Fig. 1. Experiment setup

Table 1
Materials, equipment, and software used in the research

Items Description 
Machine 5-axis milling machine DMU50

Cutting tool TiAlN f10 end mill
Fixture Universal vise

Roughness measuring device Mitutoyo SJ-401
Solution spray nozzle Noga MC1700 nozzle
Workpiece material SKD11
Workpiece hardness 50HRC

Workpiece dimension 150x150x200 mm
Base fluid Cutting oil CT232

Nanoparticle SiO2 100 nm
Nanoparticle concentration 4 %

Stirring device Magnetic stirring device
CNC programming software Mastercam X

Statistical software Minitab v17

Table 2
Cutting parameters with their four levels

Parameters unit symbol
levels

1 2 3 4
Cutting speed m/min v 40 60 80 100
Depth of cut mm d 0.2 0.3 0.4 0.5

Feed rate mm/min f 0.01 0.015 0.02 0.025

 

MQL nozzle 
Cutting tool 

Workpiece 

Vase 

MQL nozzle 

Ra measuring 

Cutting tool 

SiO2 nanoparticle 

Minitab software 
Air pressure valve 
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3. Results and discussions
In this study, the surface roughness is measured using a measuring device from Mitutoyo. 

Meanwhile, the material removal rate is determined by the following formula:

	 MRR
d a v f z

D
e=

× × × × ×
×.

.
1000

3 14
	 (1)

Let (v) represent the cutting speed (m/min), ( f ) denote the feed rate (mm/tooth), (z) indicate 
the flute count of the cutter, and (D) symbolize the diameter of the cutting tool (mm).

This research involved the development of an experimental model for predicting the sur-
face roughness using RSM. The relationship between the output response (in this case, the  
surface roughness) and the independent input variables (here, the cutting parameters) is described by  
a second-degree mathematical function as follows:
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In which, k represents the input factors. The equation comprises coded variables (xi), first-or-
der term coefficients (βi), second-order term coefficients (βii), and interactive term coefficients (βij).

Table 3 shows the results of sixteen experiments with values of roughness and MRR. It can be 
observed that the roughness ranges from 0.109 µm (experiment number 14) to 0.212 µm (experiment 
number 4). Meanwhile, the MRR will have values ranging from 101.9108 mm3/min (corresponding 
to experiment 1) to 764.3312 mm3/min (corresponding to experiments 7, 8, 10, 12, 14, and 15).

Table 3
The result of Ra and MRR

No. v (m/min) d (mm) f (mm/tooth) Ra (µm) MRR (mm3/min)

1 40 0.2 0.01 0.152 101.9108
2 40 0.3 0.015 0.167 229.2994
3 40 0.4 0.02 0.198 407.6433
4 40 0.5 0.025 0.212 636.9427
5 60 0.2 0.015 0.146 229.2994
6 60 0.3 0.01 0.136 229.2994
7 60 0.4 0.025 0.21 764.3312
8 60 0.5 0.02 0.169 764.3312
9 80 0.2 0.02 0.133 407.6433
10 80 0.3 0.025 0.188 764.3312
11 80 0.4 0.01 0.131 407.6433
12 80 0.5 0.015 0.153 764.3312
13 100 0.2 0.025 0.131 636.9427
14 100 0.3 0.02 0.109 764.3312
15 100 0.4 0.015 0.11 764.3312
16 100 0.5 0.01 0.115 636.9427

A second-degree mathematical regression equation was derived using the roughness data 
from the sixteen experiments through Minitab V17 software. The equation represents the relation-
ship between roughness and the given cutting parameters as follows:

	
Ra v d f v

d

= - + + - -
- +

0 1518 0 000847 0 124 0 29 0 000011

0 238 2

2

2

. . . . .

. 225 0 0 00374 0 0080 8 552. . . . ,f v d v f d f+ ⋅ - ⋅ - ⋅ 	 (3)
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To evaluate experimental data, scientists commonly use Analysis of Variance (ANOVA)  
in empirical research. Specifically, in this study, ANOVA is applied to assess the direct effects 
and interactive influences of input parameters, including (v), (d ), and ( f ), on the output response, 
which is the surface roughness of the machining process. The P-value in the ANOVA table is 
utilized to evaluate the statistical significance of the model and input factors. A P-value smaller 
than 0.05 indicates that the model or specific factor has statistical significance. Additionally, the 
percentage contribution (PC) of terms in the estimated model to the total variation is taken into 
account to assess the degree of influence of the controllable factors on the model. The analysis of 
variance for the model is presented in Table 4.

Table 4
ANOVA for Ra
Source DF Adj-SS Adj-MS F-Value P-Value PC

Model 9 0.017115 0.001902 46.81 0.000 98.6

Linear 3 0.008514 0.002838 69.85 0.000 49.0

v 1 0.004416 0.004416 108.69 0.000 25.4

d 1 0.000348 0.000348 8.57 0.026 2.0

f 1 0.003750 0.003750 92.30 0.000 21.6

Square 3 0.000920 0.000307 7.55 0.018 5.29

v2 1 0.000324 0.000324 7.97 0.030 1.86

d 2 1 0.000090 0.000090 2.22 0.187 0.5

f 2 1 0.000506 0.000506 12.46 0.012 2.9

2-Way interaction 3 0.000658 0.000219 5.40 0.039 3.79

v∙d 1 0.000492 0.000492 12.11 0.013 2.8

v∙f 1 0.000006 0.000006 0.14 0.724 0.03

d∙f 1 0.000161 0.000161 3.95 0.094 0.92

Error 6 0.000244 0.000041 – – 1.4

Total 15 0.017359 – – – –

R–sq = 98.60 %

From the data presented in Table 4, the following observations can be drawn: Firstly, the de-
veloped model aligns well with the experimental design using the Taguchi method (L16 array) and 
holds statistical significance as evidenced by a regression coefficient (P-value) of 0 (less than 0.05). 
Furthermore, this is also evident in the determined coefficient R-sq of 98.6 %. It demonstrates that 
98.6 % of the variations in the selected input variables within the model significantly influence the 
output response. The model terms, including (v), (d ), ( f ), (v2), (f2), and (v∙d ), exhibit statistically 
significant effects on the response, all with P-values less than 0.05 [2, 34].

Among these terms, the (v) term exerts the most significant impact on the response, contri
buting 25.4 % to its variation, followed by the (f ) term with a contribution of 21.6 %. While 
the  (d ) term has a relatively smaller effect (2 % contribution), it still holds statistical significance.  
Among the squared terms, ( f 2) shows the most notable influence with a contribution of 2.9 %, 
followed by (v2) with a contribution of 1.86 %. Regarding the interaction terms, the (v∙d ) term 
exhibits the most substantial influence, contributing 2.8 % to the response variation. The other 
interaction terms have negligible effects on the output response.

Fig. 2 illustrates the discrepancies between the measured roughness values and the rough-
ness values predicted by the regression model. It can be observed that there is a relatively small 
deviation between the experimental results and the predicted values. In other words, the regression 
model exhibits a good correlation with the actual experimental values and can be effectively used 
to predict roughness values based on the cutting parameters.
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Fig. 2. The difference between measured and predicted surface roughness

Based on the desirability function, the optimal conditions of the cutting parameters to 
achieve the minimum roughness are determined and presented in Fig. 3. Accordingly, it can be 
observed that the optimal cutting conditions involve machining with a cutting speed of 100 m/min, 
a depth of cut of 0.2 mm, and a feed rate of 0.01 mm/tooth. By applying these cutting parameters, 
the predicted roughness can reach 0.0451 µm. A verification experiment was conducted with the 
given optimal cutting conditions, resulting in an achieved roughness of 0.054 µm. Once again,  
the experimental results confirm the reliability of the research findings.

Fig. 3. Optimization plot for Ra

For a better understanding of the interactive influence of independent variables on the re-
sponse, the 3D surface plots for Ra are constructed using Equation (3), as depicted in Fig. 4. Each 
graph represents the variation of two factors while keeping the remaining factor constant at its 
midpoint level.

The influence of the cutting speed and cutting depth on the surface roughness is depicted 
in Fig. 4, a with a constant feed rate of 0.0175 mm/tooth. Observing the surface representation of 
the relationship between the two input parameters and the output parameter, it can be observed that 
as the cutting speed increases (ranging from 40 m/min to 100 m/min), the surface roughness de-
creases. The minimum surface roughness occurs at the position with the highest cutting speed  (the 
deepest area of the surface). An increase in cutting speed leading to a decrease in roughness is 
also shown in Fig. 4, b. This result is also consistent with the research findings of two groups 
of authors, [35, 36]. This phenomenon can be explained as discussed in the study by [37]. When 
machining at higher cutting speeds, it generates significant cutting heat in the cutting zone, which 
softens the workpiece surface. As a result, the chips are more easily formed, leading to improved 
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surface roughness. Another explanation related to the formation of Built-Up Edge (BUE) can be 
found in the explanation by [38]. When machining at low cutting speeds, BUE forms on the cutting 
edge of the cutting tool and negatively affects the surface roughness of the workpiece. However, as 
the cutting speed is increased, BUE disappears, leading to an improvement in surface roughness.

Fig. 4. The response surface plot for the roughness: a – Ra vs d, v; b – Ra vs f, v; c – Ra vs f, d

Observing Fig. 4, b, c, it can be seen that increasing the feed rate will lead to an increase 
in roughness. The helical motion of the cutting tool creates furrows on the machined surface.  
According to [39], as the feed rate increases, the furrows formed on the machined surface will 
become deeper and wider, resulting in an increase in roughness. In a study by [40], the authors 
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concluded that an increase in the feed rate results in more heat generated in the cutting zone, giving 
less time for dissipation. As a result, chip accumulates within the cutting zone, negatively affecting 
surface roughness. Indeed, this is also consistent with the findings of Hughes and colleagues [41].

Fig. 4, a, c also demonstrate that increasing the depth of cut leads to an increase in surface 
roughness. This indicates that an increase in the depth of cut leads to a larger chip load, which in 
turn results in a noticeable rise in the applied cutting force. There is a strong correlation between cut-
ting force and the quality of the machined surface, which has been found in many previous studies.  
When machining with high cutting forces, it will result in higher surface roughness compared to 
machining with lower cutting forces, as observed in the study conducted by [42]. Additionally, chat-
ter vibrations are a contributing factor that affects surface roughness. When large cutting forces lead 
to significant chatter vibrations, it further increases surface roughness during machining [43, 44].

In this study, a multi-objective optimization approach was utilized to achieve two objec-
tives: minimizing surface roughness and maximizing material removal rate. The optimal values 
for this multi-objective problem were determined using Minitab statistical software, employing the 
desirability function as illustrated in Fig. 5.

By considering a composite desirability value of 1.0, a compromise solution was obtained, 
resulting in a minimum surface roughness of 0.1069 µm and a maximum material removal rate 
of 775.0634 mm3/min. These optimal values were achieved by employing specific machining pa-
rameters, including a cutting speed of 100 m/min, a depth of cut of 0.3611 mm, and a feed rate  
of 0.0168 mm/tooth.

Fig. 5. Multi-objective optimization

Table 5 illustrates three different machining modes to achieve different objectives: mini-
mum surface roughness, maximum MRR, and simultaneously achieving both minimum surface 
roughness and maximum MRR. In the first two objectives (single-objective optimizations), each 
outcome is achieved independently without considering other output factors. A compromise solu-
tion is presented in the third cutting mode.

The first cutting mode aims to achieve the minimum surface roughness (Ra = 0.054 µm). 
The result of this mode shows that the achieved MRR is relatively low (MRR = 254.7771 mm3/min).  
On the other hand, the second cutting mode targets the maximum material removal rate 
(MRR = 1592.357 mm3/min), but the surface roughness is not well-optimized (Ra = 0.190 µm). 
Meanwhile, the third cutting mode represents a compromise solution, where the surface roughness 

 



Original Research Article:
full paper

(2024), «EUREKA: Physics and Engineering»
Number 2

166

Engineering

is good (Ra = 0.125 µm) and the material removal rate is relatively high (MRR = 772.8 mm3/min). 
This compromise solution is more acceptable in practical manufacturing situations. 

Table 5
Results of Ra and MRR with different cutting modes

Goal
Cutting parameters Predicted 

Ra (µm)
Measured 
Ra (µm)

Predicted MRR 
(mm3/min)

Measured MRR 
(mm3/min)v (m/min) d (mm) f (mm/tooth)

Min Ra 100 0.2 0.01 0.0451 0.054 167.8314 254.7771
Max MRR 100 0.5 0.025 0.1676 0.190 1506.3694 1592.357

Multi-goal optimization 100 0.3611 0.0168 0.1069 0.125 775.0634 772.8

In Table 5, there are two columns displaying surface roughness results and two columns 
displaying Material Removal Rate (MRR) results. One column represents the predicted results, 
while the other column represents the measured results. It can be observed that the results for  
both surface roughness and MRR are quite close. This indicates that the mathematical model pro-
vided is reliable. 

Furthermore, if not overly concerned with productivity, machining can be carried out with 
the optimal conditions to achieve the minimum surface roughness. As shown in Table 5, the 
predicted minimum surface roughness is 0.0451 µm. As seen in Table 3, the surface roughness 
achieved in all experiments is above 0.1 µm. Therefore, a validation experiment was conducted 
to assess the reliability of the results obtained. The surface roughness achieved in the validation 
experiment is 0.054 µm (which is the average value of three roughness measurements taken at 
three different locations). Once again, this reaffirms the effectiveness of the hard-milling process 
combined with the nanofluid MQL cooling conditions.

Overall, the results and analysis of the study provide valuable reference for researchers and 
practitioners in the field. This research has provided good insights for optimizing the machining 
process to achieve the best surface finish. Furthermore, a compromise solution to achieve both the 
best quality (represented by surface finish) and high productivity (represented by MRR) has also 
been proposed using multi-objective optimization. 

This study represents a typical case study. Therefore, the results presented are only com-
pletely accurate when applying the input conditions of this study, such as the levels of cutting 
parameters, equipment used for the study, cutting tools, workpieces and workpiece materials, fix-
tures, and cooling conditions (cutting fluid, size, and concentration of nanoparticles). When these 
conditions are correctly applied, the results obtained will accurately reflect those in the study.

To further guide future research, cooling condition parameters such as nano particle size, 
nano particle concentration in the coolant solution... need to be included to assess their impact on 
the output variables. Additionally, the combination of multiple types of nano particles should also 
be considered.

4. Conclusions
In this research, the hard-milling process of alloy steel SKD 11 was studied under the cool-

ing condition of nanofluid based MQL. The primary objective was to investigate the relationship 
between three typical cutting parameters: cutting speed, depth of cut, and feed rate, and their 
influence on two output responses: surface roughness and material removal rate. Each cutting 
parameter was varied at four different levels. The experimental design was carried out using  
the L16 orthogonal array of the Taguchi method. Response Surface Methodology was employed  
to develop mathematical regression models for both single and multi-objective optimization. Several 
significant conclusions were derived from the study, which are presented as follows: a second-order 
regression model describes the relationship between machining parameters (cutting speed, depth of 
cut, and feed rate) and surface roughness. The difference between the predicted values given by the 
model and the experimental values is very small. This indicates a strong correlation between the 
model and the experimental values, making it suitable for predicting surface roughness.
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In terms of the influence on surface roughness, the most significant factor is the cut-
ting speed, accounting for 25.4 % of the effect, followed by the feed rate with 21.6 % influence.  
The depth of cut has a relatively minor impact on surface roughness. The effects of the cutting pa-
rameters on the output response are all statistically significant with a P-value less than 0.05.

The optimal machining conditions for achieving the minimum surface roughness are a cut-
ting speed of 100 m/min, a cutting depth of 0.2 mm, and a feed rate of 0.01 mm/tooth, resulting in 
a surface roughness of 0.0451 µm.

A multi-objective optimization has been conducted to achieve simultaneous objectives of 
the minimum surface roughness and the minimum material removal rate. To attain these goals,  
a cutting mode with a cutting speed of 100 m/min, a cutting depth of 0.3611 mm, and a feed rate 
of 0.0168 mm/tooth should be applied under the condition of Nanofluid-based MQL cooling lubri-
cation. With this cutting condition, the predicted surface roughness could reach 0.1069 µm, and  
the predicted MRR could reach 775.06 mm3/min.
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