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ABSTRACT 36 

The objective of this study was to evaluate the spatiotemporal dynamics of large area 37 

mangrove deforestation, aquaculture pond building, and the subsequent abandonment of 38 

ponds in a large delta in Indonesia, namely the Mahakam Delta. So, we developed and 39 

applied a novel methodology for exploring the lifespan of aquaculture ponds. Using historical 40 

multispectral and radar data, the lifespans of aquaculture ponds across the delta were 41 

estimated via a chronological analysis of the landscape into four different states: primary 42 

mangroves→ deforested mangroves→ ponds → abandoned/inactive ponds.  Specifically, a 43 

combination of sequential classification and rule-based techniques were used to: 1) produce a 44 

time series of land cover maps from 1994 to 2015 and 2) quantify lifespans of aquaculture 45 

ponds in the delta. Results show that of the 110,000 ha of primary mangrove forests in the 46 

delta in 1994, 62% had been deforested by 2015, with a 4.5% annual rate of loss on average. 47 

The lifespan of aquaculture ponds in the delta varied between 1 and 22+ years, with most of 48 

the ponds having productive lifespans of 10 to 13 years. Ponds with relatively longer 49 

lifespans were located near the existing settlements in the delta. This study showed that the 50 

productive lifespan of most aquaculture ponds in deforested mangrove lands of Mahakam 51 

delta is relatively short, information that should be useful for developing appropriate 52 

management plans for the delta or similar coastal mangrove ecosystems. The abandoned 53 

ponds can potentially be rehabilitated for shrimp and fish production after applying 54 

appropriate restorative treatments or be targeted for mangrove restoration projects.  55 

 56 

KEYWORDS: Mangrove deforestation, Synthetic Aperture Radar (SAR), aquaculture 57 

ponds, Indonesia. 58 

 59 

 60 

 61 
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Key Points: 62 

• SAR data is useful for tracking dynamic changes in mangrove ecosystem. 63 

• Time series SAR data can be used to estimate lifespan of pond. 64 

• During 22+ years, over half of the mangrove forest in Mahakam Delta has been 65 

converted to aquaculture. 66 

 67 

 68 
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1. INTRODUCTION 91 

Mangrove forests along tropical coastlines have been massively deforested and 92 

converted to agriculture, fisheries, and infrastructure developments. Ecologically, mangrove 93 

forests serve important functions for coastal protection, conservation of biological diversity, 94 

and protection of coral reefs and seagrass beds (Duke et al. 2007; Guannel et al. 2016; 95 

Hogarth 2015; McIvor et al. 2012). Economically, mangroves are a source of charcoal, 96 

tannin, construction materials, household equipment, medicines, fish, shrimp, crab, vegetable, 97 

and raw material for pulp and paper (Abdullah et al. 2016; Primavera et al. 2019; Rizal et al. 98 

2018). Mangrove’s unique root systems prevent erosion, capture sediment, and filter 99 

pollutants that would otherwise flow out to the ocean (Chaudhuri et al. 2019; Kathiresan and 100 

Bingham 2001). Moreover, mangrove ecosystems sequester large quantities of carbon from 101 

the atmosphere and therefore are vital to the global carbon cycle and climate change 102 

mitigation (Alongi 2020). Mangroves are well known as the most carbon-rich forests in the 103 

tropics, containing several times the amount of carbon per hectare compared to upland 104 

tropical forests (Donato et al. 2011). 105 

Nearly one-third of the world’s mangrove forests have been lost to deforestation over 106 

the past 50 years (Alongi 2002; Barbier 2014). Along with coastal development, another 107 

primary cause of global mangrove deforestation is the development of shrimp farms to 108 

support a booming fisheries export industry (Barbier and Cox 2004; Hamilton 2020; Richards 109 

and Friess 2016), with the global demand for shrimp continuing to increase (Anderson et al. 110 

2019).  A study by Hamilton (2013) revealed that 51.9% of original mangrove areas have 111 

been deforested between the 1970s and post-2004, with commercial aquaculture accounting 112 

for 28% of total mangrove loss across eight countries: Indonesia, Brazil, Bangladesh, India, 113 

Thailand, Vietnam, Ecuador, and China. These countries are dominant in mangrove holdings 114 

and global production of aquaculture shrimp.  A recent FAO report has shown that the global 115 
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production of cultured crustaceans for 2018 was 8.63 million tons, of which 50% of the 116 

produced volume was dominated by the shrimp species Penaeus vannamei (Shinn et al. 117 

2018). In Indonesia, which contains ~26% of global mangrove forests (Hamilton and Casey 118 

2016), nearly one million hectares or one-fourth of its original mangroves have been 119 

converted to aquaculture farms since 1800, and the peak rate of mangrove to aquaculture 120 

conversion occurred between 1970 and 2003 (Ilman et al. 2016). There is a strong indication 121 

of global mangrove conservation success as indicated by lower deforestation rates in many 122 

countries (Goldberg et al. 2020). But close attention to some areas such as Malaysia, 123 

Myanmar, and Papua are still needed as their deforestation rates are well above the global 124 

average (Friess et al. 2020).    125 

There are currently ~250,000 ha of Indonesian aquaculture areas (or ‘ponds’ 126 

henceforth) that lay abandoned after they have been used for shrimp or fish production 127 

(Gusmawati et al. 2018). Pond abandonment typically is associated with and driven by  128 

various types of environmental degradation, such as soil compaction, the formation of acid 129 

sulfate soils in the bottom of ponds after a few years of active use, the advent of shrimp 130 

diseases such White Spot Disease (WSD), drop in the shrimp production due to pollution 131 

from the use of fertilizer and other chemicals, and the breach of pond gates and dykes due to 132 

a combination of high rainfall and high tide (Barbier 2012; Dierberg and Kiattisimkul 1996). 133 

In order to meet the increasing global shrimp demand, primary mangrove areas are 134 

continuously converted to ponds as others are abandoned in their degraded form. And yet, no 135 

maps currently exist showing the location of productive and abandoned shrimp ponds in any 136 

major mangrove region. Also, many mangrove areas are inaccessible or difficult to access, so 137 

effective monitoring programs are needed to document such conversion processes. Mapping 138 

spatiotemporal trends of large-scale mangrove deforestation, aquaculture ponds development, 139 

and the subsequent abandonment of ponds due to different biophysical and socio-economic 140 
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reasons is the first step towards understanding the dynamics of anthropogenically modified 141 

mangrove ecosystems and developing a sustainable regime for both shrimp production and 142 

mangrove conservation.  143 

A number of remote sensing studies using satellite and airborne multispectral images 144 

have mapped mangrove forests that vary in spatial resolutions and coverages (Aslan et al. 145 

2016; Gao 1998; Gao et al. 2004; Giri et al. 2015; Giri et al. 2011; Giri et al. 2007; Giri et al. 146 

2008; Green et al. 1998; Hamilton 2013; Hamilton and Casey 2016; Hansen et al. 2009; 147 

Heumann 2011; Myint et al. 2008; Rahman et al. 2013; Vo et al. 2013). Unfortunately, 148 

multispectral remote sensing using optical sensors is limited by the persistent cloud cover in 149 

the tropics, leading to inconsistent and inaccurate results. In contrast, Synthetic Aperture 150 

Radar (SAR) sensors penetrate clouds and therefore have the potential to provide consistent 151 

and systematic global datasets for accurately monitoring changes in tropical mangrove areas. 152 

Several studies have demonstrated that using SAR data in combination with optical and lidar 153 

data may result in more accurate maps of the coverage and, in some cases, structure of 154 

mangroves (Aslan et al. 2016; Bunting et al. 2018; Cougo et al. 2015; Held et al. 2003; 155 

Kovacs et al. 2013; Lagomasino et al. 2015; Lee et al. 2018; Lucas et al. 2014; Lucas et al. 156 

2007; Nascimento Jr et al. 2013; Rocha de Souza Pereira et al. 2012; Simard et al. 2006; 157 

Trisasongko 2009). 158 

In addition to mapping mangrove coverage and classification of mangrove species, 159 

several studies have used remote sensing data for mapping and monitoring aquaculture pond 160 

development in mangrove ecosystems (Duan et al. 2020; Dwivedi and Kandrika 2005; 161 

Gusmawati et al. 2018; Jayanthi 2011; Pattanaik and Prasad 2011; Prasad et al. 2019; Sridhar 162 

et al. 2008; Travaglia et al. 1999; Travaglia et al. 2004; Venkataratnam et al. 1997; Virdis 163 

2013; XU et al. 2013; Zhang et al. 2010). SAR data in particular, have been used for regular 164 

monitoring surface water condition in flooded areas (Canisius et al. 2019), which in turn is 165 



7 

 

very promising for aquaculture pond development mapping. Among these studies, only 166 

Gusmawati et al. (2018) mapped the abandoned ponds in Perancak, Bali, Indonesia, with 167 

accurate results and suggested that remote sensing data should be utilized in the planning 168 

process of rehabilitating the abandoned ponds.  However, for mapping the abandoned ponds, 169 

they used very high-resolution commercial satellite data, which have limited areal coverage 170 

and are not economically viable for large areas (e.g., for nationwide mapping).  171 

The objective of this study was to explore and quantify the spatiotemporal dynamics 172 

of large area mangrove deforestation, aquaculture pond development, and the subsequent 173 

abandonment of ponds. We developed and applied a suite of rule-based methods for that 174 

purpose. We used a 22-year time-series of satellite data from a severely deforested large 175 

mangrove region of Indonesia, namely the Mahakam delta, as a case study for our 176 

methodology and to investigate the land use change dynamics across the delta. A major point 177 

of emphasis was the estimation of lifespans of aquaculture ponds, which was achieved 178 

through a detailed chronological analysis of four different states of the disturbed mangrove 179 

land: 1. primary mangroves→ 2. deforested mangroves→ 3. ponds → 4. abandoned/inactive 180 

ponds. Quantifying the lifespans of aquaculture ponds is essential for developing appropriate 181 

management plans for coastal mangrove ecosystems, as the abandoned ponds can potentially 182 

be rehabilitated for shrimp and fish production after applying appropriate restorative 183 

treatments, or alternatively, the abandoned ponds can be targeted for mangrove restoration 184 

projects.  185 

 186 

2. MATERIALS AND METHODS 187 

2.1. Study Area 188 

Our study area was the Mahakam Delta in the East Kalimantan Province of Indonesia. 189 

Lying between 117°15’-117°45’E and 0°15-0°45’S and covering an area of approximately 190 



8 

 

110,000 ha (Fig. 1), the land is generally flat where mangroves forests are present (in pioneer, 191 

mature, and degraded stages). Prior to 1980, the delta was almost entirely covered with 192 

mangroves (Van Zwieten et al. 2006), of which, over 50% were pure Nypa (Dutrieux et al., 193 

2014). Mangroves of genus Sonneratia and Avicennia were abundant in the delta front, while 194 

genus of Rhizophora grew along the banks of distributaries of the lower delta. Nypa covered 195 

the delta’s central area, and many mixed mangroves (e.g., Avicennia, Sonneratia, 196 

Rhizophora, Bruguiera, Xylocarpus and Nypa) grew in the transitional areas between the 197 

delta front and the central zone. Other mixed mangroves (e.g., Oncosperma, Heritiera, 198 

Gruguiera and Excoecaria) covered the delta’s uppermost areas (Sidik 2010). 199 

 200 

Fig. 1 goes here. 201 

 202 

Since the late 1980s, mangroves in the Mahakam Delta have seen large-scale 203 

deforestation due to construction of ponds for growing tiger shrimp and milkfish (Bosma et 204 

al. 2012; Dutrieux et al. 2014). Mangrove deforestation in the Mahakam Delta spiked in the 205 

late 1990s, when the shrimp price increased sharply in global markets (Bourgeois et al. 206 

2002). However, during the 2000s, due to low productivity caused by acidification of the soil, 207 

accumulation of pollutants, and lack of nutrients in the ponds, along with a drop in the shrimp 208 

price in global markets, many of these ponds were left inactive and were ultimately 209 

abandoned (Dutrieux et al. 2014; Sidik et al. 2014) 210 

2.2. Times-Series of Satellite Data and Image Pre-processing 211 

 To generate the time-series of mangrove-to-pond conversion of the Mahakam Delta 212 

from 1994 to 2015, we used 63 images from three types of level-1 SAR data, namely the 213 

Image Precision (IMP), Single Looks Complex (IMS/SLC), and Ground Range Detected 214 

(GRD) products. All images came from four different generations of C-band sensors onboard 215 
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three SAR platforms (ERS-1/2, ENVISAT, and SENTINEL-1A) and were obtained from the 216 

European Space Agency's (ESA) Client for Earth Observation Catalogue and Ordering 217 

Services (EOLi-SA server: https://earth.esa.int/web/guest/eoli). The number of SAR images 218 

covering our study area for each year varied depending on their availability in the EOLi-SA 219 

archive. The complete list of available SAR datasets used in this study and their acquisition 220 

dates are presented in Table 1.  221 

 222 

Table 1 goes here. 223 

 224 

These 63 SAR scenes were processed, calibrated, filtered, resampled to 30 m spatial 225 

resolution, geo-rectified to the Universal Transverse Mercator (UTM) projection (zone 50S, 226 

WGS-84 datum), and the digital number (DN) values were converted to radar backscatter 227 

values (σo, unit of decibels, dB) using the Next ESA SAR Toolbox (NEST) software (version 228 

5.1).  The SAR data processing steps are shown in the complete data processing flowchart for 229 

this study, presented in Fig. 2. 230 

 231 

Fig. 2 goes here. 232 

 233 

  Because the number of SAR scenes varied from year to year, and the focus of this 234 

study was to produce yearly land cover maps, we had to perform some intermediate 235 

processing steps in order to create a composite SAR image for each year. First, we applied 236 

the minimum value composite (MinVC) technique to create a single layer derived from the 237 

available SAR images for a particular year. The MinVC technique is analogous to the 238 

maximum value composite (MVC) method introduced by Holben (1986).  The rationale of 239 

using MinVC in this study, and not the MVC, was: SAR images vary in their backscatter 240 
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values (σo) due to differences in acquisition times and seasons, but all SAR images share 241 

similar characteristics in relative σo reflected from certain ground surfaces. For example, 242 

waterbodies, such as ponds, tend to have the lowest σo compared to other terrestrial surface 243 

objects depicted in a SAR image (e.g., vegetation and bare land) because most of the incident 244 

radar pulses are reflected specularly by water in ponds. The use of MinVC technique was 245 

thus appropriate because one of our principal goals was to identify ponds. We produced 15 246 

MinVC SAR image outputs representing 1994, 1996-2001, 2003, 2004, 2006-2010, and 2015 247 

(data years).  The years 1995, 2002, 2005, and 2011-2014 are years when no SAR data were 248 

available from the EOLi-SA archive. 249 

  In order to normalize the wide ranges of σo present in the MinVC images from 250 

different years, we used the first year’s MinVC as the reference image (i.e., 1994) and used a 251 

radiometric normalization technique (histogram matching) to rescale the other 14 MinVC 252 

images. An additional geo-rectification adjustment was applied to each histogram-matched 253 

MinVC SAR images using a relatively cloud-free mosaiced Landsat-8 image (Path/Row 254 

116/60 and 116/61, May 1st, 2015) as the reference image. Landsat-8 images have a small 255 

geolocation uncertainty, i.e., less than 12 m circular error (Irons et al. 2012). The spatial 256 

precision obtained for these MinVC SAR images after adjustment with the Landsat-8 image 257 

was smaller than one 30-m pixel.  258 

  In addition to the SAR images, we acquired multispectral images with the lowest 259 

cloud cover available from Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI satellites for 260 

the data years (even these best-available Landsat images had 20-50% cloud cover). These 261 

images were downloaded from the U.S. Geological Survey Earth Explorer data portal 262 

(http://earthexplorer.usgs.gov/) and geocoded in the UTM projection system, zone 50S and 263 

WGS84 datum. Reflectance transformations of these Landsat images were not available when 264 

we downloaded them, so we used the atmospheric correction tool (ATCOR) in ERDAS 265 
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Imagine® software to convert the Landsat DN values into surface reflectance. These 266 

reflectance images were used in selecting training areas for land-cover classification of the 267 

SAR images, as described below. 268 

2.3. Classification Strategy for Time Series of Land Cover Maps 269 

2.3.1. Phase-1 classification 270 

The DN value of a SAR image pixel represents an estimate of the backscatter of 271 

objects on the ground. As a rule of thumb, higher backscatter indicates rougher targets and 272 

lower backscatter indicates smoother targets  (Li and Chen 2005). As a result, it is possible to 273 

distinguish primary mangrove forests, deforested mangroves, and aquaculture ponds by the 274 

different backscatter of each target class (because they have different surface roughnesses). In 275 

this study, using the histrogram of MinVC SAR images, the presence of water within the 276 

ponds is distinguishable by the histogram very low σo and thus a darker shade (Fig. 3). In 277 

contrast, deforested mangroves  have very high σo and appeared brighter on the SAR images 278 

(Fig. 3). Deforested mangroves produce high backscatter because the stubs and the large 279 

debris left after mangrove deforestation  induce corner-reflector or double-bounce effect, first 280 

from bare soil (horizontal) towards vertical stubs of deforested mangrove tree and then 281 

reflected from these vertical stubs back to the sensor (Proisy et al. 2000; Wang and Imhoff 282 

1993). Primary mangroves, on the other hand, usually have medium roughness, and they 283 

appear as moderately bright features in the SAR image as illlustrated in Fig. 3.  284 

 285 

Fig. 3 goes here. 286 

 287 

To identify training areas of aquaculture ponds and deforested areas, we used an RGB 288 

false color combination of SWIR, NIR, and Red reflectance bands of  a Landsat image for 289 

each year. Landsat images were used as reference to SAR images to identify training areas 290 
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because the spectral reflectance profiles of water, soil, and vegetation derived from 291 

multispectral imagery is well established (Jensen 2005). In this study, we considered that the 292 

mangrove areas in the Landsat imagery would have the spectral profile of vegetation, the 293 

deforested areas would have a similar spectral profile to soil, and the aqualture ponds would 294 

have the spectral profile of water. After locating these training areas, the σo of ponds and 295 

deforested areas in the MinVC SAR image were used as training samples to classify the 296 

entire delta using the Flexible Statistical Expert Based method (or FSEB, Aslan et al. 2016).  297 

 298 

Table 2 goes here. 299 

 300 

The FSEB method develops a statistical threshold for σo for each land cover class 301 

(such as pond) and identifies all pixels as being in that class. This method has been shown to 302 

provide a superior classification of mangrove-covered, deforested, and pond areas by 303 

minimizing the number of unclassified pixels (Aslan et al. 2016). The method is sequential 304 

and we classified the ponds first, followed by the deforested areas. After the ponds and 305 

deforested areas were classified, the remaining pixels were assigned to the primary forest  306 

class. The thresholds of σo for distinguishing aquaculture ponds vs. primary mangroves, as 307 

well as deforested mangroves vs. primary mangroves, varied among the individual MinVC 308 

SAR images, as shown in Table 2. These differences in σo threshold value may attributable to 309 

near range effect and weather condition as the fact that there is occasionally an increase in 310 

backscatter because of wind-induced roughness which can trigger waves on the ponds surface 311 

(Canisius et al. 2019). This first level of classification for mapping land cover is termed as 312 

‘phase-1’ classification in this study. The procedure of identification of training pixels with 313 

Landsat images and classification of the MinVC images was repeated for all 15 years of the 314 
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SAR images. Outputs of the phase-1 land cover maps were then used in the phase-2 315 

classification for generating a time-series of final land cover maps, as described next. 316 

2.3.2. Phase-2 classification 317 

After the phase-1 classification, we further categorized the deforestation class in each 318 

year’s image into two sub-categories: new deforestation and past deforestation. In each year 319 

when the phase-1 classification identified an area as deforested for the very first time, that 320 

area was assigned a new deforestation class in phase-2 classification for that year. In the next 321 

available year’s classification, that same area was termed as past deforestation. This 322 

differentiation was necessary because in typical mangrove deforestation, if a deforested area 323 

is not converted to aquaculture ponds for a long period of time, or if a pond is left abandoned 324 

for a long period of time, regrowth of mangroves or other coastal vegetation may occur and 325 

the σo in SAR images of these once-deforested land may gradually look like those of forested 326 

areas, thus introducing confusion between the estimates of primary forests and once-327 

deforested areas.  328 

In order to differentiate between primary forest and secondary vegetation regrowth, 329 

we analyzed the land cover maps produced in phase-1 classification using a rule-based 330 

method. The rule was: if an area was once identified as deforested, then that area would 331 

continue to be classified as ‘past deforestation’ in the subsequent years, even if that area’s 332 

SAR σo were classified as ‘forest’ in any of those subsequent years. The only exception was: 333 

if that area became classified as aquaculture pond in a subsequent year, the classification of 334 

that area was then changed accordingly. We also used a rule-based method for the 335 

aquaculture pond class: if in a given year an area was classified as aquaculture pond for the 336 

first time in the phase-1 classification, and then in a later year it was classified as anything 337 

other than aquaculture pond, we assigned a ‘non-pond’ class to that area for that specific later 338 

year in the phase-2 classification. If that same area was again classified as an aquaculture 339 
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pond in a subsequent year, then it was again assigned to aquaculture pond for that specific 340 

year. This practice was needed to calculate the lifespan of an aquaculture pond, as described 341 

in the next section. After completion of both phase-1 and phase-2 classifications, we 342 

produced 15 maps of land cover of the Mahakam Delta across the 22 years of our study 343 

period. 344 

2.4. Modeling the Lifespan of Aquaculture Pond 345 

 To estimate the lifespan of aquaculture ponds, i.e., the number of years a pond was 346 

active until it became abandoned, we first extracted pixels belonging to the pond class from 347 

each of the 15 time-series of land cover maps produced in phase-2 classification. Then we 348 

used another suite of rule-based methods, as follows. The very first year when a pixel was 349 

classified as aquaculture pond was marked as the beginning, and the very last year it was still 350 

classified as aquaculture pond was marked as the ending. The range of years from the 351 

beginning to the ending was identified as the lifespan of aquaculture pond pixel. Any pixel 352 

that was classified as pond in 1994 and remained pond till 2015 was assigned a value of 22+ 353 

years, since we did not know when the 1994 pond pixels became aquaculture pond (could 354 

have been converted to pond before 1994). If a pixel was classified as aquaculture pond for a 355 

few years, then non-pond for a few years and then again aquaculture pond for a few more 356 

years, we considered the very beginning and the very ending ‘aquaculture pond’ years to 357 

count the lifespan of that aquaculture pond pixel. This means we considered the interim non-358 

pond years as the time when the pond remained inactive but was not abandoned. Also, the 359 

‘gap’ years of our study were not included in the calculation of beginning or ending of 360 

aquaculture pond pixel. For example, if a pixel we classified as deforested in 1994 and as 361 

aquaculture pond in 1996 (no data available for 1995 – a gap year), we considered that the 362 

pixel became aquaculture pond in 1996. In reality, that pixel could have been converted to 363 

aquaculture pond in 1995, but as we did not have the data from 1995, we did not count that 364 
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gap year in estimating the lifespan of aquaculture pond pixel. A study by Sidik et al. (2014) 365 

has pointed out that 1.8 ha is the minimum size of ponds in the Mahakam Delta. As a result, 366 

we removed areas that were classified as ponds but were less than 1.8 ha in size. This 367 

decision also eliminated the problem associated with misclassification where a small area was 368 

classified as aquaculture pond, but it was in fact a part of a water-logged dike separating two 369 

adjacent ponds.  370 

2.5. Accuracy Assessment 371 

To examine the accuracy of our methodology in producing time series of land cover 372 

maps, we used field data from 210 ground validation points and land cover information from 373 

163 randomly created validation points based on Google Earth (GE) images. Ground truth 374 

data were collected during 2013 and the GE images were acquired from 2014 and 2015, so 375 

we used our 2015 MinVC SAR land cover map product for the accuracy assessment. The 210 376 

ground validation points were clustered in 14 different areas across the delta (Fig. 1) and 377 

were available from a study by Arifanti et al. (2019).  That study was designed to count 378 

potential CO2 emissions arising from mangrove conversion to aquaculture ponds, so the 379 

survey data only identifies abandoned ponds and primary mangroves. To evaluate the 380 

accuracy of our approach for active ponds and deforested lands, the 163 randomly selected 381 

GE validation points were used. Additionally, because the spatial distribution of field 382 

validation points was somewhat clustered (Fig. 1), we used the GE images to add coverage 383 

across the entire delta for the validation procedure.  384 

The random points were selected as follows. Using the Geospatial Modelling 385 

Environment (GME) software (Beyer 2014), we randomly assigned 1,000 validation points to 386 

fall at least 100 m apart from each other over the rectangular area covering the delta, as 387 

shown in the right-hand side of Fig. 1. After removing the points that fell on the sea, 388 

mainland, rivers, channels, cloud covered areas, or the delta areas where the ground was not 389 
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clearly visible in the Landsat image due to haze, a total of 163 validation points remained. Of 390 

the 163 validation points, 83 fell on ponds, 40 on primary forest, 24 on deforested 391 

mangroves, and 16 on abandoned ponds. The Kappa coefficient was used to evaluate the 392 

accuracy of 2015 land cover map classification and is presented in the form of an error 393 

matrix, which is a simple cross-tabulation of the mapped class label against the observed 394 

class in the validation data (Congalton and Green 2008).  395 

 396 

3. RESULTS AND DISCUSSION 397 

3.1. Mangrove Land Change Classification 398 

 The chronological sequence of the four phases of change from primary mangroves 399 

(green) → deforested mangroves (yellow) → ponds (blue) →abandoned ponds (red) caused 400 

by anthropogenic disturbance in the Mahakam Delta is strikingly apparent in our 22-year 401 

SAR time series (Figure. 4). Results from the accuracy assessment of the 2015 land cover 402 

map show a high overall accuracy of 88.7% (Foody 2002), with a Kappa statistic of 0.82. 403 

Also, the sequential classification and the rule-based approaches showed their effectiveness 404 

in classifying SAR images as illustrated by the producer’s and user’s (reliability) accuracy of 405 

cover types (Table 3). Given that the same C-band radar sensors obtained from EOLi-SA 406 

server and the same classification methodology were employed for all years of our study, we 407 

consider the accuracy of the land cover map classification for all other years to be similar to 408 

that of 2015.  409 

 410 

Table 3 goes here. 411 

 412 

Fig. 4 goes here. 413 

 414 
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3.2. Spatiotemporal Patterns of Mangrove Deforestation 415 

 In 1994, 95.7% of the study area was classified as mangrove forest (i.e., 96,300 of the 416 

100,630-ha totals; Fig. 5). These forests constituted a single, largely contiguous tract of 417 

primary mangroves that were only separated by small channels (Fig. 4, 1994 map). Another 418 

2.2% of the area was classified as deforested mangroves and the rest (2.1%) was classified as 419 

ponds. By 2015, the size of primary mangrove forests was reduced drastically to 37% of the 420 

study area (36,820 ha). Mangrove deforestation kept rising from 1994, with the massive 421 

change of 30,271 ha occurred in between the periods of 1997 and 2000 (Fig. 5, ‘total 422 

deforestation’). The trend of increased deforestation between 1997 and 2000, as shown by 423 

our analysis, is in line with the results reported by Sidik (2010), who suggested that the peak 424 

of mangrove deforestation in the Mahakam Delta occurred between 1996 and 2000. Sidik 425 

(2010) further pointed out that, as of 2007, the loss of mangrove forest in the delta was 426 

58,041 ha. Our findings are in support of that estimate, showing 58,790 ha of mangroves in 427 

the delta was deforested between 1994 and 2007. It is also evident that the deforestation rate 428 

decreased from 2000 to 2006 and no new deforestation occurred between 2006 and 2015 429 

(Fig. 5). Our results indicate that the proportion of the deforested mangrove lands relative to 430 

total area of the delta was minor in 1994 (i.e., 2.2%), but drastically increased to 34.36% in 431 

2000 and then showed a declining trend afterwards, standing at 11.7% in 2015 (Fig. 5). These 432 

findings agree with the results reported by Rahman et al. (2013), which pointed out that 433 

following 2002 the rate of deforestation in the Mahakam Delta declined every year and 434 

virtually stopped by 2009. Fig.5 also illustrates that although ‘abandoned pond’ was already 435 

showing an increasing trend since 1996, but significant rapid increment occurred in 2006 and 436 

afterward which may indicate declining in shrimp/fish production from aquaculture ponds in 437 

the delta. 438 

 439 



18 

 

Fig. 5 goes here. 440 

 441 

3.3. Pond Development Patterns 442 

 As illustrated in Fig. 5, our results also indicate that there was a time lag between 443 

mangrove deforestation and pond development. In 1994, for instance, the coverage of ponds 444 

and total deforested mangroves were 2.1% and 2.2%, respectively. Yet in 2000, the area of 445 

deforested mangrove had increased to 34.4% while the area of aquaculture ponds coverage 446 

showed a relatively small increment to 7.7%. The time lag between deforestation and pond 447 

construction occurred because shrimp and fish farmers establish aquaculture ponds by 448 

manually chopping the mangroves, digging canal/trenches, and building ponds. The process 449 

could take 1-3 years, depending on the financial support available to the farmers.  Results of 450 

our study revealed that ponds covered 13.5% of the Mahakam Delta in 2001, the coverage 451 

increasing rapidly to reach its peak in 2006, covering 46.2% of the delta (Fig. 5 and Table 4). 452 

The spatial extent of aquaculture ponds showed a rapid decrease from 2006 to 2010 because 453 

many of the ponds were overgrown by mangrove regeneration, although still active, or 454 

abandoned due to low productivity (Fig. 4, 5, and Table 4).   455 

 456 

Table 4 goes here. 457 

 458 

 Our estimates on the total area of aquaculture ponds in the Mahakam Delta differ 459 

from some previously published studies. A study by Van Zwieten et al. (2006) had reported 460 

that until 2001, 75% of the delta was covered with aquaculture ponds, whereas our results 461 

indicated that during the same time period the ponds covered only about 13.5% of the delta. 462 

Another study by Dutrieux et al. (2014) pointed out that the total coverage of aquaculture 463 

ponds in 2010 was 63,000 ha, while our findings showed it to be 24,320 ha in that same year. 464 
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The discrepancies between our results and Van Zwieten et al. (2006) can be explained by the 465 

fact that they counted all deforested mangroves areas in that year as aquaculture ponds when 466 

interpreting their satellite data.  In fact, it was clearly shown from the output of our two-phase 467 

classification results that there was a time lag between mangrove deforestation and 468 

aquaculture pond construction. In the case of 2010 discrepancies with Dutrieux et al. (2014), 469 

different satellite data sources and the methods of imagery interpretation used in their study 470 

resulted in differences in the extent estimation of aquaculture ponds. For instance, while 471 

Dutriex et al. (2014) used a visual interpretation method through digitizing of SAR data for 472 

classifying aquaculture ponds, we used a combination of a sequential classification and rule-473 

based techniques. As a result, both active and abandoned ponds have been counted as ponds 474 

in Dutrieux et al. (2014), while our approach was able to differentiate betwen active and 475 

abandoned aquaculture ponds. 476 

3.4. Lifespan of Ponds 477 

When evaluating whether to rehabilitate ponds after a fallow period or to use the land 478 

for another purpose such as a mangrove restoration, the lifespan and age of aquaculture ponds 479 

can provide an important piece of information for sustainable mangrove management. This 480 

study demonstrated that the lifespan of aquaculture ponds in the delta ranged from 1 to 22+ 481 

years, with approximately ¾ of ponds having a lifespan that was less than 13 years (Fig. 6). 482 

While aquaculture ponds in the Mahakam Delta have been reported to reach up to 25 years of 483 

active life (Setiawan and Pertiwi 2014), other research has shown the average lifespan of 484 

aquaculture ponds throughout Asia to be 5 to 10 years due to the attendant problems of self-485 

pollution and disease (Dierberg and Kiattisimkul 1996; Hariati et al. 1995). Likewise, other 486 

studies have pointed out that the lifespan of intensive shrimp farming does not exceed ten 487 

years (Boyd and Jason 1998). Our findings show with greater precision that the lifespan of 488 

aquaculture ponds is much more variable than previously known. This finding is significant 489 
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for relevant stakeholders in aquaculture industries, especially due to the problems in 490 

acquiring new lands for establishing aquaculture farms. 491 

 492 

Fig. 6 goes here. 493 

 494 

  The lifespan of aquaculture ponds is highly influenced by pond productivity and 495 

proximity to settlements. If a decline in productivity occurs and the locations of the ponds are 496 

in remote areas far from villages or settlements, they are more likely to be abandoned (Sidik 497 

et al. 2014). Although the ponds located near villages or settlements also decrease in 498 

production after a few years, the proximity of the villages or settlements would allow for 499 

maintenance and operational costs of the ponds to be much lower compared to those for the 500 

ponds that are in remote areas. Consequently, farmers would generally continue to cultivate 501 

shrimp/fish in the ponds near their villages despite lower yields. As a result, the lifespan of 502 

ponds near the villages and settlements tends to be longer. Our results showed that there is a 503 

propensity of the longer lifespan ponds being located near the existing villages and 504 

settlements in the delta, providing further evidence of the proximity argument as a cause of 505 

longevity of aquaculture ponds (Fig. 7).   506 

 507 

Fig. 7 goes here. 508 

 509 

4. CONCLUSIONS 510 

In the coastal areas of the tropics and subtropics, mangroves ecosystems have been 511 

deforested and drastically degraded for shrimp and fish production via aquaculture. 512 

Mangrove deforestation continues in many parts of the tropics as the global demand for 513 

shrimp continues to increase. Understanding the process and precise chronology of mangrove 514 
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deforestation, construction of shrimp and fish ponds, and the lifecycles of these areas is 515 

essential for developing best management practices. In this study, we presented a novel 516 

methodology for monitoring the land use dynamics of coastal mangrove areas. Using a 517 

combination of high-resolution SAR and Landsat images of the Mahakam Delta of Indonesia, 518 

along with a suite of rule-based methods of classification, we tracked the chronological 519 

sequence of four different states of mangrove land change from primary mangroves→ 520 

deforested mangroves→ ponds→ abandoned ponds from 1994 to 2015. Results of our study 521 

demonstrated that out of the 96,298 ha of mangrove forests in the Mahakam Delta, ~62% 522 

have been deforested during the study period, primarily for building shrimp and fish ponds. 523 

Pond construction rates varied over time, likely triggered by market demands, the physical 524 

condition of the ponds, and proximity to villages.  This study also showed, for the first time, 525 

that the average productive lifespan of majority of the ponds in the delta is 10-13 years, with 526 

ponds having longer lifespans typically found adjacent to villages. In 2015, the total area of 527 

abandoned ponds in the Mahakam Delta was 25,744 ha or 25.6% of the study area. Currently, 528 

there is no country-level map of the many abandoned ponds that are distributed across 529 

hundreds of Indonesian islands and other major mangrove countries. Our study provides a 530 

comprehensive method that can be used to map abandoned aquaculture ponds along all the 531 

mangrove coastlines of Indonesia and other countries as well. Understanding the land use 532 

change dynamics of mangrove forests is important for all stakeholders and for sustainable 533 

management of coastal resources across the globe.   534 
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Figure 1. Map of the study area (the Mahakam Delta) in East Kalimantan province of 

Indonesia. Locations of field-based validation points and Google Earth based random 

validation points are shown on the delta in the close-up on the right-hand side.  

 

 



 

Figure 2.    Flowchart of the data processing steps used in this study. 

 



 

 

Figure 3.  An example of a MinVC processed SAR image of 1997 (top right), false color 

composite Landsat-5 of 1997 (top left, R=SWIR, G=NIR, and B=Red bands) and 

corresponding histogram of the backscatter values (bottom). Radar backscatter ranges differ 

from Landsat pseudo color combinations for aquaculture ponds (black vs. dark blue), 

deforested mangroves (very bright vs. brown), and primary mangroves (moderate bright vs. 

green).  

 



 
Figure 4.   Land cover maps of 15 individual years representing the 1994-2015 period, 

showing different stages of conversion of mangroves to shrimp and fish ponds, and the 

subsequent abandonment of ponds in the Mahakam Delta. 

 



 
Figure 5.  Graphs showing trajectories of 22 years of land cover changes due to 

anthropogenic disturbance in the Mahakam Delta.  
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Figure 6.  Lifespan of ponds in the Mahakam Delta are shown as area vs. years, with the 

cumulative distribution shown in the inset.  

 



 
Figure 7.  Lifespan map of ponds in the Mahakam Delta shows ponds with longer lifespans 

were located near the villages. Locations of villages are adopted from (Persoon and 

Simarmata 2014). 

 



Table 1. List of the SAR datasets used in this study. 

No Date Acquired Sensor Mode Track No Date Acquired Sensor Mode Track 

1 8-Oct-94 ERS-1 IMP 89 33 18-Apr-01 ERS-2 IMS 418 

2 20-Nov-94 ERS-1 IMP 713 34 5-Sep-01 ERS-2 IMS 418 

3 3-Jul-96 ERS-2 IMP 418 35 19-Nov-03 ENVISAT IMS 418 

4 7-Aug-96 ERS-2 IMP 418 36 24-Dec-03 ENVISAT IMS 418 

5 23-Apr-96 ERS-1 IMP 418 37 4-Apr-04 ENVISAT IMP 418 

6 24-Apr-96 ERS-2 IMS 418 38 12-May-04 ENVISAT IMP 418 

7 28-May-96 ERS-1 IMS 418 39 16-Jun-04 ENVISAT IMP 418 

8 29-May-96 ERS-2 IMS 418 40 26-Jul-06 ENVISAT IMP 418 

9 3-Jul-96 ERS-2 IMS 418 41 5-Aug-06 ENVISAT IMP 67 

10 7-Aug-96 ERS-2 IMS 418 42 27-Aug-06 ENVISAT IMP 375 

11 11-Sep-96 ERS-2 IMS 418 43 14-Oct-06 ENVISAT IMP 67 

12 16-Oct-96 ERS-2 IMS 418 44 18-Nov-06 ENVISAT IMP 67 

13 25-Dec-96 ERS-2 IMS 418 45 10-Dec-06 ENVISAT IMP 375 

14 14-May-97 ERS-2 IMP 418 46 18-Feb-07 ENVISAT IMP 375 

15 29-Jan-97 ERS-2 IMS 418 47 8-Jul-07 ENVISAT IMP 375 

16 9-Apr-97 ERS-2 IMS 418 48 12-Aug-07 ENVISAT IMP 375 

17 18-Jun-97 ERS-2 IMS 418 49 16-Sep-07 ENVISAT IMP 375 

18 23-Jul-97 ERS-2 IMS 418 50 9-Mar-08 ENVISAT IMP 375 

19 27-Aug-97 ERS-2 IMS 418 51 13-Apr-08 ENVISAT IMP 375 

20 30-Sep-97 ERS-1 IMS 418 52 5-Oct-08 ENVISAT IMP 375 

21 1-Oct-97 ERS-2 IMS 418 53 14-Dec-08 ENVISAT IMP 375 

22 5-Nov-97 ERS-2 IMS 418 54 2-Jan-09 ENVISAT IMP 146 

23 10-Dec-97 ERS-2 IMS 418 55 15-Jan-09 ENVISAT IMP 339 

24 8-Jul-98 ERS-2 IMP 418 56 18-Jan-09 ENVISAT IMP 375 

25 14-Jan-98 ERS-2 IMS 418 57 3-May-09 ENVISAT IMP 375 

26 18-Feb-98 ERS-2 IMS 418 58 16-Aug-09 ENVISAT IMP 375 

27 3-Jun-98 ERS-2 IMS 418 59 14-Mar-10 ENVISAT IMP 375 

28 8-Jul-98 ERS-2 IMS 418 60 18-Apr-10 ENVISAT IMP 375 

29 15-Dec-99 ERS-2 IMP 418 61 23-May-10 ENVISAT IMP 375 

30 19-Jan-00 ERS-2 IMS 418 62 19-Nov-15 SENTINEL-1A GRD 32 

31 22-Feb-00 ERS-1 IMS 418 63 13-Dec-15 SENTINEL-1A GRD 32 

32 23-Feb-00 ERS-2 IMS 418           

 

 

 



Table 2.  Backscatter threshold values used for identifying ponds and deforested mangrove 

areas and their corresponding number of MinVC SAR training pixels used in the FSEB 

method. 

Year 

Aquaculture Pond Deforested Mangrove 

Threshold value 

(dB) 

# Pixels for 

training area  

Threshold value 

(dB) 

# Pixels for 

training area 

1994 -10.6 1520 -5.47 819 

1996 -11.96 1627 -6.29 895 

1997 -11.07 1326 -5.93 819 

1998 -9.38 1123 -4.81 1729 

1999 -9.74 1334 -5.07 2986 

2000 -9.96 710 -6 2381 

2001 -9.38 511 -5.62 630 

2003 -10.95 812 -6.49 1005 

2004 -12 611 ** ** 

2006 -12.08 366 ** ** 

2007 -10.05 1159 ** ** 

2008 -12.07 736 ** ** 

2009 -12.27 670 ** ** 

2010 -11.19 422 ** ** 

2015 -12.24 1954 ** ** 

**  No ‘new deforestation’ was detected since 2004. 

 



Table 3.  Accuracy matrix of 2015 land cover map showed producer’s, user’s, and kappa 

statistics for each class cover types. 

Class Name Area (ha) Reference Classified 
# 

Correct 

Producer’s 

(%) 

User's 

(%) 
Kappa 

Aquaculture pond 26,319 83 71 68 81.93 95.77 0.95 

Mangrove forest 36,817 210 205 193 91.9 94.15 0.87 

Deforested 

mangrove 

11,749 
24 30 23 95.83 76.67 

0.75 

Abandoned pond 25,744 56 67 47 83.93 70.15 0.65 

Totals 100,629 373 373 331    

Overall accuracy: 88.74%; Overall Kappa statistic: 0.82 

 

 



Table 4.  Total areas of aquaculture ponds developed and abandoned in different years of this 

study.  

Year 
Aquaculture Pond 

(ha/yr) 

Abandoned pond 

(ha/yr) 

1994 - - 

1995 994* - 

1996 994* 8 

1997 650 3 

1998 180 36 

1999 3351 43 

2000 2062 21 

2001 8130 70 

2002 6433* 118* 

2003 6433* 118* 

2004 8109 96 

2005 7729* 165* 

2006 7729* 165* 

2007 374 1139 

2008 597 3574 

2009 829 749 

2010 312 3726 

2011 1277* 834* 

2012 1277* 834* 

2013 1277* 834* 

2014 1277* 834* 

2015 1277* 834* 

* Average values due to unavailability of SAR data (see Fig. 6). For example, in 2015, a total 

of ~6,382 ha was classified as new aquaculture ponds. Since no data were available for 2011-

2014, we distributed the 6382 ha over 5 years (2011-2015), therefore allocating 1277 ha for 

each of these years. Similar procedure was applied for abandoned ponds. 
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