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Phase transitions in dipolar gases in optical lattices
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We investigate the phase diagrams of two-dimensional lattice dipole systems with variable geometry. For
bipartite square and triangular lattices with tunable vertical sublattice separation, we find rich phase diagrams
featuring a sequence of easy-plane magnetically ordered phases separated by incommensurate spin-wave states.
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A recent breakthrough in the cooling of dipolar gases in
optical lattices [1], following a decade of intensive research
[2–9], has opened a door into the earlier inaccessible many-
body physics of lattice systems with anisotropic long-range
interaction. Although bulk crystalline dipolar systems are
abundant in nature [10,11], their experimental investigation
has been hindered by the extremely low temperatures required
for the observation of ordering transitions [12] and the absence
of continuously variable parameters. Recently, artificial two-
dimensional dipolar systems, such as lithographically created
nanomagnet arrays, have been realized [13,14]. However, it
is the advent of optical lattices with tunable lattice structure
containing ultracold dipolar gases that has created numer-
ous possibilities for studies of previously unexplored phase
transitions—both classical and quantum—between ordered
and disordered phases of this fundamental many-body system.

In this paper, we analyze a series of magnetic phase
transitions in a classical dipolar gas in deep optical lattices
(square, Fig. 1 and triangular, Fig. 2) obtained from bipartite
monolayer lattices by vertical separation, z, of the two
sublattices. One way to realize such systems would be loading
the ferromagnetic spinor Bose-Einstein minicondensates in
the nodes [15] of a deep bilayer optical lattice created with
the help of a painted potential technique [16], which would
allow for a high degree of control over the shapes of optical
lattices and interlayer separation.

We find that, upon the variation of z, each system
experiences a sequence of easy-plane magnetically ordered
phases separated by incommensurate spin-wave states, which
could be detected with the help of Bragg diffraction of
light [17–19]. The phase diagram for the square lattice on the
z-T plane is shown in Fig. 1. For sufficiently small separations
z � a, where a is lattice constant, we reproduce the earlier pre-
dicted [20,21] canted antiferromagnetic phase, AFMK , with
the ordering vector K. For z > a, we find an antiferromagnetic
phase, AFMM , with a larger unit cell and ordering wave vector
at the M point of the Brillouin zone of the bipartite lattice. For
intermediate interlayer distances, we find a stable ferromag-
netic phase (FM), separated from the antiferromagnetic ones
by incommensurate spin-wave states (ISW). At the critical
temperature Tc, all of the ordered phases feature a degeneracy
in the orientation of magnetization, characterized in Fig. 1
by angle θ , or θA and θB for AFMM . Away from Tc, such a
degeneracy is lifted, and Fig. 1 shows the optimal orientation
of the order parameter for the low-temperature states. The
structure of the intermediate incommensurate phases, ISW1
and ISW2 (Fig. 1), has also been established for T → Tc, while
their nature at low temperatures remains an open question.
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FIG. 1. (Color online) (a) Dipolar magnetic gas on a bipartite
square optical lattice as seen along the [0,1] axis and the first Brillouin
zone. The two sublattices, A and B, are vertically separated by the
distance z. (b) Phase diagram of the dipolar gas: three commensurate
phases (AFMK , FM, and AFMM ) separated by two incommensurate
spin-wave phases (ISW1 and ISW2) with phase boundaries at z1 =
0.245a, z2 = 0.262a, z3 = 0.629a, and z4 = 1.061a, where a is a
lattice constant, and T0 = μ0μ

2/4πa3.

We find that the phase diagram for the bipartite triangular
lattice (which forms a honeycomb lattice when z = 0) also
contains a sequence of commensurate and incommensurate
magnetic phases, Fig. 2. For z � a, we find a helical phase
with the ordering vector K (HK ), which is specific for dipoles
on a two-dimensional (2D) honeycomb lattice [20]. A large
vertical displacement of the two sublattices of the honeycomb
lattice results in two weakly coupled triangular lattices, for
which the ground state is ferromagnetic (FM) [20]. In between
those two extremes lies an antiferromagnetic phase AFMM

with the ordering vector M [22], separated from the helical
and ferromagnetic phases by parametric intervals, where the
magnetization texture is incommensurate with the lattice.

To find phase diagrams in Figs. 1 and 2, we consider an
ensemble of classical magnetic dipoles μsi (|si |2 = 1), placed
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FIG. 2. (Color online) (a) Dipolar magnetic gas on a bipartite
triangular optical lattice as seen along the [0,1] axis and the first
Brillouin zone. The two sublattices, A and B, are vertically separated
by the distance z (at z = 0, they form a honeycomb lattice). (b) Phase
diagram of the dipolar gas: three commensurate phases (HK , AFMM ,
and FM) separated by two incommensurate spin-wave phases (ISW3
and ISW4) with phase boundaries at z1 = 0.256a, z2 = 0.260a, z3 =
0.479a, and z4 = 0.577a, where a is a lattice constant, and T0 =
μ0μ

2/4πa3.

on the A or B sites rn
i (n = A,B) of the square (Fig. 1) or

triangular (Fig. 2) lattices, with interaction energy
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Here μ0 is the vacuum permeability. The Hamiltonian is
invariant under the group G of simultaneous rotation of
magnetic moments in the xy plane and the lattice rotations
through the angles π/4 for square and π/3 for triangular
lattices.

In order to identify the thermodynamic average, 〈s(rn
i )〉

(n = A,B), of magnetization for various interlayer separations
z, we apply the Landau theory and study the free energy in the
vicinity of the transition temperature [23],

F = N

2

∑
q

S†(q)[3T 1̂ + Ĵ(q)]S(q) + F (m) + · · · , (2)

expressed in terms of a six-vector,

S(q)T = (
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A(q),Sz
A(q),Sx

B(q),Sy

B(q),Sz
B(q)

)
,

where Sα
n (q) is the Fourier transform of the order parameter

〈s(rn
i )〉 of magnetic moments on A and B sublattices. In Eq. (2),

1̂ is a 6 × 6 unit matrix and F (m) incorporates higher-order

invariants under the group G built using the order parameter
(m = 4 for square and m = 6 for triangular lattices). A 6 × 6
matrix Ĵ has elements

J
αβ

nn′ (q) = (1/N)
∑
ij

J αβ
(
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i − rn′

j

)
eiq·(rn

i −rn′
j ), (3)

where N is the number of unit cells. For each wave vector q,
matrix Ĵ has six eigenvalues, λ, and six eigenvectors, V(q).
The lowest negative eigenvalue λ0(q0) found among λγ (q)
by varying wave vector q over the Brillouin zone determines
the polarizations V(q0) and the wave vector q0 of the most
favorable magnetic ordering and the transition temperature

Tc = − 1
3 minγ,q[λγ (q)] ≡ 1

3 |λ0(q0)|. (4)

In Fig. 3, we show plots for λγ (q) for the square bipartite
lattice with various vertical A-B sublattice separations. For
0 � z � z1, where z1 = 0.245a (a is lattice constant), q0

coincides with one of the K points of the Brillouin zone as
shown in Figs. 3(a) and 3(b). This corresponds to the AFMK

phase (Fig. 1) with the order parameter

〈
s
(
rn
i

)〉 ∝ (
cos

(
K · rn

i + θ
)
,p sin

(
K · rn

i + θ
))

, (5)

where p = +1 (−1) for n = A (B), and θ is a constant. In
Eq. (2), the degeneracy in θ is lifted by the higher-order terms
F (m) appearing after taking into account thermal fluctuations.
As z increases from z1 to z2 = 0.262a, q0 continuously moves
from the K to the 	 point [Fig. 4(a)], and the corresponding
eigenvector V0(q0) determines the magnetization texture

〈
s
(
rn
i

)〉 ∝ ẑ × q0 cos
(
q0 · rn

i

)
(6)

of the incommensurate phase ISW1 illustrated in Fig. 1(b),
where ẑ is the unit vector perpendicular to the plane of the
lattice and q0 = (q0,0). For z2 � z � z3, where z3 = 0.629a,
q0 lies at the 	 point [Fig. 3(d)], which corresponds to the

(a) (d)

(b) (e)

(f)(c)

FIG. 3. (Color online) Eigenvalues, λi(q), of the dipolar tensor,
J

αβ

nn′ , for the square lattice as functions of the wave vector q along
symmetric directions in the Brillouin zone [see Fig. 1(a)] for a set of
lattice displacements, z: (a) z = 0, (b) z = 0.140a, (c) z = 0.248a,
(d) z = 0.500a, (e) z = 0.707a, and (f) z = 2.120a.
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(a) (b)

FIG. 4. (Color online) The minimal eigenvalues λ0 vs q along
symmetric directions in the Brillouin zone for incommensurate
phases: (a) ISW1 and (b) ISW2 for a representative set of z:
A, z = 0.245a; B, z = 0.250a; C, z = 0.255a; D, z = 0.260a;
E, z = 0.262a; F , z = 0.629a; G, z = 0.651a; H , z = 0.743a; I ,
z = 0.849a; and J , z = 1.061a. Arrows show the positions of the
minima, q0, of λ. The ordering vector q0 continuously moves along
the straight lines connecting the K and 	 points (a) and the 	 and M

points (b) as z increases.

easy-plane ferromagnetic (FM) ordering. As z increases from
z3 to z4 = 1.061a, q0 continuously moves from the 	 to the
M point [Fig. 4(b)], which determines the incommensurate
spin-wave state ISW2 and the order parameter given by Eq. (6)
with q0 = (1/

√
2)(q0,q0). For z � z4, q0 is at one of the M

points [Fig. 3(f)] giving rise to the phase AFMM , which can
be viewed as two weakly coupled “AFMK” phases on each of
the two square sublattices. The form of the order parameter in
each of the commensurate phases is given in Table I.

The phase diagram for the bipartite triangular lattice
[Fig. 2(b), with order parameters listed in Table I] is somewhat
similar to that for the square bipartite lattice. For 0 � z � z1,
where z1 = 0.256a, we find that q0 is at one of the K points.
This corresponds to the helical HK phase with the order
parameter given by Eq. (5), where vector K is at the corner of
the hexagonal Brillouin zone of triangular lattice [Fig. 2(a)].
Such a phase has been discussed in relation to a dipolar gas
in a planar honeycomb lattice [20]. For z1 � z � z2, where
z2 = 0.260a, q0 continuously shifts from the K to the M

point, giving rise to the incommensurate phase ISW3 with
magnetization texture,

〈
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)〉 ∝ (− sin
(
q0 · rn

i

)
,pay cos

(
q0 · rn

i

)
,az sin

(
q0 · rn

i

))
,

where 0 � ay and az � ay are z-dependent, q0 = q0[K(1 −
c) + Mc]/|[K(1 − c) + Mc]| (0 � c � 1). For z2 � z � z3,
where z3 = 0.479a, q0 lies at one of the M points, which

corresponds to the easy-plane antiferromagnetic phase AFMM

shown in Fig. 2(b) [22]. For z3 � z � z4, where z4 = 0.577a,
q0 moves from the M to the 	 point, which determines the
incommensurate spin-wave state ISW4,

〈
s
(
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i

)〉 ∝ (
sin

(
q0 · rn

i

)
, cos

(
q0 · rn

i

))
, (7)

with q0 = q0M/|M|. Finally, for z � z4, q0 lies at the 	 point,
which corresponds to an easy-plane ferromagnetic state. In the
limit z → ∞, this coincides with the ground state calculated
for a dipolar magnet on a plane triangular lattice [20].

The above analysis of magnetic phases of dipolar gases on
square and triangular bipartite lattices, limited to the quadratic
terms in the Landau theory, is formally valid at T → Tc. To
extend the phase diagrams in Figs. 1 and 2 to low temperatures,
we investigate the stability of the ordering patterns described
in Table I near T = 0 using the linear spin-wave theory [23].
That is, we expand the interaction energy in small deviations
of on-site magnetic moments from the ground-state value
〈s(rk

i )〉,

E = E(S) + NM

2

∑
q

σ †(q)Â(q)σ (q). (8)

Such deviations have to respect the constraint |s(rk
i )|2 = 1 and

can be parametrized as
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(
rk
i

) + [
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Here we use the Fourier transform, σ (q)T =
(σ 1

|| (q),σ 1
z (q), . . . ,σ k

|| (q),σ k
z (q), . . .) of σα(rk

i ), index
k = 1, . . . ,M labels sites within the magnetic unit cell of a
commensurate phase, so that the Fourier transform of 〈s(rk

i )〉 is
Sk(q) = Skδ(q) and NM is the number of magnetic unit cells.
The 2M × 2M matrix Â(q) has elements A

||,||
kk′ (q) = ∑

αβ(ẑ ×
Sk)αJ

αβ

kk′ (q)(ẑ × Sk′)β + f (0), A
||,z
kk′ (q) = ∑

α(ẑ × Sk)αJ αz
kk′(q),

A
z,||
kk′ (q) = ∑

β J
zβ

kk′(q)(ẑ × Sk′)β , Azz
kk′(q) = J zz

kk′(q) + f (0),

where f (0) = (−1/2)
∑

αβ Sα
k J

αβ

kk′ (0)Sβ

k′ . We find that all

eigenvalues of Â(q) are positive for q �= 0 within the
same intervals zi < z < zi+1, whereas at the edges of
the intervals, the lowest eigenvalue of Â(q) acquires
negative values reflecting a tendency toward incommensurate
textures.

For most of the phases in Table I, the interaction is
degenerate in angle θ (Figs. 1 and 2). This degeneracy is

TABLE I. Order parameter for each of the commensurate phases of a dipolar gas on bipartite square and triangular lattices.

Lattice Phase S ≡ 〈s(rn
i )〉/|〈s(rn

i )〉| q0 θ0

Square AFMK (cos(K · rn
i + θ ),p sin(K · rn

i + θ )), p = +1 (−1) for A (B) K = (0,
√

2π

a
) πk

2 , k ∈ Z
n = A,B FM (cos θ, sin θ ) 0 πk

2 , k ∈ Z

AFMM (cos(M · rn
i ± θn + π/4), sin(M · rn

i ± θn + π/4)) [24] M = (
√

2π

2a
,

√
2π

2a
) πk

2 , k ∈ Z

Triangular HK (cos(K · rn
i + θ ),p sin(K · rn

i + θ )) K = (0, 4
√

3π

3a
) πk

3 , k ∈ Z

n = A,B AFMM (sin(M · rn
i ), cos(M · rn

i )) M = ( 2π√
3a

,0)

FM (cos θ, sin θ ) 0 πk

3 , k ∈ Z
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lifted [25] by thermal fluctuations leading to the higher-order
expansion terms in the Landau theory. To find, at least for
T � Tc, such symmetry-breaking contributions, we take into
account fluctuations σ (q) of the order parameter following [25]
and calculate the entropy part of the free energy,

δFs = −T ln
∏

q

∫
Dσ (q) exp

[
− 1

2T
σ †(q)Â(q)σ (q)

]

≈ NMT

2

∑
q∈BZ

ln[det Â(q)]. (9)

We evaluate the dominant contribution from the fluctuations
lifting the degeneracy with respect to angle θ :

δFs ≈ T A0 − T A1 cos(mθ ), A0,A1 > 0, (10)

where m = 4 for a square lattice and m = 6 for a triangular
lattice [24]. This determines the optimal choice θ0 shown
in Table I. For T → Tc, such entropy terms give rise to the
crystalline anisotropy contribution F (m) ∝ Tc|S|m cos mθ in
Eq. (2).

For magnetic dipolar gases in deep bipartite (bilayer) square
and triangular optical lattices, the predicted phase diagram may
appear very much within the experimentally accessible range
of controlled parameters. For deep optical lattices with a ∼
1 μm and optical field trapping minicondensates of 103 spin-
aligned 87Rb atoms per unit cell, we estimate Tc ∼ 50 μK in
the phase diagram in Figs. 1 and 2. Moreover, as the electric and
magnetic dipole interactions are mathematically equivalent,
the phase diagram in Figs. 1 and 2 should be applicable to
the electric dipolar systems, where we estimate Tc ∼ 100 nK
for ferro- and antiferroelectric transitions in molecules with a
dipole moment d ∼ 1 D.
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