
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Physics and Astronomy Faculty Publications 
and Presentations College of Sciences 

12-10-2010 

Equation of state of a dense and magnetized fermion system Equation of state of a dense and magnetized fermion system 

Efrain J. Ferrer 
The University of Texas Rio Grande Valley 

Vivian de la Incera 
The University of Texas Rio Grande Valley 

Jason P. Keith 

Israel Portillo 

Paul L. Springsteen 

Follow this and additional works at: https://scholarworks.utrgv.edu/pa_fac 

 Part of the Astrophysics and Astronomy Commons, and the Physics Commons 

Recommended Citation Recommended Citation 
Ferrer, Efrain J., Vivian de La Incera, Jason P. Keith, Israel Portillo, and Paul L. Springsteen. "Equation of 
state of a dense and magnetized fermion system." Physical Review C—Nuclear Physics 82, no. 6 (2010): 
065802. https://doi.org/10.1103/PhysRevC.82.065802 

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has 
been accepted for inclusion in Physics and Astronomy Faculty Publications and Presentations by an authorized 
administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, 
william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/pa_fac
https://scholarworks.utrgv.edu/pa_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/pa_fac?utm_source=scholarworks.utrgv.edu%2Fpa_fac%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=scholarworks.utrgv.edu%2Fpa_fac%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.utrgv.edu%2Fpa_fac%2F739&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


PHYSICAL REVIEW C 82, 065802 (2010)

Equation of state of a dense and magnetized fermion system

Efrain J. Ferrer, Vivian de la Incera, Jason P. Keith, Israel Portillo, and Paul L. Springsteen
Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, USA

(Received 4 October 2010; published 10 December 2010)

The equation of state of a system of fermions in a uniform magnetic field is obtained in terms of the
thermodynamic quantities of the theory by using functional methods. It is shown that the breaking of the O(3)
rotational symmetry by the magnetic field results in a pressure anisotropy, which leads to the distinction between
longitudinal- and transverse-to-the-field pressures. A criterion to find the threshold field at which the asymmetric
regime becomes significant is discussed. This threshold magnetic field is shown to be the same as the one required
for the pure field contribution to the energy and pressures to be of the same order as the matter contribution.
A graphical representation of the field-dependent anisotropic equation of state of the fermion system is given.
Estimates of the upper limit for the inner magnetic field in self-bound stars, as well as in gravitationally bound
stars with inhomogeneous distributions of mass and magnetic fields, are also found.

DOI: 10.1103/PhysRevC.82.065802 PACS number(s): 21.65.Mn, 21.65.Qr, 26.60.Kp, 97.60.Jd

I. INTRODUCTION

The largest magnetic fields observed in nature are associ-
ated with some of the most extreme astrophysical objects,
the compact stars. For pulsars the typical magnitudes of
surface magnetic fields have range ∼1012–1013 G [1]. The
measured periods and spin down of soft-γ repeaters (SGRs)
and anomalous x-ray pulsars (AXPs), as well as the observed
x-ray luminosities of AXP, indicate that a certain class of
neutron stars called magnetars can have even larger magnetic
fields, reaching surface values as large as 1014–1015 G [2]. Fur-
thermore, if the suggestion [3] that these stars can be the source
of γ -ray bursts is confirmed, their magnetic fields should be
even larger to drive a substantial Poynting flux-dominated
relativistic outflow. Up to now, about ten highly magnetized
neutron stars have been identified in our galaxy, but based on
the population statistics of SGR it is expected that magnetars
constitute about 10% of the neutron-star population [4].

The existence of the strongest magnetic fields in compact
stars poses the question of their origin. The simple hypothesis
that a relative small magnetic field of a progenitor star can
be amplified during the star’s gravitational collapse owing to
magnetic flux conservation [5] cannot even substantiate the
high values of the surface fields in magnetars [6]. Another
generation mechanism is the so-called magnetohydrodynamic
dynamo mechanism (MDM). The MDM is based on the
amplification of a seed magnetic field owing to the rapidly
rotating plasma of a protoneutron star. It is generally accepted
as the standard explanation for the origin of the magnetar’s
large magnetic fields. For the MDM to explain the large
surface field strengths observed in magnetars, the rotational
period of the protoneutron stars that originate them should
be <3 ms. Nevertheless, this mechanism cannot substantiate
all the features of the supernova remnants surrounding these
objects [7,8]. Part of the rotational energy is supposed to power
the supernova through rapid magnetic braking, from where
it is inferred that the supernova remnants associated with
magnetars should be an order of magnitude more energetic
than typical supernova remnants. However, recent calculations
[7] indicate that their energies are similar. In addition, one

would expect that when a magnetar spins down, the rotational
energy output should go into a magnetized particle wind
of ultrarelativistic electrons and positrons that radiate via
synchrotron emission across the electromagnetic spectrum.
Yet, so far nobody has detected the expected luminous pulsar
wind nebulae around magnetars [9]. However, some magnetars
emit repeated flares or bursts of energy in the range of
1042–1046 erg [10]. Because the emitted energy significantly
exceeds the rotational energy loss in the same period, it
is natural to expect that the energy unbalance could be
supplied by the stellar magnetic field, which is the only known
additional energy source. Nonetheless, from the spin history
of these objects, there is no clear evidence of any surface
magnetic field damping [11].

From the previous considerations it is clear that alternative
mechanisms to the standard magnetar model [2] should be
explored. A reasonable approach is to investigate possible
microscopic mechanisms, based on the quantum phase of
the core, through which a seed inner star’s magnetic field can be
generated and/or boosted. Some propositions in this direction
already exist in the literature [6,12]. Even though, to find a
connection between the microscopic phase of the star’s core
and the astrophysical observations, other important properties
of the star’s core matter need first to be better understood.
Along these lines, a very important problem to elucidate is
the influence of a magnetic field on the star’s equation of state
(EoS).

Over the years, many works have been dedicated to the
effects of magnetic fields in neutron (including hybrid) stars
[13] and in quark (strange) stars [14]. However, in general,
when finding the field-dependent contributions to the energy
density and pressures, they did not follow a unique and
consistent scheme, thereby different papers have different
stands on what should be the correct field contributions to the
pressure and energy. Moreover, it is known that in the presence
of a magnetic field the pressure splits in two terms: transverse
and parallel to the field direction, owing to the breaking of
the spational rotational symmetry. Nevertheless, some authors
ignored the pressure anisotropy even at very strong magnetic
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fields, where it becomes significant. Besides, one can identify,
depending on their origin, two different field contributions to
the energy and pressures. One coming from the magnetized
matter and the other from the Maxwell term. Despite all this,
some of the previous studies do not take into account the pure
field effect (coming from the Maxwell term) in the energy
density and pressures, even though it is always present and in
some limits it can be the dominant one.

The main purpose of this paper is to develop a systematic
and self-consistent approach to treat the EoS of a magnetized
system. We analyze under what conditions the pure magnetic
contribution to the energy and pressures is much smaller than
the matter contribution, as well as when it is self-consistent
to neglect the differences between the transverse and parallel
pressures (isotropic limit). We carry out our study in a theory
of free fermions only interacting with an applied uniform
and constant magnetic field, but the method we developed
to analyze the effect of the different contributions to the EoS
can easily and straightforwardly incorporate interactions.

Another outcome of our investigation is an improved
estimate for the upper limit of compact stars’ inner magnetic
fields. Previous estimates were done assuming a gravitationally
bound star with spherical and homogeneous mass distribution
and a uniform magnetic field. For gravitationally bound stars
we demonstrate that when the homogeneous mass density and
uniform field distribution conditions are relaxed, the inner
field in the high-dense core can attain values two orders of
magnitude larger than previously found. We also estimate the
inner magnetic fields in self-bound stars, which result to be of
the same order as those of inhomogeneous gravitational bound
stars. Using our magnetized fermion model, we calculate the
threshold field that separates the isotropic and anisotropic
regimes. This field turns out to be smaller than the estimated
upper values of the stars’ inner fields, indicating that the
anisotropic effects can be relevant for the physics of the
cores.

The outline of the paper is as follows. In Sec. II we
estimate the upper limits for the magnetic field in self-bound
and gravitationally bound compact stars. The derivation of
the Maxwell and Dirac field contributions to the covariant
energy-momentum tensor is reviewed in Sec. III. In Sec. IV, the
quantum-statistical average of the energy-momentum tensor
components are calculated using a functional method. From
these results the system energy density and the parallel and
transverse pressures are obtained in terms of the thermo-
dynamical quantities. A covariant structure for the energy-
momentum tensor, in agreement with the symmetries of the
magnetized many-particle system, is given in terms of the
thermodynamic quantities. In Sec. V, the EoS of the magne-
tized fermion system is found at zero temperature and finite
density. Numerical results for the energy density and pressures
as functions of the magnetic field are presented and the
significance of the matter and field contributions for the
different ranges of densities and magnetic field strengths are
discussed. Also, the threshold field for the transition between
the isotropic and anisotropic pressure regimes is obtained.
Our concluding remarks are stated in Sec. VI. In the Appendix
the system thermodynamic potential is derived using Ritus’s
eigenfunction method.

II. COMPACT STAR’S FIELD ESTIMATES

Because the interior magnetic fields of neutron stars are
not directly accessible to observation, their possible values
can only be estimated with heuristic methods. A direct
application of the virial theorem leads to inner field estimates
of order ∼1018 G [15] for compact stars with masses
M ∼ 1.4 M� and radius R ∼ 10−4 R�. This derivation was
done for gravitationally bound objects with uniform fields and
mass density. In this section, we show that if these conditions
are relaxed the star’s inner magnetic field may reach even
higher values. In what follows we consider two possibilities:
(i) self-bound objects with uniform magnetic fields and
(ii) gravitationally bound objects with a physically more
realistic case of inhomogeneous field and mass distributions.

A. Self-bound compact stars

Self-bound stars are stars made of stable u, d, and s quark
matter. Let us explain how this can be possible, at least from a
theoretical point of view. If the star’s density is high enough for
deconfinement, a quark-matter phase may occur. Under these
conditions, the up and down quarks can convert into s-quarks
via weak interactions. In fact, the quark system will prefer to
do so to lower the Fermi energy by increasing the degeneracy.
The charm, top, and bottom quarks are not relevant in this
analysis because their masses are much larger than the strange
quarks’s and the typical densities of the stars will not be enough
to produce these other flavors. The thereby formed three-flavor
quark matter, composed of a mix of u, d, and s quarks, is known
as strange quark matter. It has been conjectured [16,17] that
at zero pressure the strange quark matter will have a lower
energy per baryon than ordinary matter, which has εmatter =
939 MeV/baryon. This possibility would make the strange
matter the most stable substance in nature. According to this,
ordinary nuclei would lower their energy by converting to
strange matter, but it has been shown that the conversion rate
is negligible under almost all conditions, except perhaps in
neutron stars [18]. Therefore, the possible existence of strange
stars cannot be ruled out [17,18].

Assuming there are strange stars out there, a reasonable
question to ask is how big a magnetic field can be sustained by
them? Energy-conservation arguments can help to estimate the
maximum field strength; one expects that the magnetic energy
density should not exceed the energy density of the self-bound
quark matter. Based on this, the maximum field allowed is
estimated as

Bmax � ε2
matter

eh̄c
� (939 MeV)2

eh̄c
∼ 1.5 × 1020 G, (1)

We point out that this value is two orders of magnitude larger
than the one estimated for gravitationally bound stars assuming
uniform field and mass density.

B. Gravitationally bound stars with inhomogeneous
mass and field distributions

Let us consider now the case of gravitationally bound
stars. As is known, neutron stars are the remnants of type-II
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supernova explosions. In a neutron star, pressure rises from
zero (at the surface) to an unknown large value in the center.
Also, the density changes from surface values much smaller
than the saturation density, ρs ≈ 4 × 1011 g/cm3—the density
at which nuclei begin to touch—to inner values several
times the normal nuclear density ρN = 2.8 × 1014 g/cm3.
At such high densities, deconfinement can occur and the
star’s core can have quark matter. Thus, the cores of very
massive neutron stars are the best natural candidates for
the realization of the transition from hadronic matter to a
deconfined quark phase. This possibility was pointed out
by several authors a long time ago [19]. Stars with radius-
dependent density leading to confined nuclear matter in the
outer region and deconfined quark matter in the core are
called hybrid stars. For excellent reviews on this topic, see
Ref. [20].

What can we say about the star’s magnetic field in this
case? Well, we know that the stellar medium has a very high
electrical conductivity; hence, the magnetic flux is conserved.
Because the flux is conserved, during the formation of the
neutron star, that is, during the protoneutron star period, the
magnetic field strength should increase with the increase of
the matter density. In addition, some of the proposed phases
[12–21] that could be realized in the core of the compact
object that result at the end of the supernova explosion might
also contribute to increase the field strength even more. For
instance, if the resulting core is dense enough as to be in the
color superconducting color-flavor-locked (CFL) phase and a
magnetic field of strength comparable to the Meissner mass
of the “rotated” charged gluons were present, this field would
trigger an instability [21], which in turn would lead to the
generation of a gluon vortex condensate. The gluon vortex
state so produced behaves as a paramagnet, thus increasing the
total magnetic field in the core. This vortex phase is known in
the literature as the paramagnetic CFL (PMCFL) phase [21].
As these arguments indicate, the magnetic field in the core
could be higher than in the surface.

Let us briefly outline the field estimate obtained in Ref. [15]
for the case of homogenous field and mass distributions. From
the equipartition theorem under these conditions,

(
4

3
πR3

)
H 2

8π
= 3

5
G

M2

R
, (2)

they found that the maximum field was given by

Hmax = H�

(
M

M�

) (
R

R�

)−2

. (3)

Using H� = 2 × 108 G, and taking into account that a typical
neutron star has M � 1.4M� and R � (0.14 × 10−4)R�, one
easily estimates the maximum strength as Hmax ∼ 1018 G.

However, as we said earlier, we are interested in the more
realistic situation where the constraints of uniform mass and
field distributions are relaxed. With this aim in mind, let us
assume that both the mass density and the magnetic field
increase from the surface (r = R) to the star center (r = 0) and
let us consider the following parametrizations for the density
and magnetic field, respectively,

ρ = ρ0

[
1 −

(
r

R

)a]
, a > 0, (4)

H (r) = HS + (H0 − HS)
Rb − rb

Rb
, b > 0, (5)

where ρ0 is the density at the core; Hs and H0 are the magnetic
fields at the surface and inner core, respectively; and a and b

are parameters to be determined.
Using the mass density (4), a star with a spherical

configuration of radius R will have mass

M = ρ0V

(
a

a + 3

)
. (6)

The coefficient a must be positive, but apart from that it is
totally arbitrary. We can use typical values of neutron stars’
mass M = 1.4M� and radius R = 10 km, as well as realistic
core density estimates to find a region of physically acceptable
values for a. The results are shown in Fig. 1(a). The plot gives
the mass density coefficient a as a function of the parameter n

that characterizes how much larger than the nuclear density is
the star’s core density ρ0 = nρN , n = 1, 2, . . .. Notice that n

must be larger than 2 to obtain an acceptable (positive) value
of a. For n = 3, a realistic core density case, the parameter a

is positive and lies between 10 and 20.
As is a, the parameter b is also arbitrary. To obtain a

reasonable set of values for b we need to use the equipartition
theorem in our inhomogeneous star model. The gravitational
energy of a spherical distribution of mass with density (4) and
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FIG. 1. (a) The mass density coef-
ficient a vs the density parameter n.
(b) The core magnetic field H0 vs the field
coefficient b.
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radius R is

Wg = 2π

∫ R

0
ρ(r)φ(r)r2dr = −4π2Gρ2

0R5F (a), (7)

with F (a) given by

F (a) = 8a4 + 60a2 + 87a2

15(a + 2) (a + 3) (a + 5) (2a + 5)
. (8)

The gravitational potential φ(r), r � R in Eq. (7) is

φ(r) ≡ −G

∫
ρ(r ′) dV ′

|−→r − −→r ′|

= −2πGρ0R
2

[
a

a + 2
− 1

3

(
r

R

)2

+ 2

(a + 2) (a + 3)

(
r

R

)a+2]
. (9)

However, the magnetic energy corresponding to the field
configuration (5) is

Wm ≡ 4π

∫ R

0

H 2(r)

8π
r2 dr

= 1

2

∫ R

0

[
H0 − (H0 − Hs)

(
r

R

)b]2

r2dr

=
[

b2

3(b + 3) (2b + 3)
H 2

0 + b2

b(b + 3) (2b + 3)

×H0Hs + 1

2(2b + 3)
H 2

s

]
R3. (10)

Taking into account that magnetars’ surface fields are
∼Hs = 1014 G, and considering the value of a that corresponds
to �0 = 3�N ,1 we can use the equipartition of the magnetic (10)
and gravitational (7) energies, Wg = Wm, to graphically find
the inner field H0 as a function of the parameter b. The resulting
curve is plotted in Fig. 1(b). The smaller b is, the slower the
field decays from the inner region to the surface, and thus
the larger the inner field required to produce Hs = 1014 G in
the surface. For a value of b between 0.1 and 0.01 the core
field can be larger than 1019 G.

The preceding estimate for the field is model-dependent.
Even though we make no claim that this ad hoc model correctly
describes the real way the field varies with the radius in a hybrid
star, our derivation serves to illustrate how the more realistic
assumption of inhomogeneity can be consistent with stronger
field estimates in the core than those previously found in the
literature using homogeneous distributions. Because at present
there is no reliable way to know the exact dependence of the
density and field with the radius in a real neutron star, we
will have to wait for more observations to validate or not this
possibility.

We will see now, based on energy conservation arguments
within a microscopic analysis, that there is a natural scale for
the core magnetic field ∼1020 G. Given the energy density per

1Densities of this order are large enough for deconfinement.

baryon at the core of the gravitationally bound system,

ε

nA

= −p‖
nA

+ µ
N

nA

, (11)

where the baryon number nA = 1
3 (nu + nd + ns) = N/3, let

us assume that there will be some field value from where the
parallel pressure becomes negligible (p‖ � 0) and then let us
estimate the order of this maximum field just by reasoning that
the magnetic energy density should be at most as large as the
energy density of the baryon system. Then, neglecting the first
term in the right-hand side of Eq. (11), one has

ε

nA

= 3µ, (12)

and, consequently,

H̃ � 9µ2/eh̄c. (13)

For the phenomenologically acceptable value of µ �
400 MeV, we get from Eq. (13) that the magnetic field ∼1020 G.
As is shown later in the paper, the parallel pressure indeed
decreases with the field and for a system of free fermions
becomes negligibly small at a field strength of order 1019 G.

Thus, we conclude that field strength of 1020 G makes a
natural maximum scale for both self-bound and at the core
of high-density inhomogeneous gravitational-bound compact
stars.

III. ENERGY-MOMENTUM TENSOR AT H �= 0

For the sake of completeness and understanding, let us
outline the steps that lead to a symmetric and gauge invariant
energy-momentum tensor of matter and fields. The energy-
momentum tensor Tµν is associated with the Noether currents
of an infinitesimal space-time-dependent translation and in
terms of the Lagrangian density L(ϕ, ∂µϕ) of the theory it is
given by

T µν ≡ ∂L
∂(∂µϕ)

∂νϕ − Lδµν. (14)

This T µν tensor is the so-called canonical energy-momentum
tensor. In general, it is neither symmetric nor gauge invariant.
Nevertheless, these two shortcomings can be fixed by taking
advantage of the arbitrariness of T µν , which is defined up to a
total derivative

T µν → T µν + ∂ρM
µνρ, (15)

with Mµνρ = −Mρνµ. The redefinition (15) preserves the
conservation (∂µT µν = 0) and the value of the global energy-
momentum four-vector

P µ =
∫

d3xT µ0 =
∫

d3x(T µ0 + ∂ρM
µ0ρ), (16)

as long as Mi0µ vanishes sufficiently rapidly at infinity. Then
the energy and momentum, which are measurable quantities, as
well as their conservations, are maintained despite the addition
of a new tensor to the canonical one. With a suitable choice of
the tensor Mµνρ the energy-momentum tensor can be converted
into a symmetric and gauge-invariant one.

065802-4



EQUATION OF STATE OF A DENSE AND MAGNETIZED . . . PHYSICAL REVIEW C 82, 065802 (2010)

However, there is a general derivation that guarantees
from the beginning the symmetry and gauge invariance of
T µν (denoted by τµν from now on). The idea derives from
the fact that if the matter fields are coupled to gravity, the
energy-momentum tensor plays the role of the source of the
gravitational field. In this case, the introduction of gravity
will generalize the space-time transformations to the frame
of the general covariance of general relativity, rather than to
the particular Lorentz transformations. Thus, the program to
follow is to consider the starting theory in a curved space-time
geometry where the Minkowski metric ηµν is replaced with the
general metric gµν and the volume element d4x with d4x

√−g

(with g being the determinant of the metric), and then to obtain
the energy-momentum tensor through the invariance of the
action with respect to the variation of the metric [22]

− 1

2

∫
d4x

√−gδgµντ
µν = 0. (17)

Once a manifestly symmetric and gauge-invariant τµν tensor is
obtained by this procedure, we can switch off the gravitational
field by returning to the Minkowski metric (gµν → ηµν).

To find the energy-momentum tensor of a fermion system in
the presence of a magnetic field, we start from the Lagrangian
density,

L(ψ, Fµν) = LAµ
(Fµν) + Lψ (ψ, Fµν), (18)

where LAµ
(Fµν) denotes the Maxwell Lagrangian density and

Lψ (ψ, Fµν) that for the Dirac field in the presence of the
external magnetic field. They are respectively given by

LAµ
(Fµν) = − 1

4 FµνFµν (19)

and

Lψ (ψ, Fµν) = 1
2ψ(

−→
D µγ µ − m)ψ + 1

2ψ(
←−
D µγ µ − m)ψ,

(20)

with the right and left gauge covariant derivatives given,
respectively, by

−→
Dµ = i

−→
∂µ − eAµ (21)

and
←−
Dµ = −i

←−
∂µ − eAµ, (22)

where Aµ is the electromagnetic potential associated with the
external applied field.

A. Energy-momentum tensor of the Maxwell field

To find the manifestly symmetric and gauge-invariant
energy-momentum tensor for the Maxwell field, we have from
Eq. (17) that

τ
ρλ

Aµ
= −2√−g

δ

δgρλ

(√−gL̃Aµ

)
, (23)

where L̃Aµ
is obtained from Eq. (19) by explicitly introducing

the dependence on the metric tensor,

L̃Aµ
= − 1

4FµνFρλg
µρgνλ. (24)

Taking into account that

δ
√−g

δgρλ

= 1

2

√−ggρλ, (25)

δgµν

δgρλ

= −gρµgλν, (26)

one finds

τ
µν

Aµ
= 1

2
√−g

δ

δgµν

√−gFστFρλg
σρgτλ

= −FµρF ν
ρ − L̃Aµ

gµν. (27)

Returning to the Minkowski space and considering in
particular the case for a constant and uniform magnetic field
H along the x3 direction, we have from Eq. (27) that

τ
µν

M = (ε − p)uµuν + p(ηµν

‖ − η
µν

⊥ ), (28)

where ε = p = H 2/2, uµ is the medium four-velocity which
in the rest system takes the value uµ = (1,

−→
0 ), η

µν

‖ is the
longitudinal Minkowskian metric tensor with µ, ν = 0, 3,
and η

µν

⊥ is the transverse Minkowskian metric tensor with
µ, ν = 1, 2. The fact that the energy-momentum tensor of
the magnetized space becomes anisotropic, having different
pressures in the longitudinal p‖ and transverse p⊥ directions
(−p‖ = p⊥ = H 2/2), is attributable to the breaking of the
rotational symmetry O(3) produced by the external field. As a
consequence, the Minkowskian metric splits in two structures,
one transverse η

µν

⊥ = F̂ µρF̂ ν
ρ (where F̂ µρ = Fµρ/H denotes

the normalized electromagnetic strength tensor) and another
longitudinal η

µν

‖ = ηµν − F̂ µρF̂ ν
ρ .

B. Energy-momentum tensor of the Dirac field

To follow the previous approach in the case of spinor fields
is more involved. The problem is that there is no representation
of the GL(4) group of general relativity which behaves like
spinors under the Lorentz subgroup [23]. Then, to put fermions
in interaction with a gravitational field a new formalism is
required. The first formulation of spinor fields in Riemannian
space-time was done in [24] by introducing the so called
vierbein or tetrad fields [25]. The vierbeins V µ

α (x) connect
the Minkoskian metric ηµν with the metric tensor of a general
coordinate system gαβ by the map

gαβ = V µ
α (x)V ν

β (x)ηµν, (29)

where

V µ
α (X) ≡

(
∂y

µ

X

∂xα

)
x=X

, (30)

with y
µ

X being the normal coordinates of a local Minkowski
space at point X and xα the corresponding general coordinates
at that point. In this way, the geometries in general relativity
can be described in terms of a vierbein field instead of the
usual metric tensor field. We have adopted the convection
that the indices given by Greek letters at the beginning of
the alphabet (i.e., α, β, etc.) are related to magnitudes in the
general reference system, while those at the end (i.e., µ, ν,
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ρ, etc.) are related to magnitudes in the local Minkowsky
reference system.

However, the introduction of the vierbein fields also makes
it possible to generalize the algebra of the Dirac γ matrices
γ µ, given by the anticommutation relation

{γ µ, γ ν} = 2ηµνI (31)

to the curved space,

{γ α, γ β} = 2gαβI, (32)

with γ α = V α
µ (x)γ µ.

The Lagrangian density of the Dirac fields (20) can be
rewritten in curved space-time with the aid of the vierbeins
fields as

L̃ψ = 1
2

[
ψγ µV α

µ V ν
α ∇νψ − (∇νψ)V ν

α V α
µ γ µψ

] − mψψ,

(33)

where ∇ν = V α
ν (Dα + �α) is the covariant derivative in curved

space with connection �α(x) = 1
2�µνV β

µ (x)[ ∂
∂xα Vβν(x)] and

�µν = 1
4 [γ µ, γ ν] being he generator of the Lorentz group.

Taking into account that
√−g = det[V (x)], δgαβ = −(

gαγ V
µ
β + gβγ V µ

α

)
δV γ

µ ,

(34)

it is found that the energy-momentum tensor obtained from
Eq. (33) is [26]

τ
αβ

ψ (x) = V µα(x)

det[V (x)]

δ det[V (x)]L̃ψ

δV
µ
β

= i

2
[ψγ (α∇β)ψ − (∇(αψ)γ β)ψ] + gαβψmψ. (35)

Returning to Minkowski space (i.e., with the replacement
γ α → γ µ,∇α → Dµ), we obtain

τ
µν
ψ (x) = 1

2ψ[γ µ−→
D

ν + γ ν←−D µ
]ψ − ηµνψ[iDργ

ρ − m]ψ.

(36)

Let us assume a uniform and constant magnetic field H

along the x3 direction and use the Landau gauge Aext
µ =

Hx1δµ2 in the covariant derivative Dµ ≡ ∂µ + ieAµ. Then
we find

τ 00
ψ (x) = 1

2ψi∂0γ 0ψ − 1
2ψi∂0γ 0ψ − Lψ, (37)

τ 33
ψ (x) = ψi∂3γ 3ψ + Lψ, (38)

and

τ
jj

ψ (x) = iψ(Djγ j )ψ + Lψ, j = 1, 2. (39)

Once again, the asymmetry between the longitudinal and
transverse diagonal components of τ

µν
ψ is related to the

breaking of the O(3) symmetry. Moreover, because the Landau
gauge is not symmetric, we have that although a magnetic
field along the x3 direction conserves the rotation group
O(2) in the corresponding perpendicular plane, the asymmetry
of the potential introduces an apparent asymmetry in the
transverse indices (i.e., τ 11

ψ = τ 22
ψ ). This apparent asymmetry,

as we see in the following section, cannot be present in the

quantum-statistical average of τ
µν
ψ , which only depends on the

field and not on the potential.

IV. ENERGY AND PRESSURES OF THE DENSE
MAGNETIZED SYSTEM

As is known [22], in the reference frame comoving with the
many-particle system, the system normal stresses (pressures)
can be obtained from the diagonal spatial components of the
average energy-momentum tensor 〈τ ii〉, the system energy,
from its zeroth diagonal component 〈τ 00〉, and the shear
stresses (which are absent for the case of a uniform magnetic
field) from the off-diagonal spatial components 〈τ ij 〉. Then, to
find the energy density and pressures of the dense magnetized
system we need to calculate the quantum-statistical averages
of the corresponding components of the energy-momentum
tensor of the fermion system in the presence of a magnetic
field.

These calculations were carried out a long time ago in
Ref. [27], where it was used a quantum field theory (QFT)
second-quantized approach. There, a quantum-mechanical
average of the energy-momentum tensor in the eigenstates
of the Dirac equation in the presence of the uniform magnetic
field was first performed to get the corresponding quantum
operator in the occupation-number space. The macroscopic
stress-energy tensor was then found by averaging its quantum
operator in the statistical ensemble using the many-particle
density matrix. In this section we perform similar calculations,
but using a functional-method approach that makes it easier to
recognize the thermodynamical quantities entering in the final
results. Our procedure is also different from that of Ref. [27]
in the sense that we do not assume that the fermion fields
entering in the definitions of the energy and pressures satisfy
the classical equation of motions (i.e., the Dirac equations
for ψ and ψ), but the functional integrals integrate in all
field configurations. Then we keep the terms depending on
the Lagrangian density Lψ in Eqs. (38) and (39), while in
Ref. [27] the condition Lψ= 0 was considered.

The quantum-statistical average of the energy-momentum
tensor is given by

〈̃τρλ〉 = Tr[̃τρλe−β(H−µN)]

Z
, (40)

where

τ̃ ρλ =
∫ β

0
dτ

∫
d3x

[
τ

ρλ

Aµ
+ τ

ρλ
ψ

]
, (41)

and Z is the partition function of the grand canonical ensemble
given by

Z = Tre−β(H−µN), (42)

with H denoting the system Hamilonian, N the particle
number, β the inverse absolute temperature, and µ the
chemical potential. The partition function (42) can be written
as a functional integral [28]

Z =
∫

[dφ]e
∫ β

0 dτ
∫

d3xL(τ,x), (43)
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where L(τ, x) is the many-particle system Lagrangian density
(i.e., with µ = 0). The chemical potential enters in L(τ, x) as
a shift in the zero component of the electromagnetic potential
A0 → A0 − µ

e
[29].

A. Energy density

To calculate the system energy, 〈̃τ 00
M + τ̃ 00

ψ 〉, we should
notice that the external applied magnetic field behaves as a
classical field in this formalism. Thus, 〈̃τ 00

M 〉 = βV H 2

2 , being
the pure Maxwell contribution, with V denoting the system
volume.

To get the fermion contribution to the energy we will make
use of the functional integral. We start by calculating the
quantum-statistical average

〈̃τ 00〉 =
∫

[dψ][dψ ]̃τ 00e
∫ β

0 dτ
∫

d3xLψ (τ,x)

Z
, (44)

where

τ̃ 00 =
∫ β

0
dτ

∫
d3xτ 00(τ, x) (45)

and

Lψ = ψ[iγ 0(∂0 − iµ) − iγ 1∂1

− iγ 2(∂2 + ieHx1) − iγ 3∂3 − m]ψ (46)

is the many-particle Lagrangian density. Notice that in Eq. (44)
we are not integrating in the photon field Aµ because we are
taking the Maxwell field as an external classical field. Then,
to find the fermion contribution to the energy density we have
to calculate 1

βV
〈̃τ 00

ψ 〉, with τ̃ 00
ψ given from Eq. (37) as

τ̃ 00
ψ =

∫ β

0
dτ

∫
d3x(iψγ 0∂0ψ) ±

∫ β

0
dτ

∫
d3xψ

× [iγ 0∂0 − iγ 1∂1 − iγ 2(∂2 + ieHx1)

− iγ 3∂3 − m]ψ. (47)

Doing the variable change, τ → βτ , in the many-particle
partition function, we find

Z =
∫

[dψ][dψ]eβ
∫ 1

0 dτ
∫

d3xL′
ψ , (48)

where

L′
ψ = ψ

[
i

β
γ 0∂0 + µγ 0 − iγ 1∂1

− iγ 2(∂2 + ieHx1) − iγ 3∂3 − m

]
ψ. (49)

Then

β
dZ

dβ
=

∫
[dψ][dψ]

{
β

∫ 1

0
dτ

∫
d3xL′

ψ

− β

∫ 1

0
dτ

∫
d3xψ

iγ 0∂0

β
ψ

}
eβ

∫ 1
0 dτ

∫
d3xL′

ψ . (50)

Reversing the variable change (i.e., making βτ → τ ), we
obtain

〈̃τ 00
ψ 〉 = −β

[
(dZ/dβ)

Z
− µN

]

= −∂�

∂T
+ β� − βµ

∂�

∂µ
, (51)

where we introduced the grand canonical potential � =
− 1

β
lnZ, and took into account that 〈N〉 = −(∂�/∂µ)T ,V , with

N = ∫
d3xψγ 0ψ being the particle-number operator.

Taking into account that the grand canonical potential � is
related to the thermodynamic potential � by � = V �, that the
system entropy is defined as S = −( ∂�

∂T
)V,µ, and the particle

density by N = −( ∂�
∂µ

)V,T , we can add the pure Maxwell
energy density to Eq. (51) to get the system energy density
ε given by

ε = 1

βV

〈̃
τ 00
ψ + τ̃ 00

M

〉 = �f + T S + µN + H 2

2
. (52)

B. Longitudinal pressure

As in the energy case, to calculate the pressures we make
use of the functional integral. For the parallel pressure we start
by calculating the quantum-statistical average

〈̃τ 33〉 = 〈̃
τ 33
ψ + τ̃ 33

M

〉 =
∫

[dψ][dψ ]̃τ 33e
∫ β

0 dτ
∫

d3xLψ (τ,x)

Z
,

(53)

where

τ̃ 33 =
∫ β

0
dτ

∫
d3xτ 33(τ, x) (54)

and Lψ is given in Eq. (46).
For the matter field we have specifically

〈̃
τ 33
ψ

〉 =
∫

[dψ][dψ ]̃τ 33
ψ e

∫ β

0 dτ
∫

d3xLψ

Z
, (55)

with τ̃ 33
ψ given from Eq. (38) as

τ̃ 33
ψ =

∫ β

0
dτ

∫
d3x(iψγ 3∂3ψ)

+
∫ β

0
dτ

∫
d3xψ[iγ 0∂0 + µγ 0 − iγ 1∂1

− iγ 2(∂2 + ieHx1) − iγ 3∂3 − m]ψ. (56)

Now, making the variable change x3 → Lx3 in the partition
function, we have

Z =
∫

[dψ][dψ]e
∫ β

0 dτ
∫

d3x ′L′
ψ , (57)

where

L′
ψ = ψ

[
iγ 0∂0 + µγ 0 − iγ 1∂1 − iγ 2(∂2 + ieHx1)

− i

L
γ 3∂3 − m

]
ψ, (58)
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with L a scale factor in the x3 direction and
∫

d3x ′ ≡
L

∫
d2x

∫ 1
−1 dx3 = L

∫
d3x.

Then

L
dZ

dL
=

∫
[dψ][dψ]

{
L

∫ β

0
dτ

∫
d3xL′

ψ + L

∫ β

0
dτ

×
∫

d3xψ
iγ 3∂3

L
ψ

}
e
∫ β

0 dτ
∫

d3x ′L′
ψ . (59)

Reversing the variable change (i.e., making Lx3 → x3), we
obtain 〈̃

τ 33
ψ

〉 = L
(dZ/dL)

Z
= −L

T

(
d�

dL

)
, (60)

which can be expressed in terms of the thermodynamic
potential as

〈̃
τ 33
ψ

〉 = −V

T
�f , (61)

where V = LA⊥ was considered.
Following a similar procedure for the pure magnetic

contribution and taking into account Eq. (28), we find, adding
the matter and field contributions,

〈̃
τ 33
ψ + τ̃ 33

M

〉 = −V

T
�f − V

T

H 2

2
. (62)

Hence, the parallel pressure is given by

p‖ = 1

βV

〈̃
τ 33
ψ + τ̃ 33

M

〉 = −�f − H 2

2
. (63)

C. Transverse pressure

To find the fermion contribution to the transverse pressure
we start from

〈̃
τ ii
ψ

〉 =
∫

[dψ][dψ ]̃τ ii
ψ e

∫ β

0 dτ
∫

d3xLψ (τ,x)

Z
, (64)

where

τ̃ ii
ψ =

∫ β

0
dτ

∫
d3xτ ii

ψ (τ, x), i = 1, 2. (65)

The explicit form of the transverse diagonal components
of the energy-momentum tensor (39) in the Landau gauge are
given by

τ̃ 11
ψ = ψiγ 1∂1ψ + Lψ, (66)

τ̃ 22
ψ = ψ(iγ 2∂2 − eHγ 2x1)ψ + Lψ. (67)

Apparently, τ 11 and τ 22 are different, but this is a con-
sequence of the asymmetric Landau gauge we are using.
Because the magnetic field is along the x3 axis, there is an
O(2) symmetry in the x1-x2 plane. Hence, the macroscopic
pressures, which are obtained after the quantum-statistical
average is taken, have to be the same along the x1 and x2

directions (〈̃τ 11
ψ 〉 = 〈̃τ 22

ψ 〉). Thus, we can define the transverse
pressure as 〈̃

τ⊥⊥
ψ

〉 = 1
2

(〈̃
τ 11
ψ

〉 + 〈̃
τ 22
ψ

〉)
, (68)

with

τ̃⊥⊥
ψ = 1

2

∫ β

0
dτ

∫
d3xψ[iγ 1∂1 + iγ 2∂2

− eHγ 2x1]ψ + Sψ, (69)

where

Sψ =
∫ β

0
dτ

∫
d3xLψ. (70)

Taking into account that in a uniform magnetic field the
transverse motion of charged fermions is quantized in Landau
orbits with radii given in units of the magnetic length lH =
1/

√
eH , we make the variable change

x⊥
i → lH x⊥

i , x⊥ = (x1, x2), (71)

in the partition function

Z =
∫

[dψ][dψ]eS ′
ψ , (72)

where

S ′
ψ = l2

H

∫ β

0
dτ

∫
d3xψ

[
iγ ‖ · ∂‖ − il−1

H γ 1∂1

− il−1
H γ 2∂2 − l−1

H γ 2x1 − m
]
ψ. (73)

Taking the derivative of the partition function Z with respect
to the magnetic length, and then reversing the variable change
(lH x⊥

i → x⊥
i ), we obtain

lH

2

dZ

dlH
=

∫
[dψ][dψ ]̃τ⊥⊥

ψ eSψ = 〈̃
τ⊥⊥
ψ

〉 · Z, (74)

from where we have

〈̃τ⊥⊥
ψ 〉 = −βlH

2

d

dlH
(V �f ). (75)

Taking into account that

d

dlH
= ∂

∂lH
+

(
∂H

∂lH

)
∂

∂H
= ∂

∂lH
− 2Hl−1

H

∂

∂H
(76)

and that V = LA⊥ = Lπl2
H , we can rewrite Eq. (75) as

〈̃
τ⊥⊥
ψ

〉 = −βlH

2

[
2LπlH�f − 2V Hl−1

H

∂�f

∂H

]

= −βV �f + βV

(
H

∂�f

∂H

)
. (77)

Similarly to the longitudinal pressure case, the pure mag-
netic contribution is〈̃

τ⊥⊥
M

〉 = Vβ
H 2

2
, i = 1, 2. (78)

Finally, we can find the transverse pressure adding the
matter contribution (77) and the field contribution (78), as

p⊥ = 1

βV

〈̃
τ⊥⊥
ψ + τ̃⊥⊥

M

〉 = −�f − HMf + H 2

2
, (79)

where Mf = −(∂�f /∂H ) is the fermion-system
magnetization.
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D. Energy-momentum tensor covariant structure
for the magnetized fermion system

In analogy to Eq. (28) for the energy-momentum tensor
of the magnetic field, we give here a covariant decomposition
for the energy momentum tensor of the whole system con-
taining the matter and field contributions. In this form, we
summarize the results for the energy density and pressures
given in Eqs. (52), (63), and (79). To accomplish this goal, we
define the system thermodynamic potential as the sum of the
matter and field contributions

� = �f + H 2

2
. (80)

Then we have

1

βV
〈̃τµν〉 = �ηµν + (µN + T S)uµuν + HMη

µν

⊥ , (81)

where η
µν

⊥ was defined in Eq. (28), and M = −(∂�/∂H ).
In the quantum field limit, that is, when T = µ = H = 0,

the only term different from zero is the first one in the
right-hand side of Eq. (81). In that case the system has Lorentz
symmetry. If temperature and/or density are switched on, then
the Lorentz symmetry is broken, specializing a particular
reference frame comoving with the medium center of mass
and having a four velocity uµ = (1,

−→
0 ). This is reflected in

the second term of the right-hand side of Eq. (81). Finally,
when there is an external uniform magnetic field acting on the
system, the additional symmetry breaking O(3) → O(2) takes
place, and 〈̃τµν〉 get an anisotropy reflected in the appearance
of the transverse metric structure η

µν

⊥ in Eq. (81).

V. EQUATION OF STATE

As seen from Eqs. (52), (63), and (79), the system energy
density and pressures depend on the fermion system thermo-
dynamic potential �f . For the dense (µ = 0) fermion system
under an applied uniform magnetic field with Lagrangian
density (18) the thermodynamic potential is given by (see
Appendix)

�f (µ, T ,H ) = − qH

2π2

∞∑
n=0

d(n)
∫ ∞

0
dp3

×
[
εn + 1

β
ln(1 + e−β(εn−µ)) (1 + e−β(εn+µ))

]
,

(82)

where d(n) = 2 − δn0 is the spin degeneracy of the n Landau
level, and εn =

√
p2

3 + m2 + 2qHn is the energy of the
particle in the n Landau level with n = 0, 1, 2, . . . . In the
bracket of the right-hand side of Eq. (82) the first term is
the QFT contribution which is independent on the temperature
T and chemical potential µ, and the second term is the
statistical contribution depending on these two parameters.

The particle number density can be obtained from Eq. (82)
as

N = −∂�f

∂µ
= qH

2π2

∞∑
n=0

d(n)
∫ ∞

0
dp3

×
[

1

1 + eβ(εn−µ)
− 1

1 + eβ(εn+µ)

]
. (83)

We are interested in systems, as neutron stars, where the
leading parameter is the fermion density µ. Neutron stars cool
rapidly through neutrino emission. They can reach in a few
seconds temperatures T � 108 K [30]. Thus, in applications
to astrophysical compact objects, it is considered that the
stellar medium is highly degenerate, so usually the thermal
effects are neglected. Then, to find the zero-temperature limit
(β → ∞) of the thermodynamic potential, we consider only
the statistical part in Eq. (82),

�0
f = qH

2π2

nH∑
n=0

d(n)

×
[ ∫ √

µ2−a2
n

0
dp3

√
p2

3 + a2
n − µ

√
µ2 − a2

n

]
, (84)

where a2
n = m2 + 2qHn and nH = I [(µ2 − m2)/2qH ], with

I [· · ·] denoting the integer part of the argument. The zero-
temperature limit of the particle number density (83) is

N 0 = qH

2π2

nH∑
n=0

d(n)
√

µ2 − a2
n. (85)

The system magnetization depending on the chemical
potential can be found from Eq. (A22) in the Appendix as

M = −∂�
SQFT
f

∂H
= q

2π2β

∞∑
n=0

d(n)
∫ ∞

0
dp3

× ln[(1 + e−β(εn−µ)) (1 + e−β(εn+µ))] − q

2π2

∞∑
n=0

d(n)

×
∫ ∞

0
dp3

qHn

εn

[
1

1 + eβ(εn−µ)
+ 1

1 + eβ(εn+µ)

]
, (86)

and in the zero-temperature limit it takes the form

M0 = − q

2π2

nH∑
n=0

d(n)
∫ √

µ2−a2

0
dp3

(
εn − µ + qHn

εn

)
.

(87)

The EoS of the dense magnetized system at zero tempera-
ture will be given by the inter-relation of the energy density,
and the parallel and transverse pressures at zero temperature,
which can be obtained from Eqs. (52), (63), (79), (84), (85),
and (87), as

ε0 = �0 + µN 0, p‖0 = −�0, p⊥0 = −�0 + H
∂�0

∂H
,

(88)

where �0 is the general thermodynamic potential of the
system, given by �0 = �0

f + H 2

2 .
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FIG. 2. (a) System energy density
vs magnetic field for µ = 400 MeV.
(b) System pressures (parallel pressure
represented by the solid line; transverse
pressure by the dashed lines) vs magnetic
field for µ = 400 MeV.

In the case of quark matter, the asymptotically free phase of
quarks will form a perturbative vacuum (inside a bag) which
is immersed in the nonperturbative vacuum. This scenario
is what is called the MIT bag model [31]. The creation of
the “bag” costs free energy. Then, in the energy density �0,
the energy difference between the perturbative vacuum and the
true one should be added. Essentially, that is the bag constant
B characterizing a constant energy per unit volume associated
to the region where the quarks live. From the point of view
of the pressure, B can be interpreted as an inward pressure
needed to confine the quarks into the bag. Hence, in the case
of quark matter, Eqs. (88) get extra terms depending on B,

ε0 = �0
f + µN 0 + H 2

2
+ B, p‖0 = −�0

f − H 2

2
− B,

(89)

p⊥0 = −�0
f − HM0 + H 2

2
− B.

Because the relative sign between B and the magnetic energy
H 2/2 term is not the same for the parallel and transverse
pressures, the pure magnetic energy contribution cannot be
absorbed by the vacuum energy B. Taking into account that
the magnetic field varies in several orders from the inner core
to the star surface, the term H 2/2 applies a tremendous extra
pressure on the quark matter, but because of the anisotropy
between the longitudinal and transverse directions with respect
to the field alignment, the pressure coming from H 2

2 is negative
on the parallel pressure, while on the transverse pressure it is
positive.

The phenomenological parameter B is estimated taking into
account the underlaying dynamics and external conditions (as
temperature and density) of the system [32], but it cannot be
calculated from first principles owing to our present limitations
in dealing with nonperturbative QCD. In our analysis of the
magnetic field dependence of the EoS, we only consider the
free-fermion case, hence we take B = 0.

In Fig. 2, we show how the energy density and pressures
change with the magnetic field at fixed µ. We found that
the energy density and transverse pressure increase with the
magnetic field, while the parallel pressure decreases. Also we
have that, in our free-fermion model, for field strengths close
to 1019 G the parallel pressure becomes negative. Hence, field
strengths of that order can produce strong instabilities in the

star’s structure. It will be interesting to investigate this issue in
more realistic models that include particle interactions.

The splitting between the two pressures relative to their
weak field value,2

� = |p⊥0 − p‖0|
|p‖0(eB � µ2)| , (90)

is given in Fig. 3. There we can see that for µ = 400 MeV,
fields H � 1018 G have splitting rates � � 10. This result
indicates that for the field-strength range that can take
place in the inner core of magnetars, for example, the
pressure anisotropy can play an important role in the star
structure and geometry. A criterion to separate the isotropic
regime (p⊥0 = p‖0) from the anisotropic one can be

� � O(1). (91)

For the density value previously considered (µ = 400 MeV),
we have a threshold field of order 1017 G.

To determine for what field values the pure magnetic
contribution to the energy density and pressures becomes
important, we plotted the ratio between the total energy (i.e.,

2Notice in Fig. 2(b) that at weak field (eH � µ2) the two pressures
coincide.

FIG. 3. Splitting coefficient � vs magnetic field for µ =
400 MeV.
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FIG. 4. Ratios of system/matter energy density (a), parallel pressure (b), and transverse pressure (c) vs magnetic field for µ = 400 MeV.

the one having the matter and field contributions) and the
matter energy density in Fig. 4(a); that of the total parallel
pressure to the parallel matter pressure in Fig. 4(b); and the
corresponding one to the transverse pressure in Fig. 4(c). From
those graphs we have that the pure magnetic contribution
becomes significant for field strengths between one and two
orders smaller than µ2. Thus, for µ = 400 MeV, fields larger
than 1017 G will make a significant contribution in the system
energy and pressures through the H 2/2 term. Hence, in
astrophysical applications where the field strength in the inner
core of compact objects can be large enough, the pure field
contribution should be considered on equal footing as the
matter contribution in determining the parameters of the EoS. It
is worth noticing that the pure magnetic contribution becomes
significant for fields of the order of the threshold field for the
isotropic-anisotropic transition. This is not a coincidence, but
a consequence of the fact that the main contribution to the
pressure splitting,

p⊥0 − p‖0 = HM0 + H 2, (92)

comes from their magnetic term H 2. The term depending on
the magnetization M0 has an oscillatory behavior owing to the
Haas-van Alphen oscillations appearing at low temperature in
degenerate fermionic systems [33] (see Fig. 5). Nevertheless,
the Haas-van Alphen oscillations are not noticeable in Fig. 3

FIG. 5. System magnetization M times the magnetic field H vs
the magnetic field for µ = 400 MeV.

because their amplitudes are much smaller than H , so they can
be neglected in Eq. (92).

The threshold value of ∼1017 G we found is model
dependent. It is applicable to systems of free fermions under
certain parameter values. For other systems, such as cold dense
quark systems with superconducting gaps, the corresponding
threshold field should be determined.

Finally, in Fig. 6 the system EoS is plotted. There the
variation of the energy density vs the parallel pressure is given
in Fig. 6(a), and that with respect to the transverse pressure
in Fig. 6(b) for a fixed density (µ = 400 MeV) and a variable
magnetic field. Owing to the pressure anisotropy, the EoS in
this case should be given by a curve in a three-dimensional
representation with axes (ε, p‖, p⊥). In Fig. 6 we give the
projections of that curve in the two planes, both including the
ε axis.

VI. CONCLUDING REMARKS

In this paper we have shown that a relativistic dense
fermion gas under a sufficiently strong magnetic field has a
highly anisotropic EoS. For field strengths about two orders
smaller than µ2, the anisotropy effects begin to emerge, and
once the field reaches values one order smaller than µ2, they
cannot be neglected anymore because the splitting is ten times
the value of the pressure at zero field. The splitting of the
pressure in two terms, one along the field direction (the parallel
pressure) and the other perpendicular to the field direction
(the transverse pressure), should be taken into account in
astrophysical considerations when studying compact objects
that exhibit strong magnetic fields, as it may affect the structure
and geometry of the star.

At strong magnetic fields (H ∼ µ2/10), the pure magnetic
energy contribution εM , as well as the magnetic pressures p‖M

and p⊥M , were found to be as important as the corresponding
matter contributions εf , p‖f

, and p⊥f (see Fig. 4 for details).
Therefore, a sufficiently high magnetic field may actually
influence the EoS in two different ways: by modifying the
matter contributions to the energy density and pressures and,
as importantly, through the pure magnetic (coming from
the Maxwell term in the original Lagrangian) contribution to
the energy and pressures. The order of the fields required for the
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FIG. 6. System energy density mi-
nus the bag constant B vs the parallel
pressure (a) and vs the transverse pres-
sure (b), for magnetic fields in the range
0 < qH/µ2 < 1 and µ = 400 MeV.

two contributions to become comparable was found to be the
same as the field strength needed for the pressure anisotropy
to be relevant. We point out that the magnetic contribution
into the EoS has been proved to have significant effects in the
magnetohydrodynamics of quark-gluon plasma [34].

Our results are valid for relativistic systems of fermions
in the presence of a uniform and constant magnetic field.
These kinds of systems have been considered in the physics
of neutron stars, as well as quark stars. At present, it
is known that if the density is high enough to produce
a quark deconfined phase in the star core, the state that
minimizes the energy of such system will be a color su-
perconductor [35]. There exist already several papers where
the effect of the color superconducting gap was considered
in the energy density and pressure of highly dense quark
matter [36].

In spin-zero color superconductivity, the color condensates
in the CFL, as well as in the 2SC phases, have nonzero
electric charge. Then we could expect that the photon acquires
a Meissner mass which produces the screening of a weak
magnetic field (the well-known phenomenon of the Meissner
effect). Nevertheless, in the spin-zero color superconductor
the conventional electromagnetic field Aµ is not an eigenfield,
but it is mixed with the eighth-gluon G8

µ to form a long-
range field that becomes the in-medium electromagnetic field
Ãµ (i.e., the so-called “rotated” electromagnetic field) [37].
In a series of papers [38] there has been shown that the
color-superconducting properties of a three-flavor massless
quark system are substantially affected by the penetrating
“rotated” magnetic field and as a consequence, a new phase,
called MCFL phase, takes place. In the MCFL phase the gaps
that receive contributions from pairs of charged quarks get
reinforced at very strong fields producing a sizable splitting
as compared with the gaps that only get contribution from
pairs of neutral quarks. As the field decreases, the gaps
become oscillating functions of the magnetic field [39], a
phenomenon associated with the known Haas-van Alphen
oscillations appearing in magnetized systems [33].

Therefore, a realistic study of the EoS of stellar magnetized
dense quark matter should be formalized in the color supercon-
ducting MCFL phase. A preliminary study [40] already exists,
where the magnetic field effect was considered only in the
quark particle spectrum, but not in the gap, which was taken as
a fixed parameter. In a future publication [41], a self-consistent
investigation of the EoS in the MCFL phase, taking into

account the gap equations depending on the magnetic field,
will be presented.
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APPENDIX: THERMODYNAIC POTENTIAL FOR
A DENSE-MAGNETIZED FERMION SYSTEM

The thermodynamic potential, �f , in the presence of a
constant and uniform magnetic field has been previously
calculated using different methods at finite temperature and/or
chemical potential. For example, using the Schwinger proper
time method [42], �f was calculated in Refs. [43] and
[44] at T = 0 and introducing a chemical potential µ = 0,
respectively. In the Furry picture [45], �f was calculated at
T = 0 and µ = 0 in Ref. [46], and using the worldline method
at T = 0 in Ref. [47].

Here we present in detail the calculation of the thermody-
namic potential in the presence of a constant and uniform
magnetic field at T = 0 and µ = 0 using Ritus’s method.
This approach was originally developed for charged spin-1/2
particles [48] and later on extended to charged spin-1 bosons
[49]. Recently, it has been implemented for the case of spin-1/2
in an inhomogeneous magnetic field in reduced dimensions
[50]. This approach is based on a Fourier-like transformation
performed by the eigenfunction matrices Ep(x) which are
associated to the wave functions of the asymptotic states of
charged fermions in a uniform magnetic field. The Ep(x)
functions play the role in the magnetized medium of the
usual plane-wave (Fourier) functions eipx at zero field. The
advantage of this method is that the field-dependent fermion
Green function is diagonalized in momentum space, so having
a similar form to that in free space. Hence, this formalism
is very convenient to implement the statistical sum by the
imaginary time procedure needed to describe systems at finite
temperature and density. Also, the obtained Green function
in momentum space explicitly depends on the Landau levels.
This last result makes it particularly convenient to be used in
the strong-field approximation, where one can constrain the
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calculations to the contribution of the lowest Landau level in
the particle spectrum.

Ritus’s method has been successfully used in the context of
chiral symmetry breaking in a magnetic field [51], as well as
in magnetized color superconductivity [38,52].

The thermodynamic potential of the magnetized dense
system at finite temperature �f (H,µ, T ) is given by

�f (H,µ, T ) = �(H,µ, T )

V
, (A1)

where �(H,µ, T ) is the grand canonical potential (in func-
tional terminology, the effective action in the presence of
an external magnetic field at finite temperature and density),
which is given in terms of the inverse fermion propagator as

�(H,µ, T ) = 1

β
Tr ln Z = i

β
Tr ln G−1(x, x ′), (A2)

with the trace and logarithm taken in a functional sense and
G−1(x, x ′) being the fermion inverse propagator in space
representation. To make the transformation to momentum
space, because of the dependence of G−1(x, x ′) on the
electromagnetic potential of the external field Aext

µ = Hx1δµ2,
it is convenient to use the Ritus transformation

G−1(x, x ′) =
∑∫ d4pE

(2π )4 El
p(x)�(l)G̃−1

l (p)E
l

p(x ′), (A3)

where
∑

l

∫
d4pE

(2π)4 = i
∑∞

l=0
dp4dp2dp3

(2π)4 , and we introduced the Ritus
transformation functions

El
p(x) = E+

p (x)�(+) + E−
p (x)�(−), (A4)

with

�(±) = I ± iγ 1γ 2

2
(A5)

representing the spin up (+) and down (−) projectors, and
E

+/−
p (x) are the corresponding eigenfunctions,

E+
p (x) = Nle

−i(p0x
0+p2x

2+p3x
3)Dl(ρ),

(A6)
E−

p (x) = Nl−1e
−i(p0x

0+p2x
2+p3x

3)Dl−1(ρ),

with normalization constant Nl = (4πeH )1/4/
√

l!, Dl(ρ) de-
noting the parabolic cylinder functions of argument ρ =√

2eH (x1 − p2/eH ), and the index given by the Landau level
numbers l = 0, 1, 2, . . ..

The El
p functions satisfy the orthogonality condition [53],∫
d4xE

l

p(x)El′
p′ (x) = (2π )4δ̂(4)(p − p′)�(l), (A7)

with E
l

p ≡ γ 0(El
p)†γ 0, �(l) = �(+)δl0 + I (1 − δl0), and

δ̂(4)(p − p′) = δll′δ(p0 − p′
0)δ(p2 − p′

2)δ(p3 − p′
3).

The spin structure of the Ep functions is essential to
satisfying the eigenvalue equations

(� · γ )El
p(x) = El

p(x) (γ · p), (A8)

with pµ = (p0, 0,−√
2eHl, p3).

Using Eqs. (A7) and (A8), the inverse propagator in
momentum representation G̃−1

l (p) appearing in Eq. (A3) is

found from

G−1
l (p, p′) =

∫
d4xd4yE

l

p(x)[�νγ
ν + µγ 0 − m]El′

p′(y)

= (2π )4δ̂(4)(p − p′)�(l)G̃−1
l (p), (A9)

where

�µ = i∂µ − eAµ (A10)

and

G̃−1
l (p) = [p∗ · γ − m], (A11)

with p∗
ν = (ip4 − µ, 0,

√
2eHl, p3).

Substituting Eq. (A3) into Eq. (A2), taking the functional
trace, and using he orthogonality condition (A7), we obtain

�(H,µ, T ) = i

T
Tr ln

∫
dx

∫
dx ′δ4(x, x ′)

×
∑∫ d4p

(2π )4 El
p(x)�(l)G̃−1

l (p)E
l

p(x ′)

= iδ̂3
p(0)

T
Tr ln

∑∫
�(l)G̃−1

l (p)d3p̂. (A12)

In Eq. (A12), d3p̂ = dp0dp2dp3, and Tr denotes the remaining
spinorial trace. Now, taking into account that

δ̂3
p(0) = 1

(2π )3

∫ β

0
dx4

∫ ∞

−∞
dx2dx3 (A13)

and because G̃−1
l (p) does not depend on p2, for the integration

in p2 in Eq. (A12), we have∫ ∞

−∞

dp2

2π
=

∫ ∞

−∞

dp2

2π
e−i

p2p1
eH |p1=0

= 1

l2
H

δ̂p1 (0) = eH

2π

∫ ∞

−∞
dx1. (A14)

Substituting Eqs. (A13) and (A14) into Eq. (A12), we obtain
in Euclidean space (p0 → ip4)

�(H,µ, T ) = −eHVβTr ln
∞∑
l=0

∫ ∞

−∞

dp4dp3

(2π )3
�(l)G̃−1

l (p).

(A15)

Taking into account that �(l) separates the l = 0 Landau
level from the rest, substituting Eq. (A15) into Eq. (A1), and
because of the identity Tr ln Ô = ln det Ô, we obtain for the
thermodynamic potential

�f (H,µ, T ) = −eH

[∫ ∞

−∞

dp4dp3

(2π )3
ln det G̃−1

0 (p)

+ 2
∞∑
l=1

∫ ∞

−∞

dp4dp3

(2π )3
ln det G̃−1

l (p)

]
. (A16)

The fermion system at finite temperature can be described
by taking the discretization of the fourth momentum following
Matsubara’s procedure:∫ ∞

−∞

dp4

2π
→ 1

β

∑
p4

, p4 = (2n + 1)π

β
,

(A17)
n = 0,±1,±2, . . . .
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Taking into account Eq. (A11), after taking the determinant
in Eq. (A16), we obtain

�f (H,µ, T ) = −eH

β

∫ ∞

−∞

dp3

4π2

∞∑
l=0

(2 − δl0)

×
∑
p4

ln
[
(p4 + iµ)2 + ε2

l

]
, (A18)

where

ε2
l = p2

3 + 2|eH |l + m2. (A19)

Notice that in this approach the sum in the p4 term, which is
obtained in Eq. (A18), is formally similar to that appearing in
the free-particle thermodynamic potential (i.e., at H = 0 and
µ = 0) [28]. After summing in p4 we get

�f (H,µ, T ) = −
∫ ∞

−∞
dp3

∞∑
l=0

eHd(l)

4π2

×
[
εl + 1

β
ln(1 + e−β(εl−µ)) (1 + e−β(εl+µ))

]
.

(A20)

The ratio eHd(l)
4π2 , with d(l) = 2 − δl0, is the density of states per

Landau level. The factor d(l) is the spin degeneracy of Landau
levels with l = 0.

The thermodynamic potential (A20) has two contributions.
One that does not depend on the temperature and chemical po-
tential �QFT and the statistical one �SQFT, given, respectively,
by

�
QFT
f (H ) = − eH

4π2

∫ ∞

−∞
dp3

∞∑
l=0

d(l)εl, (A21)

�
SQFT
f (H, T ,µ) = − eH

4π2β

∫ ∞

−∞
dp3

∞∑
l=0

d(l)

× ln(1 + e−β(εl−µ)) (1 + e−β(εl+µ)). (A22)

As is known, �QFT(H ) has non-field-dependent ultraviolet
divergencies that should be renormalized (see Ref. [54] for
a detailed renormalization procedure of this term). After
renormalization, the well-known Schwinger expression [42],

�
QFT
f (H ) = − 1

8π2

∫ ∞

0

ds

s3
exp(−m2s)

×
(

esH coth(esH ) − 1 − 1

3
(esH )2

)
, (A23)

is found. In the calculations of the energy density and pressures
done in Sec. V we considered only the �SQFT contribution,
because for astrophysical applications one always has µ2 �
eH , and the leading contribution of �f will come from �

SQFT
f .
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