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Abstract

Periodically driven quantum lattice systems are nowadays reachable in the laboratory. Those systems,
which can host exotic non-equilibrium phases and phenomena, attract intensive theoretical studies. In
this thesis, we use field theoretical Keldysh-Floquet methods to study periodically driven topological
lattice systems, especially the non-interacting and interacting Rice-Mele models that can support
topological transports. With the theoretical understanding of the periodically driven topological phases,
we found dissipative stabilized quantized non-adiabatic charge pumps in a non-interacting lattice
model. This dissipative charge pump is observed in the wave-guide experiments. Further, we studied
the strongly correlated driven topological lattice systems through the non-equilibrium Floquet-Keldysh
dynamical mean-field theory. In our studies, we covered the adiabatic to high-frequency regimes and
weakly interacting to strongly interacting regimes for the interacting systems. This may give us a
qualitative picture of the strongly correlated quantum phases in periodically driven topological lattice
models.
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CHAPTER 1

Introduction

1.1 Introduction

Real-time dynamics and non-equilibrium phenomena appear in all areas of physics, including
cosmology [1], particle and nuclear physics [2], atomic physics, condensed matter physics [3],
chemical and biological systems [4] and many other areas. The examples are the inflation model of the
early universe, the quark-gluon plasma, the optical lattice dynamics, ultrafast dynamics of electronic
systems, molecular dynamics, and so on.

10−12 10−9 10−6 10−3 100 103 106 109 1012

eV

1.2 · 10−8 1.2 · 10−5 1.2 · 10−2 1.2 · 101 1.2 · 104 1.2 · 107 1.2 · 1010 1.2 · 1013 K
2.4 · 102 2.4 · 105 2.4 · 108 2.4 · 1011 2.4 · 1014 2.4 · 1017 2.4 · 1020 2.4 · 1023 Hz
6.6 · 10−4 6.6 · 10−7 6.6 · 10−10 6.6 · 10−13 6.6 · 10−16 6.6 · 10−19 6.6 · 10−22 6.6 · 10−25 s(eV−1)
2.0 · 105 2.0 · 102 2.0 · 10−1 2.0 · 10−4 2.0 · 10−7 2.0 · 10−10 2.0 · 10−13 2.0 · 10−16 m(eV−1)

peV neV µeV meV keV MeV GeV TeV

kHz THz
OL UFS Hopping

Mott-Hubbard

CMB
WiFi(2.4GHz)

γ60
27Co ΛQCD

TsQGP

LHC

Figure 1.1: A scale graph for the energy scales in nature. The optical lattice (OL) is at kHz, where the tunneling
rate or the hopping in fermionic atoms are about [5] 102 to 103 Hz, the interaction strength is tunable by
the Feshbach resonance. The Wi-Fi frequency, 2.4 GHz. The ultrafast spectroscopy [6] (UFS) at THz. The
plasmonic wave-guide has the hopping amplitude �0 = 0.144`m−1

= 1.44 × 105m−1 ∼ 0.03eV which is near
THz. The spectral radiance peak value of the cosmic microwave background (CMB) [7] which is about 160 GHz,
the corresponding temperature is about 3 K. The hopping energy and the on-site Hubbard interaction energy
is around eV, here we use [8] 4C2/* ∼ 0.13 eV where C is the hopping and * is the on-site interaction. The
strongly coupled quark-gluon plasma (sQGP) [2] critical temperature which is about 155 MeV. The quantum
chromodynamics energy scale [9] ΛQCD ∼ 332 MeV. The Higgs boson is about [10, 11] 125 GeV. The large
hadron collider (LHC) [12] center-of-mass energy, about 13 TeV. The labels are translated to Kelvin (K), Hertz
(Hz), second (s), and meter (m) for quick references.
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Chapter 1 Introduction

Two areas become especially active in recent years: atomic, molecule, and optical physics that
studies the light-matter interaction, and condensed matter physics that traditionally study dense matter,
solids, liquids, and gases. The representative platforms are optical lattices in the kiloHertz (kHz)
region and electronic systems in several electron volts (eV) regions. These activities are majorly
triggered by recent year’s experimental advances, which allow us to drive quantum systems in the
lab far from their static or equilibrium states and reach novel phases. Many theoretical works are
also motivated and are continuously improving our understanding of far-from-equilibrium quantum
systems. The energy scale of those two platforms can be found in Fig. 1.1 among other scales.

There are usually two ways to drive quantum systems. One way is to apply a short but strong pulse
that brings the system out of the previously static state at a certain time point or suddenly switch on/off
the external field. Another way is to continuously drive the system, usually periodically. Nowadays,
both of them are reachable in the lab, and in many cases, they belong to the different time scales of the
same experiment realization. In this thesis, we will majorly focus on the second case, that is, to apply
a periodic drive [3, 6, 13–15].
Periodically driven systems are so common that vast examples exist even in our daily life, such

as engines, fans, etc. For microscopic systems that are quantum mechanical with time-periodic
Hamiltonian, these systems are usually called Floquet systems. The name "Floquet" is from the French
mathematician, Gaston Floquet, who purposed a theorem, the Floquet theorem, to solve the ordinary
differential equations which have time-periodic parameters. The external periodical drive is thus
commonly called Floquet drive.

One of the strong motivations for applying the periodical drive is that in this way experimentalists can
create and control a system in a state that is inaccessible without drive. Many experiment achievements
are reached in recent years. For instance, in the optical lattice [15, 16] where model parameters can be
modulated by directly tuning the strength of the applied laser, the dynamical localization and photon
assistant tuning are realized through Floquet drive. With the periodic drives, coherent controls, for
instance, the control of the Bose-Hubbard model for superfluid to Mott insulator transition in the
optical lattices, are realized and achieved in various spatial dimensions 3B = 1, 2, 3. Even gauge fields
can be introduced through driving. People find that [17] the periodic drive can create gauge fields,
e.g., magnetic fields, artificially. Those gauge fields can be thought of as a realization of lattice gauge
theory, and can be used to realize topological states [15]. Although currently unreachable, if some
more sophisticated setup can be done in the future, a quantum simulation, i.e., analogue quantum
computing, for some very hard problems such as lattice quantum chromodynamics (QCD) would be
exciting.
In electronic systems [3, 6], similar effects can be observed like those in optical lattices, which

is not a surprise that one of the motivations to construct optical lattices is to quantum simulate the
electronic many-body systems in a cleaner system where theoretical understanding or prediction can
be verified or excluded in a conclusive way. There are interesting electronic systems, including the
materials that host the Mott-Hubbard transition, the heavy-fermion Kondo systems with strong electron-
impurity correlation, the topological insulators, the conventional superconductor, the high-temperature
superconductor and so on, can be driven by lasers out of the equilibrium. All those electronic systems
can be potentially studied by using Floquet drive, either to observe known phenomena in a "new axis"
or create some new phenomena. Especially the topological systems such as topological insulators
can have periodically driven extensions, and exotic phases are found, e.g., the anomalous Floquet
topological insulator [13], and Floquet time-crystal [18]. They are examples that the periodically
driven systems can have unique phases that static or equilibrium systems hardly reach.

2



1.2 Outline

All those realizations are often called "Floquet engineering" [6, 13]. As the name suggests,
controlling systems with periodic drives are practical and flexible.
Theoretically, many works have been done to understand Floquet systems for non-interacting

systems [6] and further for interacting and strongly correlated systems [3]. Those systems are studied
by various theoretical and numerical methods. For instance, numerically, the time-dependent density
matrix renormalization group [19] (t-DMRG), the non-equilibrium dynamical mean-field theory [3]
(neq-DMFT), the continuous-time quantummonte-carlo [20] (ct-QMC) and others. And analytically or
semi-analytically, they are studied by Bethe ansatz, perturbative and non-perturbative renormalization
group. Many challenges are still there for those techniques even without drive and near equilibrium.
And in the non-equilibrium and strongly periodically driven systems those problems, such as the
Monte Carlo sign problem [21, 22], are even amplified. An example is that the ct-QMC for DMFT
can only reach a very limited short time for the non-equilibrium real-time dynamics [3].
In this work, we study the periodically driven systems with topological structure through specific

lattice models by focusing on the field theoretical method [23–28], and Green’s function method [29].
Especially, we use Schwinger-Keldysh real-time Green’s function and self-consistent method, e.g., the
dynamical mean-field theory. These theoretical tools will give us an accessible and clear way to study
Floquet systems. Some more introductions can be found in the separated chapters.

1.2 Outline

Here we give a short outline of this thesis. Chapters 1-5 are reviews and derivations of theoretical
methods. Chapters 5 and 6 include computations of models and numerical results. Chapter 2-7 will
be organized as follows:

Chapter 2 We review some theoretical tools that are commonly used for studying strongly correlated
systems, especially the basics of the Dyson-Schwinger equations and their extensions, and many of
the useful equations. I focus on the correlation functions to make the chapter concrete and in a finite
length. That means we will skip many details, for instance, the path/functional integral construction or
operator/second quantization.

Chapter 3 We review the so-called Keldysh method or real-time Green’s functions which allow a
field theoretical description for far-from-equilibrium quantum systems. The Keldysh method will
allow us to compute observables from the =-point correlation functions of the non-equilibrium systems,
mostly within the usual field theoretical framework.

Chapter 4 We review the topological insulators and their periodically driven generalizations, Floquet
topological insulators by using geometry and topology.

Chapter 5 We discuss the Floquet theorem and its applications, especially the Floquet representations
of real-time Green’s functions. We also discuss the heating problems of Floquet systems briefly.

Chapter 6 We use the Rice-Mele model as an example, we reviewed the Thouless pump and its
properties in the Floquet picture. Then in collaboration with the experimental group, we studied a
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Chapter 1 Introduction

novel dissipative Thouless pump in photonic waveguides in detail, which is based on our understanding
of the usual Thouless pump.

Chapter 7 We study the Rice-Mele Fermi Hubbard model as an example of the periodically driven
strongly correlated interacting quantummany-body systems. The tool we choose is the Floquet-Keldysh
dynamical mean-field theory with iterated perturbation theory (IPT) solver. In this chapter, we also
discuss the slave-boson technique and non-crossing approximation (NCA) for the single impurity
Anderson model and its Floquet-Keldysh form. The formalism is re-derived. We give some outlooks
for this thesis at the end of this chapter.
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CHAPTER 2

General field theory: Dyson-Schwinger equations

The quantum theory with many degrees of freedom can be defined in different ways, one of those ways
is to define all n-point correlation functions and their relations to each other. Key equations are the
celebrated Dyson-Schwinger equations (DSE) and their generalizations, such as n-particle-irreducible
(=-PI) methods and functional renormalization groups (FRG). One can regard those Dyson-Schwinger
equations as a set of exact "quantum equations of motion". Formally, they are infinitely coupled and
truncations are needed in practical computations. I will briefly review those general field theoretical
methods, DSE, =-PI, and FRG, here.

2.1 Generating functional and correlation functions

Here I use condensed notations which follows [30] for simplicity and clarity.
The generating functional of the =-point time-ordering correlation functions [30, 31] is the central

and basic quantity of the quantum field theory and quantum statistical field theory. One can write the
generating functional / in a compact form as

/ = Tr
[
d0)̂C exp

{
i
∫
x,C(G0)

�
" (G)q̂" [î] (G)

}]
(2.1)

Here we use the interacting picture of the full Hamiltonian without external source. Correlation
functions can be generated by first applying suitable functional derivatives of the � and then set � = 0.
The summation of same indices " are implied. The G = (G0

, G
8) is the space-time coordinate. The

d0 is the density matrix at the initial time G0
= C = C0. The

∫
x,C(G0) is the shorthand notation of∫

C(C) dC d3BG, where 3B = 3 − 1 is the spatial dimension. Here we used the general integration contour
C(C) on the complex time plane C ∈ C for later convenience.1 The Heisenberg operator q̂ represents
the fundamental field î(G) and all their composites q̂[î]. The set of fundamental field î can be
so-called superfield, i.e. a vector of all fields that are included in the action ([î]. For instance, if we
include only one fundamental fermion field, q̂[î] = î = (k, k̄), where k̄ is the canonical conjugate
of k.

1 We will discuss / again in the Keldysh theory chapter, there the contour time is used.
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Chapter 2 General field theory: Dyson-Schwinger equations

The product �" q̂" = �
"
W"# q̂

# and the metric W will be defined later. We also define2

�
"
q̂" =

8=#∑
8=1

�
U1, · · · ,U=8 q̂U1, · · · ,U=8

(2.3)

where # is the number of the tensorial field, and =8 is the number of the tensor index of the 8-th
tensorial field. It is clear that the index " can represent not only one vector component U1, but also a
set of tensorial components with different number of indices {U1, U1U2, · · · }. An example would be
# = 2 with =1 = 1 and =2 = 2, where

�
"
q̂" = �

U1 q̂U1
+ �U1U2 q̂U1U2

(2.4)

Note the symmetries of �U and �U1U2 needs to be consistent with the symmetries of q̂U and q̂U1U2
.

We can simplify the notation even further by defining∫
x,C(G)

�
" (G)q̂" (G) ≡ �

a
q̂a (2.5)

and [30] the ultra-local metric Wab = XC (G − G
′)W"# . Where the metric for q̂a is

⊕#8=1
(
⊗=8W

)
(2.6)

The metric should take care of the statistics of the fields, where the order of the indices and the number
of indices for Bose/Fermi fields are taken into account. To achieve those proper ordering, we will use
the following definitions

q̂
a
= W

ab
q̂b and q̂a = q̂

b
Wba (2.7)

W
a

b = W
ac
Wcb = X

a
b and W

a
b = W

ac
Wcb = (−1)abXab (2.8)

(−1)ab = (−1)number of fermionic indices in a (2.9)

We used in (2.7) the Northwest-Southeast notation, i.e., the lower indices are on the right-hand side.
The above metric is diagonal for bosons or gauge (boson) fields. And it is anti-symmetric for fermion,
W01 = −W01 with 0, 1 fermionic indices.

As an example, we can consider the case for a single fermionic field a = 0, and î0 = (k̂, ˆ̄k). In
this case, the contraction can be written down explicitly

î0 = (k̂, ˆ̄k), �0 = (�k̂, � ˆ̄k), W
01
=

(
0 −1
1 0

)
(2.10)

2 This is so-called deWitt’s condensed notation [32]. The full version is

X�[�]
X�a

≡ �,a , �
a
�a ≡

∫
G∈"

∑
U

�
" (G)�" (G)d

3
G (2.2)

With suitable normalization assumed. However, to use a comma, for instance, �,a , to represent the functional derivative
is not always convenient, and I will mostly avoid to use it, but use variation symbol X or m, and use the superscript �(=) to
represent =-th derivatives.
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2.1 Generating functional and correlation functions

�
0
î0 = W

01
�1 î0 = î

0
�0 =

∫
C(G)

� ˆ̄k (G)k̂(G) − �k̂ (G)
ˆ̄k(G) (2.11)

Clearly the number of the fermionic index in the above is 1, because there is only one index and
it is fermionic. The source terms here share the statistics of the corresponding fields, which are
anti-commuting. We can also write down the metric for the vector “super field” q̂0 = (î, �̂, k̂, ˆ̄k) and
q̂
0
= W

01
q̂1 = (î, �̂, ˆ̄k,−k̂).

W
01
=

©­­­«
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

ª®®®¬ (2.12)

Where W = Wi ⊕ W� ⊕ (Wk ⊗ Wk̄) is understood.

With the above notations, the path integral representation can be written done immediately [30, 33]
in a very compact form

4
i,
= / = Tr

[
d(C0)

∫
d[î] exp

{
i([î] + i�a q̂a [î]

}]
(2.13)

Where the d[î] is the path/functional integral measure. The , is sometimes called Schwinger
functional [30]. Note that here the fields in the path integral (functional integral) should be understood
as the bosonic coherent state eigenvalues or the Grassmann numbers.

Although the path integral quantization or the canonical quantization are very useful, the general
structure of all correlation functions, and thus the full quantum problem, can be formally written down
through the Schwinger functional and functional calculus. Those relations for correlations function
are then free of quantization schemes.

As we already defined, the Schwinger functional reads

, [�] = −i ln / [�] (2.14)

Diagrammtically, it is the sum of all connect vacuum diagrams [34]. Here I keep the "i" rather than
use the Euclidean notation in the reference [30]. In later sections we will also use the Euclidean
notation. We summarize the noations in the Table. 2.1. It is not essential for the general properties
of the generating functional or the correlation functions. Here, to transfer to Pawlowski’s notation,
we can Wick rotate C → iC and flip the sign of the sources (current), the definition of the Schwinger
functional also needs to be changed accordingly. For practical uses, the real time and imaginary time
have some important differences, which we will not discuss here.

With the above definition of, , the normalized expectation value of operator �̂ can be written as

� [�] = 〈�̂ [�]〉 = 4−i, [� ]
�̂ [�, X

iX�
]4i, [� ] (2.15)

All quantities in the quantum field theory can be defined through a proper choice of operator �̂ [�, X
iX� ]

and its expectation values � = 〈�̂ [�]〉.

Now we can define many important quantities in field theories. The normalized =-point correlation
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Chapter 2 General field theory: Dyson-Schwinger equations

functions can be written as

〈�̂ (# )a1 · · ·a=〉 = 〈
#∏
8=1

q̂a8
〉 (2.16)

which can be generated by the functional derivatives

�
(# )
a1 · · ·a= = 〈�̂

(# )
a1 · · ·a=〉 = 4

−i, [� ]
(
#∏
8=1

X

iX�a8

)
4

i, [� ] (2.17)

The operator �̂ (# ) is then
∏#
8=1

X

iX�a8 .

Moreover, we can define the second functional derivation of the Schwinger functional, [�]

i�ab ≡ i, (2)
ab
≡ X

iX�a
X

iX�b
i, [�] = � (2)a1a2

− � (1)a1
�
(1)
a2

(2.18)

It is the two-point connected Green’s function. The one-point mean-field q = 〈q̂〉 can be also reached
by

qa [�] ≡
X

X�a
, [�] (2.19)

The chain rule can be written down as well

X

iX�a
=
Xqb

iX�a
X

Xqb
= i�ab

X

Xqb
(2.20)

X
2
, [�]

X�
a
X�

c

X
2
Γ[q]

XqcXqb
= W

b
a (2.21)

With all those definitions we can derive many useful equations for =-point correlation functions and
vertices.

2.2 Dyson-Schwinger equations

Dyson-Schwinger equations (DSEs), as a set of quantum equations of motion can be used to define
the field theory and represent a full description if without truncation. Here I briefly review DSEs.

2.2.1 Dyson-Schwinger equations

We highly follow [30] and [35, 36] and [34], the derivation can be found in many other books, articles
and reviews, for instance [26, 28, 33, 37].

Use the partition function (2.13) the standard Dyson-Schwinger equation (DSE) is a “quantum
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2.2 Dyson-Schwinger equations

Real time notations Euclidean notations

4
i,
= / =

∫
d`[î] exp

{
i([î] + i�a q̂a [î]

}
4
,
= / =

∫
d`[î] exp

{
−([î] + �a q̂a [î]

}
� [�] = 〈�̂ [�]〉 = 4−i, [� ]

�̂ [�, X
iX� ]4

i, [� ]
� [�] = 〈�̂〉 = 4−, [� ] �̂ [�, X

X�
]4, [� ]

�
(=)
a1 · · ·a= = 〈�̂

(=)
a1 · · ·a=〉 = 4

−i, [� ]
(∏=

8=1
X

iX�a8

)
4

i, [� ]
�
(=)
a1 · · ·a= = 〈�̂

(=)
a1 · · ·a=〉 = 4

−, [� ]
(∏=

8=1
X

X�
a8

)
4
, [� ]

i�ab ≡ i, (2)
ab
≡ X

iX�a
X

iX�b
i, [�] = � (2)a1a2

− � (1)a1
�
(1)
a2

�ab ≡ ,
(2)
ab
≡ X

X�
a

X

X�
b, [�] = � (2)a1a2

− � (1)a1
�
(1)
a2

X,

X�
a = qa

X,

X�
a = qa

X

iX�a =
Xqb
iX�a

X
Xqb

= i�ab
X
Xqb

X

X�
a =

Xqb
X�

a
X
Xqb

= �ab
X
Xqb

, [� (q)] = qa
XΓ[q]
Xqa

+ Γ[q] = qa�
a + Γ[q] , [� (q)] = qa

XΓ[q]
Xqa

− Γ[q] = qa�
a − Γ[q]

XΓ[q]
Xq

= −� XΓ[q]
Xq

= �

,
(2)
ac =

X
2
, [� ]

iX�a iX�c = −
Xq

c

X�
a ,

(2)
ac =

X
2
, [� ]

X�
a
X�

c =
Xq

c

X�
a

Γ
(2)
cb
=

X
2
Γ[q]

Xqc Xqb
= − X�

b

Xq
c Γ

(2)
cb
=

X
2
Γ[q]

Xqc Xqb
= X�

b

Xq
c

X
2
, [� ]

iX�a iX�c
X

2
Γ[q]

Xqc Xqb
= (−1)2 Xq

c

X�
a
X�

b

Xq
c = W

b
a

X
2
, [� ]

X�
a
X�

c
X

2
Γ[q]

Xqc Xqb
=
Xq

c

X�
a
X�

b

Xq
c = W

b
a

Table 2.1: Summary of conventions for the real time notation and the Euclidean notation.

continuity equation”3

X/ [�0]
Xq̂0

=

∫
d[q̂] X

Xq̂0
4

i( [ q̂]+i�0 q̂0 = i
∫

d[q̂] X
Xq̂0

4
i( [ q̂]+i�0 q̂0

(
X(

Xq̂0
+ �0

)
= 0 (2.23)

Here we restrict ourselves to the (1PI) case, with only one index per field a = 0 and the measure is
d`[î] = d[q̂]. Define operator �̂DSE of the Dyson-Schwinger equation

�̂DSE = � +
X(

Xq̂

����
q̂= X

X�

(2.24)

Now the Dyson-Schwinger equation is
〈�̂DSE〉 = 0 (2.25)

3 The general DSE is defined as [30] ∫
G[î]

(
d[î]Ψ̂[q̂]4i( [ î ]+i� a

q̂a [ î ]
)
= 0 (2.22)

where G generates the symmetry of the path-integral and Ψ̂ is an operator composited by q̂.
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Chapter 2 General field theory: Dyson-Schwinger equations

Remind that 〈. . .〉 = 4−i, [� ]
. . . 4

i, [� ] .
Alternatively DSEs can be reached by using functional derivatives [36] of the 1-PI effective actions

Γ = , [�0] − q0�
0 (2.26)

and
XΓ[q]
Xq0

= −W01 �
1 (2.27)

Using the chain rule we have

XΓ[q]
Xq0

=
X([q̂]
Xq̂0

����
q̂0=q0+i�01 X/Xq1

= −W01 �
1 (2.28)

If we set � = 0, we have a closed equation.
One can find that any =-point correlation function can be represented by some <-point vertices

and 2-point correlation/Green’s functions through functional derivatives of the above equation (2.28).
The computations of those derivatives are in principle straightforward, but still, need a lot of labour.
Fortunately, there are some Mathematica packages to help us, for instance 4 the DoFun [35, 36, 38].

Note that if we write out the W01 metric explicitly, for anti-commute fields, the functional derivatives
from the right or from the left will be different, and the order will affect the resulting DSEs. In DoFun
3.0 package choose left derivatives [36]

Γ
(4)
8 9:;

= Γ
( k̄ k̄kk)
8 9:;

=
X

4
Γ

Xk̄8Xk̄ 9Xk:Xk;
≡= −

−→
X

2

Xk̄8Xk̄ 9

−→
X

2

Xk:Xk;
Γ

�����
k̄phys,kphys

(2.29)

that is the fermion k from the right, the anti-fermion k̄ from the left. Which we will follow here.
The (2.28) is still very abstract. To give an example, we consider the Gross-Neveu model. The

Gross-Neveu model is a pure fermionic model with Dirac fermions and a four-fermion interaction
term [39, 40]

((k̂, k) = −
∫

d3G

[
k̄ · /mk + 1

2# 5
6(k̄ · k)2

]
= −

∫
d3G

[
k̄0 /mk0 +

1
2# 5

6(k̄0k0)
2

]
(2.30)

The integer # 5 is the total flavor number. The real number 6 is a coupling parameter. In momentum
space [35] the action reads

([k̄, k] =
# 5∑
9=1

∫
d3@
(2c)3

k̄ 9 (@) (−/@)k 9 (@)

+
# 5∑
8, 9=1

∫
d3@1

(2c)3
d3@2

(2c)3
d3@3

(2c)3
k̄8

(
@1

)
k8

(
@2

) 6

2# 5
k̄ 9

(
@3

)
k 9

(
−@1 − @3 − @2

) (2.31)

where the internal momentum @1, @2, @3 are used. The Dyson-Schwinger equations for Γ
(2) and Γ(4)

4 In DoFun the Euclidean notation is used.
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2.2 Dyson-Schwinger equations

of Gross-Neveu model are shown in the Fig. 2.1 and in the Fig. 2.2 respectively. From the figures, one
can see that the Γ(2) is depending on Γ(4) and the Γ(4) is depending on Γ(6) . Therefore, although the
Dyson-Schwinger equations are exact, they are infinitely coupled. In practice, a truncation is needed.
For a truncation many studies set Γ(6) = 0.

j i -1
=
+ j i -1 +

j i
+ 1

2
ji

Figure 2.1: Γ(2) = Γ( k̄k) = ( ( k̄k)0 + Σ for the Gross-Neveu model (2.31). The small dots are bare vertices, the
big dots are full vertices. One can see that the last graph depends on the Γ(4) . Generated from the DoFun [36].

i1

i2 i3

i4

= +

i1

i2 i3

i4

+

i1 i2

i3i4

- 1
2

i1

i2 i3

i4

+ 1
2 i1

i2

i3

i4

- 1
2

i1

i2

i3

i4

+

i1

i2

i3

i4

+ 1
2

i1

i2

i3

i4

-

i1

i2

i3

i4

+

i1

i2

i3

i4

Figure 2.2: Γ(4) = Γ( k̄ k̄kk) for the Gross-Neveu model (2.31). The small dots are bare vertices, the big dots are
full vertices Γ(=) where = is equals to the lags they have. One can see that the top rightmost graph depends on
the Γ(6) . Generated from DoFun [36].

2.2.2 Bethe-Salpeter equations

The Bethe-Salpeter equation [41] is a Dyson-Schwinger like equation which is frequently used in
quantum mechanical bound state problems. For simplicity, we consider the Gross-Neveu model [39]
with a partial bosonization through the Hubbard-Stratonovich transformation. This will give us a
fermionic fields Yukawa coupling with the auxiliary field5 f

(# (k̄, k, f) =
∫
G

[
−k̄ · ( /m + f)k + <̃f2

]
(2.32)

5 Note the hats are omitted, k̂ → k.

11



Chapter 2 General field theory: Dyson-Schwinger equations

<̃ = Λ
3−4 <2

262 . Here we focus on the structure of the Bethe-Salpeter equation, regardless the origin of
this action. For simplicity we can assume k only has one component

(# (k̄, k, f) =
∫
G

[
−k̄ /mk − k̄kf + <̃f2

]
(2.33)

where the “sigma” field is from the Lagrange multiplier f(G)
(
(k̄(G) · k(G) − #d(G)

)
where we set

# = 1 and integrated out d.
Now attach source �k to k (�k̄ to k̄) and �f to f field, the Dyson-Schwinger equation reads [26,

30]

4
−,

[
�k −

X([k, k̄, f]
Xk̄

]
k= X

X�k
,f= X

X�f

4
,
= 0 (2.34)

and X( [k,k̄,f ]
Xk̄

= −/mk − kf, thus[
�k (G) −

(
−/mG −

X

X�f (G)

)
X

X�k (G)

]
, [�k, �k̄, �f] = 0 (2.35)

Partial once by �k (G
′) gives us the DSE for two-point propagator, (2) . We can also go two steps

further, that is, to apply three derivatives of �k

X
3

X�k (G
′)X�k (H)X�k (H

′)

[
�k (G) −

(
−/mG −

X

X�f (G)

)
X

X�k (G)

]
, [�k, �k̄, �f] = 0 (2.36)

Use that X� (G)/X� (H) = X(G − H) and

X

X�k (G)
X

X�k̄ (G
′)
, = ,

(2)
GG
′ (2.37)

We reach the equation for, (4) after setting �k = �k̄ = 0, it reads[
−

(
−/mG − X

X�f (G)

)]
,
(4)
G
′
HH
′
G
+ XGH′,

(2)
G
′
H
− XGH,

(2)
G
′
H
′ + XGG′,

(2)
HH
′ = 0 (2.38)

Here the shorthand notation XGH = X(G − H) is used. Now assume the incoming two particles have
different starting space-time positions G ≠ G

′, then XGG′ = 0, the minus sign before XHG is from
switching the order of the X� (H) and X� (H′) , since they are fermionic sources. Befor the next step,
notice that [(−/mG − Σ),

(2) ]GH = XGH . Reminding this, we can first subtract and add a k self-energy Σ
in front of, (4) [

−
(
−/mG − Σ + Σ − X

X�f (G)

)]
,
(4)
G
′
HH
′
G
+ XGH′,

(2)
G
′
H
− XGH,

(2)
G
′
H
′ = 0 (2.39)

And then we multiply6 (−/mG′ − Σ) and reorder the terms and indices. As a result, we arrive the
6 This can be chosen differently.
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2.2 Dyson-Schwinger equations

Bethe-Salpeter equation [26]

(−/mG
′
− Σ) (−/mG − Σ), (4)

GG
′
HH
′ = −XGH′XG′H + XGHXG′H′ + (−/mG′ − Σ)

(
−Σ + X

X�f (G)

)
,
(4)
GG
′
HH
′

����
�f=0
(2.40)

Through a definition of the Bethe-Salpeter kernel  GG′HH′ the above equation can be written into an
integro-differential form

(−/mG′ − Σ) (−/mG − Σ),
(4)
GG
′
HH
′ = −XGH′XG′H + XGHXG′H′ +

∫
HH
′
 GG′HH′,

(4)
HH
′
II
′ (2.41)

Where XGH = X(G − H).
One can also move (−/m −Σ) = (, (2) )−1 to the right hand side. Integrate by part to move the acting

variables of the partial m, and reaches

,
(4)
GG
′
HH
′ = −,GH

′,G
′
H +,GH,G

′
H
′ + (−/mG − Σ)

−1
(
−Σ + X

X�f (G1)

)
,
(4)
GG
′
HH
′

����
�f=0

(2.42)

The right most term contains the Bethe-Salpeter kernel. This kernel can be better understood by an
example as the following. First we neglect the derivative X�f . We have

(−/mG − Σ)
−1 (−Σ) (2.43)

Where� = (−/mG −Σ)
−1 is a full propagator. The�−1 removes one fermionic propagator line from the

self-energy Σ, and gives two more indices where two more propagators can be attached. For instance,
the lowest fermionic self-energy has the form

[Σ1]GH = [a
(3)
,
(2)
�a
(3) ]GH (2.44)

where � is the f field propagator, and E (3) is the bare vertex tensor. Then (, (2) )−1
G
′
H
′ [Σ1]GH =

[a (3)�a (3) ]GG′HH′ gives
+GG′HH′ = [a

(3)
�a
(3) ]GG′HH′ (2.45)

Which is the lowest order kernel, a single f line.

2.2.3 Ward identities

In field theory, Ward identities or Ward-Takahashi identities [42, 43] are well-known and exact relations
between the =-point and (= + 1)-point functions. It is closed related to the DSE and the classical gauge
symmetries such as charge conservation. The derivation can be found in many textbooks, for instance
see [34] which uses functional derivatives and see [44] for operator method.

Ward-Takahashi identity

Here we closely follow the appendix of [45], which uses functional derivatives. Let us omit the hats
on the fields. Note that if a field is under functional integral, it should be understood as an eigenvalue
of the corresponding coherent state.
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Chapter 2 General field theory: Dyson-Schwinger equations

We assume the action of the system has some global continuous symmetry, e.g., the* (1) symmetry.
Define the Noether current for this symmetry as

m` 9
`
= 0 (2.46)

An example model can be a non-relativistic fermionic model

( = −
∫
G

m`k̄m
`
k ++ (k̄k)2 =

∫
G

L (2.47)

where a transform k̄ → 4
U
k̄, k → 4

−U
k keeps the action invariant, U is a constant complex number

which contains a global phase, the i is absorbed into U. Where L is the Lagrangian density. The
Noether current of the* (1) global symmetry for this model can be derived by applying a infinitesimal
local transform n (G), or equivalently by the Euler-Lagrange equation

9
`
= m

`
k̄k − k̄m`k (2.48)

To derive the Ward-Takahashi identity, first, we can write down the partition function with source
terms �k, �k̄, and �

` as

/ [�k, �k̄, �`] = 〈)̂ exp
{
−

∫
G

[
�k (G)k(G) + �k̄ (G)k̄(G) + �` (G) 9

` (G)
]}
〉 (2.49)

Note that I used capital � for sources. The 9 ` (G) is the Noether current and is a composite bosonic
field. Here as an example, I consider the fermionic fields k and k̄, this means k, k̄, �k, �k̄ are
anti-commuting. The functional integral version of the time ordering expectation value is

/ [�k, �k̄, �
`] =

∫
d[k, k̄]4−( [k,k̄, 9

`
,�k ,�k̄ ,�` ] (2.50)

Now we apply the local infinitesimal continuous symmetry transform, here the local infinitesimal
* (1) transform, on the fields and sources to keep the action unchanged. The fields transform as

k
′(G) = (1 + n (G))k(G), k̄

′(G) = (1 − n (G))k(G), 9
′` (G) = 9 ` [k ′, k̄ ′] (2.51)

The 9 ` [k ′, k̄ ′] = m`k̄ ′k ′ − k̄ ′m`k ′. And the sources are transformed in the same way.

�
′
k (G) = (1 + n (G)) �k (G), �

′
k̄
(G) = (1 − n (G)) �k̄ (G), �

′
` (G) = �` (G) − m`n (G) (2.52)

The last transform for the external source is to cancel the mn terms from the kinetic energy.

One can check that simultaneously applying (2.51) and (2.52) will keep the action unchanged, up to
$ (n2)

([k, k̄, 9 `, �k, �k̄, �`] = ([k
′
, k̄
′
, 9
′`
, �
′
k, �

′
k̄
, �
′
`] (2.53)

Plug the above equation into functional integrals, we have∫
d[k, k̄]4−( [k,k̄, 9

`
,�k ,�k̄ ,�` ] =

∫
d[k, k̄]4−( [k

′
, k̄
′
, 9
′`
,�
′
k ,�

′
k̄
,�
′
` ] (2.54)
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2.2 Dyson-Schwinger equations

The right hand side can be rewritten as∫
d[k, k̄]4−( [k

′
, k̄
′
, 9
′`
,�
′
k ,�

′
k̄
,�
′
` ] =

∫
d[k ′, k̄ ′]

���� Xk(G)Xk
′(G)

���� ���� Xk̄(G)Xk̄
′(G)

���� 4−( [k′, k̄′, 9′` ,� ′k ,� ′k̄ ,� ′` ] (2.55)

Now assume the integral measures do not change (the Jacobian is identity) under this transform, i.e.��� Xk (G)
Xk
′ (G)

��� = ��� Xk̄ (G)
Xk̄
′ (G)

��� = 1 and we can rename the k ′ and k̄ ′ to k and k̄∫
d[k, k̄]4−( [k

′
, k̄
′
, 9
′`
,�
′
k ,�

′
k̄
,�
′
` ] =

∫
d[k, k̄]4−( [k,k̄, 9

`
,�
′
k ,�

′
k̄
,�
′
` ] (2.56)

Note the 9 ′` is composite of k ′ and k̄ ′. We can see that only the sources are transformed.

Use (2.54) and (2.56) we can find∫
d[k, k̄]

[
4
−( [k,k̄, 9` ,�k ,�k̄ ,�` ] − 4−( [k,k̄, 9

`
,�
′
k ,�

′
k̄
,�
′
` ]

]
= 0 (2.57)

Now by noticing the sources are transformed (passively) under the infinitesimal symmetry transform
as in (2.52), we can plug Eq. (2.52) into Eq. (2.57). We find∫

d[k, k̄]
[
1 − 4−

∫
G
[n �kk−n �k̄ k̄−(m` n ) 9

` ]
]
4
−( [k,k̄, 9` ,�k ,�k̄ ,�` ] = 0 (2.58)

We can expand the above equation to linear order in n , and apply that inside the integral (m`n) 9
`
=

n (m` 9
`), where we get∫

G

n
[
�kk − �k̄k̄ − (m` 9

`)
] ��
k= X

X�k
, k̄= X

X�
k̄
, 9
`
= X
X�`

/ [�k, �k̄, �`] = 0 (2.59)

Since the n (G) is arbitrary, the arguments in the bracket should be zero to satisfy the equation. From
this we find a equation for the partition function[

�kk − �k̄k̄ − (m` 9
`)

] ��
k= X

X�k
, k̄= X

X�
k̄
, 9
`
= X
X�`

/ [�k, �k̄, �`] = 0 (2.60)

The above equation (2.60) is the master equation of the Ward identity, it allows us to derive the
Ward-Takahashi identity. The derivation is now straightforward, consider the three-point time ordering
correlation function, which can be reached three functional derivatives

/
(3)` (G |H, I) ≡ 〈)̂

{
9
` (G)k(H)k̄(I)

}
〉 = X

X�` (G)
X

2

X�k (H)X�k̄ (I)
/ (2.61)

The partial of G of the above quantity is

m
G
`/
(3)` (G |H, I) = X

2

X�k (H)X�k̄ (I)
m
G
`

X

X�` (G)
/ (2.62)
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Chapter 2 General field theory: Dyson-Schwinger equations

Here the mG` means partial derivative on G. The mG` X
X�` (G)

can be translated by using (2.60) identity

m
G
`/
(3)` (G |H, I) = X

2

X�k (H)X�k̄ (I)

(
�k (G)

X

X�k (G)
− �k̄ (G)

X

X�k̄ (G)

)
/

= X
3 (H − G) X

2
/

X�k (G)X�k̄ (I)
− X3 (I − G) X

2
/

X�k (H)X�k̄ (G)
= X

3 (H − G)� (G, I) − X3 (I − G)� (H, G)

(2.63)

The (2.63) is usually called Ward-Takahashi. Note that although the fields k, k̄ and the sources �k,
�k̄ are anti-commuting, the final signs remain unchanged, since here we commuted them twice. In the
end we sent �k̄ = �k = 0. From the derivation we can see, the Ward-Takahashi identities are an exact
relations from the classical continuous symmetries.

Wöffle-Vollhardt Ward identity

The above Ward identities can be combined with some integral equations of =-point functions and
generate new identities. One of them is called Vollhardt-Wölfle [46] Ward identity, which is originally
purposed for using in disorder systems [47, 48]. The Wöffle-Vollhardt Ward identity is an identity
between the two-point irreducible vertex and the Bethe-Salpther kernel. A non-perturbative proof can
be found in [49, 50].

Following [49, 50] we can derive the Wöffle-Vollhardt Ward identity from the (2.63). First we write
/
(3)` into integral of propagators and a vertex function

/
(3)` (G |H, I) =

∫
H
′
I
′
� (H, H′)Γ` (G |H′, I′)� (I′, I) (2.64)

We assume the vertex Γ` (G |H′, I′) follows7 the integral equation

Γ
` (G |H′, I′) − Γ`0 (G |H

′
, I
′) =

∫
H1H2I1I2

�
(
H1, H2

)
Γ
` (G |H1, I1)� (I1, I2) (H2, I2 |H

′
, I
′) (2.65)

where  is the Bethe-Salpeter kernel. Act mG` on both side of (2.64) and use the Ward-Takahashi
identity (2.63), One has

m
G
`Γ

` (G |H, I) = �−1(H − G)X3 (G − I) − X3 (H − G)�−1(G − I) (2.66)

m
G
`Γ

`

0 (G |H, I) = �
−1
0 (H − G)X

3 (G − I) − X3 (H − G)�−1
0 (G − I) (2.67)

Where we used
∫
H
�
−1(G, H)� (H, I) = X(G − I). Now we can subtract (2.66) from (2.67), and get

Σ(H, G)X3 (G − I) − X3 (H − G)Σ(G − I) = mG`Γ
`

0 (G |H, I) − m
G
`Γ

` (G |H, I) (2.68)

Here we used the definition of the irreducible two-point vertex (self-energy) Σ = �−1
0 − �

−1. The

7 Here subscript of H1, H2, I1, and I2 are used to name the variables, and should not be confused with the spatial components.
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2.3 Quantum effective actions

LHS of the above equation is already an irreducible 2-point vertex function. The RHS can be
related to the Bethe-Salpeter kernel  (H, I |H′, I′) by the following procedures. First we apply mG`
to the integral equation (2.65), then substitute (2.66), and perform two of the integrals by using∫
H
�
−1(G, H)� (H, I) = X(G − I). After some algebra we reach

m
G
`Γ

`

0 (G |H, I) − m
G
`Γ

` (G |H, I) =
∫
H1I1

[
X
3 (H1 − G)� (G, I1) − � (H1, G)X

3 (G − I1)
]
 (H, I |H1, I1)

(2.69)
The (2.68) and (2.69) give the Wöffle-Vollhardt Ward identity of space-time variables

Σ(H, G)X3 (G − I) − X3 (H − G)Σ(G − I)

=

∫
H1I1

[
X
3 (H1 − G)� (G, I1) − � (H1, G)X

3 (G − I1)
]
 (H, I |H1, I1)

(2.70)

By using the translational invariance and Fourier transform, the momentum space version can be
written down as well, see for instance [46, 49, 50]. This kind of Ward identities can be used to solve
self-consistent equations in disorder systems [47].

2.3 Quantum effective actions

In this section and the following sections, I choose the Euclidean notation for simplicity and clarity.

As we have seen in the previous sections, the Dyson-Schwinger equations can be derived from the
1-PI effective action which is a Legendre transformation of the Schwinger functional, respect to the
one point mean field q. This effective action can be cast into a form very closed to the classical action
(, however, with the couplings replaced by the vertex functions (functional) that can have multiple
spatial dependencies, namely non-local. This can be easily seen from the formal expansion

Γ =
∑
=

2=Γ
(=)01...0=q01

. . . q0=
(2.71)

here I write out the = sum explicitly. 2= are expansion coefficients depending on = and can be fixed by
the definitions. The =-point vertices are defined as

Γ
(=)01...0= =

X
=
Γ

Xq01
. . . Xq0=

(2.72)

From this point of view, one can compute the Γ(=) correlation functions and the observables. Surely
the Γ(=) are not easy to compute, they are in general non-local and depend on multiple space-time
indices. To solve them one usually needs to solve coupled non-linear integro-differential equations,
which are sometimes even difficult to solve numerically. Beside those difficulties, in the following
sections, we will see that there are also many advantages to consider quantum effective actions.
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Chapter 2 General field theory: Dyson-Schwinger equations

2.3.1 The 1-PI quantum effective action and tree expansions

The 1-PI action is already introduced in the previous sections, see for instance (2.28).

Γ = −, + k0�
0 (2.73)

XΓ

Xq0
= −�0 (2.74)

In the book of Weinberg [44], clean and clear formal derivations for the 1-PI quantum effective
action are available. There, a one-loop result for the i4 theory is given as an example. Where one
regards the one-particle irreducible (1-PI) effective action as the classical (tree) action and matches it
with the sum of the vacuum 1-PI graphs. Although the non-perturbative (diagram free) definition
is very simple, as a Legendre transformation about the original (connected diagrams) generating
functional, it still offers an intuitive picture especially when we further truncate the action. For further
studies see for instance [51].
One remarkable property of the quantum effective actions Γ is that they preserve the symmetries

of the action (. On one hand, this is important for the renormalizability of theory. Since from the
counter-term point of view, the allowed counter-term is restricted by the symmetries of (. So that
it avoids problems that arise from some divergences which do not follow symmetries of ( but are
produced by truncations. On the other hand, from computing observables, the preserved symmetries
will keep a certain level of conservation laws and produce a conserving approximation whenever
we apply the truncation of the perturbation series order by order. The particular name “conserving
approximations” is usually referred to the 2-PI quantum effective action which will be introduced in
the next section.

Tree expansion

For deriving the 2-PI quantumeffective action, the so-called tree expansions, or skeleton expansions [52],
are needed. The tree expansions are the exact relations between the derivatives of the Schwinger
functional, [�] and the 1-PI effective action Γ[q], namely, (=) and Γ(<) . The tree expansion can
be directly derived through functional derivatives, the start point is the identity

� ≡ , (2) = [Γ(2) ]−1 (2.75)

we will suppress the indices here in this section for clarity.
To compute the tree expansions, first we consider, (3) where

,
(3)
=
X

X�
,
(2)
=
Xq

X�

X

Xq
[Γ(2) ]−1

= −Xq
X�
[Γ(2) ]−2

Γ
(2)
= −, (2) [Γ(2) ]−2

Γ
(3) (2.76)

Since � = [Γ(2) ]−1, we immediately have

,
(3)
= −�3

Γ
(3) (2.77)
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2.3 Quantum effective actions

We can also find similar relations for the, (4) . Use, (4) = X
X�
,
(3) , we have

,
(4)
= − X

X�

(
X,
(2)

X�

)
= −Xq

X�

(
X

Xq
[Γ(2) ]−3

)
Γ
(3) − Xq

X�
[Γ(2) ]−3 X

Xq
Γ
(3) (2.78)

Further we can use, (2) = Γ(2) and reach the final result for, (4)

,
(4)
= −�4

Γ
(4) + 3�5

Γ
(3)
Γ
(3) (2.79)

Since, (=) is the connected n-point Green’s function, the tree expansion (skeleton expansion) gives
the exact relations between the connected Green’s functions and the <-point vertex functions Γ(<) .
From the above equations, we can see that diagrammatically there are only tree graphs, namely, there
is no closed loop. Indeed, the loops are absorbed into the full vertices and propagators. The tree
structure is the reason of the name “tree expansions” (or skeleton expansions).

2.3.2 The 2-PI quantum effective action and the conserving approximation

The 2-PI quantum action is a direct extension of the 1-PI action, it is frequently called Luttinger-Ward
functional [53]. The idea is, rather than treat a single field and a single external field (source) term
as the building blocks, one can introduce 2-point sources and treat fields combination, e.g. q̂q̂ as
building blocks to build expansions.
We can consider the bilinear with the form q̂q̂. It is bosonic apparently. This is bosonic nature is

especially useful for studying pure fermionic models. Since the 1-point mean fields of the fermionic
field q̂ = k̂ vanishes identically, i.e. 〈k̂〉 = 0, because of the anti-commutation nature of the k̂.
The 2-PI method has a long history, which can be tracked back to the 1960s. The work of

Luttinger and Ward [53] as well as Baym and Kadanoff [54, 55], and later Cornwall, Jackiw and
Tomboulis [56] and many others. This method gives us a powerful way to construct systematic
self-consistent approximations for quantum field theories in and out of the equilibrium. Especially for
out of equilibrium where the conservation laws are crucial.

In the rest of this section we will review the derivation of the 2-PI quantum effective action. We are
strongly following the Ref. [57], where pure fermionic microscopic actions are considered. We can
write down the action as8

exp, [[, 9] = / [[, 9] =
∫

�k̂ exp
{
[0k̂0 +

1
2
901k̂0k̂1 −

1
24
_0123k̂0k̂1k̂2k̂3

}
(2.80)

Here we have the classical action ( 9

( 9 [k̂] = −
1
2
901k̂0k̂1 +

1
24
_0123k̂0k̂1k̂2k̂3 (2.81)

where _0123 and 901 are totally anti-symmetric, 901 = − 910. The k̂0 should be understood as a

8 Note that usually it is 9 = �−1
0 + �2 and �2 is the two-point source term. It is allowed and convenient to absorb them into

source 9 since what we need here is to get composite field k̂k̂ by derivations of 9 .
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Chapter 2 General field theory: Dyson-Schwinger equations

condensed notation, for instance

k̂0 =

(
k̂f (G

0
, G
8), ˆ̄kf (G

0
, G
8)
)

(2.82)

The k̂ means Grassmann variables if it is in the functional integral and ˆ̄k means k̄. The action ( 9 can
represent a large class of models with four-fermion interactions, the most common examples are the
Hubbard model and the lattice Gross-Neveu model.

Define the one-point mean-field k0

k0 =
〈
k̂0

〉
=
X,

X[0
(2.83)

The 1PI effective action Γ� is the Legendre transform about a fermionic source [0, which reads

Γ� [k, 9] = −, [[, 9] + [0k0 (2.84)

the Γ� gives the usual relations

XΓ�

Xk0
= [0 and

(
,
(2)
�

)
01
=

X
2
,

X[0X[1
= (Γ(2)

�
)−1
01 =

(
X

2
Γ� [k, 9]
XkXk

)−1

01

(2.85)

We can get three-point correlation function � (3)
023

=
〈
k̂0k̂2k̂3

〉
from the DSE (2.28). We repeat it

here
XΓ

Xk0
− X([k̂]

Xk̂0

����
k̂0=k0+�02 X

Xk2

= 0 (2.86)

Note � = � [[], and we will only send [ = 0 later. The resulting correlation function � (3) is

�
(3)
023

=
〈
k̂0k̂2k̂3

〉
=

[
k0k2k3 +

(
Γ
(2)
�

)−1

02
k3 −

(
Γ
(2)
�

)−1

03
k2 +

(
Γ
(2)
�

)−1

23
k0

−
(
Γ
(2)
�

)−1

00
′

(
Γ
(2)
�

)−1

22
′

(
Γ
(2)
�

)−1

33
′

X
3
Γ�

Xk0′Xk2′Xk3′

] (2.87)

Here we keep k for later derivations and set it to zero at the end of the derivations.

By functional derivatives, we have

,
(2)
�

=
X

2
,

X[0X[1
=
X

X[

X,

X[
=
Xk

X[
= /

−1
/
′+/−1

/
′′
= −/−2

/
′
/
′+/−1

/
′′
= −k0k1+〈k̂0k̂1〉 (2.88)

where we defined / ′ = X//X[, / ′′ = X(X//X[)/X[. From this we can define a two-point mean field
�01

�01 =
X,

X 901
=

〈
k̂0k̂1

〉
=

X
2
,

X[0X[1
+ X,
X[0

X,

X[1
=

(
,
(2)
�

)
01
+ k0k1 (2.89)
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Similarly, one can derive another useful identity

,
(2)
�
=

X
2
,

X 901X 923
=

〈
k̂0k̂1k̂2k̂3

〉
−

〈
k̂0k̂1

〉 〈
k̂2k̂3

〉
=

X
4
,

X[0X[1X[2X[3
+ X

2
,

X[1X[2

X
2
,

X[0X[3
− X

2
,

X[0X[2

X
2
,

X[1X[3
+ Δ, (2)

�

=

(
,
(4)
�

)
0123

+
(
,
(2)
�

)
12

(
,
(2)
�

)
03
−

(
,
(2)
�

)
02

(
,
(2)
�

)
13
+ Δ, (2)

�

(2.90)

where Δ, (2)
�

are the terms which are multiplied with at least one X,/X[0. The Δ,
(2)
�
= 0 for [0 = 0

and k0 = 0. One can find the detailed form of the Δ, (2)
�

in the Ref. [57].
We can now define the 2PI effective action Γ� through the bosonic source 9 and bosonic mean-field

�
9

Γ� [�] = −, [[ = 0, 9] + 1
2
901�01 (2.91)

where in the end [ = 0, and 1
2 901�01 = −

1
2 910�01 = −

1
2 Tr( 9�). The [ = 0 makes the derivation

here simpler than the cases with bosonic microscopic fields where the 2PI effective action is define
as the double Legendre transform [33, 57, 58], Γ" [k, �] = −, [[, 9] + [0k0 + 1

2 901�01. For
microscopic fermionic k̂, the expectation value is 〈k̂0〉 = 0, if the source [0 = 0. Note that the
derivatives of the source [ and the mean field k can be non-zero. So it is important to remember that
to set them to zero not at the last line of derivations, not before.

Nowwe can use Γ� [�] to derive DSE like “equations of motions”. Just like the 1-PI case, functional
derivatives of Γ� give

XΓ�

X�01
= 901 and

(
Γ
(2)
�

)
01,23

=
X

2
Γ�

X�01X�23
=

(
,
(2)
�

)−1

01,23
(2.92)

Where the, (2)
�

is defined as (
,
(2)
�

)
01,23

=
X

2
, [0, 9]

X 901X 923
(2.93)

Note that the inversion identity now has the form(
,
(2)
�

)
01,0

′
1
′

(
,
(2)
�

)−1

0
′
1
′
,23

=
X�01

X 90′1′

X 90′1′

X�23
= 101,23 = X02X13 − X03X12 (2.94)

with �01 = −�10.
Now, the question is how to write down the effective action Γ� [�] in terms of the new mean

field �? This is important, because it is only practically useful once we know the expression of the
action, and can further make approximations/truncation on it. This question can be addressed by
computing the relations between10 Γ(2)

�
and Γ(4)

�
, bridged by the correlation functions � (2) = 〈k̂k̂〉

and � (4) = 〈k̂k̂k̂k̂〉.

9 In equilibrium Γ� = �/) where � is the Helmholtz free energy and ) is the temperature.
10 Or equivalently, (2)

�
.
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Let us get start with the first derivative of the 1PI action

XΓ�

Xk1
= −[1 = 901k0 −

1
6
_0123

〈
k̂0k̂2k̂3

〉
= 901k0 −

1
6
_0123 �

(3)
023 (2.95)

From the (2.87) we know that � (3) = �3
Γ
(3)
�

if we set [ = 0 and k = 0. From the (2.95) we have
�
(3)
= 0 when [ = 0 and k = 0, thus Γ(3)

�
= �

−3
�
(3)
= 0, which is compatible with the symmetry of

the bare action. Thus in a shorthand notation the tree expansion of the, (4)
�

is

,
(4)
�

= �
4
Γ
(4)
�
− 3�5

Γ
(3)
�
Γ
(3)
�
= �

4
Γ
(4)
�

(2.96)

For k = 0 from (2.89) we know that

�01 =

(
Γ
(2)
�

)−1

01
=

(
,
(2)
�

)
01

(2.97)

On the other hand, the, (2)
�

can be expressed through, (2)
�

and, (4)
�

by using the Eq. 2.90, that is11

,
(2)
�
=

X
2
,

X 901X 923
=

(
,
(4)
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)
0123

+
(
,
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)
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(
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�

)
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−

(
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(
,
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�

)
13

(2.98)

where we set [ = 0 and k = 0 which lead to Δ, (2)
�
= 0 in (2.90). The, (4)

�
and, (2)

�
can be expressed

further into functional derivatives of the 1PI action Γ� through the identities (2.97) and (2.96), which
give us

,
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′
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′
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′
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(
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(2.99)

Again [ = k = 0 is applied in the end. We also defined
(
Γ
(4)
�

)
0
′
1
′
2
′
3
′ ≡

X
4
Γ�

Xk
0
′ Xk

1
′ Xk

2
′ Xk

3
′ . The above

equation (2.99) is the identity that we are searching for, which links the Γ(2)
�

and Γ(4)
�

. Now we are
ready to write down the 2-PI action.

Functional differentiate (2.95) by k0 and then set k = 0 gives(
Γ
(2)
�

)
01
= − 901 +

1
2
_0123

(
Γ
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)−1
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(2.100)

Substitute (2.97) and (2.99) into the above equation, we have

�
−1
01 = − 901 +

1
2
_0123�23 + .01 (2.101)

11 One can see that, (2)
�

is the “!” in Baym and Kadanoff’s old original papers [54, 55]. And “ 9” minus the quadratic
part of the Hamiltonian is the “*” in Baym and Kadanoff’s old original papers [54, 55]. Where ±! = X�/X* at* = 0,
* is the source coupled to the density by

∫
G
* (G)=(G). And in [54] it was shown that the ! is preserving the energy,

momentum, and gauge conservation laws, with three conditions (A,B,C), and later in [55] unified them into one.
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2.3 Quantum effective actions

Where .01 is given in terms of Γ(2)
�

.01 =
1
6
_=123�

−1
04

[(
Γ
(2)
�

)−1

4=,23
+ �42�=3 − �43�=2

]
(2.102)

The . can be read off from (2.99). The above equation (2.102) implies that the self-energy part is
constructed by the, (2)

�
= (Γ(2)

�
)−1.

Although now we have the 2PI action of the four-fermion model, . can be still complicated. As a
example, we can first truncate to the one-loop order which is at $ (_�), by setting . = 0. We then
have12

�
−1
01 = − 901 +

1
2
_0123�23 (2.103)

This means that the corresponding effective action Γ� reads

XΓ�1
X�01

= 901 = −
(
�
−1

)
01
+ 1

2
_0123�23 (2.104)

Use the identity
X�01/X�23 = 101,23 = X02X13 − X03X12 (2.105)

the functional integration can be performed

Γ�1 =
1
2

Tr ln� + 1
8
_0123�01�23 + const. (2.106)

up to a constant “const.”. Note the 1/2 includes the effect of the definition (2.105) contracting with a
anti-symmetric matrix/tensor. This can be verified by functional derive the Tr log� by � which gives
a factor of 2.
The . ≠ 0 cases, namely the higher order actions, can be computed in an iterative manner. As

another example we can iterate to 2-loop order $
(
_

2
�

2
)
. We first partial twice the Γ�1, this gives us(

Γ
(2)
�1

)
01,23

= −�−1
02�

−1
13 + �

−1
03�

−1
12 + _0123 (2.107)

One can check by direct computations that up to $ (_2
�

2), the inverse of the above functional is(
Γ
(2)
�1

)−1

01,23
= −�02�13 + �03�12 − �0A�1B_ABCF�C2�F3 (2.108)

Here we reach this inversion by completing the identity and neglecting the higher order terms.13 Plug

the expression
(
Γ
(2)
�1

)−1

01,23
into (2.102), we have

.UV = −
1
6
_0CAB_1=23�C=�A2�B3 (2.109)

12 This is the self-consistent Hartree-Fock approximation.
13 There maybe other ways that I do not know.
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Chapter 2 General field theory: Dyson-Schwinger equations

The final result for the effective action at the second order now can be reached by integrating �,

Γ�2 = Γ�1 −
1

48
_0CAB_1=23�01�C=�A2�B3 (2.110)

Diagrammatically, this is a three-loop vacuum bubble. It is clear that we can always separate the Γ�
into a “kinetic” term and a “interacting” (or “Phi”) term ΓΦ

Γ� =
1
2

Tr ln� + ΓΦ (2.111)

Now use XΓ�/X�01 = 901, one finds

XΓΦ

X�10
=
XΓ�

X�10
−
X 1

2 Tr ln�
X�10

= 910 +�
−1
01 = − 901 +Γ

(2)
�,01

= −�−1
0,01 − �2,01 +�

−1
01 = −Σ01 (2.112)

where one can now set the external source �2 = 0. Here we used [X ln det �/X�8 9] = [(�
−1)ᵀ]8 9

and cared the additional factor 2 for the anti-symmetric case. The Σ is the one-particle-irreducible
part of the Γ(2)

�
and thus the ΓΦ is two-particle-irreducible (2-PI) as the name suggests. In many

literature, if the self-energy Σ can be computed from the functional derivation of some approximated
(truncated) ΓΦ, it is called Φ-derivable. And this kind of approximations are called conserving
approximations [59].

If we restore �2 for 9 = −�
−1
0 + �2, the Γ� [�] can be written as

Γ� [�] = −
1
2

Tr ln�−1 − Tr�−1
0 � + ΓΦ [�] (2.113)

where ln
∫
�k̂� ˆ̄k4−(0 [k̂, ˆ̄k]

= ln
(
det�−1

0

)
= Tr ln�−1

0 , and

(Σ[�])01 ≡ −
XΓΦ [�]
X�10

(2.114)

The minus sign is easy to understand since the functional derivative cut down one fermionic line
and change the loop number by 1, and Each fermionic loop will contribute a −1. The indices order
. . . /X�10 is to produce the arrow direction which agrees with the usual Feynman rule. We should
keep in mind that although Γ� is called bosonic effective action, it is for the fermionic microscopic
fields k̂.

The 2-PI action of Bosonic microscopic field

The 2-PI action of bosonic microscopic fields can be derived as well, for some details see the Ref. [33,
58]. The difference is now 〈î〉 ≠ 0 is possible which makes the situation more complicated, the
partition function and the Schwinger functional with 1-point and 2-point sources are

/ [�1, �2] = exp{, [�1, �2]} =
∫

d[î] exp
{
−([î] + �1,0 î0 +

1
2
�2î0 î1

}
(2.115)
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2.3 Quantum effective actions

For instance the ( can be a q4 theory

([î] =
∫
G

{
1
2
m
`
î(G)m` î(G) −

<
2

2
î(G)î(G) − _

4!
(î(G)î(G))2

}
(2.116)

The 2-PI action for bosonic microscopic field î is now

Γ[i, J] = , [�1, �2] +
X, [�1, �2]
X�1,0

�1,0 +
X, [�1, �2]
X�2,01

�2,01 (2.117)

The Γ[i, J] can be written into mean fields i and the propagator J, note that now i = 〈î〉 ≠ 0
possible, the result is

Γ[i, J] = ([i] + 1
2

Tr ln J−1 + 1
2

Tr J−1
0 J + ΓΦ [i, J] (2.118)

The prefactor can be understood through the Gaussian integral of the bosonic fields for the quadratic

action (0, ln
∫
�î4

−(0 [ î ] = ln
(
det J−1

0

)− 1
2
= 1

2 Tr ln J−1
0 . Here we neglect the constant terms. The

action (2.118) follows

XΓ[i, J]
Xi0

= �1,0 + �2,01i1 and
XΓ[i, J]
XJ01

=
1
2
�2,01 (2.119)

The second equation of above gives

− 1
2
J
−1 + 1

2
J
−1
0 +

XΓΦ [i, J]
XJ

= 0 (2.120)

Set �2 = 0, we have

Σ01 [i, J] ≡ 2
XΓΦ [i, J]
XJ01

(2.121)

A mixed 2-PI action [57] can be defined for presenting bosonic and fermionic microscopic fields at
the same time. We will review it now.

For boson-fermion interaction

Now we consider the quantum effective action for a boson-fermion interaction, for instance a simple
scalar Yukawa term

( ∼
∫

6 ˆ̄kk̂î (2.122)

In real time convention
4

i,
= / (2.123)

4
iΓ[i,J,� ]

= 4
i, +... (2.124)

In the “. . . ” are the source terms. The 2-PI effective action can be then written as [33]

Γ[i, J, �] = ([i] + i
2

Tr ln J−1 + i
2

Tr J−1
0 J− i Tr ln�−1− i Tr�−1

0 � +ΓΦ [i, J, �] +const (2.125)
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Chapter 2 General field theory: Dyson-Schwinger equations

A example can be found in [33, 58], where a chiral Yukawa term is considered for the chiral meson
model. Note that here we used J for bosonic field, rather than in [33, 58] which is representing the
fermionic field. Here we also keep the 1

2 in front of the fermionic trace-log term to be consistent with
previous definitions. One can see the difference between bosonic microscopic field and fermionic
microscopic field through the relative minus sign of the trace-log, and the iΓ should have a “+”, i.e.
+Tr ln�−1.

The Φ-functional ΓΦ [i, J, �] is

ΓΦ [i, J, �] = The vacuum diagrams that are 2-PI for J and �. (2.126)

where the action should not become disconnected whenever one cut up to two J lines, or two � lines,
or one J and one � lines. The stationary equations are

XΓ[i, J, �]
XJ01

= 0,
XΓ[i, J, �]
X�01

= 0 (2.127)

The self-energies are then

Σ
(1)
= 2i

XΓΦ [J, �]
XJ01

, Σ
( 5 )
01

= −i
XΓΦ [J, �]
X�10

(2.128)

Note the relative “i” difference between the Euclidean and the real-time convention. Note the right
hand side equation has a special order of indices. The “i” is from the real time convention.

2.3.3 Symmetries in the conserving approximation

To see how the action Γ� compromises the symmetries of the microscopic Lagrangian/Hamiltonian,
one can apply symmetry transformations. Here again, we follow [57].

A general unitary symmetry transform can be written as

k̂U = AUVk̂
′
V (2.129)

Where the AUV is an invertible linear transformation of the fundamental fields. The two point source is
the transformed as

9UV =

(
A
−1

)
U
′
U

(
A
−1

)
V
′
V
9U′V′ (2.130)

the coupling for the quartic part transforms as

_UVWX =

(
A
−1

)
U
′
U

(
A
−1

)
V
′
V

(
A
−1

)
W
′
W

(
A
−1

)
X
′
X
_U′V′W′X′ (2.131)

Recall
( 9 [k̂] = −

1
2
901k̂0k̂1 +

1
24
_0123k̂0k̂1k̂2k̂3 (2.132)

The classical action ( 9 [k̂, 9 , _], as well as the partition function / [ 9 , _] and the Schwinger functional
, [ 9 , _] are invariant under the changes (2.130) and (2.131), that is

( 9
[
k̂
′
, 9
′
, _
′]
= ( 9 [k̂, 9 , _] (2.133)

26



2.3 Quantum effective actions

/
[
9
′
, _
′]
= / [ 9 , _] (2.134)

,
[
9
′
, _
′]
= , [ 9 , _] (2.135)

Note that the invariant of / and, need the Jacobian of the functional measures are identities.14

Now we consider the action Γ�. The “kinetic” trace-log term is

Tr ln� = ln det� (2.136)

For the � = X,/X 9 and (2.130) we have

�01 = A00′A11′�
′
0
′
1
′ (2.137)

and use the identity of the determinants

det� = det AA� ′ = (det A)2 det� (2.138)

if the det A = 1 then the trace-log term is invariant, even when the ( 9 is not invariant under AUV
transformation. This indicates that Γ� can have even larger symmetry groups than ( 9 . The symmetries
of Γ� are those fulfill

_0′1′2′3′A0′0A1′1A2′2A3′3 = _0123 (2.139)

Also the lattice translational symmetry of the Hamiltonian and the local gauge symmetry of the quartic
term of the Hamiltonian are preserved at the action level.

The advantages of the action Γ� and in general the 2-PI quantum effective actions are not restricted
to the action level invariant of the classical symmetries, but also the two-particle quantities derived
from it (the, (2)

�
and the vertices) are invariant under conservation laws. As is mentioned before it

was proofed that [54, 55] the quantity

,
(2)
�
=

(
Γ
(2)
�

)−1
=

(
XΓ�

X�X�

)−1
(2.140)

follows the conservation laws if the Γ� is a two-particle irreducible quantum effective action. The, (2)
�

corresponding to two particle scattering process, and the conserving nature actually ensures that many
physical collision information with respect to the symmetries can be consistently computed from the
2-PI action and its corresponding equations of motions, or in another word the 2-PI Dyson-Schwinger
like equations. This is especially important for non-equilibrium physics and transport problems.
Originally, Baym also [55] proved, through a simple but general example, that once � is from the

Φ derivable,, (2)
�

follows the conservation law where the integral version of the continuous equation
is fulfilled. Here I follow one part of [54] to give an example.
From (2.101), �−1

01 = − 901 + 1
2_0123�23 + .01 we can get the left and right version of the

Dyson-Schwinger equations

�20�
−1
01 = −�20 901 +

1
2
�20_0123�23 + �20.01 (2.141)

14 There in [57], quantum anomalies are also discussed, as a term comes from the Jacobian of the functional measure under
symmetry transformation. The anomalies will break certain classical symmetries. For the effective action would be
something like Γ�

[
�
′
, _
′]
= Γ� [�, _] − ln det(C).
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Chapter 2 General field theory: Dyson-Schwinger equations

and
�
−1
01�13 = − 901�13 +

1
2
_0123�23�13 + .01�13 (2.142)

Now we can separate 9 = −�−1
0 + �2 and subtract the above two equations, then write the abstract

contractions into summation and the integrals.15

To make contact with the original references, we follow [55] and consider the continuous case with
a central interaction potential locally in the time space. The Hamiltonian reads

� (G0) = 1
2<

∫
x
k̂
†(G)m2

xk̂(G) +
1
2

∫
x,y,H0

k̂
†(G)k̂†(H)+ (G − H)k̂(H)k̂(G) (2.143)

With this Hamiltonian, one can find �−1
0 (G, H) = (imG0 + m2

x/2<)X(G − H) = (−im
H

0 + m2
y /2<)X(G − H).

For this example, the integrals and summations are written explicitly, and here I restrict to the fermionic
case. The result after substituting (2.142) and (2.141) should be

(m
G

0 + m
H

0)
(
i��2

)
GH
+ 1

2i<
(mx + my) (mx − my)

(
i��2

)
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=

∫
I

(
�2,GI

(
��2

)
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−

(
��2

)
GI
�2,IH − i(+GI −+HI)

(
�2,�2

)
GI
−
,HI
+

) (2.144)

Where +GH = + (G − H) = X(G
0 − H0)D( |x − y |) and �2 is a functional. The +�2 term contains the

terms .� and _��. Now set H → G
+
= G + 0+, where 0+ is an infinitesimal positive four-vector.

m
G

0

(
i��2

)
GG
+ +

1
2i<
(mx) (mx − mx+)

(
i��2

)
GG
+ = −

(
m
G

0 〈=̂(G)〉�2
+

∑
8

m
G
8 〈 9̂ 8 (G)〉�2

)
=

∫
I

(
�2,GI

(
��2

)
IH
−

(
��2

)
GI
�2,IH

) (2.145)

In above, +GH − +G+H → 0 is used. Note that =̂ is the charge density operator and 9̂ 8 is the current
density operator of spatial component 8. If assume the external source �2,GH = X(G − H)�2,G then the
last line of the above equation is zero. As a result

m` 〈 9̂
`〉�2

= m
G

0 〈=̂(G)〉�2
+

∑
8

m
G
8 〈 9̂ 8 (G)〉�2

= 0 (2.146)

This is the continuity equation of the charge conservation. The general conserving approximations
are not restricted to the Hamiltonian and the interaction in this example. It is also not only can be
applied to the charge conservation, but also can be applied to all one-particle conservation laws. Other
symmetry related conservation law such as momentum conservation and energy conservation can be
also included [54, 55, 59].

15 This procedure is skipped here.
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2.3 Quantum effective actions

2.3.4 The n-PI quantum effective action

From the derivations of the 2PI effective action, we can see that the crucial part is to find the relation
between the functional derivative of the source 9 and those of q, or Γ(2)

�
and Γ(4)

�
. Generally, the

higher effective actions (=-PI, = > 2) can be calculated recursively from 2-PI effective actions, for a
general computation and for non-Abelian gauge theory with fermions up to 4-PI action see [33, 60].
For many realistic computations, one usually truncates the effective action to a maximum loop

order, say to !-loop order. Then there is an equivalent hierarchy of the =-PI actions. Define the
=-point connected correlation function as += then when apply the effective action truncation up to
3-loop order, we have

Γ
(3loop) [q] ≠ Γ(3loop) [q, �] ≠ Γ(3loop) [

q, �,+3
]

= Γ
(3loop) [

q, �,+3, +4
]
= Γ

(3loop) [
q, �,+3, +4, . . . , +=

] (2.147)

where q is the one-point mean field 〈q̂〉, � is the two-point and +3 is the three-point mean field.
Without truncations, the n-PI effective actions are equivalent

Γ[q] = Γ[q, �] = Γ
[
q, �,+3

]
= Γ

[
q, �,+3, +4

]
= Γ

[
q, �,+3, +4, . . . , +=

]
(2.148)

The detailed derivations of above relations are beyond the scope of our discussions. The crucial step
is to combine the bare vertex +0= with the corresponding source term [33]

6=+0= → 6=+0= − '= ≡ 6=+̃= (2.149)

and derive relations between+= and +̃= through applying functional derivatives and functional identities
such as DSEs. For the irreducibility, one naively expects the =-PI action gives loop ! = = diagrams =
line irreducible, however, there is a study [61] on 5-PI for a bosonic microscopic field. There at loop
order ! = 5, the 5-PI effective action is not irreducible upon a 5 line cut, for some 5-loop vacuum
diagrams. Therefore, the name 5-PI seems not true literally. Thus, in general, one may regard "=-PI"
as "=-Lengendred" quantum effective action.

2.3.5 Self-consistent methods

We can see that in DSEs or the equations of motion derived from effective actions, the target quantities
appear on both sides of the equations. This means they usually need to be solved recursively or through
non-linear solvers for the integro-differential equations. The gap equation in the mean-field theory is
the simplest example of this kind of self-consistent equations.
For instance, in the two-particle-irreducible action section, we know from (2.112) that the Dyson

equation reads

�0 − �
−1
= −XΓΦ

X�
(2.150)

Where to the order $ (_2
�

2) we have

ΓΦ = +
1
2
_0123�01�23 −

1
48
_0CAB_1423�01�C4�A2�B3 (2.151)

It is clear that the equation (2.150) has the full propagator � on both side of the equation, this makes
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Chapter 2 General field theory: Dyson-Schwinger equations

the equation a self-consistent equation (a generalized gap equation) for the 1-particle quantity, i.e.,
the two-point function �. Other things in the equation are fixed in the model. Recall that the index
contractions are including the possible integral and summations of all possible fields, the Eq. 2.150
is then usually an integral equation, and is difficulty to solve analytically. Numerically, it can be
efficiently solved in many contexts. Some nice reviews can be found in [62] and also [33, 63].

2.4 Functional renormalization group

Quantum field theory receives understandings after Wilson’s work, the renormalization group. The
renormalization group solved an important puzzle in the quantum field theory, i.e., why renormalization
is needed and themeaning of renormalizability. There are nice reviews written by K. G.Wilson [64–66],
where Wilson used Kondo model as an example to address this problem.

It is great that there are Wilsonian ways to compute the =-point vertices and the quantum effective
actions in a non-perturbative manner. One of those ways is pointed out by Polchinski in the seminal
work [67], where scale dependent Schwinger functional,: is used as the central quantity, : labels
the scale. Nowadays it is usually presented in a form called Wetterich equation [68] or the (exact)
functional renormalization group (FRG) equation of quantum effective actions. This method has
several advantages, such as it is a non-perturbative method and we can direct extract physical quantities
once the actions or vertices are obtained at the end of the flow. Here I make a very short discussion
about the functional renormalization group. For more details see the references [30, 69, 70] and many
other reviews [31, 36, 52, 71, 72].

2.4.1 Functional renormalization group

∂kΓk =12
_

Figure 2.3: The Wetterich equation has a one loop structure. The filled box is the m:': . The full line is the
scale dependent propagator [Γ(2) + ': ]

−1

The Wilsonian renormalization group [65–67, 73] regards all quantum field theories as some sort
of effective field theories that have scale dependence and cutoffs. And the scale : (or Λ) low energy16

physics can be captured by a field theory with finite number of non-divergent parameters _8 (:) at the
given scale : .17 The _8 (:) can be computed from a set of differential equations about : , the flow
equations. Lowering the : is equivalent to coarse graining the resolution.
With this picture, the effective action of a system can be also regarded as scale dependent. If one

knows the effective action at some initial scale Λ0 as Γ:=Λ0
where an infrared (IR) cutoff is set at

: , then a set of differential equations can be constructed as an analogue of the flow equations of
the running coupling parameters. As long as : is lowered to zero, and the differential equation is
integrated and solved, the full effective action Γ = Γ:→0 is reached and the =-point vertices Γ(=) can
be computed. This is the idear of the FRG.

16 Low compare with the UV cutoff Λ0
17 Perturbatively the =-point functions has the limit when takes Λ0 →∞ which is proven in the Ref. [67].
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2.4 Functional renormalization group

Let us go to some details. Consider a scale which is marked by the four momenta : = (:0, k) where
:0 = � is the energy18. A scale dependent average action is Γ: , which fulfils

Γ:=Λ0
= (, lim

:→0
Γ: = Γ (2.152)

It can be regarded as in a finite space-time volume :−3 . The Γ = Γ:=0 is the full effective action. A
scale dependent [30, 69] 1-PI effective action19 is defined as

Γ: ['] = −,: [�] + �0q
0 − Δ(′[q, '] (2.153)

Note that q = 〈q̂〉, where the scale dependent Schwinger functional is,: = ln /: [�] = ln
∫
�q̂ exp{−([q̂]−

Δ(
′[q̂, '] + �0 q̂

0}. The cutoff is in Δ(′

Δ(
′[q, '] = 1

2
q0'

01
: q1 (2.154)

The cutoff, ': , as a scale dependent source term that can be regarded as a : dependent mass. It should
satisfy [35] 

lim
@

2/:2→0 ': > 0
lim

:
2/@2→0 ': = 0

lim:→Λ0→∞ ': = ∞
(2.155)

The ': is a IR cutoff where if the scale : = Λ0 all fluctuations are suppressed, since the “mass”
' →∞. For fixed : , ' → 0 if @2/:2 → 0, and the high four momentum fluctuations are preserved.
The fluctuations which have four-momentum lower than @2 ∼ :2 are suppressed by the positive mass
term '.
For example, the cutoff source term can be chosen as ': (@) ∼ @

2/(4@
2/:2
− 1) or ': (@

2) =
(:2 − @2)\ (:2 − @2), \ (G) is the step function. The RG results should not depend on the cutoff choices
if without any approximation, however in practice the cutoff choice matters, and may need to be
optimized.

Now comes to the central equation, the Wetterich equation [30, 69], it reads

m

m:
Γ: [q] =

1
2

Tr
{[
Γ
(2)
:
[q] + ':

]−1 m

m:
':

}
(2.156)

We also show it diagrammatically in Fig. 2.3. Again, q means the 〈q̂〉. Here the trace is defined
as Tr =

∑
0

∫
3
3
@/(2c)3 and the identity is thus 1 = (2c)3X

(
@ − @′

)
X01 which combines the

momentum and index delta. This one-loop equation is exact and one need to solve it by integrating
the flow from the initial cutoff : = Λ0 down to the deep IR scale : = 0. This will return a full 1-PI
effective action. It is no a surprise that to solve the full 1-PI effective action exactly is not realistic
in most of the situations, and different approximation schemes should be applied. Two of them are
frequently used, gradient expansions and vertex expansions [52, 69, 70]. We will review the vertex
expansions here.
The vertex expansions [70] are frequently used in strongly correlated electronic systems. The

18 One can equivalently use the “RG time”, C = ln(:/Λ0) to mark the scale.
19 Here and after I restrict to the 1-PI version, all though other formalism are possible.
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Chapter 2 General field theory: Dyson-Schwinger equations

starting point is again the general expansion of the 1-PI effective action that is mentioned before
in (2.71), but now for the scale-dependent action

Γ: =
∑
=

2=Γ
(=)01...0=
:

q01
. . . q0=

(2.157)

where 2= are constant prefactors, q are 1-point mean fields, and Γ(=) are =-th functional derivatives of
the Γ: . Through functional differentiating the Wetterich equation (2.156), one can match the order =
vertex Γ(=)

:
order by order and write down a set of infinite coupled equations [70].

To see how those equations look like, we plot the vertex expansion for Gross-Neveu model in
Fig. 2.4, again we used DoFun [36] package. And for Hubbard model see [70] and Fig. 2.5. Those
diagrams give us a set of differential equations to solve. After finding the solution, the interesting data
such ase critical exponents and other observables can be extracted from the =-vertices.

∂t Γk =-

∂t l j -1
= +

l

j

∂t

k l

i j

= +
k

l

ij

+ 2

k l

i j
-2

k l

ij
-

k

l i

j

Figure 2.4: The DoFun output for the Gross-Neveu model. Flow of scale dependent effective action, two-point
Γ
(2)
:

and four-point vertices Γ(4)
:

. The C = ln(:/Λ0) is the RG time with Λ0 the initial UV cutoff. The filled box
is now the mC': .

2.4.2 Relations between FRG and self-consistent method

The relation between the FRG equations with vertex truncation up to 4-vertex and the parquet
approximation (PA) is discussed recently [74–76], the authors point out that the loss of accuracy by
dropping the 6-point function and beyond, which makes the derivative incomplete, can be partially
recovered by making the derivative complete through additional parquet diagrams. Then the FRG
equation differential equations can be solved self-consistently and become a resummation technique
that offers a new way to solve the problems in which vertex corrections are important. Especially
this kind of method makes the flow regulator free and it is also promising to avoid the low energy
divergences occurring in dynamical vertex approximation [77] �Γ�, which is a non-local extension
of the DMFT.
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2.4 Functional renormalization group

Figure 2.5: Vertex expansion for Γ(4) setting the Γ(6) = 0 for Hubbard model, here the scale is Λ. The three
typical channels are labeled as particle-particle (pp), particle-hole (ph) and exchanged particle-hole (ph’).
Define �: ≡ Γ

(2)
:

. The slashed lines are the single scale propagators (: ∼ −�:mC':�: , see [70] equation (48).
Figure from [70].
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2.5 Summary

2.5 Summary

In this chapter, I reviewed some basics of the integral equations of the =-point correlations functions
and the =-point vertex functions in the quantum/statistical field theory, where we used functional
equations to demonstrate the theoretical structure. Those equations are Dyson-Schwinger equations,
tree expansions, =-particle-irreducible actions, scale dependent effective actions and their functional
derivatives, i.e., vertices. They may be summarized in a graph Fig. 2.6.

Effective action Γ1PI [�, q]

Average action Γ[':]

DSE � −
〈
X(

X q̂

〉
= 0

Connected diagram,
(=)

Irreducible vertex Γ(=)

Bare action (

Γ2PI

Schwinger functional, [�]

Partition function /

Exact RG equation

Average vertex Γ(=)
:
[']

Classical e.o.m (
(=)

ΓnPI

Correlation function / (=)

. . .

. . .

...

...

(1)

(2)

(3)

(4)

(4)

(4)

(2)

(2)

(2)

(2)

Figure 2.6: A summary of the effective actions and the equations of the correlation functions. They are related
by: (1) Functional integrals, (2) Functional derivatives, (3) Legendre transforms with source terms and fields,
(4) Legendre transforms with =-point mean fields.
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CHAPTER 3

Non-equilibrium: Keldysh method

In this chapter, we review the Keldysh method for non-equilibrium quantum systems.
In general, the quantum mechanical systems always start their time evolution from an initial state
|Ψin〉 to a final state |Ψout〉. This general setting can be described by the so-called Keldysh formalism,
which can be traced back to Schwinger’s [78] and Keldysh’s [79] works, as well as the works of
Kadanoff and Baym [59] in the 1960s. This formalism is especially convenient in the field theoretical
context since almost all techniques available in the usual quantum/statistical field theory can be
straightforwardly extended, and to be useful for non-equilibrium physics. It is not a surprise that the
Dyson-Schwinger equations and their generalizations can be used in this manner as well. An important
class of those Keldysh DSEs are frequently called Kadanoff-Baym equations [59]. These equations are
formally almost identical to their equilibrium counterpart, however, the time variables are now on the
contour time path (CTP) or the Schwinger-Keldysh contour, see Fig. 3.1. The feature of the Keldysh
method is that it allows the distribution to also evolve dynamically and it is not necessarily related
with spectral function by the Fluctuation-Dissipation theorem (FDT)1. Interestingly, an additional
dynamical degree of freedom will arise on top of all the detailed structures of the concrete models.
There are many good reviews and textbooks for the Keldysh method, including [25, 29, 33, 58, 80–83],
some more details may be found in [63, 84, 85]. Many original ideas can be found in the old classic
book by Kadanoff and Baym [59].
The Keldysh method is not only a technical method to compute certain observables in field

theoretical way, but also a convenient "language" [82] for describing the dynamical processes, such
as classical and quantum relaxation, diffusion, dissipation, coherence/decoherence, and further the
integrable or chaotic systems. The Keldysh method has the following advantages: it is

1. Use complex time contour which refers only to the initial density matrix

2. Can treat Real-time without analytical continuation

3. Gives the inter-play of spectra and occupation

4. Can unify the equilibrium and non-equilibrium

5. Can derive Boltzmann equation and other kinetic equation from the “first principle”.
1 Namely, the fields or two-point functions do not, in general, follow the Kubo-Martin-Schwinger (KMS) boundary
condition. We will discuss this in a section of this chapter.
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Chapter 3 Non-equilibrium: Keldysh method

Technically, extent field-theoretical tools to the Keldysh form is simple. The extensions can be done
through three steps.

1. Choose the time contour, usually the close time contour, and write down contour time equations.

2. Go to real-time by representing the products by tensor contractions of the contour indices

3. Replace contour time propagators and vertices by real-time propagators and vertices.

We will give detailed discussions in the following sections.

3.1 Field theory on closed time path (CTP) contour

C8 C 5�1

�3

C 5 − if
�2

Re C

Im C

C8 C 5

C 5 − if

ReC

ImC

d0

* (C 5 , C8)

*
†(C 5 , C8)

�(C ′)

�(C)

Figure 3.1: Schwinger-Keldysh closed contour time path (CTP), see also [81, 83, 86]. Usually we call �1 the
“+” part, �2 the “−” part. Note that the �3 contour do not contribute in most of the case we are considering.

Consider a general case in which the Hamiltonian 2 of the system has an explicit time dependence.
This means in the Schrödinger picture it has time dependence through its parameters. The Schrödinger
picture full Hamiltonian � (C) can be separated into two parts

� (C) = �1(C) + �2(C)

2 As a functional of field operators.
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3.1 Field theory on closed time path (CTP) contour

where �2(C) = \ (C − C8)�2(C), the \ (C) is the Heaviside step function. Step of time means that the �2
is switched on at time point C8 . Then the expectation value of any observable at time C > C8 is

〈$̂� (C)〉 = Tr[d(C8)$̂� (C)] = Tr[d(C)$̂(]

here d is the density matrix. The operator $ (C) is a Heisenberg picture operator for the observable
$ with respect to the total Hamiltonian � (C). Now, if one uses the general time propagation of the
operator $̂ (C) = * (C8 , C)$̂ (C)* (C, C8), then

〈$̂� (C)〉 = 〈Ψ(C8) |$̂� (C) |Ψ(C8)〉
= 〈Ψ(C8) |* (C8 , C)$̂(* (C, C8) |Ψ(C8)〉 = 〈Ψ(C) |$̂( |Ψ(C)〉

(3.1)

Here, $̂( is the operator in the Schrödinger picture. Now consider the interaction picture (a rotating
frame) of Hamiltonian �1. We can* (C8 , C 5 ) = *

†(C 5 , C8) and* (C, C8) = D2(C, C8)D1(C, C8) to get

$̂� (C) = D
†
2(C, C8)$�1

(C)D2(C, C8) = D
†
2(C, C8)D

†
1(C, C8)$(D1(C, C8)D2(C, C8) (3.2)

where we assumed
D1(C, C8) = )̂ exp

{
−i

∫ C

C8

dC ′�1(C
′)
}

(3.3)

that satisfies
8

d
dC
D1(C, C8) = �1(C)D1(C, C8) (3.4)

Then D1 is the evolution operator of �1(C) and

$̂�1
(C) = D†1(C, C8)$̂(D1(C, C8) (3.5)

From the above equations, we can see that

〈$̂� (C)〉 = 〈Ψ(C8) |D
†
2(C, C8)$̂�1

(C)D2(C, C8) |Ψ(C8)〉 (3.6)

And we can write the interaction picture [28] Schrödinger equation as

i
d
dC
|Ψ〉( = �( |Ψ〉(

→ i
d
dC

(
D1 |Ψ〉1

)
=

(
�1 + �2

)
(
D1 |Ψ〉1

→ �1D1 |Ψ〉1 + iD1
d
dC
|Ψ〉1 =

(
�1 + �2

)
(
D1 |Ψ〉1

→ i
d
dC
|Ψ〉1 = D

†
1
(
�2

)
(
D1 |Ψ〉1

→ i
d
dC
|Ψ〉1 = [�2]�1

|Ψ〉1

(3.7)

where |Ψ〉1 = D
†
1 |Ψ〉( and the interaction picture Hamiltonian is defined as

[�2]�1
≡ D†1(�2)(D1 (3.8)
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Chapter 3 Non-equilibrium: Keldysh method

Note that �2 is originally in the Schrödinger picture.
From equation (3.7) the time propagation operator D2(C, C8) in this specific interaction picture can

be written as
D2(C, C8) = )̂ exp{−i

∫ C

C8

dC ′[�2(C
′)]�1
}

Where the )̂ is the time ordering operator where inside it the operators of different times commute,
and they are time ordered which means that the operator of the later time are on the left. To relate
this interaction picture to quantum field theory methods, we will use an alternative form of the above
equation. We write the conjugate of*, i.e.,* (C8 , C 5 ) = *

†(C 5 , C8) into an anti-time-ordering operator
) . The ) means to order the operators with the inverse times order, i.e., the operator of the later time
to the right. Now we have

D
†
2(C, C8) = ) exp{i

∫ C

C8

3C
′[�2(C

′)]�1
}

Since the incoming initial state is |Ψ(C8)〉, one can define the initial density matrix as

d0 ≡ |Ψ(C8)〉 〈Ψ(C8) | (3.9)

Where Tr d0 = 1 and d0 = d
†
0. Note that d0 is not restricted to pure state density matrices, it can also

be for mixed states, e.g. the thermal density matrix. Equation (3.1) can be written as

〈$̂� (C)〉 = Tr
[
d0)̂C

[
4
−i

∫
C(C′) [�2 (C

′) ]�1 $̂�1
(C)

] ]
Here we commuted operators inside the time-ordering. The

∫
C(C′) is the contour integral on the

Schwinger-Keldysh contour or close time path (CTP), see Fig. 3.1. Note that C 5 is later than
the measuring time C. This is always allowed since if without operator insertions, the +/− (or
�1/�2) contours cancel with each other because of the unitarity. This cancelation also guarantees
normalization.

We can now define the partition function as

/ = Tr d0)̂C4
−i

∫
C(C ) [�2 (C) ]�1 (3.10)

We can choose �1 and �2 in different ways. A natural way is to choose a perturbation �2 defined as
�2(C) =

∫
x
� (C, x)q̂(x) which is a time-dependent external source coupled to the Schrödinger field

operator q̂(G). With in mind that �1 is the Hamiltonian of the full system where these external sources
are turned off, we have

/ [�] = Tr
[
d0)̂C exp

{
−i

∫
x,C(C)

� (G)q̂(G)
}]

(3.11)

Here G = (G0
, G

1
, . . .) = (C, x), q̂(G) is the Heisenberg operator with respect to �1(C). The (3.11) this

is the equation (2.1) at the very beginning. Note that � (G) and k̂(G) now have their time variables on
the contour. The contour-time integration on the CTP is defined as∫

C(C)
=

∫ +∞

−∞
dC+ −

∫ +∞

−∞
dC− (3.12)
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3.2 Basic two-point functions

Note the relative minus sign, which can be absorbed into a "contour metric" if one defines tensor
vertices. We will discuss the tensor vertices in later sections.

One can now understand the generating functional / [�] for the Schwinger-Keldysh contour time
path (CTP) as a trace of the time evolution of the d0 from initial time C8 to a final time C 5 . For a closer
look, we can split the contour ordering in the partition function [83, 87]

/ [�+, �−] = Tr[* (C 5 , C8 , �+)d0*
†(C 5 , C8 , �−)] (3.13)

With the source terms switched off, it is

/ = Tr[d(C)] (3.14)

which is the trace of the time-dependent density matrix.

In contrast to the usual partition functions, the (3.13) has two sources coupled to the operators on
the upper + and lower − contours. To see this, we rewrite D2 = * (C 5 , C8 , �+). The explicit form of the
partition functional is then

/ [�+, �−] = Tr
[(
)̂ 4
−i

∫
G
�+ (G) q̂+ (G)

)
d0

(
)4

i
∫
G
�− (G) q̂− (G)

)]
(3.15)

Here
∫
G
=

∫ +∞
−∞ dG. The correlation functions are now

Tr[()̂ q̂+(G)q̂+(H) . . .)d0()q̂−(I)q̂−(B) . . .)] (3.16)

Apply the cyclic rule of the trace, we get

/ [�+, �−] = Tr
[
d0)̂C4

−i
∫
G
(�+ (G) q̂+ (G)−�− (G) q̂− (G))

]
(3.17)

where )̂C is the contour time ordering operator. The Schwinger functional on the CTP then can be
defined in the usual way

4
i, [�+,�− ] = / [�+, �−] (3.18)

Note that / [0, 0] = Tr d0 = 1 for the Schwinger-Keldysh case, which means that one can alternatively
define, = / rather than, = −i ln / and its functional derivatives will be normalized observable.
This normalization property [25] is an advantage of the Keldysh method for disorder systems.

3.2 Basic two-point functions

Here we discuss some representative 2-point functions, the connected Green’s functions. The connected
Green’s functions are functional derivatives of the generating functional, the Schwinger functional,

i�01 (G, H) = i
X,

Xi�0 (G)Xi�1 (H)

����
�+=0,�−=0

(3.19)
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Chapter 3 Non-equilibrium: Keldysh method

where we suppressed all indices except the contour indices and the space-time. Here we majorly
consider the fermionic microscopic fields; it means that

X,

X�±(G)
= 〈k±(G)〉 = 0 (3.20)

where we have the fermionic property that the 1-point mean-field vanishes.

In a matrix form the �01 reads

�
01
=

(
X,

Xi�+ Xi�+
X,

Xi�+ Xi�−
X,

Xi�− Xi�+
X,

Xi�− Xi�−

)�����
�+=�−=0

=

(
�
++

�
+−

�
−+

�
−−

)
=

(
�
)

�
<

�
>

�
)

)
(3.21)

Here I defined two-point functions [3, 25, 29, 33] on closed time path (CTP) contour. Although �
on CTP is commonly defined in almost all literatures for the Keldysh method, including the original
paper of Keldysh [79], the notations vary from author to author. It is thus worthy to define them by
using uniform and consistent notations. For space-time variables, we will use G0 ≡ C, G ≡ (G0

, x).
The self-energy Σ, namely the 1-PI irreducible part of the collected two-point function, can be

defined through
Γ
(2)
= (, (2) )−1

= �
−1
= [�0]

−1 − Σ (3.22)

And they follow the same transformation rules as �−1.

From (3.21) we see that on the CTP we have four contour Green’s functions, they are defined as

�
++
= �

) (G, H) = −i 〈)k+(G)k
†
+(H)〉d0

= \ (G0 − H0)�> (G, H) + \ (H0 − G0)�< (G, H) (3.23)

�
−−
= �

) (G, H) = −i 〈)k−(G)k
†
−(H)〉d0

= \ (H0 − G0)�> (G, H) + \ (G0 − H0)�< (G, H) (3.24)

�
+−
= �

< (G, H) (3.25)
�
−+
= �

> (G, H) (3.26)

The > can be regarded as an "arrow" from − to +.
We can write �++ and �−− into �> and �< with proper causal structures

�
++
= �

) (G, H) = −i 〈)k+(G)k
†
+(H)〉d0

= \ (G0 − H0)�> (G, H) + \ (H0 − G0)�< (G, H) (3.27)

�
−−
= �

) (G, H) = −i 〈)k−(G)k
†
−(H)〉d0

= \ (H0 − G0)�> (G, H) + \ (G0 − H0)�< (G, H) (3.28)

The step function \ (C − C ′) is defined as

\ (C − C ′) =
{
C − C ′ ≥ 0 : 1
C − C ′ < 0 : 0 (3.29)

Although this definition is standard, its equal time point C = C ′ is special. There are some subtleties for
the equal time cases of Keldysh Green’s functions, and thus is better to be treated carefully. The four
elements of the Green’s function are not independent

�
) (G, H) + �) (G, H) − �> (G, H) − �< (G, H) = 0 (3.30)
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3.2 Basic two-point functions

Note that in the above G0
≠ H

0 is assumed. To be directly related to the physical observables, we have
real-time Green’s functions [25]

�
' (G, H) = 1

2

(
�
) − �) + �> − �<

)
= \ (G0 − H0)

(
�
> − �<

)
(3.31)

�
�(G, H) = 1

2

(
�
) − �) − �> + �<

)
= \ (H0 − G0)

(
�
< − �>

)
(3.32)

�
 (G, H) = 1

2

(
�
) + �) + �> + �<

)
= �

> + �<, for G
0
≠ H

0 (3.33)

Note that [25], although �'/�(C, C) ≠ 0, whenever without multiplied by the distribution function, the
retarded and advanced Green’s function at equal time should appear as a summation�' (C, C) +��(C, C).
Since �' (C, C) + ��(C, C) = 0, it gives a "\ (0) = 0" regularization. On the other hand, the equal time
subtraction of the retarded and advanced Green’s functions identically give �' (C, C) − ��(C, C) = −i,
which is resulting from the normalization. Moreover it is straightforward to see �> (C, C) = i/2 =
−�< (C, C).

We can also define the fermionic spectral propagator �(G, H) and the statistical propagator
� (G, H) [33] through the anticommutator of the fields and the commutator of the fields3

�(G, H) = 〈{k(G), k†(H)}〉, � (G, H) = − i
2
〈[k(G), k†(H)]〉 (3.35)

Note that here the definition is different from [58] by a factor "−i", this is because of the "−i" convention
used here for Green’s functions. Clearly the contour Green’s functions can be decomposed by the
statistical and spectral propagator [33, 58]

�C (G, H) = −i 〈)̂Ck(G)k
†(H)〉 = \C (G

0 − H0)�> (G, H) + \C (H
0 − G0)�< (G, H)

= � (G, H) − i
2
�(G, H) sgnC

(
G

0 − H0
) (3.36)

Similarly, for the 1-PI irreducible 2-point function

ΣC = Σ(� ) (G, H) −
i
2
Σ(�) (G, H) sgnC

(
G

0 − H0
)

(3.37)

Here the contour sign sgnC is defined as

sgnC (G
0 − H0) = \C (G

0 − H0) − \� (H
0 − G0) (3.38)

3 Bosonic cases are

�
(boson) (G, H) = 〈[i(G), i(H)]〉 , �

(boson) (G, H) = − i
2
〈{i(G), i(H)}〉 (3.34)

The proof is simple, just rewrite
〈
i0 (G)i1 (H)

〉
\C (G

0 − H0) +
〈
i1 (H)i0 (G)

〉
\C (H

0 − G0) by the use of i(G)i(H) =
1
2 [i(G), i(H)] +

1
2 {i(G), i(H)}.
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The contour step function has the explicit form4

\C (G
0 − H0) =


G

0 ∈ +, H0 ∈ + : \ (G0 − H0)
G

0 ∈ −, H0 ∈ − : \ (H0 − G0)
G

0 ∈ +, H0 ∈ − : 1
G

0 ∈ −, H0 ∈ + : 0

(3.39)

Where the step function \ is defined in (3.29).
With the above definitions, we can rewrite the contour Green’s functions by the spectral and

statistical components [33, 58]

�
++
= �

) (C, C ′) = � (G, H) − i
2
�(G, H) sgn

(
G

0 − H0
)

(3.40)

�
+−
= �

< (C, C ′) = � (G, H) + i
2
�(G, H) (3.41)

�
−+
= �

> (C, C ′) = � (G, H) − i
2
�(G, H) (3.42)

�
−−
= �

)̃ (C, C ′) = � (G, H) + i
2
�(G, H) sgn

(
G

0 − H0
)

(3.43)

The sgn function is defined as

sgn(G0 − H0) = \ (G0 − H0) − \ (H0 − G0) (3.44)

The spectral correlation function �(G, H) and statistical correlation function � (G, H) for fermions [29,
33] can be written alternatively by

�(G, H) = 2 〈k [−k
†
+]〉 = i(�> − �<) (G, H) = i(�' − ��) (3.45)

� (G, H) = −i 〈k (−k
†
+)〉 =

1
2
(�> + �<) (G, H) = 1

2
�
 (3.46)

With the help of the short-hand notation 0 [+1−] = 1
2 (0+1− − 0−1+) and 0 (+1−) =

1
2 (0+1− + 0−1+).

Note, under our definition the free spectral function in the momentum space is �(l, k) = 2cX(l− nk ),
with the quasi-particle dispersion nk . Also from the above identities we can conclude5

�
<
=

1
2
(� − �' + ��) (3.47)

�
>
=

1
2
(� + �' − ��) (3.48)

Since one can always parametrize [25, 29] an anti-Hermitian matrix by a upper block triangular, a
Hermitian matrix and a lower triangular matrix, the Keldysh Green’s function can be decomposed into

�
 
= �

' ◦ ℎ − ℎ ◦ �� (3.49)

4 In a more compact way [81], assume that the contour time C is parametrized through a monotonically increasing g through
the parametrization C = I(g), then \C (C− C

′) = \ (g−g′). The contour delta function is then XC (C− C
′) = ( mI

mg
)−1

X(g−g′).
5 No confusion for � on advanced �� and the spectral function �(G, H).
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3.3 Keldysh functional integral

The ℎ(C, C ′) is a two-time function. For fermions in equilibrium6, the so-called fluctuation-dissipation
theorem (FDT) applies. The Keldysh Green’s function has the explicit form

�
 
= ℎ(l) (�' − ��) (3.50)

Or equivalently
� (l) = i

2
ℎ(l)�(l) (3.51)

Where ℎ(l) ≡
(
1 − 2=FD(l)

)
=

(
1 − 2

4
−Vl+1

)
= tanh

(
Vl

2

)
. Equation (3.51) is called the fluctuation-

dissipation theorem (FDT) and can be related to an equilibrium symmetry of the field that is called the
Kubo-Martin-Schwinger (KMS) symmetry. Since KMS symmetry is a fundamental symmetry of the
equilibrium, it will be further explained in the KMS section.
There are different ways to define a time-dependent effective distribution function. One simple

choice is that = = (1 − ℎ)/2 can be defined through ℎ

=(C, C ′) ≡ 1 − ℎ(C, C ′)
2

=
1
2
− � (C, C ′)

i�(C, C ′)
(3.52)

Or through parametrization (3.49). The = can be equivalently defined as

=(C, C ′) ≡ i
�
< (C, C ′)
�(C, C ′)

(3.53)

For convenience, we can also define the spectral broadening [29]

� = i(Σ' − Σ�) = Σ(�) (3.54)

where Σ = �0 − �. Note that Σ
� is the advanced self-energy, and Σ(�) is the spectral self-energy.

3.3 Keldysh functional integral

A functional integral7 can be written down for the Schwinger-Keldysh contour in a straightforward
way. Note that now the fields are doubled, and there is a relative minus sign between the upper and
lower contour actions. For instance, for scalar (real) bosonic fields we have

( = (+ [i+] − (− [i−] = ([icl, iq] (3.55)

And for complex fermionic fields we have

( = (+ [k+, k̄+] − (− [k−, k̄−] = ([k1, k2, k̄1, k̄2] (3.56)

The functional integral is now the integration of all field configurations that are weighted by the 4i( ,

6 And equivalently [59] �> (l) = i[1 − =FD (l)]�(l), and in equilibrium �
< (l) = −i=FD (l)�(l). Here �< (l) =

−4−Vl�> (l)
7 A detailed introduction can be found in the book [25]
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Chapter 3 Non-equilibrium: Keldysh method

for instance, the fermionic field, we have

/ =

∫
d[k1, k2, k̄1, k̄2]4

i( (3.57)

Details about the generating functional with the path-integral form can be found in [25, 33, 81–83, 88].
We can write the action into the free part and the interacting part as

/ =

∫
d[q̂]4i(

=

∫
d[q̂]4i((0+(int) (3.58)

Clearly the standard perturbation theory [34] can be applied. The perturbation theory, as well as
Wick’s theorem, are formally unchanged, except that additional indices should be included.

For open systems, the Keldysh functional integral method works equally well, for a review see [88],
where a Lindblad master equation is translated into the Keldysh field-theoretical language.

3.4 Diagrammatics and perturbation theory on CTP

Bosonic Fermionic

! = 1√
2

(
g

0 − 8g2
)

! = 1√
2

(
g

0 − 8g2
)

(
icl
iq

)
= !g

3
(
i+
i−

) (
k1
k2

)
= !g

3
(
k+
k−

)
(
īcl, īq

)
=

(
ī+, ī−

)
(!g3)†

(
k̄1, k̄2

)
=

(
k̄+, k̄−

)
!
†

�̂ ≡
(
�̂++ �̂+−
�̂−+ �̂−−

)
�̂ ≡

(
�̂++ �̂+−
�̂−+ �̂−−

)
� =

(
�
 

�
�

�
' 0

)
= −i

(
〈iclīcl〉 〈iclīq〉
〈iqīcl〉 〈iqīq〉

)
� =

(
�
'

�
 

0 �
�

)
= −i

(
〈k1k̄1〉 〈k1k̄2〉
〈k2k̄1〉 〈k2k̄2〉

)
� = !g

3
�̂ (!g3)† � = !g

3
�̂!
†

�
−1
=

(
0 [�−1]�

[�−1]' [�−1] 
)

�
−1
=

(
[�']−1 [�−1] 

0 [� ]−1

)

Table 3.1: The usual conventions of the field rotation to real time fields. Where g8 are Pauli matrices, g0
01 = X01 .

See also [25]. Note that the fermionic convention can be chosen to be the same as the bosonic ones. Here we
follow the conventions in [25].

In this section, we present several examples of the Keldysh perturbation theory. Roughly speaking

46



3.4 Diagrammatics and perturbation theory on CTP

it is simply to replace vertices of the Feynman rules by tensor vertices, and the propagators by matrix
propagators [25, 29].

For bosonic fields we define

icl(C) =
1
√

2

(
i+(C) + i−(C)

)
, iq(C) =

1
√

2

(
i+(C) − i−(C)

)
(3.59)

Where the icl is the “average”, or symmetric summation of the i± and the iq is the “relative”, or
anti-symmetric summation of the i±.

For fermionic fields, the conventions are usually different, where we have

k1(C) =
1
√

2

(
k+(C) + k−(C)

)
, k2(C) =

1
√

2

(
k+(C) − k−(C)

)
(3.60)

k̄1(C) =
1
√

2

(
k̄+(C) − k̄−(C)

)
, k̄2(C) =

1
√

2

(
k̄+(C) + k̄−(C)

)
(3.61)

These definitions are allowed since the fermionic fields k̄ and k are independent fields rather than
complex conjugates of each other. This convention has the advantage that it simplifies the 2-point
function matrices to upper triangular matrices. As we know the inverse of the upper triangular matrices
are again upper triangular, many equations will become simpler.

We will call k1/2 or icl and iq are in the real-time representation, and we will call the fields with
+/− in the contour time representation. We summarize the contour-time and real-time conventions of
the bosonic and fermionic fields in Table 3.1.

Now, we give some specific examples where the tensor vertices are derived. We can first consider a
scalar-fermion (Yukawa) interaction, the Keldysh action is then simply (+ − (− and

(int =

∫
G

(6+i+k̄+k+ − 6−i−k̄−k−) (3.62)

For simplicity, we choose i = ī. Microscopically we have 6+ = 6− thus

(int =

∫
G

(6i+k̄+k+ − 6i−k̄−k−) (3.63)

One can then define the tensor vertices (for the fermion-boson interaction) as [89]

W
+
9: =

(
1 0
0 0

)
= +1

2
(g0 + g3) 9: , W

−
9: =

(
0 0
0 −1

)
= −1

2
(g0 − g3) 9: (3.64)

This is also equivalent to mark each vertex with the contour label +/− and give it a corresponding
sign. We can write the above labeling in a compact form

(int =

∫
G

W
8
9:6i

8
k̄
9
k
: (3.65)
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Chapter 3 Non-equilibrium: Keldysh method

On the other hand. For the real-time basis, we have

i+ =
1
√

2
(icl + iq), i− =

1
√

2
(icl − iq) (3.66)

k+ =
1
√

2
(k1 + k2), k− =

1
√

2
(k1 − k2) (3.67)

k̄+ =
1
√

2
(k̄1 + k̄2), k̄− =

1
√

2
(k̄2 − k̄1) (3.68)

after some algebra, the interacting part of the action reads

(int =

∫
G

6
√

2
i

cl (
k̄1k1 + k̄1k1

)
+ 6
√

2
i

q (
k̄1k2 + k̄2k1

)
(3.69)

Now we can define the tensor vertices [25] of the basis (k1, k2). They are

W
cl ≡ 1
√

2

(
1 0
0 1

)
=

1
√

2
g

0
, W

q ≡ 1
√

2

(
0 1
1 0

)
=

1
√

2
g

1 (3.70)

Again g8 are the Pauli matrices act in the Keldysh space [25]. From this we can put the interacting
part into a compact form

(int =

∫
G

6W
U
01i

U
k̄0k1 (3.71)

where the same indices are summed. U ∈ {cl, q} and 0, 1 ∈ {1, 2}.

For a example, now we consider the second order expansion of 4i(int in coupling 6. We also do
contractions for the propagator of i

i2

2
6

2
∫
G,G
′
W
U
01i

U
k̄0k1W

V

23
i
V
k̄2k3 (3.72)

this gives

− 1
2
6

2
∫
G,G
′
i
U (G)

(
W
U
01�30 (G

′
, G)�12 (G, G

′)WV
23

)
i
V (G ′) (3.73)

which is a fermionic loop.

Another example is the tree level contraction

i2

2
6

2
∫
G,G
′
W
U
01i

U
k̄0k1W

V

23
i
V
k̄2k3 (3.74)

which gives us

− i
2
6

2
∫
G,G
′
k̄0 (G)k1 (G)

(
W
U
01�

UV (G, G ′)WV
23

)
k̄2 (G

′)k3 (G
′) (3.75)

The above diagram becomes especially simple if the bosonic propagator � (G, H) is in a contact pair
interaction form, i.e., it is local in space and time, and it satisfies the FDT. We can assume �' = ��
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3.4 Diagrammatics and perturbation theory on CTP

in energy and momentum space8 and write

� (l, p) =
(
�
 (l, p) �

' (l, p)
�
�(l, p) 0

)
= D0

(
0 1
1 0

)
(3.76)

Note that in momentum space, the FDT implies � ∼ (�' − ��). Transform back to the space-time,
we have

� (G, H) =
(
�
 

�
'

�
� 0

)
= D0XGH

(
0 1
1 0

)
= D0XGHg

1 (3.77)

Using � (G, H) in (3.77) we can compute the contact tensor vertex a0123

D0XGHa0123 = D0W
U
01�

UV (G, G ′)WV
23
= D0XGHW

U
01g

1,UV
W
V

23
(3.78)

Where after the contraction, it is

a0123 =
1
2
(g0 ⊗ g1 + g1 ⊗ g0)0123 =

1
2
(g0
01g

1
23 + g

1
01g

0
23) (3.79)

With a0123 the tree graph (3.75) becomes

(4,int = i
∫
G

−
D06

2

2
k̄0 (G)k1 (G)a0123k̄2 (G)k3 (G) (3.80)

Obviously it gives a four-fermion interaction action.

The normal ordered version of (3.80) with the generic coupling*0 reads

(4,int = i
∫
G

−*0a0123k̄0 (G)k̄2 (G)k1 (G)k3 (G) (3.81)

where if*0 > 0 it gives a repulsive interaction. We defined

*0 ≡
D06

2

2
(3.82)

For the +/− basis, we can do the same procedures. Note that the contraction needed now is

W
8
9: �̂

88
′
W
8
′

9
′
:
′ (3.83)

If we use � = !g
3
�̂ (!g3)†, for the contact interaction the bosonic propagator �̂ in +,− basis reads

�̂ (G, H) =
(
�
++

�
+−

�
−+

�
−−

)
GH

= D0XGH

(
1 0
0 −1

)
= D0XGHg

3 (3.84)

8 Although this is not entirely consistent with the causal structure.
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The vertex W89: in the contact interaction case gives

a8 9:; =
1
2
(g0 ⊗ g3 + g3 ⊗ g0)8 9:; =

1
2
(g0
8 9g

3
:; + g

3
8 9g

0
:;) (3.85)

This vertex is especially simple, since it is diagonal for all its containing matrices.
As a last example, let us consider a typical self-energy diagram at the second order in*0

Σ;;′ (G, G
′) = *0a8 9:;�88′ (G, G

′)� 9 9
′ (G, G ′)�:′: (G

′
, G)*0a8′ 9′:′;′ (3.86)

This can be directly read off from a Feynman diagram using the defined tensor vertex and propagators
in the Schwinger-Keldysh space. The tensor contractions will produce many terms, in the real-time
1, 2 basis, this may need some algebra. The +,− basis gives a simple result, the tensor contraction
machinery can be done with the help of the computer algebra system9, the final result is

Σ̂(G, G ′) = *2
0

(
�
) (G, G ′)�) (G, G ′)�) (G ′, G) −�< (G, G ′)�< (G, G ′)�> (G ′, G)
−�> (G, G ′)�> (G, G ′)�< (G ′, G) �

) (G, G ′)�) (G, G ′)�) (G ′, G)

)
(3.87)

Note the minus signs form the contractions with g3.
Diagrammatics can also be done by marking the vertex with + or −. If we consider Σ< = Σ+−, it is

simply
Σ
<
= −*2

0�
+−
�
+−
�
−+
= −*2

0�
<
�
<
�
> (3.88)

And Σ> = Σ−+ gives
Σ
>
= −*2

0�
−+
�
−+
�
+−
= −*2

0�
>
�
>
�
< (3.89)

These are related to the collision processes and to the collision integral of the quantum Boltzmann
equations, which we will see in the upcoming sections.
If we have space and time translational invariance, we can Fourier transform the self-energy into

energy momentum space and the product becomes convolutions

Σ
</> (?) = −*2

0 (�
</>
@ ◦ �>/<−@′ ◦ �

</>
:
) (?) (3.90)

Note that the last two Green’s functions have been switched to make the product more symmetric.

3.5 Dyson-Schwinger equations on CTP

We can apply Keldysh techniques to the Dyson-Schwinger equations. In this section, we consider
fermionic fields and the two-point function. The equations for the bosonic fields will be almost the
same. The difference will be in the form of the free dispersion, the signs, and the vacuum expectation
value of microscopic fields.

The relation between the functional derivatives of the 1-PI effective action Γ[k1, k2, k̄1, k̄2] and
the Schwinger functional, [�k1

, �k2
, �k̄1

, �k̄2
] can be written in the usual way

[�−1]01 (GH) = Γ
(2)
01
(G, H) = [(, (2) )−1]01 (G, H) = [�

−1
0 ]01 (G, H) − Σ01 (G, H) (3.91)

9 For example, the Mathematica.

50



3.5 Dyson-Schwinger equations on CTP

although the physical meaning of the source is extended to contain the dynamical statistical properties.
Note this identity is also called Dyson equation.

Here for convenience we introduce a short hand notation for generalized convolutions

[ 5 ◦ 6] (G, H) ≡
∫
I

5 (G, I)6(I, H) (3.92)

where for real time we have
∫
I
=

∫
C ∈(−∞,∞)

∫
x
. The left and right Dyson equations can be written as(

[�−1]01 ◦ �12
)
(G, I) = X02XGI (3.93)(

�01 ◦ [�
−1]12

)
(G, I) = X02XGI (3.94)

Now one can write those matrix equations into components. Consider the left Dyson equation,
we can first choose the diagonal elements

(
[�−1]11 ◦ �11 + [�

−1]12 ◦ �21

)
(G, I) = X11XGI . Use

�21(G, H) = 0 and match the label, where(
[�−1]' ◦ �'

)
(G, I) = XGI (3.95)

Equivalentlywe canfind
(
[�−1]21 ◦ �11 + [�

−1]22 ◦ �22

)
(G, I) = X22XGI gives

(
[�−1]� ◦ ��

)
(G, I) =

XGI .
The Keldysh component of the Dyson equation follows [�−1]11 ◦ �12 + [�

−1]12 ◦ �22 = 0. Note
that for finite Σ , [�−1

0 ]
 can be neglected10, which gives us

[�−1]' ◦ � ◦ [�−1]� = Σ (3.97)

This equation is also usually called the Keldysh equation.
Several different but equivalent forms of the Dyson equation appear in the literature. Although their

derivations are, in principle, straightforward, we still compute the differential equations of �> (G, H)
and �< (G, H) here for clarity.
Starting with (3.95). We can write [�−1] = [�−1

0 ] − Σ, then we have the equation

[�−1
0 ]

'/� ◦ �'/� = Σ'/� ◦ �'/� + X (3.98)

Subtract �'/� equations and use [�−1
0 ]

'
= [�−1

0 ]
�
= �

−1
0 in the time space yields

�
−1
0 ◦ (�

' − ��) = Σ' ◦ �' − Σ� ◦ �� (3.99)

10 This can be seen by direct computation

(�−1
0 )

 
= −[�−1

0 ]
' ◦ � 0 ◦ [�

−1
0 ]

�
= −[�−1

0 ]
' ◦ (�'0 ◦ ℎ − ℎ ◦ �

�
0 ) ◦ [�

−1
0 ]

�

= −(ℎ ◦ [�−1
0 ]

� − [�−1
0 ]

' ◦ ℎ)

= −([�−1
0 ]

� − [�−1
0 ]

') ◦ ℎ ∼ i0+ℎ

(3.96)

Here in last steps we used the [�−1
0 ]

� ◦ ℎ = ℎ ◦ [�−1
0 ]

� for the free Green’s functions.
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Chapter 3 Non-equilibrium: Keldysh method

Here �−1
0 should be understood as [�−1

0 ]
'/� without the regulator. Similarly for the Keldysh

component
�
−1
0 ◦ �

 
= Σ

' ◦ � + Σ ◦ �� (3.100)

The above two equations are differential equations that are derived from the Dyson equation (3.93).
We can also write them using �< and �>. The key identities that we need are

�
> − �< = �' − ��

, �
 
= �

> + �< (3.101)

and similar relations for Σ. They are equivalent to �' +� = 2�> +�� and Σ −��
= 2Σ> − Σ'.

Inserting (3.101) into the summation of (3.99) and (3.100), we have

�
−1
0 ◦ �

>
= Σ

' ◦ �> − Σ> ◦ �� (3.102)

One can see that the above equation is an equation of motion of �>. For the equation of �<, we can
subtract (3.99) and (3.100), then apply (3.101), which will give us

�
−1
0 ◦ �

<
= Σ

' ◦ �< − Σ< ◦ �� (3.103)

Same for the equation with (<→>).
On the other hand, the right Dyson equation can give two more equations, which we will only give

the results, they are
�
>/< ◦ �−1

0 = �
' ◦ Σ>/< − �>/< ◦ Σ� (3.104)

We can see that they agree with the well known Langreth rules, for Langreth rules see [63]. Now use
that in the time domain the inverse of the bare Green’s function reads

�
−1
0 (G, H) = [imG0 − �0(G

0
, x, y)]X

G
0
H

0 (3.105)

Here �0(G0, x, y) is the non-interacting part of the Hamiltonian which we assumed to have a single
time dependence and can be nonlocal in space. With �−1

0 we can write down the final equations of
this section, the Kadanoff-Baym equations

im
G

0�
>/< (G, H) −

∫
r
�0(G

0
, x, r)�>/< (G0

, r |H) = [Σ' ◦ �>/< − Σ>/< ◦ ��] (G, H)

im
H

0�
>/< (G, H) −

∫
r
�
>/< (G |H0

, r)�0(H
0
, r, y) = [�' ◦ Σ>/< − �>/< ◦ Σ�] (G, H)

(3.106)

These four equations are the Dyson(-Schwinger) equations on the CTP. Usually its applications are
combined with the conserving approximation of the self-energies. Those sets of integro-differential
equations give the quantum equations of motions of the two-point functions that are suitable for
non-equilibrium dynamics and are usually called Kadanoff-Baym equations. Those equations also
have a long history back to the 1960s, and many applications [3, 58] in the real time evolution of the
quantum systems.
An interesting recent application of the Kadanoff-Baym equations is in the Sachdev-Kitaev-Ye

(SYK) model [90]. The SYK model is a quantum mechanical model of all-to-all random interacting
Majorana fermions. It can be treated in a large N dynamical mean-field approximation where its
2-point and 4-point functions are analytical soluble. This model saturates the Lyapunov exponent, the
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3.6 Kinetic equation, Boltzmann equation, and collision integral

classical bound of chaos. As an almost minimal model of quantum chaos, it has a gravity dual, or
specially AdS/CFT, which is pointed out by Kitaev. The Sachdev-Kitaev-Ye (SYK) model is intensively
studied since 2015. In that case, the �> and �< obeys a special relation for Majorana fermions
(real fermions k† = k), reads �>

(
C1, C2

)
= −�<

(
C2, C1

)
, the particle-hole symmetry which makes the

Dyson-Schwinger/Kadanoff-Baym equation simpler to solve. The KMS or the above relation between
�
> and �< are not general properties of all quantum dynamical systems.
From the above derivations, one can expect that the higher Dyson-Schwinger equations or effective

actions can be translated to CTP language straightforwardly.
The higher Dyson-Schwinger equations, especially the relations between the =-point and (= ± 1)-

point can be derived in the same way, and won’t be present here. Moreover, the 2-PI effective
actions and the functional renormalization group can be generalized to the Schwinger-Keldysh contour.
namely CTP. The 2-particle-irreducible functional renormalization group on CTP can be found in
references [91, 92].

3.6 Kinetic equation, Boltzmann equation, and collision integral

In this section, we will review the derivation of the (quantum) Boltzmann equation, follow [25]. It
is a good example to show the physical meaning of the Keldysh method, and the Kadanoff-Baym
equations.

The (collisionless) classical Boltzmann equation can be written in the form

dC= =
d=(x, v, C)

dC
=

(
d=
dx

v + d=
dv
¤v + m=

mC

)
= 0 (3.107)

where = is the distribution function of the particles. This can be regarded as a result from the total
derivative

=(x + vdC, v + ¤vdC, C + dC) − =(x, v, C) = 0 (3.108)

and the assumption that = is only explicitly depending on the position G, the velocity vector E and the
time C, where = = =(C, x, v), and v ≡ ¤x.

The quantum manybody version of the Boltzmann equation, the quantum Boltzmann equation, can
be derived from the Keldysh method directly, and has a similar form

d̂C [=] = �col [=] (3.109)

where = is the distribution function of the quasiparticles, and �col [=] is called the collision integral.
The operator d̂C is similar to dC , we will define it later in this section.

For clarity, in this section, I will write out the space-time variables and use indices to denote
Keldysh indices, other indices are suppressed. Again define the short-hand notation for generalized
convolution [ 5 ◦ 6] (G, H) =

∫
I
5 (G, I)6(I, H). This section closely follows the book [25].

To obtain the equations of effective distributions, one can use the parametrization of the Keldysh
component of the Green’s function � = �' ◦ ℎ − ℎ ◦ ��. Recall the Keldysh part of the Dyson
equation on the CTP

[�−1]' ◦ � ◦ [�−1]� = Σ (3.110)
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Chapter 3 Non-equilibrium: Keldysh method

Following [25], we now apply the parametrization of � and �'/� = [�−1
0 ]

'/� − Σ'/�

[�−1]' ◦ (�' ◦ ℎ − ℎ ◦ ��) ◦ [�−1]� = Σ 

→ℎ ◦ [�−1
0 ]

� − [�−1
0 ]

' ◦ ℎ = Σ + ℎ ◦ Σ� − Σ' ◦ ℎ
(3.111)

Now it is time to choose the form of the free Green’s function, one can select, as an example, a standard
form of nonrelativistic particle in an external potential + (G)

[�−1
0 ]

'/�
= [��

0 ]
−1(G, H) = XGH (imC + ∇

2
x/(2<) −+ (H) ± i0+) (3.112)

In time space one can neglect the regulators ±i0+, thus the (3.111) can be written into[(
−imC −

1
2<
∇2
x ++

)
◦,ℎ

]
−
= Σ

 −
(
Σ
' ◦ ℎ − ℎ ◦ Σ�

)
(3.113)

where ( [ 5 ◦,6]±)01 = 501 ◦ 612 ± 601 ◦ 512 as the commutator/anti-commutator with matrix production
and convolution. Note that ℎ = ℎ(G, H) and the commutator of the differential operator should be
understood as [mC◦,ℎ(G

0
, H

0)] = (m
G

0 − m
H

0)ℎ(G, H), similarly for ∇2
x . Here C is denoting the averaged

time
C ≡ Ca (3.114)

Here Ca is the averaged time or the “center of mass” time.
In order to make the above equation closer to the kinetic equation or the Boltzmann equation one

still need to do

1. Wigner transform and gradient expansion11

2. Quasi-particle approximation
11 Wigner transform (See [25] starting from p.87). Define the averaged and relative coordinates Ga = (G1 + G2)/2 and
Gr = G − G

′, where G = Ga + Gr/2 and G′ = Ga − Gr/2. The Wigner transform (WT) and the inverse Wigner transform (IWT)
are

WT : 0(Ga, ?) =
∫
Gr

e−i? ·Gr0

(
Ga +

Gr
2
, Ga −

Gr
2

)
(3.115)

IWT : 0(G, G′) =
∫
?

ei? ·(G−G′)0
(
G + G′

2
, ?

)
(3.116)

Define mGm? = ∇x∇p − mG0m
?

0 , the convolution after the Wigner transform is

2 = 0 ◦ 1 WT−−−→ 2(G, ?) = 0(G, ?)e
1
2

(←−
m G
−→
m ?−
←−
m ?
−→
m G

)
1(G, ?) (3.117)

The (gradient) expansion of the above is

2 = 0 ◦ 1 WT−−−→ 01 + i
2

(
mG0m?1 − m?0mG1

)
+ · · · (3.118)

[0◦,1]− = 0 ◦ 1 − 1 ◦ 0 =
WT−−−→ i

(
mG0m?1 − m?0mG1

)
+ · · · (3.119)

The Wigner transform of product of 2-point functions is

2(G, G′) = 0(G, G′)1(G, G′) WT−−−→ 2(G, ?) =
∫
@
0(G, ? − @)1(G, @) (3.120)
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3.6 Kinetic equation, Boltzmann equation, and collision integral

These steps [25, 29, 33, 89] have the consequence that they

1. Separate the scale.

2. Make the distribution evolution with on shell processes only.

Now we follow [25, 29] to derive the Boltzmann equation from the Keldysh method. The discussion
about the limitation of the quasi-particle approximation and the semi-classical Boltzmann equation
can be found, for instance, in [33].

First, by using theWigner transform and gradient expansion, one can get the identity for the potential

[+◦,ℎ] WT−−−→ imG+ (G)m?ℎ(G, ?) = i∇x+∇pℎ − imC+mn ℎ (3.121)

For the dispersion12 [
−∇2

x , ℎ

] WT−−−→ −i∇p p
2∇xℎ = −2i p∇xℎ (3.123)

For the time derivative [
−imC◦,ℎ

] WT−−−→ −imn nmCℎ = −imCℎ (3.124)

And for the self-energy related terms

Σ
' ◦ ℎ − ℎ ◦ Σ� WT−−−→ ℎ

(
Σ

R − ΣA
)
+ imG

(
Re Σ'

)
m?ℎ − im?

(
Re Σ'

)
mGℎ (3.125)

The Wigner transforms (3.121) to (3.125) can be substituted to (3.113), and give us a equation that
is closed to the Boltzmann equation

−imCℎ − 2i p∇xℎ + i∇x+∇pℎ − imC+mn ℎ = Σ
 − ℎ

(
Σ

R − ΣA
)
−

(
imG (Re Σ

')m?ℎ − im? (Re Σ
')mGℎ

)
(3.126)

To make the above equation closer to the Boltzmann form, we recall that mGm? = ∇x∇p − mCmn and
move the derivative term from the RHS to LHS, then multiply an i on both sides

(1 − mnRe Σ
')mCℎ + (2 p + ∇pRe Σ

')∇xℎ − mG (+ + Re Σ
')m?ℎ = iΣ − iℎ

(
Σ

R − ΣA
)

(3.127)

For clarity, we can define the prefactors into "tilde" variables [25] and clean up the equation[
/̃
−1
mC + ṽp∇x −

(
∇x+̃

)
∇p + mC+̃mn

]
ℎ(G, ?) = �col [ℎ] (3.128)

Where ṽp ≡ 2 p + ∇pRe Σ
', mG (+ + Re Σ

') ≡ mG (+ + Re Σ
'). The /̃ ≡ (1 − mnRe Σ

')−1 is called
quasi-particle weight, or wave-function renormalization. The collision integral �col [ℎ] is defined as

�col [ℎ] = iΣ (G, ?) − ℎ(G, ?)� (G, ?) (3.129)

12 For generic dispersion p2 → lp it is [
lp
◦, ℎ

] WT−−−→ −ivp∇xℎ (3.122)

Where vp = ∇plp .
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Chapter 3 Non-equilibrium: Keldysh method

where � = i(Σ' − Σ�). The form of the equation (3.128) is very closed to the Boltzmann equation
already, we can further rewrite it into d̂Cℎ = �col [ℎ] form.
Second, we apply the quasiparticle approximation to restrict the distribution to be on-shell. This

means we fix the n to be equal to the energy lp ++ +Re Σ
' of the quasi-particle. This approximation

is suitable when the quasi-particle spectrum is sharp peaked around its energy, i.e., we have a long live
well-defined quasi-particle. The kinetic equation with the quasi-particle approximation will satisfy
mC+̃mn ℎ = 0. Define13

d̂C [ℎ] =
[
/̃
−1
mC + ṽp∇x −

(
∇x+̃

)
∇p

]
ℎ (3.130)

The kinetic equation (3.128) reads

d̂C
[
ℎ̃(x, C, p)

]
= �col [ℎ̃]

��
n=lp++ +Re Σ

' (3.131)

Here we defined ℎ̃(C, x, p) = ℎ(C, x, n = lp + + + Re Σ
'
, p). The on-shell condition, as in other

situation of the field theory, leads to a classical (or semi-classical) approximation. Obviously, this
equation can be written into the form d̂C [=] = �col [=] by the use of ℎ̃ = 1 − 2= in the fermionic case.

Now we have the quantum Boltzmann equation (3.131), but what is inside the �col [=]? The collision
integral �col [=] is represented by the self-energies that can be computed perturbatively using Feynman
diagrams. Let us focus on the lowest order non-vanishing collision integral from the sunset diagram.
This is a well-known example from the Fermi liquid theory. This contribution we have computed
in (3.87), in space-time coordinates

Σ
>/< (H, H′) ∼ −*2

0�
>/< (H, H′)�>/< (H, H′)�</> (H′, H) (3.132)

To understand the collision integral, we can assume that �> and �< for the fermions can be written
into the form

�
>
? = i(1 − =? (G))�?, �

<
? = −i=? (G)�? (3.133)

And we can further assume a spatial translational invariance. This means the =? (G) is the average
position G ≡ Ga independent, but it still can depend on the averaged time C ≡ Ca

=? (G) = =? (C, x) = =? (C) (3.134)

The above simplification is especially true in the equilibrium, where�> (l) = i(1−=FD(l))�(l), �
< (l) =

−i=FD(l)�(l), which can be seen through the relation �
< (l) = −4−Vl�> (l). Use (3.90)

Σ
>
? = −*

2
0 (�

> ◦ �< ◦ �>)?

= −*2
0

∫
?1?2?3

(2c)3X3?,?1+?2−?3
�
>
?1
�
<
?3
�
>
?2

= −i*2
0

∫
?1?2?3

(2c)3X3?,?1+?2−?3
(1 − =?1

)=?3
(1 − =?2

)�?1
�?3

�?2

(3.135)

Here the numbers 1, 2, and 3 enumerate the different momenta and should not be confused with the
vector component.

13 In many literature it is names as a "collision partial"
(
m
mC
5

)
col

.
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3.6 Kinetic equation, Boltzmann equation, and collision integral

The equation (3.135) can be regarded as part of the collision integral of the generalized quantum
Boltzmann equation that the quasi-particle assumption is relaxed. This kind of construction is used [93]
to discuss the non-equilibrium DMFT results, as the non-equilibrium DMFT results in some situations
are very close to equilibrium DMFT spectra with a non-equilibrium distribution solved by a quantum
Boltzmann equation, when the collision integral contains terms in the form of Eq. (3.135).

To reach textbook results, we can apply the quasi-particle assumption

�? (G) = 2c/̃X(l − np (G)) (3.136)

we can set /̃ = 1 here, to only consider the quasi-particles. By assuming a spatial translational
invariant and averaged time independent spectrum function �? (G) = �l,p (C, x) = �l,p, the above
equation becomes

�l,p = 2cX(l − np) (3.137)

This is suitable for quasiparticles that have a long quasiparticle life time 1/gqp � 1, as we discussed
before. These kinds of quasiparticles are usually well defined near a sharp fermi surface at low
temperature.14 Note the delta function is the Fourier space form of a free particle time evolution
∼ 4−inpC . Now with the above equation the self-energy Σ> can be written as

Σ
>
? = −i*2

0

∫
?1?2?3

(2c)3X3?,?1+?2−?3
(1 − =?1

)=?3
(1 − =?2

) (2c)3Xl1−np1
Xl2−np2

Xl3−np3
(3.138)

We can now perform the integrals for the frequency deltas by using
∫
l

2cX(l) =
∫

dl
2c 2cX(l) = 1,

and assume an energy dependent only distribution =? = =l,p ≈ =l , one has

Σ
>
l,p = −i

∫
dPS |T |2(1 − =np1

)=np3
(1 − =np2

) (3.139)

Here we used the fermion-fermion scattering amplitude T and the differential phase space dPS, which
are defined as 

T = *0

dPS = d3−1
?1

(2c)3−1
d3−1

?2
(2c)3−1

d3−1
?3

(2c)3−1 (2c)3X3−1
p,p1+p2−p3

Xnp , np1
+np2

−np3

(3.140)

If we consider only the energy dependencies of the distributions, i.e., =? = =l,p ≈ =l, The Σ
<

becomes
Σ
<
np
= +i

∫
dPS |T |2=np1

(1 − =np3
)=np2

(3.141)

Note that the overall sign is different from �
>. Use the identities Σ = Σ< +Σ>, Σ' −Σ� = Σ> −Σ<,

14 As in the Landau Fermi liquid.
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Chapter 3 Non-equilibrium: Keldysh method

and ℎ = (2= − 1), the collision integral �qp(G, ?) = iΣ (G, ?) − ℎ(G, ?)� (G, ?) can be computed as

−2�qp(C, np) = �col = iΣ − ℎ� = i(Σ> + Σ<) − i(1 − 2=) (Σ> − Σ<)

= 2
∫

dPS |T |2
{
=(1 − =1) (1 − =2)=3 − (1 − =)=1=2(1 − =3)

}
= 2

∫
dPS |T |2

{
Nout(C, np) − Nin(C, np)

} (3.142)

Note that �col, and thus �qp here is with translational invariance, and is independent of the averaged
position G ≡ Gav, namely �col(G, ?) = �col(C, ?). The fermionic quasi-particle collision integral �qp is
thus in a well-known form, and it can be found in [25, 29]. We can find the following properties
of the final quantum Boltzmann equation and its collision integral. The evolution equation is
d̂C [=(C)] ∼ �qp [=(C)]. The Nout may be written into Nout = =/g, where the g plays the role of the half
life time of the momentum p particle. The quasi-particle collision integral has an "in" and "out" form,
or a "gain" and "loss" form. This is expected since the self-energy diagram considered here is closed
related the quasi-particle collision or relaxation rate. Whenever a quasi-particle or a quasi-hole with
momentum p is scattered, it “decays” into in other momenta through a 2→ 2 scattering process [59,
94]. This process is inelastic in the sense that the incident particle’s momentum is changed after the
scattering process. It can be seen from the (3.139) and (3.139), or diagrammatically by applying the
Cutkosky cut rules [28, 34], the field theoretical diagrammatical version of the optical theorem. One
can check that the collision integral is nullified by Fermi-Dirac15 distribution = = =FD. This provides
the stability of the fermionic quasiparticle equilibrium.

To reach a simpler equation where the “in” and “out” structures are clear, we can again assume the
quasiparticle weight /̃ = 1. And further we can assume that there is no external potential, i.e. d̂C = mC .
Then the kinetic equation can be written into

− 2mC=(C) = mC [1 − =(C)] − mC=(C) = 2
∫

dPS |T |2
{
Nout(C, np) − Nin(C, np)

}
− 1 (3.143)

Again ℎ = 1 − 2= is used.
Note here we did not consider other scattering process, for instance, the ones that change the particle

number, e.g., 1→ 2, 2→ 1, 2→ 3, . . . , 8 → 9 . They can appear in a full treatment of the kinetic
equations [33].

3.7 Fluctuation dissipation theorem and KMS boundary condition

In this section, we review some consequences of the so-called Kubo-Martin-Schwinger conditions,
which can be regarded as criteria of the equilibrium. This section follows the [95, 96], and reviews [83,
88].
The thermal equilibrium states are important stable states of many-body systems in the thermody-

namic limit, which are believed to be related to the ergodicity and the detail balance. For quantum
many-body systems, there are many puzzles about how quantum many-body systems evolve and
provide observables that are thermal. Especially when we consider the deterministic nature of the
15 Bose-Einstein distribution in the bosonic case. In the collision integral, it is needed to replace =→ −= to reach a bosonic

version quasi-particle collision integral.
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3.7 Fluctuation dissipation theorem and KMS boundary condition

unitary evolution of the many-body wave function in closed quantum systems, the thermalization
becomes microscopically a “surprise”. Besides those conceptual difficulties, a theoretical way to
define the thermal equilibrium can be reached through the symmetries of the fields on the CTP. This
symmetry is usually called the Kubo-Martin-Schwinger (KMS) condition. The result of this symmetry
on 2-point functions is the fluctuation-dissipation theorem (FDT).

To see how KMS and FDT arise from the equilibrium, let us start with the thermal density matrix

d0 =
1
/0
4
−V0� (3.144)

This is a thermal mixed state density matrix which has the distribution depending on the states’ eigen
energies which are multiplied by a single parameter, the inverse temperature16 V0 = 1/)0. The system
has a time-independent Schrodinger picture Hamiltonian �, which implies that the system is time
translational invariant. The /0 is a normalization factor.
We first review the consequence of the thermal density matrix for the two-point functions.

Following [83] we consider the thermal density matrix d0 =
1
/0
4
−V0� . We start at the partition

function level, recall that

4
i, [�+,�− ] = Tr

[(
)4
−i

∫
C
�+ (C) q̂+ (C)

) 1
/0
4
−V0�

(
)4

i
∫
C
�− (C) q̂− (C)

)]
(3.145)

=
1
/0

Tr
[(
)4
−i

∫
C
�+ (C) q̂+ (C)

)
4
−U�

4
+U�

4
−V0�

(
)4

i
∫
C
�− (C) q̂− (C)

)
4
(−U+V0)� 4−(−U+V0)�

]
(3.146)

=
1
/0

Tr
[
4
−V0� 4

U�
(
)4
−i

∫
C
�+ (C) q̂+ (C)

)
4
−U�

4
−(V0−U)�

(
)4

i
∫
C
�− (C) q̂− (C)

)
4
(V0−U)�

]
(3.147)

where at the third line the cyclic rule of the trace is applied. Now we can use the identity for the time
translation 4i\�

q̂(C)4−i\�
= q̂(C + \) and reach

4
i, [�+,�− ] = Tr

[(
)4

i
∫
C
�− (C) q̂− (C+i(V0−U))

) 1
/0
4
−V0�

(
)4
−i

∫
C
�+ (C) q̂+ (C−iU)

)]
(3.148)

Here again the cyclic rule is applied. Compare with (3.145), one can see that the right hand side is in
a partition function form, however the position ) and the ) terms are switched. Formally we can write

4
i, [�+,�− ] = 4i,T [�− (C−i(V0−U)) ,�+ (C+iU) ] (3.149)

Where the time variables are redefined to move the constant shifts to the sources �±. The,T is the
notation for the ) and ) switched functional [95].
We can then match17 the second functional derivatives of the (3.145) and the (3.148). Let q̂ = i,

where i is a real bosonic scalar field.

Trd0
[i−(C)i+(C

′)] = Trd0
[i+(C

′ − iU)i−(C + i(V0 − U))] (3.150)

16 Set the Boltzmann constant :B = 1.
17 Or equivalently we can expand them to, ∼ ∑

<=,
(<,=) (�+)

< (�−)
=.
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If the time reversal symmetry i(C) = i(−C) is assumed, it can be written as

Trd0
[i−(C)i+(C

′)] = Trd0
[i+(−C

′ + iU)i−(−C − i(V0 − U))] (3.151)

And if we assume the space and time translational invariance of the system, and do Fourier transforms,
one can find

+ 4−V0l�
> (l, p) = �< (l, p) (3.152)

This is a well-known relation [81, 97]. Equivalently, it is the fluctuation dissipation theorem (FDT)

�
 
= (1 + 2=BE) (�

' − ��) (3.153)

where =BE(l) = 1/(4V0l − 1) is the Bose-Einstein distribution. For fermions, we have an additional
minus sign, and the periodic condition becomes anti-periodic.

�
 
= (1 − 2=FD) (�

' − ��) (3.154)

We can see that the thermal density matrix gives us exact relations between � and �' where the
equilibrium distribution function pops out. This looks like a symmetry, and indeed it can be written
into a symmetry of the fields.

Now back to the equation (3.148), generally one cannot just replace,T by, and find a symmetry
from (3.148). With a thermal density matrix, we can define a discrete symmetry transforms that
contains time-reversal symmetry that transform, [�+, �−] to, [�̃+, �̃−]

, [�+, �−] = , [KU�+,KU�−] (3.155)

We will not derive this, but instead directly define K, see, for instance, Ref. [95] for derivations. The
definition of the KU is as follows. Consider an imaginary time translation which is followed by a
time-reversal transform

ΘTiU (3.156)

where Θ is the discrete symmetry of the system that contains the time reversal. For instance the ones in
CPT discrete transformations that including the time-reversal T. We can choose Θ = T,PT,CT,CPT.
And the imaginary time translation is defined as

TiUq(C, x) = q(C + iU, x) (3.157)

And the transform KU is defined as the ΘT combinations [83]

q̃+ = KUq+ = ΘT−iUq+ (3.158)
q̃− = KUq+ = ΘTi(V0−U)q− (3.159)

The tilde fields are the transformed fields under KU. Note the KU transform the + and − fields differently.
Choosing Θ = T, and q a real bosonic field. With those definitions we can find

q̃+ = KUq+ = T T−iUq+ = Tq+(C − iU, x)
= q+(−C + iU, x)

(3.160)
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3.8 Dynamical renormalization group

Here q∗ = q for real fields is understood. One can verify that  U Uq = q. Note that here for
simplicity, we consider the +1 sign for the time reversal. Here used TqB (C + iU, x) = q∗B (−C − iU, x).18
Note that the imaginary shift is sign flipped as well. Now, we have

q̃+(G) = q+(−C + iU, x) (3.161)
q̃−(G) = q−

(
−C − i

(
V0 − U

)
, x

)
(3.162)

Here, U ∈ [0, V0] can be arbitrarily chosen. For instance, if the U = V0/2, then

q̃B = qB (−C + B
iV0
2
, x) (3.163)

where B ∈ {+,−}.
The, [�+, �−] = , [KU�+, KU�−] = , [�̃+, �̃−] can be used as a symmetry to construct and constrain

effective field theories [83] with the action �EFT, schematically 4i,
=

∫
Λ

d[j1, j2]4
i�EFT [j1,�1,j2,�2,d0 ] ,

where Λ is the UV cutoff that specifies the smallest scale that the effective theory is describing, j are
the effective degrees of freedom that are still fluctuating. The d0 is again a initial density matrix. This
kind of effective theory is used for constructing hydrodynamics equations [83, 95] from the action
principle and deriving the local second law [98] of the macroscopic system in a local equilibrium.

3.8 Dynamical renormalization group

The renormalization group method can be applied to Keldysh actions, where the +/− flow of the
dynamical fields should be considered [99–101]. From the Keldysh functional integral, we know that
the action can be written as

( = (+ [i+, k+, k̄+] − (− [i−, k−, k̄−] (3.164)

Now, as an example, we can consider Yukawa coupling terms on the CTP

6
+(:)i+k̄+k+ + 6

−(:)i−k̄−k− (3.165)

where : is the RG scale. At the initial scale : = Λ0, that is, microscopically, we can assume that we
have

6
+(Λ0) = 6

−(Λ0) (3.166)

When we do the coarse-graining and lower the scale, the coupling 6+ and 6− at a given scale can be
different

6
+(:) ≠ 6−(:) (3.167)

Because those couplings can have their own flows. Schematically we can write down

m:6
+(:) = V+(6+(:), 6−(:), . . .), m:6

−(:) = V−(6+(:), 6−(:), . . .) (3.168)

In practice these coupled equations can result in new (meta)-stable phases that are transient but
long-lived, and they are sometimes called non-equilibrium fixed points. Perturbatively the usually

18 Here we follow [83]. This definition is different from [96], where TqB (C, x) = q
∗
−B (−C, x), B = ± labels the contour.
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Chapter 3 Non-equilibrium: Keldysh method

Feynman diagram technique can be applied [102]. For recent studies, see [99, 103] in the time-space.
And for Floquet frequency space see [100, 101]. The detailed treatment is beyond the scope of our
discussion.

3.9 Other contour settings

C8 C 5�1

�4

�3
C 5 − if

�2

Re C

Im C

Figure 3.2: At initial time, if the system is at the equilibrium, a Matsubara branch can be added to take into
account the initial correlations.

We end this chapter with some discussions of other contour settings. We consider two representative
settings.

As th first example, we consider a frequently mentioned contour setting [81, 104], which is shown
in the Fig. 3.2. The action on this contour is

( =

∫
C
3C! (C) =

∫ Cf

Ci

3C!1(C) − 8
∫ f

0
3g!2

(
Cf − 8g

)
−

∫ Cf

Ci

3C!3(C − 8f) − 8
∫ V

f

3g!4
(
Ci − 8g

)
(3.169)

where ! is the Lagrangian, and 1, 2, 3, and 4 correspond to the contour �1 ,�2, �3, and �4. This
contour is intensively used for the Kadanoff-Baym equation and its applications in dynamical mean
field theory [3], especially for the “quench” setup.

For the second example, we consider the out-of-time-order correlator (OTOC). Quantum information
scrambling [105] can be measured by the commutator square

� (C) = 〈[, (C), +]† [, (C), +]〉 (3.170)

C8 C 5

C8 C 5

Figure 3.3: (upper) Forward time evolution. (lower) Backward time evolution. Not the “backward” does not
mean the backward contour line, but the evolution direction compare with the usual CTP.
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C8

Re C

Im C

C8

C 5
+ (C1)

, (C2)

+ (C3)

, (C4)

Figure 3.4: The contour for the out-of-time-order correlator (OTOC), here it reads 〈+ (C4), (C3)+ (C2), (C1)〉, the
operators are insert on different contour pieces. It need to evolve the system both forward and backward in time.

where + is a time-independent reference operator and, (C) is a time-dependent operator that at the
initial time is local in a small area of the space and commutes with + , [, (0), +] = 0. The � (C) can
then be computed from another quantity F (C) through

� (C) = 2 − 2 Re[〈, (C)+, (C)+〉] = 2 − 2Re F (C) (3.171)

where
F (C) ≡ 〈, (C)+, (C)+〉 (3.172)

The F is a special case of the so-called out-of-time order correlator [83] F (C4, C3, C2, C1)

F (C4, C3, C2, C1) ≡ Tr[d0+ (C4), (C3)+ (C2), (C1)] ≡ 〈+ (C4), (C3)+ (C2), (C1)〉 (3.173)

The F can be represented on a Schwinger-Keldysh like contour. The contour setting shown in Fig. 3.4,
with C3 = C1 and + time independent. There are different ways to compute the OTOC explicitly, one of
them is to use Keldysh perturbation theory. In the solid state physics context, an example is [106].
The short time [105] behavior of F (C) is F (C) ∼ 1 − Ye_LC and _L is usually regarded as the quantum
analog of the Lyapunov exponent, a constant that characterize to the chaotic behavior. This quantity
has been intensively studied in recent years, especially for the Sachdev-Ye-Kitaev model [107].
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3.10 Summary

3.10 Summary

We briefly reviewed the Keldysh method in this chapter. The Keldysh method unifies the equilibrium
and non-equilibrium physics through an additional degree of freedom. The Keldysh method allows
direct usages and extensions of existing field theoretical methods. The diagrammatics in the Keldysh
method includes additional tensor vertex structures, and we show how to use them by examples. We
also used the Dyson equations to show how to derive the Kadanoff-Baym equations and the kinetic
equations.

We can summarize this chapter in the following graph.

Close contour path (CTP)

Path integral. Tensor vertex

Kinetic equations ...=-point functions, DSE, KBE, RG

FDT, /2 symmetry

EquilibriumOut of equilibrium

Field theoretical tools

Quantum dynamics

Other contours

Physical quantities, �, =, ...

Action on CTP

Figure 3.5
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CHAPTER 4

Topological matter

4.1 Introduction

There is no doubt that topological matter is now one of the central themes of condensed matter physics.
Although the first milestone of it was during the 1980s when the integer quantum Hall effect IQHE
and fractional quantum Hall effects FQHE were discovered, its range of application is mostly extended
in the past one or two decades, especially by the topological insulator TI, a bulk insulator that has
edge states counting by the topological invariant. Pioneered by the early works, e.g., the works of
Su, Schireffer, and Heeger [108], of Simenoff [109, 110], and of Haldane [111], the topological
insulator was first purposed by Kane and Mele [112]. The first solid-state experiment that realized the
quantum spin Hall effect QSHE through (Hg, Cd)Te quantum wells is in 2007 [113, 114]. And the
first topological insulator observed in lab is BiGSb1−G [114, 115] in 2008.
A topological insulator (TI) is an insulator in the bulk that has conducting edge states on the

boundary. On the other hand, if there are band touching points (or band touching lines), there are
topological phenomena as well and may be different from the topological insulators. Especially in
3B = 3 they are called [116] Weyl semi-metal, Dirac semi-metal, line nodal semi-metal and so on.
They are called semi-metals since they are not insulating everywhere in the bulk by a sizable gap, but
have some band crossing. Actually, those kinds of topological phases can be understood by using
almost the same reasoning as that for the topological insulators.

Topological aspects and corresponding geometric aspects are intensively studied in recent years in
solid-state physics, atomic physics and quantum information/computation communities. I will not try
to summarize all these large amount of results. Here, by using topological insulators, quantum Hall
effects as examples, I review several ideas that are simple and important for understanding topological
matters. Many good textbooks, lecture notes, and research papers are available. For instance, a
well-known book of topology and geometry for physicists [117]. Textbooks in condensed matter
physics [24, 118]. A simple and mathematically clear review of the topological insulator can be found
in [119], and in [120, 121]. Some great lecture notes can be found in [122]. Explanations about the
Altland-Zirnbauer class for topological insulators and superconductors are in the article [123].

There are also many good review papers about the concept of topological order can be found in [124].
The definition of the name "topological order" is ambiguous in many literature, thus quite confusing.
Here I usually avoid to directly use this word. The detailed discussions about the topological order in
the sense of the Ref. [124] are beyond the scope of this thesis, however I will give a short discussion
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Chapter 4 Topological matter

in 4.7, where the topological insulators belong to the symmetry protected topological (SPT) phases,
which are without the intrinsic topological order, but have some non-trivial topological properties
protected by symmetries.
One objective of this chapter is to discuss the periodically driven extension of the topological

insulator, the Floquet topological insulators, or even the Floquet topological matters in general. Since
the periodically driven systems are usually out of equilibrium, one may wonder why we spend quite
some time on topological systems in equilibrium, and zero temperature. The reason is simply that
the stories for the Floquet topological matters will not be so different from their equilibrium cousins.
Despite of the similarities, still many novel properties can be found in the Floquet topological matters.
Though many features of the Floquet TI can be understood by applying the methods used in the

equilibrium systems, a new generation of topological matters are also founded. It is called the "intrinsic
dynamical" or "anomalous" Floquet topological phases [13, 125], which is a result of the non-trivial
winding (from the micro-motion) induced by the periodically driving. There are also discussions
such as the heating problem and the many-body dynamics in the individual Floquet part of this thesis,
which I will not repeat them in this part.

This part of the thesis is organized as follows. First I introduce an old and simple example for
topology in Section. 4.2. Then in Section. 4.3, several mathematical definitions are introduced for
later definitions of topological invariants, and for calculational conveniences. Moreover, effective field
theories built by topological terms will be used to present the general structure of the response of
TI regardless the microscopic details. The connection between quantum anomalies and topological
matters are also briefly discussed. In Section. 4.4 I list the discrete symmetry used frequently for
classifying topological systems. Then in Section. 4.5 a recent development of the Floquet topological
insulators is reviewed. Since the topological invariant is not always analytically reachable, we review
several well-known numerical techniques in Section. 4.6 with some examples.

4.2 Topology and monopoles

In order to understand how the topology takes part in, let us first discuss the magnetic monopole
purposed by Dirac [126] in the 1930s, and then the further studies from Wu and Yang [117]. These
examples will help us to define useful mathematical concepts such as the fibre bundles and character
classes.

One can see that many concepts in this section are universal and in some sense intuitive. The reason
might be that, roughly speaking, the topological insulator with Berry phases can be regarded as a
parameter space gauge theory, e.g., a* (1) gauge theory, or the “electrodynamics”.

4.2.1 Dirac monopole

Dirac considered [117, 126] a magnetic monopole1 located at A = 0

∇ · H = 4c6X3(r) (4.1)

with the magnetic field strength
H = 6r/A3 (4.2)

1 Let’s assume the magnetic monopole once exists.
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4.2 Topology and monopoles

Figure 4.1: The Dirac string

One can then try to write down the vector gauge potential G = (�G , �H , �I) satisfying

∇ × G = 6r/A3 + · · · (4.3)

For instance, one may try to define

GN1 =

(
−6H

A (A + I) ,
6G

A (A + I) , 0
)

(4.4)

or to define
GS1 =

(
6H

A (A − I) ,
−6G

A (A − I) , 0
)

(4.5)

and so on. However, a string of singularity is inevitably introduced whenever one attempts to define a
smooth vector potential G globally. This string, as the obstruction to make a global smooth vector
potential impossible, is called Dirac string given by the "· · · " in (4.3). This obstruction is there
whenever a monopole is present inside the volume we care about.

4.2.2 Wu-Yang monopole and fibre bundle

Wu and Yang [127] in the 1970s found another description for the Dirac monopole by using fibre
bundle. Since, as Dirac observed, the string of singularities is always presented, to define a smooth
gauge potential globally is then an impossible mission. On the other hand, one can try to define a
transition function CNS between two different gauge potentials. A global description can be reached by
patching the local smooth potentials, the ways of patching are depending on topological properties.
Define the gauge potential for the upper hemisphere*N of the surface (2

= R3 − {0}, named �N,
and that for lower hemisphere*S, named �( . They are the local section of the connection l, reads

*N = {(\, q) | 0 ≤ \ ≤ c/2 + Y, 0 ≤ q < 2c} (4.6)
*S = {(\, q) | c/2 − Y ≤ \ ≤ c, 0 ≤ q < 2c} (4.7)
f
∗
N/Sl = �N/S (4.8)

69



Chapter 4 Topological matter

Figure 4.2: Wu-Yang’s magnetic monopole gauge potential setup. (Left) Note the two (1 on the boundary of the
two covers,*# and*( . (Right) The*# and*( .

l is the connection 1-form. f∗8 is the local pullback section. Wu and Yang’s choices are

�N = ig(1 − cos \)dq, �S = −i6(1 + cos \)dq (4.9)

with the transition function CNS on the boundary of two local sections, the equator. The transition
function maps the manifold of equator, i.e. a circle (1, to the structure group* (1), i : (1 → * (1)

CNS(q) = exp[ii(q)] (4.10)

and by definition di = −i
(
�N − �S

)
= 26dq the transition between �N and �S is

�N = C
−1
NS�SCNS + C

−1
NSdCNS = �S + idi (4.11)

the total flux Φ though the 2-sphere (2 then can be computed by using the patches (local sections) and
the Stokes theorem

Φ =

∫
(

2
B · dS =

∫
*N

�N +
∫
*S

�S =

∫
*N

d�N +
∫
*S

d�S

=

∫
m*N

�N +
∫
m*S

�S =

∫
(

1
�N −

∫
(

1
�S

=

∫
(

1
idi = 26

∫ 2c

0
dq = 4c6

(4.12)

where � = d� is understood. The Stokes theorem is used at the second line, it transfers the integration
to a line integral along the equator. Note that here we can define a winding number

a =
Φ

2c
= 26 ∈ Z (4.13)

which can be regarded as a topological invariant.
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4.2 Topology and monopoles

4.2.3 Fibre bundle

The mathematical concept of the fibre bundle is frequently used to describe gauge theory and
topological systems. Following [117] I summarize this concept briefly here. A differentiable fibre
bundle [117, 119] (�, c, ", �, �) has the following ingredients. (I also mark that which part it
corresponds to Wu and Yang’s interpretation of the Dirac magnetic monopole.)

Total space K A differentiable manifold, the point on it called D. As the name it suggests, it contains
other spaces we will consider. Especially if the bundle is trivial � = " × �.

Base space S A differentiable manifold, with point ? on it. Intuitively it is where the fibre sit, or
where the "roots" of fibres are. It is covered by a set of open covering {*8}, with *8

⋂
* 9 ≠ ∅ and

" =
⋃
8*8. In Wu-Yang monopole, {*8} = {*N,,*S}. The base space of Wu-Yang monopole is

� = (
2.

Projection 0 A surjection �
c−→ " .

(Typical) fibre L A differentiable manifold. The fibre of Wu-Yang monopole is � = * (1) = (1.

Local trivialization 5i A map � ⊃ c(*8)
q
−1
8−−−→ *8 × �. The local trivialization in Wu-Yang

monopole is q−1
N (D) = (?, 4

iUN) and q−1
S (D) = (?, 4

iUS).

Transition function ti j A map * 9 × �
C8 9−−→ *8 × �, C8 9 ≡ q

−1
8, ? ◦ q 9 , ? The transition function in

Wu-Yang monopole is CNS and CSN.

Structure group M A group act on fibre � on the left. The structure group of Wu-Yang monopole
is � = * (1) = (1.

Additionally, we also have several useful definitions.

(Cross) section 2 and local section 2i A map "
f−→ � . It is the inverse of the projection

c ◦ f = Id" . The local section is defined as*8
f8−−→ � .

Pullback section 2∗ A map l
f
∗

−−→ �8 that map the connection in the total space � to local
connection of the local trivialization q8 (c(*8)).

Principal bundle V(S,M) A fibre bundle with � = �, i.e., its fibre is the structure group. Thus,
it is usually denoted as %(",�) ≡ ((�, c, ", �, �)) by its base manifold and structure group, also
called � bundle over " . Wu-Yang monopole is then a principal bundle %((2

,* (1)).

For describing the gauge theory, we still need the differential structure, for doing calculus on the
manifold. Here I focus on the definition of the connection on principal bundle.
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Connection 8 and local connection Gi l ∈ g ⊗ )∗%, �8 ≡ f
∗
8 l ∈ g ⊗ Ω

1 (
*8

)
. g is the Lie

algebra of Lie group �. And Ω1(") = )∗" is the set of 1-form, also called the dual vector or the
cotangent space of " . The Wu-Yang monopole have local connection �N and �S, the gauge potentials.

From the above, one can then summarize that the principal bundle is a natural language for the
Dirac magnetic monopole as Wu and Yang analyzed. Further, not a surprise, it turns out to be a useful
language for gauge theories and some specific condensed matter systems which have gauge structures,
e.g., anomalies in field theory, quantum Hall effects, and topological insulators in solid-state systems.

4.2.4 Berry connection

As introduced by Berry [128], a quantum mechanical system with adiabatic time evolution can acquire
a connection (vector potential) called Berry connection, which has components

�
=
8 (,) ≡ 〈=(,) |m_8 |=(,)〉 (4.14)

where |=(,(C))〉 is the instantaneous eigenstate of the system Hamiltonian depending on a set of
parameters , = (_1, · · · , _8 , · · · ). The original Berry phase is a * (1) phase 4−iW� , that means the
eigenstates are non-degenerate.

The above Berry phase can be regarded as an abelian gauge structure. The non-abelian generalization
is pointed out by Wilczek and Zee [129]. Consider that |<〉 and |=〉 are in a degenerate subspace

�
<=
8 (,) ≡ 〈<(,) |m_8 |=(,)〉 (4.15)

The connection with the above matrix components is called Berry-Wilczek-Zee connection [130], or
non-Abelian Berry connection.

One can see that the Berry phase structure of the two-level quantum mechanical system [117, 120]
with the Hamiltonian

� (h(,)) = h(,) · 2 (4.16)

is identical to the Wu-Yang monopole, that is, %((2
,* (1)). This gauge structure is helpful to

understand the topological (Chern) insulators.
Also by identifying the Berry connection with the * (1) gauge field and thus the 1-forms in the

Dirac monopole, one can find that if a monopole is set inside the considered sphere, it is impossible to
define a global smooth eigenstate since the �8 (,) will divergent

�8 →∞ (4.17)

on the Dirac string. This monopole is, for a two-band model represented by the case

h = 0 (4.18)

that is where the gap closes, since the gap size is 2‖h‖.
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4.3 Characteristic classes and topological terms

4.3.1 Basic definitions

Here I define some useful mathematical, mostly differential geometrical, concepts by following [117].
They will make the structure of this chapter more transparent and make the equations shorter.

Wedge product, exterior product Wedge product gives anti-symmetrized tensor product

dG` ∧ dGa = dG` ⊗ dGa − dGa ⊗ dG` (4.19)

where ⊗ is the tensor product. In general

dG`1 ∧ dG`2 ∧ . . . ∧ dG`= =
∑
%∈(=

sgn(%)dG`% (1) ∧ dG`% (2) ∧ . . . ∧ dG`% (=) (4.20)

sgn(%) is "+" for even permutations and "−" for odd ones, (= is the symmetric group of order =, which
contents the operations to symmetrize the tensor indices, % ∈ (=.

Levi-Civita symbol the Levi-Civita symbol is defined as Y% (1)% (2)% (3) ...% (=) = sgn(%) for % ∈ (=.
If = = 2, we have Y12

= −Y21. One may use it to anti-symmetrize the tensor. For example we have

dG` ∧ dGa = Y`adG` ⊗ dGa (4.21)

Differential form differential =-form l is a totally anti-symmetric (0, =) tensor

l =
1
=!
l`1`2 · · ·`=dG`1 ∧ dG`2 ∧ · · · ∧ dG`= (4.22)

the set of =-form on manifold " is denoted as Ω= ("), at point ? ∈ " it is denoted by Ω=? (").
The product ∧ : Ω@? (") ×Ω

A
? (") → Ω

@+A
? (") of a @-form l and a A-form b

l ∧ b = (−1)@A b ∧ l (4.23)

as a trivial extension. Where the product is associated

(l ∧ b) ∧ [ = l ∧ (b ∧ [) (4.24)

For a @-form b, @ odd
b ∧ b = 0 (4.25)

An example would be � ∧ �

� ∧ � = ( 1
2!
�`adG` ∧ dGa) ∧ ( 1

2!
�dfdGd ∧ dGf) (4.26)

=
1
4
�`a�dfdG` ∧ dGa ∧ dGd ∧ dGf (4.27)

73



Chapter 4 Topological matter

which is closed related to 3 = 4 case of \-term which reads L\ = 4
2

32c2 Y
UV`a

�
0`a

�
0
`a [34, 131], and

the Chern character that will be introduced later.

Volume form The volume element of a dimension < orientable manifold " equips metric 6 is a
differential m-form call volume form S" , it is defined as

S" ≡
√
|6 | dG1 ∧ dG2 ∧ . . . ∧ dG< (4.28)

the norm |6 | is defined by the determinant det(6), and usually it is normalized to det(6) = 1.

Exterior derivatives Exterior derivative d= or simply d act on a =-form maps a =-form to a
(= + 1)-form

dl =
1
=!

(
m

mG
al`1...`=

)
dGa ∧ dG`1 ∧ . . . ∧ dG`= (4.29)

It has an important property d2
= 0 that is

d2
l = d(dl) = 0 (4.30)

which is reminiscent of the boundary operation of the (co-)homology group. For instance, the
derivative of the connection 1-form � = �`dG` for* (1) theory is

d� = d(�`dG`) = 1
1!
m�`

mG
a dGa ∧ dG` =

1
2
(ma�` + ma�`)dG

a ∧ dG` (4.31)

=
1
2
(ma�`dGa ∧ dG` + m`�adG` ∧ dGa) (4.32)

=
1
2
(ma�`dGa ∧ dG` − m`�adGa ∧ dG`) (4.33)

=
1
2
�a`dGa ∧ dG` = � (4.34)

where �a` = ma�` − m`�a as the usual field strength.
For @-form l and A-from b, d(b ∧ l) = (db) ∧ l + (−1)@b ∧ (dl).

Stokes theorem The Stokes theorem is∫
m"

l =

∫
"

dl (4.35)

where " is a differentiable manifold and m" is its boundary. l and dl are differential forms with
compatible dimensions respectively, since the exterior derivative maps a <-form to a (< + 1)-from,
thus 1 + diml = dim dl.

Differential map and pullback of manifolds Here I define the differential map and pullback of the
manifolds. A smooth map between two manifolds 5 : " → # induces differential map 5∗ between
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the tangent vector space )?" and ) 5 (?)# of " and # at point ?

5∗ : )?" → ) 5 (?)# (4.36)

the reverse of the differential map is called pullback 5 ∗

5
∗ : )∗5 (?)# → )

∗
?" (4.37)

where the )∗5 (?)# and )∗?" are the cotangent vector space, or the dual vector space.

Hodge star The Hodge star for a 2-form on a < = 4 dimensional manifold with a flat metric read

★ (dG` ∧ dGa) = 1
2
Y
`adfdGd ∧ dGf (4.38)

A frequently encountered example is the curvature 2-form, with field strength �`a (G)

★ (�`adG` ∧ dGa) = �`a ★ (dG
` ∧ dGa) = 1

2
�`aY

`adfdGd ∧ dGf (4.39)

The general definition is for a <-dimensional manifold "

★ (dG`1 ∧ · · · ∧ dG`=) =
√
|6 |

(< − =)!Y
`1 · · ·`=

a=+1 · · ·a<dGa=+1 ∧ · · · ∧ dGa< (4.40)

For Lorentzian metric
★★l = (−1)=(<−=)l (4.41)

and for Euclidean metric
★★l = (−1)1+=(<−=)l (4.42)

Last but not the least, the Hodge star of the identity 1 is the volume form

★ 1 = S" (4.43)

If a differential form has its Hodge star equal to itself, it is self-dual.
One can define the inner product of differential forms through the Hodge star

(l, b) =
∫

l ∧★b (4.44)

The Maxwell equation can be written [117] compactly by differential forms and the Hodge star,
d★ � = ★�.

Bianchi identity
D� ≡ d� + � ∧ � − � ∧ � = d� + [�, �] = 0 (4.45)

The above definitions are mostly sufficient for later discussions of the topological insulator. In the
next section, we will define the characteristic classes, which will be used to define some topological
invariants.
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4.3.2 Characteristic classes

With the definitions of the previous section, we can list the definitions of Chern characters and
Chern-Simons form for Chern characters here. More details can be found in the book [117]. Those
characters are closely related to the topological invariant in physics context. In this section, I also use
the shorthand notation

(�) 9 ≡ ∧ 9� = � ∧ · · · ∧ � (4.46)

Chern character

The Chern character can be defined by combining curvature two-form (or one may call it field strength
two-form)

ch(�) ≡ tr exp
(

i�
2c

)
=

∑
9=1

1
9!

tr
(

i�
2c

) 9
(4.47)

Where the 9-th Chern character

ch 9 (�) ≡
1
9!

tr
(

i�
2c

) 9
(4.48)

The manifold dimension dim" = 3, and for 9 > 3/2 the ch 9 (�) vanishes. Let us see two examples
up to 9 = 2. First, 9 = 1 is a 2-form

ch1(�) =
i

2c
tr � (4.49)

and 9 = 2 is a four-form is

ch2(�) =
1
2

(
i

2c

)2
tr �2 (4.50)

Chern-Simons form of Chern character

Chern-Simons form of Chern character is defined as [117]

&2 9−1(�, �) =
1

( 9 − 1)!

(
i

2c

) 9 ∫ 1

0
dC str

(
�, �

9−1
C

)
(4.51)

where � ≡ d� and
�C = Cd� + C

2
�

2
= C� +

(
C
2 − C

)
�

2 (4.52)

The symmetrized trace str is defined as

str
(
�1, �2, . . . , �A

)
≡ 1
=!

∑
%

tr
(
�% (1) , �% (2) , . . . , �% (=)

)
(4.53)

where %(=) is permutations of the indices. For instance

str
(
�1, �2

)
=

1
2

∑
%

tr
(
�% (1) , �% (2)

)
=

1
2

tr
(
�1�2 + �2�1

)
(4.54)
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Note that the wedges are suppressed. Then the Chern-Simons form can be written as

&2 9−1(�, �) =
1

( 9 − 1)!

(
i

2c

) 9 ∫ 1

0
dC tr

(
��

9−1
C

)
(4.55)

by using the anti-symmetric nature of the wedge product.
Usually, it is sufficient to know up to 5-form corresponds to 5-dimensional space(-time), and they

all have some applications in physics or physical models. The Chern-Simons 1-form is

&1(�, �) =
i

2c

∫ 1

0
dC tr � =

i
2c

tr � (4.56)

the Chern-Simons 3-form is

&3(�, �) =
(

i
2c

)2 ∫ 1

0
dC str

(
�, Cd� + C2�2

)
=

1
2

(
i

2c

)2
tr

(
�d� + 2

3
�

3
)

(4.57)

For the case curvature two form � = d� = 0 we have

&3(�, 0) =
1
2

(
i

2c

)2
tr

∫ 1

0
dC�C2�2

=
−1
24c

tr �3 (4.58)

In some context, the local 3-form  ≡ tr(�d� + 2
3 �

3) is called Chern-Simons form, and tr �2
= d ,

this is the same as the simple identity ch2(�) = d&3(�, �), the only difference is the normalization.
As the last example, the Chern-Simons 5-form is

&5(�, �) =
1
2

(
i

2c

)3 ∫ 1

0
dC str

(
�,

(
Cd� + C2�2

)2
)
=

1
6

(
i

2c

)3
tr

(
�(d�)2 + 3

2
�

3d� + 3
5
�

5
)
(4.59)

in many applications up to 5-form is enough since the space-time dimension is usually 3 ≤ 4 and for
the case 3 = 4 the space-time manifold can be thought as the boundary of a 3 = 5 manifold, e.g. in
the dimensional reduction.

4.3.3 Degree of map

The degree of a map is a homotopic invariant, thus a topological invariant. It uses

c3 ((
3) = Z (4.60)

where c3 is the 3 dimensional homotopy group, (3 is the 3-sphere.
Here I follow [119, 132]. Let " to be an orientable (= − 1)-dimensional closed manifold and % be

the punctured space % = R= − {0}, i.e., a one point removed Euclidean space. Define a projection c′#

c
′
# :

(
R= − {0}

)
→ (

=−1
, H ↦→ H

‖H ‖ (4.61)

where the unit sphere (=−1
= {z, |A = ∑

8 I
2
8 = 1}. And define the map

5 : " → %, (4.62)
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Figure 4.3: Degree of map for the case deg = 2 and = = 2. Note that the surface, or a closed line here, # = 5 (")
can intersect itself in the punctured space % = R= − {0}. (Left) A ray from the origin of % is drawn and it
intersects with the surface # . Depending on wether the line is come from the right or the left to the intersection,
"+1" or "−1" is marked. The winding number is equal to sum up the +1 and −1. (Right) the winding when map
to (; , ; = 1 here.

and 5 (") is immersed into %, i.e. 5 (") can intersect itself. Obviously

"
5
−→ %

c
′
#−−→ (

=−1 (4.63)

One can then define the product of the maps 6 which maps " to the (= − 1) sphere

6 : "
6=c

′
# ◦ 5−−−−−−−→ (

=−1 (4.64)

Since 5 (") can be regarded as a hyper-surface in # = R= − {0}, we can then ask how many times
it (net) encloses the origin 0. This is counted by the degree of map 6, or the winding number. The
degree of map deg(6) is defined as [132]

deg(6) ≡ 1
A=−1

∫
"

5
∗
g =

1
A=−1

∫
5∗"

g (4.65)

where A=−1 is the area of the unit sphere of (= − 1) dimension. The 5 ∗ is the pullback of 5 . The 5∗ is
the differential map, the inverse of 5 ∗. The (= − 1)-form g is defined as c′∗f where the sphere area of
(
=−1 can be computed in R= by integrate over f

A=−1 =

∫
S=−1

f =

∫
S=−1

★(A3A) (4.66)

in above ★ is the Hodge star and AdA ≡ ∑
8 H8dH8 . One can proof that [132]

g ≡ c∗f = f

A
= =

1
A
= ★ (A3A) =

1
‖A ‖=

=∑
8=1
(−1)8−1

H8dH1dH2 · · · d̂H 9 · · · dH= (4.67)

here d̂H 9 means dH 9 is omitted, also the wedge symbols are suppressed. Now we can compute the
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degree in the punctured space % = R= − {0}

deg(6) = 1
A=−1

∫
5∗"

1
‖A ‖=

★ (A3A) (4.68)

=
1

A=−1

∫
5 (" )

1
‖H‖=

=∑
8=1
(−1)8−1

H8dH1dH2 · · · d̂H 9 · · · dH= (4.69)

Since the map c# is fixed, it is also convenient to define

deg( 5 ) ≡ deg(6) (4.70)

Example: n = 3

Recall that for Euclidean space the dimension = unit ball have the volume V= and its boundary is (
=−1

has the area A=, they have the relation =V= = A=−1. The explicit form of V= and A= read

V= =
c
=/2

Γ
(
=
2 + 1

) , A= =
2c

=+1
2

Γ

(
=+1

2

) (4.71)

Γ is the gamma function. Thus for = = 3 the area of (2 is A2 = 4c, then

deg( 5 ) = 1
4c

∫
5 (" )

1
2
n
8 9: H8

‖H‖3
dH 9 ∧ dH: (4.72)

Recall that the magnetic monopole has the magnetic field strength H = r/A3, which we have
encountered when discussing the Dirac monopole. The degree can be regarded as the total magnetic
flux that goes through the surface # = 5 (").

Now I make some contact with the lattice Hamiltonian. Let us consider a map

h : )2 → R= − {0}, k ↦→ h(k) (4.73)

here k = (:G , :H). The h maps the 3B = 2 Brillouin zone torus to the punctured space. And in 3B = 2
generally a 2 by 2 lattice Hamiltonian with periodic boundary conditions can be written as

� (k) = ℎ0(k)1 + h(k) · 2 (4.74)

where 2 = (fG , fH , fI)
ᵀ, and 1 is the identity matrix. Here I set ℎ0 = 0 without loss of generality. It

is clear that this setup is corresponding to above discussion with 5 = h. The equation (4.72) becomes

deg(h) = 1
2ci

∫
BZ
� (4.75)

The definition of � absorbed a factor of i/2 which is merely a convention, i.e.

� ≡ i
4
n
8 9: H8

‖H‖3
dH 9 ∧ dH: =

i
2

h

‖ℎ‖3
·
(
mh

m:G
× mh

m:H

)
d:G ∧ d:H (4.76)
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Now we find that there are two equivalent way [119], through the degree or through the bundle
map, to compute the first Chern number Ch1 for a 2 by 2 Hamiltonian on 3B = 2 lattice with periodic
boundary condition [119]

Ch1 = deg(h) = 1
2ci

∫
BZ
� =

1
2ci

∫
mh−1(*N)

d log
(
CNS ◦ h

)
(4.77)

here the integration of the Chern character 2-form is denoted by Ch1.

4.3.4 Topological terms

Frequently in literatures people can find the name "topological terms". Usually it means the building
blocks of a topological field theory, or terms related to the topological properties of the action. The
topological part (top in the action ( = (1 + (top is an integral of topological terms. Here we follow the
naming convention in the textbook of Altland and Simons [118] to call them \-terms, Wess-Zumino
terms, and Chern-Simons terms. However, the detailed notations used here may slightly different
from the Ref. [118].

The map q : " → # from the base manifold " to the target space # induces the pullback q∗

q
∗ : )∗q (G) (#) → )

∗
G (")

l ↦→ q
∗(l) ≡ l ◦ q∗

(4.78)

Here I choose the partition function convention

/ =

∫
d[q]4i( [q]

=

∫
d[q]4i

∫
C
! [q] (4.79)

which may gives a −i factor difference when compared with the imaginary time convention.

Theta term

For q : " → # with the base manifold " and the target manifold # have the same dimension
dim" = dim #

(top = (theta [q] =
∫
"

\q
∗
S# (4.80)

where S# is the volume form of # and q∗ is the pullback, \ is a function of space-time. The
integration is simple to carry out

(theta [q] =
∫
"

\q
∗
S# =

∫
#

\S# = \ × (integer) (4.81)

where the last equality assumed \ is a constant, although it can depend on space-time coordinates.
An example is that in dimension 3 = 4, the \-term Lagrangian density [34, 131] is

(theta = −
∫

\4
2

8c2 tr � ∧ � = −
∫

d4
GL\ = −

∫
d4
G
\4

2

32c2 Y
`adf

�`a�df (4.82)
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Note the same indices summed, and we used −1
8c2 tr � ∧ � = −1

32c2 Y
`adf tr

(
�`a�df

)
. This is

corresponds to the chiral anomaly2 and the axion3 physics for the CP violation problem. In condensed
matter contexts, this term gives the magnetoelectric effect in the 3B = 3 topological insulator [133] or
Weyl semimetal [116] which can be understood by applying the axion electrodynamics [134–136]. To
see this we use the electrodynamics conventions of the* (1) gauge field and rewrite

L\ =
\4

2

32c2 Y
`adf

�`a�df =
\4

2

4c2 K · H =
\4

2

2cℎ
K · H (4.83)

where 4 = ℏ = ℎ/2c = 1 are restored. Note that \ is only defined module of 2c. And if require
time-reversal, \ = 0, c mod 2c. If one define �̃`a ≡ Y`adf�df , the L\ = \4

2

16c2 �`a �̃
`a .

In general the \-term can be written [123] as

(\ =

∫
"

\ ch= (�) (4.84)

Here, in general, one can assume \ has space-time dependencies.

Wess-Zumino term

Another important topological term is the Wess-Zumino (WZ) term. Compare with the \-term, the
WZ-term has base manifold 1 dimension lower than the target manifold, dim" = dim # − 1. The
Wess-Zumino term can be the map between the base and target manifold q̃ : * = (

3+1
north → # = (

3+1,
q̃ is the dimensionally extension of the map q : " = (

3 → �north ⊂ (
3+1

= # and we require

q(G) = q̃(G), if G ∈ �north (4.85)

with �north = m* is the equator with the corresponding orientation. One can regard that the WZ-term
is living on the boundary of the target manifold

(top = (WZ [q] = F
∫
*=(

3+1
north

q̃
∗
S# (4.86)

one can proof the (WZ [q] is invariant under the continuous deformation of q.
Now we derive the form of WZ-term on the base manifold " , first write the 3 + 1 volume form of

the target manifold # into a exterior derivative of a 3-form by S# = d north

(WZ [q] = F
∫
*=(

3+1
north

q̃
∗d north = iF

∫
*

d
(
q̃
∗
 north

)
= iF

∫
m*

q̃
∗
 north (4.87)

= F

∫
�north

q̃
∗
 north = F

∫
"=(

3
q
∗
 north (4.88)

2 Or axial anomaly, or abelian anomaly, or Adler–Bell–Jackiw anomaly.
3 The name is from a brand of laundry detergent, made by Frank Wilczek
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On the second line above, we used the condition (4.85). We find that the WZ-term can be written as

(WZ [q] = F
∫
"

q
∗
 north (4.89)

Here the coefficient F should follow a quantization condition. This can be seen by considering the
alternative gauge choice which one choose the WZ term to be living on the boundary of the* = (

3+1
south,

and gives the action (′WZ. Now subtract the "north" and "south" actions, one has

(WZ [q] − (
′
WZ [q] = F

∫
(
3+1
S

q̃
∗
l + F

∫
(
3+1
N

q̃
∗
l = F

∫
(
3+1
q̃
∗
l = F × (integer) (4.90)

Since the exponential of the action 4−i( should be gauge invariant, 4( − 4(
′
=, the difference between

these actions can be integer times 2c, which requires

F = 2c:, : ∈ Z (4.91)

An important example of the WZ-term is the Wess-Zumino-Witten WZW term4, which is introduce
by Witten to the non-linear sigma model [137, 138] in 3 = 2 spacetime dimension and where he found
a non-abelian bosonization relation. The setting of the WZW-term is q : " = (

2 → � ⊂ (2
= # ,

6 ∈ U(=),* (=) is the =-th unitary group. Thus, 6 in the given basis is a matrix. The WZW action is
then

(WZW [6] =
1

8c

∫
(

2
d2
G tr

(
m`6m`6

−1
)
+ ΓWZW [6] (4.92)

Where the topological WZW-term is

ΓWZW [6] = −
8

12c

∫
�

3
d3
GY
8 9: tr

(
6
−1
m86 6

−1
m 96 6

−1
m:6

)
(4.93)

Here the matrix multiplications are implied.

Chern-Simons term

The last topological term will be discussed here is the Chern-Simons [139] term. In condensed matter
physics, it is especially important for describing integer and fractional Hall effects in space-time
dimension 3 = 2 + 1. It is defined as

(CS [�] =
1

4c

∫
"3

d3
GY
`af

�`ma�f (4.94)

note that here I add the prefactor [122] 1
Area[(2 ]

= 1
4c which makes the integration to be 2c on

"3 = (
2 × (1

(CS [�] =
1

4c

∫
"3

� ∧ d� (4.95)

The (CS and the CS-term has the following properties:

4 Or Wess-Zumino-Novikov-Witten term.
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1. It is not gauge invariant by itself, but gauge invariant on the exponential, and by modules of 2c.

2. It breaks the time-reversal symmetry and parity symmetry.

3. The gauge invariance allows to multiply any integer to the Chern-Simons term.

4. It gives only constraints to the equation of motions. The pure CS action has its Hamiltonian
equals to zero [27]. There is no dynamics from merely CS term. The CS term only provide
topological data.

We can see that the topological action with CS-term can be written as

(top = :(CS (4.96)

: is an integer to ensure the gauge invariance of exp :(CS, : is also called the level of the Chern-Simons
action.
Last but not the least, although in quantum Hall physics the term in (4.94) is frequently used, the

topological action with the full Chern-Simons term in 3 = 3 is

(
′
top =

:

4c

∫
"

tr
(
�d� + 2

3
�

3
)
= :

∫
"

&3(�, �) (4.97)

This is also what we saw in (4.57). There are relations between the CS wave functions in 3 = 3
and WZW correlation functions in 3 = 2 are usually called CS/WZW correspondence. This
“bulk/boundary” correspondence can be regarded as a specific example of the holographic principle,
one may consult the original references, e.g. [140, 141], and other literatures and lecture notes [142].
More recent version of this type of correspondence is the so-called AdS/CFT [143].

4.3.5 Effective field theory with topology

Figure 4.4: One loop diagrams corresponding to C=. From the left to the right for space-time dimension
3 = 1, 3, 5, 7 respectively. The = is equal to (3 − 1)/2. See also [134, 144].

Consider [142] the Dirac fermions couple to a background* (1) abelian5 gauge field �, expand the
fermionic determinant perturbatively or use Schwinger’s proper-time method. The one fermion loop
5 For � non-abelian the result [142] is

(
CS
eff =

# 5

2
1

4c
<

|< |

∫
d3
Gn
`ad (�`ma�d +

2
3
�`�a�d) (4.98)
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effective action for # 5 mass < fermion flavors of Dirac fermion is

(eff (�, <) = # 5 i log det(i/m + /� + <) (4.99)

Here /� = W`�`. The W matrices for three dimension should be used. Expand around � and take the
long wave-length ? → 0 and large mass < →∞ limit at zero-temperature, in 3 = 2 + 1 one have

(
CS
eff =

# 5

2
1

4c
<

|< |

∫
d3
Gn
`ad

�`ma�d (4.100)

One can see that this is a pure topological action which is metric independent, and itself has no
dynamics. In many quantum systems with topological nature, the effective field theory at IR has
the action contains only topological terms6 just like the above action. These actions can give the
topological response of a class of topological insulators [24, 134, 145, 146].

Couple the lattice fermion with an external gauge field �`, the effective theory can be also obtain by
gradient expanding about the �` effective action. The effective action (eff is obtained by integrating
out fermion. For instance starting from the partition function [120] of the single particle lattice
Hamiltonian7

4
i(eff =

∫
d[k, k†] exp i

∫
dC

[∑
<

k
†
<U

(
8mC

)
k<U − � [�]

]
(4.101)

= det
[ (
8mC − �0<

)
X
0V
<= − �

0V
<=4

8�<=

]
(4.102)

Here <, = are lattice indices and U, V are sublattice indices. The �0
< and �<= are external lattice

gauge potentials which should be distinguished with the Berry connection. One can find that the
action (eff for IR physics is a topological action proportional to the Chern-Simons action

(eff = C=(CS (4.103)

Here C= is an integer number called the =-th Chern number. The details of the derivation which used
gradient expansions can be found in the master thesis of Vaeyrynen [147] for topological insulator,
or in an relatively old article of Volovik [148] which is done in the context of He3 superfluid. More
generally the symmetry considerations can also lead to a topological action [122]. Here I focus on the
structure that those effective actions imply, by using the known results and skip most of the detail
derivations.

The (CS action [144] in odd space-time dimension 3 = 2= + 1 is

(CS =
1

A2=
Γ
(3=2=+1)
CS =

1
A2=

YU1...U2=+1

∫
d2=+1

G�U1
mU2

�U3
. . . mU2=

�U2=+1
(4.104)

Where A2= is the area of (
2=. The prefactor : is computed by the Feynman diagram [144] with = + 1

6 As a topological field theory.
7 Surely the effective field theory is not restricted to the quadratic case.
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external photon legs

C= = A2=
iYU1V1...U=V=U=+1

(= + 1) (2= + 1)!

(
m

m
(
@1

)
V1

)
. . .

(
m

m
(
@=

)
V=

)
×

∫
BZ

3
2=+1

?

(2c)2=+1
tr

[
� (?)ΛU1

(
?, ? − @1

)
�

(
? − @1

)
. . .ΛU=+1

(
? + @=+1, ?

) ] �����
@1=0

(4.105)

Further the Wald identity [28] from the gauge invariance (charge conservation) gives the relation
between photon-electron vertex Λ` and the fermion propagator �, it reads

Λ` (?, ?) = −i
m

m?`
�
−1(?) (4.106)

where ? is the four-momentum vector. Then the prefactor C= can be written into the from for dimension
3 = 2= + 1

C= =
(−i)=Y`1...`2=+1

(= + 1) (2= + 1)!

∫
d2=+1

?

(2c)2=+1
tr

{[
� (?)m`1

� (?)−1
]
. . .

[
� (?)m`2=+1

� (?)−1
]}

(4.107)

The 3 = 2 + 1 case of the above equation is interesting and very relevant to condensed matter
physics. For topological insulator[134, 145, 149] in 3 = 2 + 1, we have a Chern-Simons term with
prefactor C1, the first Chern number [134], it reads

(eff =
C1
4c

∫
3C

∫
3

2
G�`Y

`ag
ma�g ≡

∫
3C

∫
3

2
GLeff (4.108)

where the Leff is Lagrangian density. From this Lagrangian density the current vector [150] can be
computed by functional derivative from the Leff [�]

�` (x) =
XLeff
X�` (x)

=
C1
2c
Y
`ag

ma�g (4.109)

Then the IQHE phenomena are reproduced through this procedure. Recall that

�`a = m`�a − ma�` (4.110)

and � 8 ≡ �08 , �8 ≡ Y8 9:m 9�: for 8, 9 , : ≠ 0. One has the spatial current

�8 =
XLeff
X�8

=
C1
2c
(Y80 9m0� 9 + Y

8 90
m 9�0) (4.111)

�8 =
C1
2c
Y
8 9
� 9 (4.112)
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and the time component of the current is

�0 =
XLeff
X�0

=
C1
2c
Y

08 9
m8� 9 =

C1
2c
Y
8 9
m8� 9 (4.113)

�0 =
C1
2c
� (4.114)

where � = �I is point out of the 3B = 2 plane, as in the standard Hall effect setup. The conductance
tensor [151] f is defined as

�8 = f8 9� 9 (4.115)

then the Hall conductance is that observed in IQHE

fH ≡ fGH =
�G

�H
=

C1
2c

=
4

2

2cℏ
C1 =

4

Φ0
C1 (4.116)

during the last two equal signs, the 42/ℏ is resumed and the definition of the flux quantumΦ0 = 2cℏ/4
is used.

Simplified form in non-interacting case

In the context of single-particle lattice Hamiltonian, the case = = 1 and = = 2 can be simplified into
the form

C1 =
1

2c

∫
d2
:�GH (k) (4.117)

and
C2 =

1
32c2

∫
d4
:n
8 9:ℓ tr

[
�8 9�:ℓ

]
=

1
16c2 tr

∫
"4

� ∧ � (4.118)

These equations can be reached by deforming the original Hamiltonian to the flat band Hamiltonian
and uses several projector identities and integrate out the frequency integral. See Ref. [120] or [134]
for details. Note that when considering lattice models, the included Berry vector potential is only for
the occupied bands.

4.3.6 Interacting topological insulator with Green’s functions

From the above discussion, we found that the topological invariant can be also defined for interacting
systems. This has been purposed by many authors, for instance, Volovik [152] suggests that for
the Fermi liquids one may use the equation (4.107) to compute the topological invariant. The
discussions of how to compute the topological invariants for interacting systems can be found in
references [153–156] and the references therein, as well as [120, 134, 145]. Let’s write down one
candidate of the topological invariant for the 3 = 2 + 1 dimensional interacting quantum anomalous
Hall (QAH) insulator [154]

C1 =
c

3

∫
3

3
:

(2c)3
tr

[
n
`ad

�m`�
−1
�ma�

−1
�md�

−1
]

(4.119)
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We can see that there is a additional frequency integral, which makes the computation heavier than
that for the free Hamiltonian. However, if we have a good approximation of the interacting single
particle Green’s function � (:`) ≡ � (l, k) the above invariant is still practically useful.
It is interesting that people further observed [155] that it is possible to evaluate the above formula

at zero frequency l ≡ :0 = 0 when computing the topological invariants and analogy with the
simplification from (4.119) to (4.117), a similar simplification can be taken for the usual topological
insulators. Then the frequency integral in 4.119 is avoided.

The topological Hamiltonian is defined as

�top(k) ≡ −�
−1(l = 0, k) = �0(k) + Σ(0, k) (4.120)

Where self-energy8 Σ(l, k) is corresponding to the interacting Hamiltonian �̂ (k) = �̂0(k) + �̂int.
And �̂0 ≡ 2

†
U (k)�UV (k)2V (k), same indices are summed. The �top is a good object for computing

the topological invariant rather than the effective Hamiltonian which is defined as �eff (l, k) ≡
�0(k) + Σ(l, k). In Ref. [155] Wang and Yan show that the �eff gives a wrong value for the
topological invariant of a anomalous quantum Hall model9, and the �top gives the correct one,
although the effective Hamiltonian result is which one may first expect to be correct in a self-consistent
quasi-particle picture. The reason is that the topological Hamiltonian correctly take the zero modes’
or the edge states’ information that are all contained in �−1(l = 0, k).
The topological invariants can be then computed by modifying the non-interacting invariants

through a straightforward substitution, mainly by replacing the non-interacting eigenstates by the
eigenstates of �top. The eigenstates |U(l = 0, k)〉 of �top

�
−1(l = 0, k) |U(l = 0, k)〉 = `U (l = 0, k) |U(l = 0, k)〉 (4.121)

One still need, in analogy with the occupied band, to define the ’R-zero’ as the eigenstate |U(l = 0, k)〉
with the eigenvalue `U (l = 0, k) > 0. These R-zeros span the R-space. Then define the Berry vector
potential, or Berry connection

A8 ≡ i
∑

U∈R−space
〈U(l = 0, k) |m:8 |U(l = 0, k)〉 (4.122)

then the corresponding field strength is F8 9 ≡ m:8A 9 − m: 9A8, the first Chern number is then looks
identical to the non-interacting case (4.117), and reads

C1 =
1

2c

∫
d2
: FGH (k) (4.123)

4.3.7 Dimensional reduction

For topological insulators, Qi, Hughes, and Zhang [24, 134, 145] used a dimensional reduction
(Kaluza-Klein) fashion to treat the 3 − 1 dimensional time reversal topological insulators as the
reduction of the 3 dimensional charge pump. This procedure is closed related to the Laughlin’s
argument in the IQHE.

8 The Σ(l, k) can be computed by a self-consistent method first, though for �top only the l = 0 part is used.
9 The Qi-Wu-Zhang model.
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Here I follow [24, 134] to briefly discuss how it works. Here we consider a compact Euclidean time
G

0 ∈ (1. For more details see [24, 134, 145], as well as [123].
The example is the case with charge conjugate symmetry C and no others, it is in the Altland-

Zirnbauer classes10 with Cartan label "D". The dimensional ladders are

3 = 2 + 1 → 3 = 1 + 1 (4.124)

Z → Z2 (4.125)

For 2 + 1 dimension, the gapped fermion effective action reads

(2+1 [�] =
C1
4c

∫
(

1×(1×(1
dCd:1d:2

n`a_�
`
m
a
�
_ (4.126)

where �` is the Berry connection, and C1 is the first Chern number. Note the superscripts are indices
(not powers). Write one of the : directions, say the direction “G2” into Φ(G) =

∮
(

1 dG2
�

2 gives

(1+1 [�] =
C1
2c

∫
(

1×(1
dCd:1

Φ(G)n`am
`
�
a (4.127)

Then we try to restrict the Φ(G) by the charge conjugate symmetry.

Φ(C, :1) =
∑

�U (:)<0

∮
(

1
d:2

�
2
=

∑
�U (:)<0

∮
(

1
dG2 〈C, :1

, :
2
, U | m

G
2 |C, :1

, :
2
, U〉 (4.128)

Where U labels energy eigenstates, i.e., energy bands. The occupied bands are the ones �U (:) < 0,
the fermi surface is � = 0, and there a gap is assumed. Now apply the charge conjugate which gives

|C, :1
, :

2〉 → |C, 2c − :1
,−:2

, U〉∗ (4.129)

and
�U (k) → −�U (−k) (4.130)

Note the charge conjugate symmetry gives that if � is an eigen energy of the Hamiltonian, then −� is
an eigen energy as well. Thus we have

Φ(C, :1) =
∑

−�U (2c−:
1
,−:2)>0

∮
(

1
d:2 〈C, 2c − :1

,−:2 |∗ m
:

2 |:0
, 2c − :1

,−:2〉∗ = −Φ(C, 2c − :1)

(4.131)
where we did −:2 → :

2 and used m−: = −m: . Note Φ(C, :1) = Φ(C, 2c + :1). The integration∮
(

1 d:2
. . . can be regarded as a charge pump, namely a Thouless pump. TheΦ(C, :1) has the physical

meaning of the electron polarization, that is the electron displacement, which should only defined
mod 2c because of the lattice periodicity. Thus, the following relation is also defined up to 2c

Φ(C, :1) +Φ(C, 2c − :1) = 0 mod 2c (4.132)

10 They will be introduced in the next few sections
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and for :1
= 0 or :1

= c we can solve11

Φ = 0 or c (4.133)

We assumed Φ(C, :1) is a continuous function, other values of Φ will break the charge conjugate
symmetry or the continuity of the Φ(G). The {0, c} gives a Z2 classification, where the topological
invariant only have two possible values. Here a gauge choice that gives smooth connection �2 is
assumed, a discussion independent of the gauge choice can be found in [134].

We can see that this method can derive a sequence of decedents of a high dimensional topological
insulator. This idea can be also applied to reach a complete classification of the non-interacting
topological insulators and superconductors [123].

4.4 Discrete symmetries

Discrete symmetries [34, 122, 123] play important rules in the classification of topological insulators.
Here I review the discrete symmetries in different space-time dimensions in position space and
momentum space. It is instructive to apply the symmetry operation to the Dirac fermion that fulfills
the Clifford algebra. The corresponding operation in matrix form of a chosen representation is also
presented.

Analogy to the continuous (e.g. Lorentz) transformation U(Λ)−1
k(G)U(Λ) = � (Λ)k(Λ−1

G). The
discrete parity transformation P is

Pk(G) = U−1
P k(G)UP = �Pk(PG) (4.134)

define the unitary transformation UP on field operator k(G), the resulting effect is equivalent to
multiply a rotation 12 matrix �P and perform the parity transformation P to the spacetime coordinate
G. Note that �2

P = ±1 is allowed. Similarly, we can define other discrete transformations.
The spatial reflection R8 for 8-th spatial direction

R8k(G) = U−1
R8k(G)UR8 = �R8k(R8G) (4.135)

The time reversal transformation T with � (T )2 = ±1

Tk(G) = U−1
T k(G)UT = �Tk(T G) (4.136)

Where T G = (−C, G8).
The /2 transformation Z2

Z2k(G) = U−1
Z k(G)UZ = �ZZ[k] (G) = −k(G) (4.137)

Note theZ is acting on k.
Charge conjugate C

Ck(G) = U−1
C k(G)UC = �CC[k] (G) (4.138)

11 The mod 2c here allows the appearance of the value 2c, which correspond to a complete pump.
12 D for Drehung, I thank Lu Yu to point out this to me.
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note here the previous coordinate transformation is now act on the operator in a functional like way
C[k] as the /2 case. One possible choice of charge conjugate is Ck(G) = k†(G) which is sometimes
called particle-hole symmetry.

Chiral transformation S or the sublattice transformation

Sk(G) = U−1
S k(G)US = �Sk(SG) (4.139)

which is the product of the charge conjugate and time reversal S = T · C.

All above transformations play some rules in the topological insulators.

The above definitions are general and abstract. We can write down the transforms in a more specific
way with matrices. For instance [122], in 3 = 2 + 1 the time reversal can take the form

Tk(C, x) = ±f1k(−C, G1, G2) (4.140)

and the parity
Pk(C, G1, G2) = f2k(C,−G1,−G2) (4.141)

the reflection of the first spatial coordinate

R1k(C, G1, G2) = f2k(C,−G1, G2) (4.142)

For topological insulators with a time-independent Hamiltonian. It is usually more direct to use
the symmetry transformation on the Hamiltonian matrices. Define K as the conjugate operation
K�K−1

= �
∗, the standard form of those transformations are [157] summarize in Table. 4.1.

For lattice Hamiltonians, the particle-hole symmetry (PHS), time-reversal symmetry (TRS) and
chiral symmetry (CS) symmetries can be identified by applying symmetry transforms, for instance, for
the particle-hole symmetry PHS (or charge conjugating CC), we have

�C ≡ K� (4.143)

�C� (G)�
−1
C = � (CG) (4.144)

�� (k)�−1
= −�∗(−k) (4.145)

where the criterion is the second or the third line, i.e., if the Hamiltonian fulfills the identity (4.144) or
equivalently (4.145) it has PHS. Note we still have two possibilities C2

= ±1, �∗C�C = ±1.

We can also write down the transform for the time reversal symmetry TRS

�T ≡ K\ (4.146)

�T� (G)�
−1
T = � (T G) (4.147)

\� (k)\−1
= �

∗(−k) (4.148)

with �∗T�T = ±1.
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4.4 Discrete symmetries

Cartan Label Symmetry Operator
BDI, D, DIII � = f1 ⊗ 1
CII, C, CI � = 8f2 ⊗ 1
AI, BDI, CI \ = 1

AII, CII, DIII \ = 1 ⊗ 8f2
AIII �S = f3 ⊗ 1

Table 4.1: The standard transformation matrices. Here 1 is the identity matrix with compatible dimension to
ensure the total matrix have the correct dimension. From [157].

For the chiral symmetry CS, it is

�S = �\ (4.149)

�S� (G)�
−1
S = � (SG) (4.150)

�S� (k)�
−1
S = −� (k) (4.151)

However if the Hamiltonian has the CS, it has C2
= ±1, �∗S�S = 1 in contrast to the PHS and TRS.

Matrices �, \ and �S are defined in the Table. 4.1.

4.4.1 Ten-fold way for non-interacting topological insulators

The classification of the non-interacting topological insulators is first done by Kitaev in the Ref. [158],
through K-theory. Then Ryu, Schnyder, Furusaki and Ludwig in Ref. [123] used the dimensional
reduction in the same spirit of Ref. [134] to clarify the dimensional hierarchy of the 10 symmetry
classes of the topological insulators, usually this method is called tenfold way, the classes are called
Altland-Zirnbauer classes, since those classed were point in the work early by Alexander Altland and
Martin Zirnbauer in 1997 [159]. Although we will not review the long and detailed treatments of the
tenfold way here, we list the classification result and it will provide a clear overview of the relations
between the topological insulators and their symmetries, as well as the corresponding geometry and
topology.

Consider a single particle Hamiltonian

�̂ = k
†
8
�8 9k 9 (4.152)

where the Hamiltonian matrix �8 9 can be classified as in the random matrix theory [159], the
Altland-Zirnbauer AZ class, by its symmetries. The specific discrete symmetry will point us to a
topological invariant that its value can characterize the topological phase of the system. The possible
values are / , 2/ and /2 for topological insulators. In the papers [123, 158] the discrete symmetries
used are time reversal T, charge conjugate C and chiral symmetry S. They provide a periodic table
of topological insulators and topological superconductors without particle-particle interactions, i.e.
within the one-particle Hamiltonian.

Now we convince ourselves that there are 10, rather than other number of classes. Since we can
have T2

= ±1, plus the case without it, there are 3 possibilities. W can also have C since C2
= ±1,

there are again 3 possibilities. The chiral symmetry only have two possibilities S2
= 1 and without it.
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Cartan label T C S 3B = 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

AI +1 0 0 Z 0 0 0 2Z 0 Z2 Z2
BDI +1 +1 1 Z2 Z 0 0 0 2Z 0 Z2
D 0 +1 0 Z2 Z2 Z 0 0 0 2Z 0
DIII -1 +1 1 0 Z2 Z2 Z 0 0 0 2Z
AII -1 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII -1 -1 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 -1 0 0 0 2Z 0 Z2 Z2 Z 0
CI +1 -1 1 0 0 0 2Z 0 Z2 Z2 Z

Table 4.2: Periodic table classification, also called Altland-Zirnbauer classes. T is the time-reversal symmetry,
C is the charge-conjugate symmetry, and S is the chiral symmetry. From [123].

The "10" is then a simple counting of numbers, it stands for

3 × 3 − 1 + 2 = 10 (4.153)

where "3× 3" is counting combinations of T and C. And there is only one of the cases which the chiral
symmetry is not fixed by T and C, that is when T and C are not the symmetry of the Hamiltonian but
their product S is. This gives us the "−1 + 2".
The elements in the periodic table can be related by a dimensional ladder [117, 123]. One

well-known example of this kind of dimensional ladder is that in the gauge theory the 3 = 4 spacetime
dimension abelian anomaly is equivalent to 3 = 3 parity anomaly and to 3 = 2 non-abelian anomaly,
see for instance the Ref. [117].
Let us summarize some of the properties of the AZ classes:

1. There are two subsets, complex and real classes.

2. Only real cases have Z2 (and 2Z).

3. For real classes Z have two decedents, 2Z do not have decedents within the same class.

4. Bott periodicity holds. The table has a dimensional periodicity 8 for real classes. For complex
classes it repeats with period 2.

There is a closed relation between the classification of the topological insulators and that of the
Anderson localization, where one can see in Table. 4.3. The classification seems can be done by using
the  -theory, as it was done originally by Kitaev in the Ref. [158]. The corresponding classifying
spaces and the  groups are listed in Table. 4.4.

4.5 Floquet topological matters

The Floquet story of the topological matter is closed to the previous discussions. The topological
invariants and Hamiltonians usually have there direct generalizations in the Floquet picture. Beside
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Cartan label T C S exp{iC�} for Hamiltonian � G/H (ferm. NLfM )
A (unitary) 0 0 0 U(#) U(2=)/U(=) × U(=)
AIII (ch. unit.) 0 0 1 U(# + ")/U(#) × U(") U(=)
AI (orthogonal) +1 0 0 U(#)/O(#) Sp(2=)/Sp(=) × Sp(=)
BDI (ch. orth.) +1 +1 1 O(# + ")/O(#) × O(") U(2=)/Sp(2=)
D(BdG) 0 +1 0 SO(2#) O(2=)/U(=)
DIII(BdG) -1 +1 1 SO(2#)/U(#) O(2=)
AII (symplectic) -1 0 0 U(2#)/Sp(2#) O(2=)/O(=) × O(=)
CII (ch. sympl.) -1 -1 1 Sp(# + ")/Sp(#) × Sp(") U(2=)/O(2=)
C(BdG) 0 -1 0 Sp(2#) Sp(2=)/U(=)
CI(BdG) +1 -1 1 Sp(2#)/U(#) Sp(2=)

Table 4.3: Cartan labels and groups of the tenfold way. The T means preserving the time-reversal symmetry,
C the charge conjugation, and S the chiral symmetry. Note that in the last column H means a group, not the
Hamiltonian, and the cosets G/H correspond to target spaces of the long-wavelength Anderson localization in
given symmetries. From [123].

Cartan Time evolution operator Fermionic replica Classifying space
label exp{iC�} NLfM target space for K-theory
A U(#) × U(#)/U(#) U(2=)/U(=) × U(=) �0 : U(# + ")/U(#) × U(")
AIII U(# + ")/U(#) × U(") U(=) × U(=)/U(=) �1 : U(#) × U(#)/U(#)
AI U(#)/O(#) Sp(2=)/Sp(=) × Sp(=) '0 : O(# + ")/O(#) × O(")
BDI O(# + ")/O(#) × O(") U(2=)/Sp(2=) '1 : O(#) × O(#)/O(#)
D O(#) × O(#)/O(#) O(2=)/U(=) '2 : O(2#)/U(#)
DIII SO(2#)/U(#) O(=) × O(=)/O(=) '3 : U(2#)/Sp(2#)
AII U(2#)/Sp(2#) O(2=)/O(=) × O(=) '4 : Sp(# + ")/Sp(#) × Sp(")
CII Sp(# + ")/Sp(#) × Sp(") U(=)/O(=) '5 : Sp(#) × Sp(#)/Sp(#)
C Sp(2#) × Sp(2#)/Sp(2#) Sp(2=)/U(=) '6 : Sp(2#)/U(#)
CI Sp(2#)/U(#) Sp(2=) × Sp(2=)/Sp(2=) '7 : U(#)/O(#)

Table 4.4: Cartan labeled tenfold classes with the space of the time evolution operator, the target space.
From [123].
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those similarity, there are also new properties that the Floquet topological systems have, the so-called
"anomalous" Floquet topological phases.

For Floquet systems we have a time-dependent Hamiltonian with period )

� (C) = � (C + )) (4.154)

and unitary evolution operator

* (C1, C0) = )̂ exp

{
−i

∫ C1

C0

� (B)dB
}

(4.155)

We can choose to set C0 = 0 and define

* (C) = )̂ exp
{
−i

∫ C

0
� (B)dB

}
(4.156)

The eigenvalues of � (C) now becomes C-dependent and usually is not the most convenient quantity to
consider with. One can define the eigenvalue of the unitary operator for one period as

* ()) |kU〉 = 4
−inU) |kU〉 (4.157)

where nU is called the quasi-energy of Floquet state |kU〉. I will discuss more details about the Floquet
theory and the quasi-energy in the separated Floquet chapter later. One important property of the
quasi-energy is that, it is periodic

4
−inU) = exp

{
−i

(
nU +

2c
)

)
)

}
→ nU = nU +

2c
)

(4.158)

We can also define the rescaled quasi-energy as

Y = n) (4.159)

which gives a dimensionless version of the quasi-energy.

4.5.1 Floquet topological insulator

Let us first consider a direct application of our knowledge of topological insulators to the Floquet
cases. As we see from � (C, :), an additional compact direction (1 is added to the original manifold
" , usually " = BZ where BZ is the Brillouin zone torus. This can be regarded as a Hamiltonian [14,
157] on

(
1 × BZ (4.160)

This additional (1 gives new possibilities to the topological invariants. See Fig. 4.5.

4.5.2 Classification of the Floquet topological insulator

The classification of non-interacting topological insulators, in the sense of the tenfold way, is done
around 2016, there are many papers contributed to this problem, see [157, 160–162].
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Figure 4.5: (Left) Obstruction of the Floquet unitaries can be regarded in a usual way that a obstruction
(black dot) is present and two parameter path of unitary operators, say evolution unitary, *2� and *2� are
homotopically distinct since one cannot continuously deform one to another. The obstruction, the black point
can be think to be also presented in the time evolution space, that a winding can occur because of the Floquet
driving. (Right) Deformed path show that*2� and*2� are different up to a winding !. From [14].

To classify the (non-interacting) Floquet topological system through their discrete symmetries, we
need similar but slightly different definitions of the symmetry criteria. By following Ref. [14, 157] we
can write down symmetry operations for � (C) and the* (C) as:
The particle-hole13 symmetry (PHS),

�C ≡ K�
�C� (G)�

−1
C = � (CG)

�� (G)�−1
= −�∗(−k, C)

(4.161)

�C� (k, C)�
−1
C = −� (−k, C) → �C* (k, C)�

−1
C = * (−k, C) (4.162)

The time reversal symmetry (TRS)
�T ≡ K\
�T� (G)�

−1
T = � (T G)

\� (k, C)\−1
= �

∗(−k, ) − C)
(4.163)

�T� (k, C)�
−1
T = � (−k, ) − C) → �T* (k, C)�

−1
T = * (−k, ) − C)*†(−k, )) (4.164)

The chiral symmetry (CS) 
�S = �\

�S� (G)�
−1
S = � (SG)

�S� (k, C)�
−1
S = −� (k, ) − C)

(4.165)

�S� (k, C)�
−1
S = −� (k, ) − C) → �S* (k, C)�

−1
S = * (k, ) − C)*†(k, )) (4.166)

13 Or charge conjugation
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The matrices \, �S and � are defined in Table. 4.1. Note that when the time-reversal operation
participates, we have ) → ) − C for the periodically driven Hamiltonian.
Now the Floquet version of tenfold way can be derived [157, 162]. For instance in the Ref. [157],

Roy and Harper used the Hermitian unitary, which takes the form

�* (k, C) =
(

0 * (k, C)
*
†(k, C) 0

)
(4.167)

And then apply the K-theory to classify the Floquet topological insulators. One can see that the objects
that are used for classification is the Floquet unitaries rather than the Hamiltonian. In Ref. [162],
Yao, Yan and Wang used the dimensional reduction to do the classification, especially the explicit
topological invariants can be found therein. The resulting table is shown in Table. 4.5. One can see
from the table that the Floquet topological insulators can have more possible values available for their
topological invariants than the topological insulators without drive. Let us focus on a class which has
the particle-hole symmetry or chiral symmetry, say the class AIII [161], one can see that there is a
pair of invariants Z2 labeling the topological phase according to Table. 4.5, we can name it

a = (a0, ac) (4.168)

This can be understood [161] by noticing that the chiral symmetry maps the quasi-energy n → −n ,
which means if the system has the chiral symmetry14 the symmetry operation maps n) = 0→ n) = 0
and n) = c → n) = −c = c, where I used the n) is defined mod 2c. Now suppose the bulk unitary
have the quasi-energy with gaps around 0 and c. Then the in gap states at 0, c are protected by
this symmetry. The pair of the invariants a is exactly counting the numbers of the 0-modes and the
c-modes. The Floquet topological insulators with ac ≠ 0 is called anomalous, since it is a new phase
without a equilibrium counterpart, and it also means the time evolution unitary cannot be written
simply as the exponential of the �eff .

4.5.3 Anomalous Floquet topological phase

In the previous sections, the possibilities of the additional topological invariants that is introduced by
the periodic drive were briefly discussed. However specific examples are missing. In this section
I will first define one of the simplest topological invariants which can capture the ac appeared in
equation (4.168), by following the work of Rudner, Lindner, Berg, and Levin [125]. We start with the
winding number [14, 123, 125, 165] of (1 × BZ = (1 × ((1 × (1) → * (#), which is defined as

F [+] = 1
16c2

∫
3C3:G3:H tr

(
+
−1
mC+

[
*
−1
m:G
+,+

−1
m:H
+

] )
(4.169)

where [�, �] is the commutator, and the + (C, :G , :H) should be periodic for all its arguments. Since

the Floquet unitary* (C) can be decomposed as* (C) = + (C)4i� eff
C with fix branch cut convention of

the �eff

�
eff
Y (:) =

i
)

log−Y* (), :) (4.170)

14 The PHS works similarly, see [163] for some discussions.
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Cartan label T C S 3B = 0 1 2 3 4 5 6 7
A 0 0 0 Z×# ∅ Z×# ∅ Z×# ∅ Z×# ∅
AIII 0 0 1 ∅ Z×2 ∅ Z×2 ∅ Z×2 ∅ Z×2

AI +1 0 0 Z×# ∅ ∅ ∅ Z×# ∅ Z×#2 Z×#2

BDI +1 +1 1 Z×2
2 Z×2 ∅ ∅ ∅ Z×2 ∅ Z×2

2

D 0 +1 0 Z×2
2 Z×2

2 Z×2 ∅ ∅ ∅ Z×2 ∅
DIII -1 +1 1 ∅ Z×2

2 Z×2
2 Z×2 ∅ ∅ ∅ Z×2

AII -1 0 0 Z×# ∅ Z×#2 Z×#2 Z×# ∅ ∅ ∅
CII -1 -1 1 ∅ Z×2 ∅ Z×2

2 Z×2
2 Z×2 ∅ ∅

C 0 -1 0 ∅ ∅ Z×2 ∅ Z×2
2 Z×2

2 Z×2 ∅
CI +1 -1 1 ∅ ∅ ∅ Z×2 ∅ Z×2

2 Z×2
2 Z×2

Table 4.5: Floquet tenfold way. From [14, 164]. The possible values a becomes a=? , =? = {1, 2} for with PHS
or CS, and a=? , # ∈ Z otherwise. For instance for class A, a = Z→ a

#
= Z# .

where Y = n) . A periodic + in time C can be deformed from the Floquet unitary through a one
parameter family *B by *0 = *, *1 = +n . The homotopy theorem guarantees the topological
information is preserved during the deformation. The proper deformed unitary15 for computing the
winding number can be then defined as

+Y (C, :) = * (C, :)e
iC� eff

Y (:) (4.172)

with the branch cut convention [161]

log−Y
(
eii

)
= ii for − Y − 2c < i < −Y (4.173)

The winding number around the rescaled quasi-energy Y is now reached by sending (4.172) to (4.171),
that is

F
[
+Y

]
=Winding number at Y

=
1

16c2

∫
3C3:G3:H tr

(
+
−1
Y mC+Y

[
+
−1
Y m:G

+Y , +
−1
Y m:H

+Y

] )
(4.174)

= The number of edge states at one edge

this is "roughly" the degree of map +Y , and it also takes the form
∫
&(+−1d+, 0), with &(�, �) the

Chern-Simons form.

15 Originally in Ref. [125] it is defined as

*Y (k, C) =
{
* (k, 2C) if 0 ≤ C ≤ )/2
+Y (k, 2) − 2C) if )/2 ≤ C ≤ ) (4.171)
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Figure 4.6: The RLBL model [125]. Empty sites are � sites and black sites are � sites. (Upper panel) Snap shot
for each )/5 in one period, tick line means a non-zero hopping. The arrow means the time direction. (Lower
panel) The motion of the particles, green for the upper edge, blue for the in bulk, red for the lower edge. One
can see that the edge state is only possible with drive.

One can also [125] show that the Chern number of the quasi-energy window Y ∈ [Y′, Y] is

F
[
+Y′

]
− F

[
+Y

]
= CYY′ (4.175)

which are the difference between the winding number at the quasi-energies Y and Y′.

4.5.4 Rudner-Lindner-Berg-Levin model

The anomalous Floquet topological phase can be understood better through exampels. Here we
reproduce a lattice realization from the Ref. [125]. In [125] Rudner, Lindner, Berg and Levin
introduced nowadays called Rudner-Lindner-Berg-Levin RLBL model, named by the authors. The
RLBL is a two dimensional, 3B = 2, model on a square lattice. The Hamiltonian of the RLBL model
is [125]

�̂ (C) =
∑
k

(
2
†
k ,�

2
†
k ,�

)
� (k, C)

(
2k ,�
2k ,�

)
� (k, C) = −

4∑
==1

�= (C)
(
4
8b= ·kf+ + 4−8b= ·kf−

)
+ X��fI

(4.176)

where f± =
(
fG ± 8fH

)
/2, and the reciprocal vector b1 = −b3 = (0, 0) and b2 = −b4 = (0, 0). Here

we set the lattice constant 0 = 1. The 2 and 2† are the creation and annihilation operators. The time
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dependent hopping takes the simple form

�1(C) = � if 0)/5 ≤ C < 1)/5, �8≠1 = 0
�2(C) = � if 1)/5 ≤ C < 2)/5, �8≠2 = 0
�3(C) = � if 2)/5 ≤ C < 3)/5, �8≠3 = 0
�4(C) = � if 3)/5 ≤ C < 4)/5, �8≠4 = 0
No hopping if 4)/5 ≤ C < 5)/5

(4.177)

See also the Fig. 4.6 where a cartoon is presented. The above model is the original version of the
RLBL model, and the last 1/5 period is without hopping.

In Fig. 4.7 we present the resulting quasi-energy spectra of the RLBL model for different parameters.
Where we can see there are three cases F = (0, 0), F = (0, 1) and F = (1, 1) and

F ≡ (F
[
+Y=0

]
, F

[
+Y=c

]
) (4.178)

One can check numerically the direct computation from the (4.174) also gives the same result.

4.6 Examples and numerical methods to compute topological
invariants

In many applications of the topological insulator, one will need some efficient numerical methods to
determine values of the topological invariants. Here we briefly review several representative method
for the topological insulators and Floquet topological insulators. The computation is typically done
numerically, by no means that analytical calculations are impossible.

Since the Floquet topological insulator can be regarded as a special generalization of the topological
insulator in equilibrium, and the topological invariants of them have similar forms, it is not a surprise
that the sets of tools for computing the invariants in both cases are almost identical. I will summarize
some of them in the following sections.

4.6.1 Direct methods

One of themost directmethods to compute the topological invariants is to perform themulti-dimensional
integral over the closed manifold in the momentum space. Numerically, this is usually performed by
finite difference and numerical integration by applying Riemannian sum or other integration methods.
For instance the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) invariant [166] for Z classes is a
3B = 2 integration with the Chern character (the field strength) on (2, denote the resulting number as
Ch1 the first Chern number.

Ch1 =

∫
:G ,:H ∈)

2
�GH (:G , :H) (4.179)

In some highly symmetric model, the topological invariant can be computed in an economical way.
For instance, if the model has time-reversal invariance and reflection symmetries, the Z2 invariant of it
can be counted [167] at the time-reversal-invariant-momentums (TRIM).
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Figure 4.7: RLBL model for X�� = 0.5c/) , ) is the time period, as in [125]. (Left) Extended zone spectra.
(Right) Diagonalize the* (), k).

Band inversion

The band inversion is also an efficient way to identify the topological invariant, at least qualitatively.
Suppose one has a two-band model and one knows the band shape of the upper �D and lower �3
band without coupling between them, i.e, the off-diagonal matrix element switch off. Then if we
switch on the off-diagonal matrix elements with not too large values, the band shapes will not change
dramatically. If the bands without coupling are overlapped with each other some gaps will be opened
at the crossing points of �D and �3 , and these are also where the edge states cross appears for a open
boundary condition.

Edge states

The bulk-boundary correspondence state that the bulk topological invariant is counting the number
of the edge states at the boundary. Clear discussions can be found in the Fruchart and Carpentier’s
review [119] on p.16 with massive Dirac equations in 3B = 2, or in the book of Fradkin [24].
For Floquet systems we have already presented an example in the previous section by using the
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Figure 4.8: Haldane model [111] with cylindrical geometry. The open boundary condition is taken on G
direction.

RLBL model as an example.

4.6.2 Fukui-Hatsugai-Suzuki method

Around 2005, Fukui, Hatsugai and Suzuki [168] purposed an efficient numerical algorithm16 to
compute the equation (4.179), the Thouless-Kohmoto-Nightingale-Nijs (TKNN) invariant. This
method is now widely used and called Fukui-Hatsugai-Suzuki (FHS) method. In Fig. 4.9 one can see
that the first Chern number computed from FHS method for the middle band Ch1 = −2.0000000565
where the known analytical result is Ch1 = −2. It returns the integer numbers for a high accuracy to
10−7 from a relative coarse 9× 27 momentum grid, a single computation at most takes several seconds.

The key part of the FHS method is that to compute the field strength by link variables. Suppose the
=-th eigenstate of the Hamiltonian is |=〉, the link variable is

*` (k) ≡
1

N` (k)
〈=(k) |=(k + 4̂`)〉 (4.180)

with N` (k) ≡ | 〈=(k) |=(k + 4̂`)〉 |. The k = (:G,8, :H, 9) is on a two dimensional grid, 8, 9 ∈ Z and
8 ∈ [1, #G], 9 ∈ [1, #H]. The 4̂` is the unit vector on ` direction, 4̂` ≡ !`/#`, !` is the length of
the Brillouin zone along ` direction. The field strength, or the Berry curvature � is computed by a
Wilson loop

�GH (k) ≡ ln*1(k)*2(k + 4̂G) [*1(k + 4̂H)]
−1 [*2(k)]

−1 (4.181)

The � should have the its value −c < 1
i �GH (k) ≤ c. After we know the field, the first Chern number

16 From the reference cited there in [168], it seems that they used some techniques from the lattice gauge theory.
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Figure 4.9: The plots reproduced the setup in the original reference [168] of the Fukui-Hatsugai-Suzuki method.
Here the setup is spinless fermions under an external magnetic field, the Hamiltonian is � = −C∑〈8, 9 〉 2†8 48 \8, 9 2 9 ,
with the flux per plaquette q =

∑
� \8, 9/(2c) = 1/3. The �1 = Ch1 is the TKNN invariant (first Chern number)

of the middle band of the three-band system. Note that due to the magnetic field the Brillouin zone interval
changed, since now the Hamiltonian has the periodicity � (:G , :H) = � (:G + 2c/3, :H) = � (:G , :H + 2c).

of the =-th band can be computed through summation

Ch1,= ≡
1

2ci

∑
k

�GH (k) (4.182)

Note that here the sum
∑

k � (k) ≡
∑
8, 9 � (:G,8, :H, 9) is without the normalization.

Clearly, the FHS method is applicable to the Floquet topological insulator with periodic boundary
condition, i.e., in pure momentum space. One of the application can be found in [169], where they
find the Chern invariant/number �1 of the lower Floquet band in the first Floquet-Brillouin zone can
get larger integer numbers when decreasing the driven frequency. This is a result of the periodicity of
the quasi-energy that multiple band inversions can contribute. The detail phase diagram marked by
different Chern numbers is complicated and available in [169].

4.6.3 Wannier center charge pump method

In 2011 [170], Yu, Qi, Bernevig, Fang, and Dai purposed a version of Wannier center charge pump
which provides an intuitive and computational feasible way to compute the Z2 invariant, for example
in the quantum spin Hall effect (QSHE). This method returns charge pump trajectories which are
parametrized by :H , and the topological invariant can be read off from the winding of the trajectories.
An introduction can be also found in [171].
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Figure 4.10: The Z2 Wannier-center charge pump for BHZ model, actually only the part :H ∈ [−c, 0] is needed
for identifying the topological invariant.

The recipe of this method is again simple. Since the discrete non-abelian Berry curvature is

�
<=
8,8+1

(
:H

)
=

〈
<, :G,8 , :H | =, :G,8+1, :H

〉
(4.183)

The* (2#) Wilson loop is � (:H) = % exp
{
−i

∫
�:H

�(k)d:
}
, where % is the path ordering, � is the

integration contour. Then the � can be obtained through

�

(
:H

)
= �0,1�1,2�2,3 · · · �#G−2,#G−1�#G−1,0 (4.184)

The Wilson loop has 2# eigenvalues which are complex numbers with the angular form

_
�
< (:H) =

���_�< ��� 4i\�< (:H) , < = 1, 2, . . . , 2# (4.185)

The Wannier center is then the phase of those eigenvalues

\
�
< (:H) = Im

[
log_�< (:H)

]
(4.186)

In Fig. 4.10 we reproduced the result of [170] for the Bernevig-Hughes-Zhang (BHZ) model. We can
see that the topological nontrivial phase has a non-zero winding, since we cannot find a horizontal line
without a intersection with the charge pump line. Note the horizontal line should be on the available
discrete grid points.

This method is applicable to many studies of topological insulators, see e.g [130]. For the Floquet
case, the charge pump method is considered in [172] recently.

4.6.4 Other methods

There are other methods to compute the topological invariants. For instance, the phase band
method [160, 173] for the Floquet topological phase. The curvature renormalization group [174], for
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Floquet setup, see [175, 176].

4.7 Symmetry protected topological order and intrinsic topological
order

Let us end this chapter by some discussions about the definition of the topological order.
Nowadays, popular definitions of the topological order are usually based on the works of Alexei

Kitaev [177], or Xiao-Gang Wen [178]. The ideas behind the topological order exists before their
works and can be traced back to the early study of the quantum Hall effects, and even earlier in the
studies of gauge theories. Roughly speaking, the integer quantum Hall effect (IQHE) and the fractional
quantum Hall effect (FQHE) correspond to two different classes, the symmetry-protected topological
(SPT) order [179] and intrinsic topological order (ITO). Many of recent studies [177, 180, 181] use
category theory and group cohomology, projective symmetry groups, and parton constructions which
are surely beyond the scope of our discussion. For topological orders, some recent reviews may be
found in [124, 182, 183].
Note the definition of the topological order varies by context and authors. From the field theory

point of view [178], one definition is that the topological order exists for a system if the low energy,
long wavelength, effective theory of the system is a topological field theory, e.g., a Chern-Simons
theory.

From the quantum information point of view [183–186], the considering state17 of the system with
non-trivial SPT are short-range entangled and can be transformed to a product state with finite steps of
local18 unitary transformations without closing the energy gap, however these steps will break at least
one of the symmetries of the system. The states with ITO are long-range entangled and any finite
steps of local unitary transformations can not continuously, without closing the energy gap, transform
it into a product state. Note [183] that if the thermodynamic limit is needed, we assume it is taken
first, before any unitary transformation. Further, if ITO is protected by symmetries, they are called
symmetry enriched topological order (SET).

With those definitions, for lattice models, the topological insulators (which can have particle-particle
interactions) belong to SPT. The toric code [187] belongs to ITO. The ITO usually cannot be described
by a band theory picture, and the ground state degeneracy is only depending on the topology.

The SPT and ITO are also both interesting when we study strongly correlated systems. Especially
for ITO where the experiment realizations and observations are still limited. The newly developed
techniques of the non-equilibrium quantum many-body system may help us to find some way to probe
and analyze those phases.

17 Usually it is the many-body ground state.
18 Here local means in a finite and small region.
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4.8 Summary

In this chapter we reviewed the concepts and formalism of the topological systems. Especially
the topological insulator and its required mathematical back ground. We first introduced the
geometric and topological aspects of the simple gauge theory through standard examples, the magnetic
monopoles. Then we reviewed briefly the effective topological field theory, as long as its application
for understanding topological insulators. Several lattice model both for static topological insulator and
its generalization, namely the (anomalous) Floquet topological insulator is reviewed as examples. We
summarized them by the known ten-fold way and Floquet ten-fold way from discrete symmetries. We
also reviewed several numerical method. In the end we discussed briefly the topological order.

Let us also summarize this chapter by the following graph Fig. 4.11.

Topological insulator
Floquet topological insulator

Tenfold way

IQHE

Magnetic monopole, Anomaly ...Berry phase

Topological invariant

Discrete symmetry
Dimensional reduction

Topological terms:
Theta, Chern-Simons, ...

Numerical method

FQHE

Gauge theory

Lattice model

Topological order

Symmetry protect topological phase

Geometry and topology

Figure 4.11: A short summary of topological matter.
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CHAPTER 5

Periodic driving: Floquet theory

In this chapter, we will introduce the basic concepts of the Floquet system [3, 13–15], which treats
the light field semi-classically. By discussing a quantum photon model, we discuss the power and
limitations of the Floquet picture. Then we discuss the Floquet theorem, Floquet Green’s functions
and their properties.

5.1 Semi-classical approximation of the light coupled to a two-level
atom

In this chapter we will consider Hamiltonian with time periodic parameters

� (C) = � (C + )) (5.1)

Where ) is the time period, C is the time. People may wonder that how the time-dependent Hamiltonian
� (C) = � (C+)) can occur? In this section, I follow [188] to show how can a time-periodic Hamiltonian
arise from the semi-classical description of matter coupled to photons. This can be seen from a
two-level atom couples to a single photon mode with the Hamiltonian [188]

� = Ω0
†
0 + �

2
1√
#ph

(
0
† + 0

)
f
G + Δfz (5.2)

where 0† and 0 are creation and annihilation operators of photons with energy Ω. � is the coupling
constant between light and matter. #ph is the average photon number. The f matrices are the pauli
matrices represent the atomic states. The Δ is the level spacing of the atom.

Recall that we can write1

/ =

∫
d[0†, 0] exp

{
i
∫

dC0†(imC −Ω)0 −
�

2
1√
#ph

(
0
† + 0

)
f
G − Δfz

}
(5.3)

The semi-classical model can be derived by integrating out the photon fields and taking the saddle

1 I used the same notation for the operator and its coherent state expectation value.
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point approximation, the result gives a effective Hamiltonian with periodically modulating parameters

�sc(C) = � cos(ΩC)fG + ΔfI (5.4)

The applicability and applicable regimes of �sc can be check by the exact diagonalization
2. Use the

initial states and measure observable for � and �sc by

|kinit〉 = |coh(#ph)〉 ⊗ |↓〉 , 〈$̂ (C)〉 = 〈kinit |4
i�C
$̂4
−i�C |kinit〉 (5.5)

|ksc,init〉 = |↓〉 , 〈$̂ (C)〉 = 〈ksc,init |4
i
∫
�sc (C)dC$̂4−i

∫
�sc (C)dC |ksc,init〉 (5.6)

where |↓〉 = (0, 1)ᵀ is the lower atomic state. The photon coherent state is defined as [189]

|coh(#ph)〉 = 4
−#ph/2

∞∑
==0

(#ph)
=/2

√
=!

|=〉 (5.7)

and |=〉 is the =-photon Fock state, #ph is the mean photon number 〈coh(#ph) |0
†
0 |coh(#ph)〉 = #ph.

The distribution of the photon number is the Poisson distribution and the annihilation operators have
the eigenvalues 0 |coh(#ph)〉 =

√
#ph, actually the coherent state will have a classical limit when take

#ph →∞.
In Fig. 5.1, I used the package Quspin to produce four plots where one can see that in the uppermost

plots the expectation value of the atomic operator 〈fG〉sc (C) from semi-classical Hamiltonian is mostly
agreed with that from the quantum Hamiltonian 〈fG〉 (C), one can see when the photon number is
lower or the coupling strength � is larger, or the driving frequency is lower (closer to the resonance
frequency Δ = 2). The results from the semi-classical Hamiltonian (5.4) show more deviation from
that of quantum photons (5.2). This is expected since the semi-classical limit works well for large
mode occupation number where the fluctuation is suppressed as 1/

√
#ph. And near the resonance

or at strong coupling, the photon number fluctuations affect the dynamics of the atomic states more
pronounced.

The model such as Eq. 5.2 is surely not the only possibility of reaching Eq. 5.4, but it is still one of
the possible microscopic origins and it is relevant in the quantum optics context where laser lights, as
coherent photon sources, are used.

Some recent theoretical discussions of Floquet (classical, large photon number) for deep quantum
regime (cavity, small photon number) can be found in [190], and [191]. Further, as phonon, photon
can also induce an effective particle-particle interaction that can support superconductivity [192].

2 See also the Quspin document https://scipost.org/SciPostPhys.2.1.003/pdf, in the section 2.4 there. We are
also following it here.

108

https://scipost.org/SciPostPhys.2.1.003/pdf


5.1 Semi-classical approximation of the light coupled to a two-level atom
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Figure 5.1: Exact diagonalization vs Floquet (semi-classical) approximation for Hamiltonian (5.2) and 5.4.
Used Quspin. The = = 0†0. The #tot is the maximum photon occupation. #tot = 2#ph where #ph is the average
photon number in the initial photon coherent state. The x axis is the time C in unit of the time period ) ≡ 2c/Ω.
Plotted results after 10 periods. Used Quspin.
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5.2 Floquet theorem

In this section, we review the use of the Floquet theorem, in the context of quantum mechanical
systems.
The Floquet theorem [3] states that if we have the Schrödinger equation with a time periodic

Hamiltonian
i

d
dC
Ψ(C) = � (C)Ψ(C), � (C) = � (C + )) (5.8)

then we can prove that the time evolution operator * (C, C0) , with Ψ(C) = * (C, C0)Ψ(C0), has the
property

* (C + ), C0 + )) = * (C, C0) (5.9)

and the unitary can be written as

* (C, C0) = %(C, C0)4
−i&C ≡ %(C, C0)4

−i�eff C (5.10)

where % is periodic in time for all of its variables

%(C, C0) = %(C + ), C0), %(C, C0) = * (C, C0)4
i�eff C (5.11)

The % is sometimes called micro-motion operator. The �eff ≡ & is a Hermitian matrix called
(stroboscopic) Floquet effective Hamiltonian.

We can find that the eigenstates of the time evolution operator over one full period have the following
form

* (C + ), C0)ΨU (C) = 4
−inU)ΨU (C), ΨU (C) = 4

−inUCDU (C) (5.12)

where DU (C) = DU (C + )) is a periodic function of C, is called micro-motion of the Floquet state. The
real number nU is called quasienergy which is unique up to integer multiples of Ω = 2c/) , and ΨU (C)
is called Floquet state which is for the quasienergies nU.

Derive the Floquet theorem

We can justify the (5.10), (5.9) and (5.12) as follows. First we can write out a general form of* (C, C0)
as

* (C, C0) = )̂ exp

{
−i

∫ C

C0

dB� (B)
}
, * (C + ), C0 + )) = )̂ exp

{
−i

∫ C+)

C0+)
dB� (B)

}
(5.13)

Since � (C) = � (C + )), we have the integral
∫ C+)
C0+)

dB� (B) =
∫ C
C0

d(g + ))� (g + )) =
∫ C
C0

dg� (g),
which implies* (C + ), C0 + )) = * (C, C0), see also Eq. 5.9.

Now consider the unitary for one time period ) , we can separate the time-periodic part and the
non-time-periodic part of the time evolution operator,

* (C + ), C0) = * (C + ), C0 + ))︸             ︷︷             ︸
=* (C ,C0)

* (C0 + ), C0) (5.14)

where * (C0 + ), C0) is frequently called Floquet operator. We can always write the * in terms of a
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Hermitian operator &(C0) since* (C0 + ), C0) is unitary, which will give us

4
−i& (C0)) = * (C0 + ), C0) (5.15)

With the above definitions. The unitary* then can be written as

* (C + ), C0) = * (C, C0)4
−i& (C0)) (5.16)

Multiply on right by 4i& (C0) (C+) ) we have

* (C + ), C0)4
i& (C0) (C+) ) = * (C, C0)4

−i& (C0)) 4i& (C0) (C+) ) = * (C, C0)4
i& (C0)C (5.17)

This allows us to define a )-periodic operator named %(C, C0) ≡ * (C, C0)4
i& (C0)C ,

%(C + ), C0) ≡ * (C + ), C0)4
i& (C0) (C+) ) = * (C, C0)4

i& (C0)C = %(C, C0) (5.18)

this actually is what we saw in Eq. 5.10. Now we know that If Ψ(C) is a solution of the Schrödinger
equation, then it can be written in terms of a Hermitian operator &(C0) and a unitary time-periodic
operator %(C, C0):

Ψ(C) = * (C, C0)Ψ(C0) = %(C, C0)4
−i& (C0)CΨ(C0) (5.19)

One can let the initial state Ψ(C0) to be an eigenstate of &(C0), which can be denoted by ΨU (C0) with
eigenvalue nU. This means &(C0)ΨU (C0) = nUΨU (C0) and 4

−i& (C0)CΨU (C0) = 4
−inUCΨU (C0). We then

have
ΨU (C) = 4

−inUC %(C, C0)ΨU (C0)︸            ︷︷            ︸
≡DU (C)

(5.20)

One can see that DU (C) is a periodic function satisfies DU (C + )) = DU (C) and this is the reason that
people call it micro-motion of the Floquet state. This is exactly the Eq. 5.12. And the quasienergies
nU do not depend on C0, which allows us to drop the C0 in &(C0).
Note that the above discussions suggest that the* (C, C0) can be also written in the form [15]

*
(
C, C0

)
≡ *� (C) exp

{
−i

(
C − C0

)
��

}
*
†
�

(
C0
)

(5.21)

where *� (C + )) = *� (C) is the micro-motion that is closely related to %(C, C0), up to a unitary
transform. �� is called effective Hamiltonian. The micro-motion can be written into

*� (C) = 4
−i (C) (5.22)

and  (C) is called kick operator [15, 17].
For systems with more than a single level, it is quite rare for people to find analytical expressions for

the quasi-energies and Floquet states. However, in some driven two-level systems, the quasi-energy
and the time-dependent states can be reached analytically, I will review one of these examples in
Section. 5.4. Those analytical results will also show the complexity of the Floquet systems.
Although the analytical solutions for the Floquet eigenvalue problems are rare, there are many

efficient numerical methods available, which can help us to understand complex Floquet systems. We
discuss two representative methods here in the following sections.
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Chapter 5 Periodic driving: Floquet theory

Compute the Floquet states by using Floquet matrix

To determine nU, we can Fourier expand (mode expand) the D(C) as DU (C) as DU (C) =
∑
= 4
−i=ΩC

D
=
U,

Ω = 2c/) , where D=U is called the =th Floquet mode of the Floquet state. Then we have∑
=

(�<= − =ΩX<=)D
=
U = nUD

<
U (5.23)

where

�<= ≡
1
)

∫ )

0
dC48 (<−=)ΩC� (C) (5.24)

is called Floquet matrix of the Hamiltonian. We can see the quasienergies nU are the eigenvalues of the
infinite-dimensional Floquet matrix �<= − =ΩX<=. Note that we can clear see if nU is an eigenvalue of
�<= − =ΩX<=, the same holds of n + =Ω, for arbitrary integer =. To avoid the redundancies of nU, we
may impose a condition for the quasienergies that −Ω/2 ≤ nU < Ω/2. By using the Floquet theorem,
the time-dependent ordinary differential equations have been transformed into a time-independent
eigenvalue problem, which can be solved by simple linear algebra (if one truncates the matrix size).

Compute the Floquet states by using[(t0 + Z, t0)

Another way to compute the Floquet states and quasienergies is to diagonalize the evolution operator
for one full period* (C0 + ), C0), or equivalently the Floquet effective Hamiltonian3

�� = i
1
)

log* (C0 + ), C0) (5.25)

The eigenstates of the �eff , or equivalently the eigenstates of * (C0 + ), C0), are then the Floquet
eigenstates ΨU (C0) and we can evolve these states to get in ΨU (C) by using (5.20), or we can just use
the evolution unitary to envolve ΨU (C0).

Compute the Floquet states by perturbation theories

With the Floquet matrix and quasi-energies, it becomes obvious that the standard perturbation theory
techniques can be applied to the periodically driving cases. The popular methods includes Magnus
expansions [15], high-frequency expansions [17], the Brillouin-Wigner perturbation theory [169], the
adiabatic perturbation theory [193, 194]. Those methods work in a certain parameter region and can
be regarded as approximations of the full Floquet matrix.

5.2.1 Floquet Engineering

The periodic drive can considerably change the behaviours of the quantum systems. Where effectively
the physical quantities or model parameters like hoppings of the lattice models, band structures, as
well as topological properties can be changed in a way where systems without drive can hardly reach.
These kinds of manipulations of quantum systems are usually called Floquet engineering [6, 13, 15].

3 The branch cut of the logarithm may need to be specified in practices

112



5.3 Heating of periodically driven many-body systems

5.3 Heating of periodically driven many-body systems

5.3.1 Heating of Floquet systems

Continously driving systems may introduce heating effects, where the system absorbs energy from
the external field/bath and becomes less ordered. In Floquet systems the heating problem is usually
unfavourable, since people are interested in the exotic phase and orders with some special occupations
of the states. If a system is uniformly occupied, or at “infinite temperature”, those exotic phases or
orders would be washed out.

General periodically driven systems without any local conserved quantities will likely to end up with
infinite temperature ) = ∞, which is homogeneous with maximum thermodynamic entropy following
the volume law. The infinite temperature states are usally featureless. The infinite temperature fate of
the Floquet systems can be understood as a result of the Floquet version of the eigenstate thermalization
hypothesis (ETH), which may be called Floquet-ETH. For systems with conserved quantities, the
infinite temperature can be reached for each sector (of conserved quantity). Note since the ETH is not
strictly proofed, the Floquet-ETH is also still a hypothesis, although people verified it in many systems
numerically and experimentally [18, 195].

Now we follow [18] to see how the Floquet-ETH happens. We assume the system is prepared at the
state |j(C + =))〉 = ∑

U 2U exp(−inU=)) |kU (C)〉, |?B8U (C)〉 which is the manybody Floquet eigenstate.
The late time density matrix can be written as

〈$〉 = 〈j(C + =)) |$ |j(C + =))〉=
∑
U

∑
V

2
∗
U2Ve−8( nU−nV)=)

〈
kV (C) |$ |kU (C)

〉
(5.26)

Here the late time means = large, where the Riemann-Lebesgue lemma implies the self-diagonalize
of the density matrix, and only nU = nV elements are left non-zero. Mark Vs that fulfill the relation
nU = nV by V(U), then for =→∞

d ∼
∑
U

∑
V (U)

e8=) ( nU−nV (U) )2∗U2V (U)
��kU (C)〉 〈

kV (U) (C)
�� (5.27)

This is called [18] the quasi-diagonal ensemble. On can see from the above equation that, late time
density matrix can be rather featureless since the quasienergies are only conserved up to integer
multiples of Ω. This implies a infinite temperature final state.

5.3.2 Possible solutions of the heating problem

As we see from the previous discussions, the Floquet version of eigenstate thermalization (ETH) states
that for a closed system the infinite late time states of the system will be at infinite temperature and
have the maximum entropy. The thermalization will then wash out many features produced by the
periodic drive. For instance, for topological systems such as topological insulators, a well defined and
sharp enough Fermi surface inside the bulk spectrum gap is usually required. Then if we require a
similar setup in the Floquet driven topological insulator, this kind of occupation seems hard to reach,
since the system heats up and the initial filling conditions are destroyed.

To deal with the heating problem, there are at least two possible ways. The first one is that we can
find a system with some interesting properties even at the temperature )0 →∞. The second way is
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Chapter 5 Periodic driving: Floquet theory

that to keep the system away from heating, at least for a long enough time compare to the drive period.
There are three approaches purposed in the literature to avoid heating, or at least partially prevent

the system to be heated up for a longer time. They are prethermalization, many-body localization and
cooling. [14]

Prethermalization

Prethermalization or prethermal state is a long live meta stable state that a system can reach. Although
for late times the system may eventually thermalized, at a time window we can still have some
interesting physics. For prethermalization, an estimation of thermalization time for both with and
without driving can be found in Ref. [196], and it provides a theorem that may be called Abanin-De
Roeck-Ho-Huveneers (ADHH) theorem by the names of the authors. The central result of ADHH can
be summarized as follows. For a certain type of short-range Hermitian operator �, we can split it to
the form

� ≡ a# + . (5.28)

Clearly, � can have different meanings, such as Hamiltonian or other Hermitian operators. In the
driven case � is the generator in the extended Hilbert (Floquet) space, roughly it is � = imC − � (C), in
the non-driven case � is the total Hamiltonian. # and . are the sums of local short-range operators,
and the terms are commuting with their summation partners. Note, although in Ref. [196] the operator
# should be strictly local, i.e., act on a single site, in Ref. [197] the condition is relaxed to the finite
range.

Now in Floquet case, one can choose a = 2c/) = Ω, which is the driving frequency, � (C+)) = � (C).
And . = � (C) = � + + (C) where � is the time average (1/))

∫ )
0 � (C) and + (C) = � (C) − �, #

is then the rest part in the extended Hilbert space a# = � − . which is closed related to the time
derivative. In non-driven case, the a can be the Hubbard interaction a = * in Fermi-Hubbard model
[196], then � = *# + . ,. = �0 is the non-interacting part of the total Hamiltonian and # is the
Hubbard interaction. Other way around, a can be the hopping strength for the Majorana chain [197].

From this point of view, in Ref. [196] it is suggested that the thermalization time can be exponentially
long if we have the separation of scales which means

a/�0 � 1 (5.29)

Here �0 ∼ ‖. ‖ is a local energy scale. For example, for Fermi-Hubbard model without driving the
�0 can be the hopping amplitude �hop. In the driving case, the above condition implies a high drive
frequency, where “high” means to compare with other local scales of the systems. The thermalization
rate 1/g∗ is thus exponentially small [196]

g∗ ∼ exp

{
2

a/�0

[1 + log (a/�0)]
3

}
(5.30)

Here g∗ is the thermalization time which characterizes the time that system needed to be thermalized,
2 is a constant. The scale separation can let the model follow approximate conservation laws and
against fast thermalization. Further discussions about the almost conserved quantities and their rules
in protecting edge zero modes in the non-driving case can be found in Ref. [197]. The Ref. [197]
discussed the Majorana zero modes of the Kitaev chain, which is important for topological quantum
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5.3 Heating of periodically driven many-body systems

computing. In Ref. [197], the Majorana zero modes are protected by the quasi-conserving quantities
generated by the scale separation. They are then free of "quasiparticle poisoning", the annihilation of
the zero modes caused by the bulk quasiparticles.
There are many works that studied the prethermalization of the Floquet systems. For instance,

in [198] the many-body prethermalized Thouless pump is studied by exact diagonalizations. The
resonantly driven Hubbard model is studied in [199] by using dynamical mean-field theory (DMFT)
with non-crossing approximation (NCA) as an impurity solver in the time space. The Ref. [199]
gives a resonant example of prethermalization with low drive frequency, where the drive frequency is
comparable to the bandwidth, and the system is in theMott insulator phase. An effective non-interacting
Hamiltonian is also suggested in [199] to explain the long lifetime of the quasi-steady state.

Manybody localizations

The long prethermalization time from the scale separations suggest that the novel phenomenons
in Floquet systems can be long live if the driven frequency is high enough. There are also other
possibilities to keep the system from completely heating up for a long time. On of them is the
manybody localization.

The manybody localization [195] (MBL) can protect manybody localized systems form thermalizing
by long quantum memories. The thermalization can be understood in a quantum information manner
that the initial local quantum information is “diffusing” to the larger area and then are locally lost. The
MBL states effectively have local qubits that are approximate integral of motions where the quantum
memory can be preserved locally, namely they are not thermalizable.
For manybody localization, there are some good reviews [195, 200]. Good discussions can be

found in [18] where the Floquet-ETH and Floquet-MBL phases are discussed. And especially in [18]
a “spatio-temporally ordered” phase they called c spin glass (cSG) as an example for the possibility
of Floquet-MBL phase which is unique in the driven systems.

Remarkably there are cold atom experiments that realized the MBL Floquet states [201–204], they
are also called “Floquet time-crystal” [205] or discrete time-crystal. The c spin glass [206] is recently
realized by Google Quantum AI and their collaborators.

Cooling

To avoid heating, one can also couple the system to an external bath, where the heat in the system can
be transported to the bath. External baths are common in solid-state systems and has been studied in
many references [3]. The external bath can help the system to stay at a finite effective temperature. In
general, any open driven quantum system [101] has the potential to be stabilized by its external bath.

Few quantum photons

As we have seen in the previous sections, the Floquet systems can be regarded as a large photon
number semi-classical approximation of a quantum light-matter coupled system. The heating problem
then can be regarded as the consequence of absorbing a lot of photons. It is then natural to think that
if the total photon number is limited to a small number, the heating problem may be avoided. Still
a question will be if the interesting properties of the Floquet systems can be kept with such a low
number of photons. Some recent studies of cavity quantum electrodynamics setup show that it can be,
see for instance [190].
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Infinite temperature density matrix

There are other possibilities, where the infinite temperature will still give non-trivial properties. For
instance for the systems with the generalized Gibbs ensemble (GGE). Some discussions about GGE
can be found in [207], where the density matrix has the form

d ∼ e−ΣU_U;U (5.31)

Where the U marks conserving sectors that the system can be decomposed to. The GGE will give
disconnected sectors of the system, that can be individually at infinite time. For applications to Floquet
systems one may see [87].

5.4 Analytical solution of a simple driven two-level system: RPL

As we discussed at the begining of this chapter, we will review some analytical results for the Floquet
systems that can help us to see the complexity of Floquet systems. In this section, I follow the paper
by Schmidt, Schnack, and Holthaus [208]. In the Ref. [208] they computed the analytical solutions of
the rabi problem with linear polarized driving (RPL), which is a good example. One small technical
difference here is that we use Mathematica, which allows one to calculate the solution in the most
straightforward way by using the built-in functions of the Mathematica. This makes the reproducing
work much simpler.

There are many works on the analytic solutions of driven two-level systems, e.g. see [208–216].
Where in many of them the Schrödinger equation of driven single particle two level systems are
rewritten into confluent Heun equations, which has the general solutions named Heun functions [217–
220]. Here we will also use this kind of method.

Following [208], we consider the linear polarization Rabi problem (RPL), the Hamiltonian4 is

� (g) = 1
2

(
5 sin g Δ

Δ − 5 sin g

)
=

1
2
Δf

G + 1
2
5 sin gfI (5.32)

where g = ΩC is the dimensionless time. One can to scale g → g/Ω, 5 → 5Ω and Δ→ ΔΩ to recover
the dimension of time [C], which has the inverse dimension of energy [�]−1. The fG and fI are Pauli
matrices and the 5 and Δ are real number parameters.
The Schrödinger equation of the dimensionless time is

i
dk(g)

dg
= � (g)k(g) (5.33)

here k = (k1, k2)
) . One can see that for the Hamiltonian (5.32) there are symmetries for the unitaries

T̃ : * (c + g, c) = T* (g, 0)T , T = fG (5.34)

and
C̃ : * (c − g, c) = *∗(g, 0) (5.35)

4 This model can be regarded as the same model as the Eq. 5.4, since a unitary transformation can exchange the position of
the Pauli matrices.
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as*∗ is the complex conjugate of*. The above symmetry implies

* (2c, c) = T* (c, 0)T (5.36)
* (0, c) = *∗(c, 0) (5.37)

* (c, 0) = *
(c

2
, 0

)ᵀ
*

(c
2
, 0

)
(5.38)

* (2c, 0) =
(
k1(2c) −k

∗
2 (2c)

k2(2c) k
∗
1 (2c)

)
=

©­«
1 − 2A2

0 28A
√

1 − A2
04
−8U0

28A0

√
1 − A2

04
8U0 1 − 2A2

0

ª®¬ (5.39)

where the explicit form of A0 and U0 will be defined later through Heun functions.
In above (5.33) are two coupled first-order ordinary differential equation. By substituting one to

another, it is possible to eliminate k2(g) (or k1(g)) and the resulting equation of k1 (k2) is now
second order. Then we can apply suitable variable transformations where the above equations can be
written into a confluent Heun equation

d2
H

dI2 +
(
W

I
+ X

I − 1
+ n

)
dH
dI
+ (UI − @)(I − 1)I H = 0 (5.40)

We can see that at I = 1 the equation is singular. The above equation confluent Heun equation is solved
by the confluent Heun functions5, just like the hypergeometric functions which solves hypergeometric
differential equation. The Heun function HeunC(I) have 5 parameters and can be written as

HeunC(@, U, W, X, n, I) (5.41)

For k1(g) with the Hamiltonian (5.32), the suitable transformations are

I(g) = sin2 g

2
, H1(I) = 4

−i 5 I (g)
k1(g) (5.42)

and the corresponding solution H1(I) is

H1(I) = HeunC
(
@ =

1
4

(
Δ

2 + 48 5
)
, U = 2i 5 , W =

1
2
, X =

1
2
, n = 28 5 , I

)
(5.43)

For k2(g) the transformations are

I(g) = sin2 g

2
, H2(g) =

(
1

−iE
√
I(g)

4
i 5 I (g)

k2(g)
)∗

(5.44)

the solution H2(I) is

H2(I) = HeunC
(
@ =

1
4

(
8i 5 + Δ2 − 1

)
, U = 3i 5 , W =

3
2
, X =

1
2
, n = 2i 5 , I

)
(5.45)

5 Here I use the name in Mathematica, i.e. HeunC it is available since version 12.0.
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Now we are ready to compute quasienergies. We can define two constants for convenience [208]

A0 = −
√

2ΔRe
(
4

i 5
H1(I)H2(I)

)���
I= 1

2

U0 = arg
(
4

i 5
H

2
1(I) − Δ

2

2 4
−i 5 (H2

2(I))
∗
)���
I= 1

2

(5.46)

The dimensionless quasienergy n/Ω is then directly related to A0 by [208]

± n ( 5 ,Δ)
Ω

= ∓ 1
c

arcsin
(
−A0

)
(5.47)

See also Fig. 5.2. The U0 will be used to calculate the wave function.

To get the wave-function k(g), we can first define its components into real and imaginary parts as
follows

k(g) =
(
k1(g)
k2(g)

)
=

(
D1(g) + iE1(g)
D2(g) + iE2(g)

)
(5.48)

It is obvious that the k1/2 can be computed from H1/2 immediately through

k1(g) = 4
i 5 I
H1(g), k2(g) = −iΔ

√
I4
−i 5 I

H
∗
2(g) (5.49)

However we will face a problem when H(I) pass the singular point I = 1 (or g = c). To deal with the
singular points, one can use the solutions in the first quarter, i.e. in [0, c/2), to recover the whole
period [0, 2c) by applying symmetry identities (5.36), see also Fig. 5.4. In below, from (5.50) to
(5.53), I list the relations between the k(g) when g ∈ [0, c/2) and k when g in other intervals belongs
to [0, 2c) provided in [208].
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Figure 5.2: Quasi-energies n vs Ω with the amplitude � = 5Ω = 1/2 and the Larmor frequency Ω0 = ΔΩ = 1.
Start from Ω = 0.05 to avoid extremely low driven frequency. Included up to ±20 side bands to reach low
driven frequencies. (left) The quasienergies n vs Ω. (right) One can see that there are small avoided crossing
between Floquet side bands.

Here I list the definition of D1, D2 and E1, E2, following [208] In the interval g ∈ [0, c/2) one has

D1 = Re k1(g), E1 = Im k1(g), D2 = Re k2(g), E2 = Im k2(g) (5.50)
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Figure 5.3: Wave-function components k1 (g) (left) and k2 (g) (right), with g ≡ ΩC. The model parameters are
5 = 1/2 and Δ = 1. The blue (orange) lines are the real (imaginary) parts.

Figure 5.4: RPL two-level state

In the interval g ∈ [c/2, c) one has

D1 (g) =
√

1 − A2 (
D1 (c − g) cosU0 + E1 (c − g) sinU0

)
+ A0E2 (c − g)

E1 (g) =
√

1 − A2
0
(
D1 (c − g) sinU0 − E1 (c − g) cosU0

)
− A0D2 (c − g)

D2 (g) =
√

1 − A2
0
(
D2 (c − g) cosU0 + E2 (c − g) sinU0

)
− A0E1 (c − g)

E2 (g) =
√

1 − A2
0
(
D2 (c − g) sinU0 − E2 (c − g) cosU0

)
+ A0D1 (c − g)

(5.51)

In the interval g ∈ [c, 3c/2) one has

D1(g) =
√

1 − A2
0
(
D1(g − c) cosU0 + E1(g − c) sinU0

)
− AE2(g − c)

E1(g) =
√

1 − A2
0
(
−E1(g − c) cosU0 + D1(g − c) sinU0

)
+ A0D2(g − c)

D2(g) =
√

1 − A2
0
(
−D2(g − c) cosU0 − E2(g − c) sinU0

)
− A0E1(g − c)

E2(g) =
√

1 − A2
0
(
E2(g − c) cosU0 − D2(g − c) sinU0

)
+ A0D1(g − c)

(5.52)

In the interval g ∈ [3c/2, 2c) one has

D1 (g) =
(
1 − 2A2

0

)
D1 (2c − g) + 2A0

√
1 − A2

0
(
E2 (2c − g) cosU0 − D2 (2c − g) sinU0

)
E1 (g) =

(
1 − 2A2

0

)
E1 (2c − g) + 2A0

√
1 − A2

0
(
D2 (2c − g) cosU0 + E2 (2c − g) sinU0

)
D2 (g) = −

(
1 − 2A2

0

)
D2 (2c − g) + 2A0

√
1 − A2

0
(
E1 (2c − g) cosU0 − D1 (2c − g) sinU0

)
E2 (g) = −

(
1 − 2A2

0

)
E2 (2c − g) + 2A0

√
1 − A2

0
(
D1 (2c − g) cosU0 + E1 (2c − g) sinU0

)
(5.53)
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We can see that the solutions of a simple driven two-level system, RPL, can be rather complicated.
Despite the great value of the analytical solutions, the complications limit their use, if available, in
general problems, especially in searching exotic phases. In later sections, I will introduce several
numerical or semi-analytical methods which are suitable for driven multi-level quantum systems and
the driven quantum lattice models.

5.5 Floquet Green’s functions

Here we introduce the so-called Floquet Green’s functions [3, 100, 101, 169, 221–224]. We will see
that the Floquet Green’s functions especially the retarded ones are Green’s functions of the Floquet
matrix.

5.5.1 Floquet matrix and the extended zone
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Figure 5.5: The quasienergies for a Floquet 3B = 1 lattice model, the Rice-Mele model with Δ0 = 3.0/�0,
�0 = 1.0, X0 = 1.0/�0, q = 0.

We first review the Floquet matrix. The the extended zone Hilbert space [225] is

T ×H (5.54)

with the basis
|<〉 ⊗ |8〉 (5.55)

where states |8〉 ∈ H are the states in the original Hilbert space H . T is the Floquet mode space
|<〉 ∈ T .
We have seen in the Section. 5.1, one possiblemicroscopic origin of the Floquetmatrix (Hamiltonian).

The semi-classical approximation works better for higher photon occupation numbers and higher
frequency, where the quantum fluctuation from the photon field is getting smaller.
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If we treat the photons as external classical field/bath, then the energies of the system have a energy
conservation law only up to integer multiple of photon energy ±=Ω. And the state |<〉 ⊗ |8〉 can be
regarded as <-photon dressed state. Since the photon number is assumed to be very large [225], the <
is corresponding to a chosen reference “0”. And the Floquet matrix has the general form

H<= = �<−= − X<==Ω =

©­­­­­­­­­­«

. . .
. . .

. . .
. . .

. . .

. . . �0 +Ω1 �1 �2
. . .

. . . �−1 �0 �1
. . .

. . . �−2 �−1 �0 −Ω1
. . .

. . .
. . .

. . .
. . .

. . .

ª®®®®®®®®®®¬
with the basis

|<〉 ⊗ |8〉 = (· · · , |k8〉 ⊗ |−1〉 , |k8〉 ⊗ |0〉 , |k8〉 ⊗ |+1〉 , · · · )
ᵀ (5.56)

See also (5.23).
A simple example of the time-periodic Hamiltonian would be

� (C) = �0 + �14
−iΩC + �−14

+iΩC
= �0 + Δ4

−iΩC + Δ†4+iΩC (5.57)

which can be written into Floquet matrix

©­­­­­­­­­«

. . .
. . .

. . . �0 −Ω1 Δ 0
Δ
†

�0 Δ

0 Δ
†

�0 +Ω1
. . .

. . .
. . .

ª®®®®®®®®®¬
5.5.2 Floquet Green’s function

In this section, we introduce Floquet representations [3, 221] of the Green’s functions. We assume the
Green’s functions have the symmetry

� (C + ), C ′ + )) = � (C, C ′) (5.58)

This symmetry is true for the Green’s functions of the Hamiltonian � (C) = � (C + )) and in a
non-equilibrium steady state. I will first derive Floquet representations of Green’s functions through
the Floquet matrix and Floquet states in the extended zone and then relate them to the time-space
Green’s functions.
The Floquet representation [3, 221] has a important property that it transforms the following

convolution into a matrix product if � and � have the symmetry (5.58). That is

[� ◦ �]<= (l) = [
∫
C
′
�(C, C ′)�(C ′, C ′′)]<= (l) = �<= (l)�=; (l) (5.59)
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Chapter 5 Periodic driving: Floquet theory

This suggests us to define

�
'
<= (l) ≡

[
1

l −H + i0+

]
<=

(5.60)

Which is the Floquet representation of [imC − � (C)] ◦ �
' (C, C ′) = 1. The Floquet matrixH is defined

as
H<= ≡

∫
C

(imC − � (C))4
i(<−=)ΩC (5.61)

In this section we always stay in the extended Hilbert space. In the next section, I will show how to get
them from the time domain form of the Green’s functions.
We can first discuss Floquet systems that have a single level. For a general Floquet matrix of a

single level [221], the dimension of the original Hilbert space dim H = 1. The retarded Green’s
function in the Floquet representation is6

H<=U=0 = n0U<0 (5.62)

and

�
'
<= (l) ≡ [(l1 −H + i0+)−1]=< = U<0

X
01

l − n0 + i0+
U†

1=
(5.63)

Note that same indices are summed. We will usually assume the summation of the same indices
in most of the time. Clearly theU <

0 is the <-th component of the 0-th eigenvector of the Floquet
matrix H<=. For the single band (flavor) case the matrix U<0 is a =� × =� square matrix with
=� the dimension of the Floquet space F , which is infinite. The unitary matrix U = {. . . D0 . . .}
diagonalizes the Floquet matrixH and the Green’s function matrix (l� −H + i0+)−1 has the matrix
form

U†HU = diag{. . . , n0−1, n0, n0+1, . . . } (5.64)

and
U† 1

l1 −H + i0+
U = diag

{
. . . ,

1
l − n0 + i0+

, . . .

}
(5.65)

Use the identity �<,= (l) = �<+;,=+; (l − ;Ω) which I will derive in the next section around (5.85),
one can see

�
'
<= (l) = �<+;,=+; (l − ;Ω) = U<+;,0

X
01

l − ;Ω − n0 + i0+
U†

1,=+; , No ; summation (5.66)

Where l ∈ (−∞, +∞). From this identity we can see the redundancies of the above definitions. The
redundancies can be eliminate. We can shift l back to the interval l ∈ [−Ω2 ,

Ω
2 ] through the above

identity and sum them all

�
'
<= (l) =

∑
;

�<+;,=+; (l − ;Ω) = U<+;,0
X
01

l − ;Ω − n0 + i0+
U†

1,=+; , |l | ≤ Ω
2

(5.67)

6 The fraction sandwiched can be also written [3, 221] into a matrix then �' = U&U†.
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5.5 Floquet Green’s functions

Note same indices are summed. We can see that the above definitions have the same information as
the (5.63).
For a multi-band lattice system7 the generalization is simple that for each Floquet index there is

a set of quantum number which we absorb them into a single index 8. The index 8 can contain the
lattice position, the spin and other internal degrees of freedoms as well as sublattice indices, i.e.,
8 = (G, f, . . .). The extended Hilbert space is again H × T , with the basis |8〉 ⊗ |<〉. Then for the
Floquet matrixH 8 9

< = we have the Schrödinger equation

H 8 9
< = U

=
90 = n0U

8
< 0 (5.68)

And the retarded Green’s function is

�
' 8 9
< = (l) = [l1 −H + i0+]−1 8 9

< = =
U<+;, 9

0U
∗;+=,8

0

l − ;Ω − n0 + i0+
(5.69)

Here the matrix D<80 is a =� × =8 × (=� × =8) tensor.
One may want to have a more "symmetric" tensor since the linear map corresponds to theU that

maps two indices into one index, i.e., <8 → 0 rather than <8 → BU. We can split the index and
writeH<8 = 9U= 9 BU = n0U=8 BU. The index B is labeling the so-called Floquet Brillouin zones. Since
the quasi-energy n0 and n0 + BΩ are both the solutions of the same eigen-problem, we can order the
quasi-energies in a way that n0 + ;Ω = nBU + ;Ω = nU + (B + ;)Ω, with nU ∈ [−Ω2 ,

Ω
2 ). Many other

choices with integer Ω shifts will work equally well, but we will stick to this convention. Further we
can use thatU=+;, 9

BU = U
=+;+B, 9

0U , and then rename the dummy index ; + B→ ;, the above equation
becomes

�
' 8 9
< = (l) = [l1 −H + i0+]−1 8 9

< = =
U<+;,8

0UU
∗;+=, 9

0U

l − ;Ω − n0U + i0+
|l | ≤ Ω

2
(5.70)

This allows us to restrict the BU within B = 0, i.e. the first Floquet Brillouin zone, which is usually
chosen as n0U ∈ [−Ω2 ,

Ω
2 ). The 0U can be abridged to U, this is then the form that appears frequently

in many literature.
The (non-interacting) Keldysh Green’s function is following the similar procedure, for the case the

initial density matrix has the diagonal form8

Tr{dk†
1
k0} = 〈k

†
1
k0〉 = 〈k

†
0k0〉 X01 ≡ 50X01 (5.71)

Where 50 is defined by 〈k†0k0〉. Now we can see the Keldysh Green’s function is similar with (5.69),
for fermions it reads

�
 
<8= 9 (l) = −i

(
1 − 2 50

)
X(l − ;Ω − n0)U

<+; 8
0U

∗;+= 9
0 (5.72)

The equation (5.69) and (5.72) can define the Floquet non-interacting problem of a closed system for
7 HereU<0 = X

<=U0< . However the ascendence of the index here and later are mainly for reading convenience, and
thus they can be safely moved up and down freely.

8 This density matrix is not entirely general but a good approximation in many applications, especially for the steady states
that has a mixed state density matrix that in the late time, which is after a destructive interference of the relative phases. If
starting from a pure state that is not a Floquet eigenstate, then some off diagonal terms will enter.
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Chapter 5 Periodic driving: Floquet theory

an arbitrary initial condition satisfying (5.71). Frequently we write

D
< 9

0 ≡ U
< 9
0 (5.73)

One can check in this case the Green’s functions are satisfying the fluctuation-dissipation theorem
(FDT) through the distribution factor 1 − 2 50, here we considered the fermionic case. Recall that the
retarded Green’s function for the Floquet eigenstate Ψ0 (C) is �

'
0 (C, C

′) = −8\ (C − C ′)Ψ0 (C) ⊗ Ψ
†
0 (C
′),

the “D” can be reached by

D
= 9
0 =

1
)

∫ )

0
dC D80 (C)4

−i=ΩC
=

1
)

∫ )

0
dC Ψ80 (C)4

in0C4−i=ΩC (5.74)

where Ψ0 is the wave function of 0-th Floquet eigenstate, see also Eq. 5.12.
One can see that (5.69) and (5.72) are very closed to the familiar Lehmann representation of the

Green’s function, and we may also call them the Floquet Lehmann representations. Although those
equations are not always very useful in numerical computations, they still give some physical intuitions,
and if the eigenvectors and the eigenvalue can be solved analytically, those representation can provide
analytic results.

5.5.3 From time space: Wigner representation and Floquet representation

As we mentioned before, we will show how to connect the time-domain Green’s function to Floquet
Green’s function in this section. And it is also convenient to define the Floquet-Wigner representation
of Green’s function in the frequency domain, which we will do as well. The Floquet-Wigner
representation �= (l) of the (2-point) Green’s function �8 9 (C, C

′) is defined through the Wigner
transform, i.e. "center of mass" representation with a following Fourier transform of the time variables
of the Green’s function9

�= (l) =
∫ ∞

−∞
dCr

1
)

∫ )

0
dCa4

ilCr+i=ΩCa�
(
Ca + Cr/2, Ca − Cr/2

)
(5.75)

and
� (C, C ′) =

∑
=

∫ ∞

−∞

dl
2c
4
−il (C−C′)−i=Ω(C+C′)/2

�= (l) (5.76)

where ) = 2c/Ω is the time period and <, = ∈ Z, l ∈ R. In above all the indices and variables other
than time were suppressed, �8 9 (C, C

′) → � (C, C ′). The averaged time Ca and the relative time Cr are
defined as

Ca ≡
C + C ′

2
, Cr ≡ C − C

′ and C = Ca +
Cr
2
, C
′
= Ca −

Cr
2

(5.77)

and the time-domain "center of mass" Green’s function is

� (Cr, Ca) ≡ �
(
Ca + Cr/2, Ca − Cr/2

)
(5.78)

The Floquet representation can be reached through Floquet-Wigner representation from the following

9 One may define [101]
∫
l
= 1/(2c)

∫ ∞
−∞ dl and

⨏
C
= Ω/(2c)

∫ 2c/Ω
0 dC = 1/)

∫ )
0 dC to shorten the equations.
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5.5 Floquet Green’s functions

identity [3, 101]
�<= (l) = �<−=

(
l + < + =

2
Ω

)
(5.79)

Now use the definition of the Wigner transform, we have

�<= (l) =
1
)

∫ )

0
dCa4

i(<−=)ΩCa�
(
l + < + =

2
Ω, Ca

)
(5.80)

where �<= is called Floquet representation of �. The forward transform from C, C
′ to l, <, = is [169]

�<= (l) =
1
)

∫ )

0
dCa

∫ ∞

−∞
3Cr4

i(l+<Ω)C
�

(
C, C
′)
4
−i(l+=Ω)C′ (5.81)

and the inverse transform is

�
(
C, C
′)
=

∑
<,=

∫ Ω/2

−Ω/2

dl
2c
4
−i(l+<Ω)C

�<= (l)4
i(l+=Ω)C′ (5.82)

where Ω = 2c/) . Note the full information of Floquet representation is in

l ∈ [−Ω
2
,
Ω

2
) (5.83)

and other regions ofl can be reconstructed from index shifts. We will see how to do this reconstruction
in (5.86).

It is also possible to transfer from the Floquet representation to Floquet-Wigner representation [101]
by using

�= (l) = �<+ =2 ,<− =2 (l − <Ω) (5.84)

However, it is not as straightforward as (5.79), since when = is a odd number we need to shift the right
hand side l by a 1

2Ω to get a =
2 +

1
2 to make the index of the Floquet representation integer. The shifts

are allowed by the identity of the Floquet representation

�<= (l) = �<+;,=+; (l − ;Ω) (5.85)

The Eq. (5.85) is simple to proof, where we can � (C + ), C ′ + )) = � (C, C ′) and (5.82) to show

[� (C, C ′)]<= (l) = [� (C + ;), C
′ + ;))]<= (l) = �<+;,=+; (l − ;Ω) (5.86)

Here [· · · ]<= (l) means that we are transforming the arguments to the Floquet representation. The
relation (5.82) can be used to reconstruct the �

(
l ∉ [−Ω2 ,

Ω
2 )

)
from �

(
l ∈ [−Ω2 ,

Ω
2 )

)
.

Note from now on, we will call the Green’s functions in Floquet representation “Floquet Green’s
functions”. We will call the Green’s functions in Floquet-Wigner representation “Floquet-Wigner
Green’s functions”.
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Chapter 5 Periodic driving: Floquet theory

5.5.4 Example: tight-binding model in a DC field

It is instructive to compute some simple Floquet Green’s functions. One of the simplest model [3,
226] is the tight-binding single-band lattice electrons couple to direct current (DC) field where the
field is introduced through minimal coupling by the Peierls substitution. The Hamiltonian is

�̂ (C) =
∑
:

� (C, :)2†
:
2: = −

∑
:

2�0 cos[: − �(C)]2†
:
2: (5.87)

With the amplitude of the vector potential of the external time-dependent classical DC field

�(C) = ΩC (5.88)

Here the coupling constant, the electron charge 4 is set to 4 = 1 for simplicity, and the lattice constant
is set to 1.
We can see that the time evolution unitary of the above Hamiltonian is

* (C, 0; :) = )̂ 4−i
∫ C

0 dB � (B,:)
= 4
−i

∫ C
0 dB � (B,:)

= 4
2i�0 sin(:+ΩC)/Ω ≡ Ψ(C, :) (5.89)

Where the time-ordering )̂ can be dropped for this model since the Hamiltonian for each (C, :) is a
scalar. The Floquet index U can be dropped once the First Floquet-Brillouin zone (FBZ) is specified
for the same reason. We can see that this model is especially simple since the quasi-energy (in the first
Floquet Brillouin zone) is zero

n:U =
1
)

i log* (), 0, :) = 1
)

∫ )

0
dC � (C, :) = 0 (5.90)

Thus D(C, :) = * (C, 0; :). The extended space micro-motion D< and its matrix formU can be obtained
by

U<=
: = D

<−=
: =

1
)

∫ )

0
dC * (C, 0; :)4i0C

4
−i(<−=)ΩC (5.91)

From above, a direct computation gives us

U<=
: =

1
)

∫ )

0
dC 4−i

∫ C
0 dB (−2�0 cos(:−ΩC))

4
−i(<−=)ΩC (5.92)

To compute the Fourier modes, we can use the well-known identity (Jacobi-Anger expansion)

4
8I cos \

=

∞∑
==−∞

8
=J= (I)4

8=\ (5.93)

Where the J= (I) is the Bessel function
10 of the first kind. One can directly compute the Fourier

transform [3, 226], where

U<=
: = 4

−8 (<−=):−28 (�0/Ω) sin :J=−<
(
2�0/Ω

)
(5.94)

10 The BesellJ(=, G)
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5.5 Floquet Green’s functions

(a) Real part (b) Imaginary part

Figure 5.6: �' (C, C ′; : = 0) for the DC Hamiltonian (5.87), with Ω = �0 = 1, see also (5.95). Where only the
first period is plotted, i.e. C, C ′ ∈ [0, )], ) = 2c/Ω the drive period.

And for : = 0 it is especially simple, which isU<=
:=0 = J=−<(2�0/Ω).

Now we can write down the retarded Green’s function. The retarded Green’s function �' (C, C ′) =
−i\ (C − C ′)Ψ(C, :)Ψ†(C ′, :) is

�
' (C, C ′; :) = −i\ (C − C ′)42i(�0/Ω) (sin(:+ΩC)−sin(:+ΩC′)) (5.95)

The symmetry � (C + ), C ′ + )) = � (C, C ′) holds trivially. We also plot the �' (C, C ′) in Fig. 5.6 for
direct references.

Recall the equation (5.70), the Floquet retarded Green’s function is

�
'
<= (l, :) = 4

−i(<−=):
∑
;

J<+; (�0/Ω)J;+= (�0/Ω)
l − ;Ω + i0+

(5.96)

One can see that the relation �<,= (l) = �<+;,=+; (l − ;Ω) holds and the entire l ∈ (−∞, +∞)
can be reconstructed from l ∈ [−Ω2 ,

Ω
2 ). Where the infinitesimal regulator W0 = 0+ represents

a dissipationless system since the Hamiltonian (5.87) is non-interacting, i.e. the relaxation time
g ∼ 1/W0 = ∞. Since the X function is very narrow and is not easy to resolve on a plot, we can add a
finite constant broadening � to it11

�
'
<= (l, :) = 4

−i(<−=):
∑
;

J<+; (�0/Ω)J;+= (�0/Ω)
l − ;Ω + i�

(5.97)

The damping term can be regarded as from coupling the system to an (non-interacting) external
bath [3] with flat density of state, with the coupling + and � ∼ +2. The external bath also used later in
the chapter for the dynamical mean field theory.

In Fig. 5.7, I plot the Eq. (5.97) and its time space form through analytical formula and the numerical
Fourier transform. One can see that the Fourier transform results are agreed with the exact results.

11 In time domain it is to multiply a small damping term 4
−�C .
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Figure 5.7: The �
' (Cr, Ca) and �

'
<= (l). Used parameters �0 = Ω = 1, � = 0.04. (Upper Left) �' (Ca + Cr/2, Ca −

Cr/2) Fourier transform from �
'
<= (l), (Upper right) Eq. 5.97 for : = 0, < = = = 0. The lower plots, (Lower

left) Eq. 5.95 with time "center of mass" �' (Ca + Cr/2, Ca − Cr/2). (Lower right) Fourier transform from Eq. 5.95,
again for : = < = = = 0, i.e time averaged over the Ca.

5.5.5 Limitations of the Floquet Green’s function method

There are known limitations of the Floquet Green’s function method. For instance, in [227], the
authors discussed the effect of driving on the phonon bath of the normal static superconductor and
compared the solutions from Floquet Green’s function and from the time-space direct method by
solving the integral-differential Volterra equation. For phonons, the resulting Mathieu equation is
unstable near the parametric resonance, where the drive frequency is closed to the internal frequency,
and the Fourier transform is ill-defined. This can be one of the general limitations of the Floquet
Green’s function method, since Floquet Green’s functions rely on the discrete Fourier transform and
the steady-state assumption.
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5.6 Summary

5.6 Summary

In this chapter we reviewed the Floquet theorem, the Floquet Keldysh Green’s functions and Floquet-
Wigner representation and Floquet representation for quantum mechanical models through definitions
and simple examples. The Floquet Green’s functions and Floquet-Wigner Green’s function can be
compute by starting from the Floquet matrix or from Fourier transfroms of the time space Green’s
functions that has the Floquet discrete time translational symmetry. All those representations have
their own advantages. We also discuss the general heating problem in the periodically driven systems.

Let us summarize this chapter by the following graph.

Photon couping
Semi classical light

Periodic drive

Floquet theorem

Extended space
Floquet matrix

Wigner representation

Floquet Green’s functionFloquet representation

Manybody
Localization

Topological phase

Floquet engineering

Heating

Time crystal

Drive quantum phases

Keldysh method

...

Figure 5.8: Summary of general Floquet theory
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CHAPTER 6

Periodically driven systems without interaction:
adiabatic and non-adiabatic Thouless pump

In this chapter, we discuss applications of the Floquet theorem, Floquet representation, and Floquet
Green’s functions to non-interacting problems. We focus on the Thouless pump, a quantized charge
pump, and its dissipative extension. The dissipative Thouless pump project is in collaboration with
Zlata Fedorova, Prof. Stefan Linden, and Prof. Johann Kroha and published in [228].

6.1 Thouless pump and Rice-Mele model

� � � � � � � �

8 − 1 8 8 + 1 8 + 2
......

Figure 6.1: Rice-Mele model, which has sublattice � and �.

Δ(C)

�1(C) − �2(C)
0

Δ(C)

�1(C) − �2(C)
0

Figure 6.2: Parameter circle, the H-axis is Δ(C), the G-axis is �1 (C) − �2 (C). The topological phased can be read
off from the parameter circle as an alternative of the TKNN invariant of the Thouless pump. (Left pane) A
non-zero quantized pump. (Right pane) Pumping charge is zero.
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pump
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Figure 6.3: The quasienergies in the FFZ. The quasienergies for a Floquet 3B = 1 lattice model, the Rice-Mele
model with Δ0 = 3.0/�0, �0 = 1.0, X0 = 1.0/�0, q = 0.
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Figure 6.4: For the Rice-Mele model with Δ0 = 3.0/�0, �0 = 1.0, X0 = 1.0/�0, q = 0.

Among the simplest Floquet lattice systems, the Rice-Mele [229] model, as a 3B = 1 super-lattice,
is intensively studied over the last decades because it can support a quantized charge pump, the
Thouless pump. Thouless pump, as first purposed by David Thouless in 1983 [230], is a way to pump
integer multiples of the charge for each drive period, and the integer is equal to the Chern number of
the Hamiltonian � (C, :), where C is regarded as an additional momentum variable when computing
the invariant. This means the pumping charge is proportional to a topological invariant. There are
many discussions on Rice-Mele model and its realization in cold-atom systems [231] and condensed
matter systems. Here I focus on one of the simplest construction [232–234]. The Rice-Mele model
Hamiltonian is

�̂RM(C) = −
#∑
9=1

(
�1(C)k̂

†
�, 9
k̂�, 9 + �2(C)k̂

†
�, 9+1k̂�, 9 + ℎ.2.

)
+

#∑
9=1
Δ(C)

(
k̂
†
�, 9
k̂�, 9 − k̂

†
�, 9
k̂�, 9

) (6.1)

132
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Figure 6.5: For the Rice-Mele model with Δ0 = 3.0/�0, �0 = 1.0, X0 = 1.0/�0, q = 0. Solid lines for “�”, dot
lines for “�”. The discontinuous points are those the spectrum has a crossing.

where the k̂ and k̂† are the fermionic annihilation and creation operators. For a quantum pump, the
time-dependent parameters can be chosen as

�1(C) = �0 + X0 cos(ΩC)
�2(C) = �0 − X0 cos(ΩC)
Δ(C) = Δ0 sin(ΩC + q)

(6.2)

I will set q = 0 except otherwise specified. This gives a phase shift c/2 between the hopping drive
and the on-site potential drive which can be seen by sin(G) = cos(G − c/2). In momentum space, it
has the form

�RM(C, :) = d(C, :) · 2 (6.3)

=

(
Δ(C) −�1(C) − �2(C)4

−i:0

−�1(C) − �2(C)4
+i:0 −Δ(C)

)
(6.4)

where the three dimensional vector h has the components
31 = −�1(C) − �2(C) cos(:0)
32 = −�2(C) sin(:0)
33 = Δ(C)

(6.5)

One can directly solve the Schrödinger equation imC |k(C)〉 = � (C) |k(C)〉 numerically by ODE solvers1

with low cost, and then measure the current by assuming that before turn on the drive the system is at

1 For instance, the Runge-Kutta solver, RK45.

133



Chapter 6 Periodically driven systems without interaction: adiabatic and non-adiabatic Thouless
pump

the static V = ∞ ground state. We switch on the drive at C = C0 = 0 where the model is reduced to

�RM(0, :) =
(

0 −�0 − X0 − (� − X0)4
−i:0

−�0 − X0 − (� − X0)4
i:0 0

)
(6.6)

It has eigenvalues and eigenvectors at C0 = 0

� (C0, :) = ±
√

2
√
(�2

0 − X
2
0) cos(:0) + �2

0 + X
2
0 (6.7)

k(C0, :) =
1√

�
2(:) + 1

(∓� (:), 1)ᵀ and � (:) =

√
2
√
(�2

0 − X
2
0) cos(:0) + �2

0 + X
2
0

4
8:0 (�0 − X0) + �0 + X0

(6.8)

Following [232], we choose a simple parameter setting for a non-zero quantized pump

3�0 = 3X0 = Δ0, 0 = 1.0 (6.9)

Under such a setting, � (:) = 1, and the initial ground state takes a much simpler form

� (C0, :) = −2�0, k(C0, :) =
1
√

2
(1, 1)ᵀ (6.10)

The expectation value of the current operator is

�curr(C) =
1
0#:

∑
:

〈k(C, :) |�̃curr(C, :) |k(C, :)〉 (6.11)

And the charge density pumped in one period is

&= =

∫ =)

(=−1))
dC�curr(C) (6.12)

The initial condition and the parameter setting are shown in Fig. 6.6 and Fig. 6.7. We can see that the
&= are nearly quantized, & ∼ 0.99, for ) = 20/�0, Ω = 2c/) = 0.31�0.
From Fig. 6.6, we can see that &= is very closed to 1 if the drive frequency is low, e.g., the case

Ω = 0.314�0, and decreases if the Ω is increased. This can be seen more clearly in a quasi-energy
occupation spectrum, which I will introduce soon in Section. 6.1.2.

6.1.1 Current operator and Floquet Green’s function

Here I derive the current operator used in Fig. 6.6 and Fig. 6.7. Note during the derivation of the
current operator, we can first transform

k�,: → k�,:4
i:0/2 (6.13)

which is a : dependent gauge transform which can be revert later easily and it will not affect the
observables of the Rice-Mele model. This is equivalent to insert a virtue flux, see [235] appendix. For
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Figure 6.6: Thouless pump for the Rice-Mele model, 3�0 = 3X0 = Δ0. (Top) The time dependent net current.
(Bottom) The net charge pumped for each period. One can see that for this parameter setting the pumped charge
is quantized to high accuracy. Used momentum points in the BZ #: = 400, number of the C points used per
period is #perperiod = 1000. See also the Ref. [233, 234].
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Figure 6.7: Thouless pump for the Rice-Mele model with 3�0 = 3X0 = Δ0. The current becomes steady after a
transient dephasing time which is about 2) . Computed by the current operator. See also the main text.

a dimer model, the current matrix is

�curr(C) =
1
0#:

∑
:

m:�: (C) =
1
0#:

∑
:

(
0 m:�:

m:�
∗
: 0

)
(6.14)

The current operator is thus [235]

�̂curr(C) =
1
0#:

∑
:

(
m:�:k

†
:�
k:� + (m:�:)

∗
k
†
:�
k:�

)
(6.15)
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where �∗: (C) = �1(C)4
−i:0/2 + �2(C)4

+i:0/2 with �1/2 ∈ R and

m:�
∗
: = −i

0

2
�1(C)4

−8:0/2 + i
0

2
�2(C)4

+8:0/2
= (m:�:)

∗ (6.16)

m:�: = +i
0

2
�1(C)4

+i:0/2 − i
0

2
�2(C)4

−i:0/2 (6.17)

Where �1 and �2 are defined in the (6.2). Note one can see that generally the current operator for the
1-dimensional bipartite tight binding model will take the form of (6.15).

Transform back k�,: → k�,:4
−i:0 we have [235]

(m:�
′
:)
∗
= −i

0

2
�1(C) + i

0

2
�2(C)4

+i:0 (6.18)

And we can now use m:�
′
: to write the current expectation value by using Green’s functions. Use the

definition 〈k†
9
(C ′)k8 (C)〉 = i�<8 9 (C, C

′)

�curr(C) = 〈�̂curr(C)〉 =
1
0#:

∑
:

(
m:�

′
: 〈k

†
:�
k:�〉 + (m:�

′
:)
∗ 〈k†

:�
k:�〉

)
(6.19)

=
1
0#:

∑
:

(
m:�

′
: i�<:,��(C, C) + (m:�

′
:)
∗i�<:,�� (C, C)

)
(6.20)

For going to the Floquet representation define �̃ as

�curr(C) =
1
0#:

∑
:

�̃curr(C, :) (6.21)

We can now use the identity∫
C ∈[0,) ]

�(C)�(C, C) =
∑
<=

2c
Ω

∫
|l | ≤Ω/2

�<=�=<(l) =
2c
Ω

∫
|l | ≤Ω/2

Tr� [��] (l) (6.22)

to write the current expectation value by Floquet Green’s functions. Here
∫
|l | ≤Ω/2 =

∫ Ω/2
−Ω/2

dl
2c and∫

C ∈[0,) ] =
∫ )

0 dC. The trace is over the Floquet indices Tr� [��] =
∑
<= �<=�=<. Then the steady

state pumping charge per cycle &SS can be computed by

&SS =

∫
C ∈[0,) ]

�curr(C)

=
i

0#:

∑
:

∑
<=

2c
Ω

∫
|l | ≤Ω/2

(
[m:�

′
:]<= [�

<
:,��]=<(l) + [(m:�

′
:)
∗]<= [�

<
:,��]=<(l)

) (6.23)

Or in short

&SS =
i

0#:

∑
:

2c
Ω

∫
|l | ≤Ω/2

Tr�
[
m:�:�

<
:,�� + (m:�:)

∗
�
<
:,��

]
(l) (6.24)

This formula can be used also in interacting systems.
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6.1 Thouless pump and Rice-Mele model

6.1.2 Floquet picture of the Thouless pump
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Figure 6.8: The Floquet dispersion (dimensionless, that is n → n) ∈ [−c, c]) and Floquet occupation spectra∑
UNU (l, :) for varies drive frequencies. The occupation spectra used the initial condition k(C = 0, :) =
(1/
√

2, 1/
√

2)ᵀ. (Left column) The quasienergies in the FFZ. (Middle column) The occupation spectra. (Right
column) The logarithm scale quasienergy occupation spectra. The first, second and third rows are forΩ = 0.31�0,
Ω = 0.52�0 and Ω = 1.05�0 respectively. The charge pumped per cycle is affected by the occupation of the left
moving and right moving branches as well as the gap at the ±c.

Here I introduce the Floquet picture for the Thouless pump in the Rice-Mele model, see also the
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Ref. [232]. Define the Floquet occupation spectrum

NU (l, :) = | 〈k: (0) |Ψ:U (0)〉 |
2
X(l − nU (:)) = =U (:)X(l − nU (:)) (6.25)

where |k: (0)〉 is the initial time C = 0 wave function. The |Ψ:U (0)〉 are the Floquet eigenstates at
C = 0 with U = ±. The N:U (l) for drive frequency Ω = 0.31�0, 0.52�0, 1.05�0 are plotted in Fig. 6.8.
Here again I use the parameters

3�0 = 3X0 = Δ0, �0 = 1.0, 0 = 1.0 (6.26)

for the Hamiltonian (6.1). The quasienergy and the Floquet states are computed by the extended zone
method.

H�DU (:) = nU (:)DU (:) (6.27)

One can read off from the Fig. 6.6 that for large drive cycles = ∼ 80
Ω = 0.31 & ≈ 0.99
Ω = 0.52 & ≈ 0.97
Ω = 1.05 & < 0.85

(6.28)

Clearly, the quantization of the charge pump is destroyed by increasing drive frequency Ω. This
can be understood easily in a Floquet picture, where we compute the Floquet occupation spectrum
(6.25) of the Rice-Mele model. The occupation spectrum shows the occupied part of the Floquet
quasienergies for a specific initial condition.
On the left column, the (a), (d), (e), we show the quasienergies of different drive frequencies of

the Rice-Mele model. We can clearly see that there are right moving branch and left moving branch,
where the right/left is defined by the sign of the slope mn:/m: which is the group velocity.

On the middle column and the right column Fig. 6.8 we show the Floquet occupation spectrum
(6.25). From Fig. 6.8 (d-f) one can see that, first, in (d) around n = ±c and : = c/8 there is an
avoid-crossing band gap opening and the occupation is mixed for left and right moving modes, although
the amount is small.
From the Fig. 6.8 (h) and (i), one can see that the counter-propagating branch is occupied even in

the non-log figure (h). This kind of occupation is reflected in the drop of the net current.
From the above, we can summarize that the quantization of the pump charge is reached whenever

the initial state is (or very closed to) a Floquet eigenstate that has its spectral occupancies winding
around the FFZ, integer net winding number. The approximate integral winding is possible as long as
the driving frequency is low. The quantized charge pump is then controlled by two factors

1. If the initial state is prepared optimally.

2. If the quasienergy spectral allows full winding through the Floquet-Brillouin zone torus.

The above observations are for the pumped charge &SS for long time C = =) , =→∞, and can be
computed alternatively through [232, 235]

&SS =
∑
U

1
Ω

∫ c/0

−c/0
d: =U (:)

mnU (:)
m:

(6.29)
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one can also pull the ) in side the integral to get a equation for the rescaled quasienergy n)

&SS =
∑
U

1
2c

∫ c/0

−c/0
d: =U (:)

m (nU (:)))
m:

(6.30)

where < times full winding around the Floquet Brillouin zone will give &SS = <, < ∈ Z is a integer.
From an adiabatic perturbation theory computation, see [232, 235], one can find that closed to the

adiabatic limit Ω→ 0 (Ω � �0) the non-adiabatic correction is &2 = 1
128

(
ΩΔ0/�

2
0

)2
for the special

setting X0 = �0 applied
2. For higher frequencies [232, 235] the gaps at ±c grow ∼ exp(−1/Ω), the

occupation dependents on Ω though a function that is not easy to compute, this makes the situation
more complicated for intermediate drive frequency Ω ∼ �0. For large enough Ω � �0 one can find the
net charge pumped goes to zero by &SS ∼ Ω

−2.
We can also see the relationship between &SS and the Chern number [235]. Use the quasienergy

n ∼ imC −� (C), one can verify that&SS ∼ i
∑
E∈occupied

∫
:

∫
C
〈m:DE,:,C | |mCDE,:,C〉 − ℎ.2. in the adiabatic

limit, where |DE,:,C〉 is the E-th instantaneous eigenstate of the Hamiltonian.

6.2 Fast Thouless pump with dissipation

The adiabatic transport is slow. We know from the previous section that once the drive frequency is
increased, the charge pump is getting non-quantized. Actually, the Thouless pump is exactly quantized
only when Ω→ 0. A question one may ask: is it possible to have speed and quantization at the same
time?
The answer is yes. One possibility is to use dissipations, and with the price that the current is

decaying. In this section, we discuss the paper [228], in collaboration with Zlata Fedorova and Prof.
Dr. Stefan Linden and Prof. Dr. Johann Kroha from University of Bonn. Topological states for
non-Hermitian driven systems are also discussed in [236–238].

6.2.1 The wave-guide experiment

The wave-guide experiment allows us to simulate a quantum mechanical system by the wave-guide
arrays where the time direction is mapped to one of the spatial directions of the wave-guides. The
resulting equation is exactly the Schrödinger equation. If direction I of the wave-guide is regarded as
the time direction, then we can write down the wave-guide equation as

i
d
dI
?(I) = � (I)?(I) (6.31)

where ?(I) is the wave-guide plasma amplitude, a complex function of I. Indeed the above equation
can be mapped to the Schrödinger equation with ℏ = 1

i
d
dI
?(I) = � (I)?(I) → iℏ

d
dC
k(C) = � (C)k(C) (6.32)

2 And generally up to second order in Ω, the non-adiabatic correction [232] is Ω
2
Δ

2
0

64� 4
0

(
1 + X2

0/�
2
0 +

(
1 − X2

0/�
2
0

)
cos(:0)

)−2
.
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Figure 6.9: (a) The wave-guide height ℎ0/1 (I), wave-guide distance 31/2 (I) and wave-guide width F0/1 (I). (b)
View from the top. (c) Atomic force microscopy (AFM) picture. The specific parameters are �0 = 0.144 µm−1,
D0 = 1.1�0 and W0 = 0.8�0. The Ω = 2c/) is typically 1.1�0. From [228]

Since in this thesis we usually set ℏ = 1, the above equation is exactly identical to the Schrödinger
equation. We can mimic the single-particle quantum lattice model by the wave-guide array. If the
� (I) is I dependent and periodically modulated, the corresponding system is exactly a non-interacting
Floquet lattice system.
For simulating the Rice-Mele model, the wave-guide can be organized as in Fig. 6.9. Where the

I direction is the “time”, and the tight-binding hopping parameters are related to the wave-guide
distance 3 (I). The on-site energy is related to wave-guide height.

More specifically, in the experiments the "on-site energy" has the form V(ℎ) = @1 + @2 cos(ℎ@4) +
@3 sin(ℎ@4). The fitting parameters @1 = 7.235, @2 = −0.7062, @3 = −0.2206, @4 = 8.969, then we
can summarize that, for the wave-guide height

Δh = 0.053 µm, h0 ≈ 0.1 µm (6.33)

and the height depends on I direction

h0,1 (I) ≈ h0 ± Δh · sin(2cI/% + Δq) (6.34)

and the onsite potential (real part) is

D0/1 (I) = V(ℎ(I)) =@1 + @2 cos(ℎ0/1 (I)@4) + @3 sin(ℎ0/1 (I)@4)

with the phase offset Δq. We can write D0/1 (C) in an approximate but simpler form

D0 (C) = −D0 cos(ΩC + i), D1 (C) = D0 (C − )/2) (6.35)
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6.2 Fast Thouless pump with dissipation

where we subtracted a constant is subtracted and renamed the I → C.
The "hopping" � (3) = ?1 exp(−?23) is related to the wave-guide distance.

30 = 1.7 µm, Δ3 = 0.5 µm (6.36)

The fitting parameters are ?1 = 0.51, ?2 = 1.7 and

d1,2(I) = d0 ± 2Δd · sin 2cI/% (6.37)

Thus, the hopping can be written as

�1/2(I) = � (3 (I)) = ?1 exp(−?231,2(I))

Again write I → C and simplify the expression we have

�1(C) = �04
−_(1−sinΩC)

, �2(C) = �1(C − )/2) (6.38)

With the above definitions one can write down the position space lattice Hamiltonian. Here we
switch to the notations that are commonly used for the lattice tight binding models. See Fig. 6.10, see
also [228]

�̂RM(C) =
∑
9

(
�1(C)1̂

†
9
0̂ 9 + �2(C)0̂

†
9+11̂ 9 + h.c.

)
+

∑
9

(
D0 (C)0̂

†
9
0̂ 9 + D1 (C)1̂

†
9
1̂ 9

)
Γ̂(C) =

∑
9

(
W0 (C)0̂

†
9
0̂ 9 + W1 (C)1̂

†
9
1̂ 9

) (6.39)

We introduced a loss term that makes the Hamiltonian non-Hermitian, with the properties explained
in the caption of the Fig. 6.10.
The initial state of the wave-guide experiment is closed but different from the Thouless pump

mentioned before. Initially in the experiment a single position space site at I = 0 is excited

|kinit〉 = |k8,�(0)〉 = 1 (6.40)

One can check that this is closed to the initial time C = 0 ground state of the fermionic Rice-Mele
model.

6.2.2 The non-Hermitian Hamiltonian

Now we can write down the momentum space Hamiltonian for the model Fig. 6.10 of the setup Fig. 6.9.
Apply the Fourier transformations 08 =

∑
: 0:4

i:G8� and 18 =
∑
: 1:4

i:G8� to the Hamiltonian (6.39)
of the previous section, the tight-binding model is now block diagonal in :-space. The :-th block of
the Hamiltonian is

� (C, :) =�RM(C, :) + iΓ(C) (6.41)

=

(
D0 (C) �: (C)
�
∗
: (C) D1 (C)

)
+ i

(
W0 (C) 0

0 W1 (C)

)
, (6.42)
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Figure 6.10: The model with driven loss term. The A site has a periodically driven loss W0, the B site has a
periodically driven loss W0 (C − )/2). In position space that means the loss strength is always low for the initial
A site excitation “Input A”, and strong for the B case. (Left panel) snapshots of the model for every )/4 in one
period, the distance and the height of the site represent the hopping strength and the on-site energy strength
respectively. Note the lattice is not distorted. (Right panel) the parameter circle with an additional dimension,
the loss strength W0 − W1 . From [228].

Name Vlaue Meaning
�0 �0 Hopping strength
D0 1.1 �0 On-site energy
Ω 1.1 �0 Driven frequency
_ 1.75 A dimensionless parameter
i 0 Phase factor in D0/1 (C) and W0/1 (C)
W 0.4 �0 Loss strength

Table 6.1: Typical parameters values. From [228]

where we used �∗: (C) = �1(C)4
−i:0/2 + �2(C)4

+i:0/2. The �RM(:, C) and Γ(C) are the Hermitian part
and loss part of the non-Hermitian Hamiltonian matrix respectively. If we now define k: = (0: , 1:)
then the Hamiltonian operator can be written as �̂ (C) = ∑

: k
†
:
�: (C)k: .


D0 (C) = −D0 cos(ΩC + i), D1 (C) = D0 (C − )/2)
�1(C) = �04

−_(1−sinΩC)
, �2(C) = �1(C − )/2)

W0 (C) = −W0Θ
(
D0 (C)

)
cos(ΩC + i), W1 (C) = W0 (C − )/2)

(6.43)

The typical values of the constants in the above equations are summarized in the Table. 6.1. We can
write � (C, :) into Pauli matrices as well, it reads

�̂: (C) =
(
�1 + �2

)
cos

:00
2
fG +

(
�1 − �2

)
sin

:00
2
fH

+
(
D0 − iW0

) (
1 + fI

)
/2 +

(
D1 − iW1

) (
1 − fI

)
/2

(6.44)

As we know, we can write the �RM(:, C) into �RM(:, C) = (3
0)� + d(C) · 2 + · · · , where 2 =

(f1, f2, f3) are usual Pauli matrices. By noticing D0 + D1 = 0 we have d = (Re �∗: , Im �
∗
: ,

1
2 (D0 −

D1)). By including the loss term, the instantaneous eigenvalues are 8W0+8W1
2 ± Δ, where Δ =
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6.2 Fast Thouless pump with dissipation

(√���: ��2 + (D0 − D1 + 8W0 − 8W1)2/4) . The eigenvalue is reduced to |3 |2 if one set W0 = W1 = 0.

From the instantaneous point of view, we can check the condition of the adiabaticity. Following
[193], we focus on the first half of the period. There W1 = 0, the adiabatically condition reads
2|Ω0 (C) | � |Δ(C) | here the Δ(C) gap defined in the instantaneous eigenvalue and Ω0 (C) = − ¤U/2. And
the U is defined through U = 2 arctan(�:/(Δ0 − 8W0)), Δ0 = (D0 − D1)/2. The gap varies around for
the first half period and for W0 = 0 the instantaneous gap from 0.932 for (: = −c, C = 0.699) to 1.154
for (: = 0, C = 0), and the time derivative of the mixture angle can vary considerably, 0 to 1015. For
loss strength, W0 up to 1 the situation is not changed so much. This indicates that the adiabaticity is
not reached for every : point in the first half period and then it won’t be reached generally, thus a
non-adiabatic treatment, e.g., Floquet theory, is needed.
Since typically �0 ∼ Ω ∼ D0, it is expected that the adiabatic perturbation theory won’t work well

for low orders of Ω as well as the high-frequency expansion for low orders of Ω−1. For those reasons,
we focus on the numerical solutions of the Floquet matrices and the ODE solutions.

The equations of motion of the wave-guide in the : space can be written as

8mCk: (C) = � (C, :)k: (C) (6.45)

Now our non-Hamiltonian have a discrete time transnational symmetry � (C) = � (C + )), the Floquet
theorem applies. As we discussed in the previous chapter, the Floquet theorem [3, 225] states that for
a ordinary differential equation (� (C) − 83C )k(C) = 0 with the time periodicity � (C) = � (C +)), there
always exist a set of complete and orthogonal solutions called Floquet states ΨU (C) = 4

−8 nUCqU (C).
The nU is the quasi-energy just like I discussed in the Floquet theorem section. Further the qU (C) have
a periodicity qU (C) = qU (C + )) that allows us to mode expand it to qU (C) =

∑
< D

<
U4
−8<ΩC . All these

Floquet techniques are applicable for an non-Hermitian Hamiltonian, the only difference is that since
the Hamiltonian is not self-adjoint �† ≠ �, we need to distinguish the left 〈k! | and the right states3

|k'〉 where
( |k'〉)∗ = 〈k' | ≠ 〈k! | (6.46)

With the help of the Floquet theorem and Floquet states, and remind that we can split the {U} into
{:, U} since the Floquet matrix is :-space diagonal, we can rewrite the differential equation

H: |D
'
:U〉 = n:U |D

'
:U〉 and 〈D!:U | H

†
:
= 〈D!:U | n:U (6.47)

In the component-wise expression
∑
=H

<=
:,8 9D

=
:U, 9 = n:UD

<
:U,8. Here 8, 9 ∈ {�, �}. The static

Hamiltonian like matrixH is called Floquet Hamiltonian,H<=
: = �

<−=
:,8 9 − =lX

<=
X8 9 . Where �<−=:,8 9

is obtained by �<−=:,8 9 ≡ 1
)

∫ )
0 3C 4

8 (<−=)lC
�8 9 (C, :), ) is the time period.

We determine the initial condition [15] of the Floquet problem [174] by inserting the Floquet space
projector %̂U (C) = |Ψ

'
U (C)〉 〈Ψ

!
U (C) |. The normalization condition is |Ψ'/!U (0)〉 = |Ψ'/!U (0) 〉√

〈Ψ!U (0) |Ψ
'
U (0) 〉

and

the projector is %̂U = |Ψ
'
U〉 〈Ψ

!
U |, then we can express the initial state

|k(0)〉 =
∑
:U

%̂:U (0) |k(0)〉 =
∑
:U

�:U |Ψ
'
:U (0)〉 (6.48)

3 Should not be confused with the "retarded".
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with the coefficients �:U = 〈Ψ
!
:U (0) |k(0)〉. Here we have already set the initial time C0 = 0 and

defined |k(0)〉 ≡ |kinit〉. One can further write arbitrary state into modes |D',=
:U
〉

|k(C)〉 =
∑
:,U,=

�
=
:04
−i( n:0+=Ω)C |D',=

:U
〉 , �

=
:U = 〈D

!,=

:U
| k(0)〉 (6.49)

where the �=:U can be easily computed once the 〈D!,=
:U
| are computed from the (6.47). The Floquet

matrix for the Hermitian part of this model is

H<= = �<= − =ΩX<,= (6.50)

and

�<= =

(
Δ
(<−=)
�

(I) �
(<−=)
:

(I)
�
∗(<−=)
:

(I) Δ
(<−=)
�

(I)

)
(6.51)

With the components for the hoppings

�
(=)
:

= �04
−_
�= (_) ((−8)

=
4
+8:00/2 + 4−8:00/2) (6.52)

�
∗(=)
:

= �04
−_
�= (_) ((−8)

=
4
−8:00/2 + 4+8:00/2) (6.53)

Here �E (I) is the Bessel function of the second kind, it has the relation with the Bessel function of
the first kind, JE (G) �E (I) = I

E

(8I)E JE (8I). And 00 is the lattice constant. And the components for the
one-site driving

Δ
(<)
0 = −

Δ0
2
X<,1 −

Δ0
2
X<,−1 (6.54)

Δ
(<)
1

= +
Δ0
2
X<,1 +

Δ0
2
X<,−1 (6.55)

Use the Floquet matrix, we can compute the Floquet spectra functions.

6.2.3 Observables and spectral quantities

For direct comparisons with the experiment, it is useful to define spectral functions in the extended
zone of the Floquet problem, with Floquet mode dependencies. Define D!,=;

:U,8
= 〈:8 |D!,=;

:U
〉 and

D
',=;

:U,8
= 〈:8 |D',=;

:U
〉, where the momentum-sublattice basis are |:8〉 ∈ {|:, �〉 , |:, �〉}, then one can

define a "retarded" Green’s function4

�̃
=<
:,8 9 (�) =

∑
;,U

(
D
!,=;

:U,8

)∗
D
',;<

:U, 9

� − n:U − ;Ω + i0
(6.56)

4 The Green’s function contains projectors ∼ |D'〉 〈D! |
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Figure 6.11: (Top) (a) The occupation spectra of the Hermitian, and (b,c) non-Hermitian models. (Middle)
(d) The schematic plot of the winding of the Floquet spectra over the Floquet-Bloch Brillouin zone, a torus.
(Bottom) (c) The imaginary part of the Hamiltonian, where one can see the left and right moving branches are
separated by a gap. (d) The real part gap size � is defined in (a) vs the driving frequency Ω/�0. (e) Note that
the c gap closed in the real part and open in the imaginary part of the quasi-energies for high enough W0 which
can be interpreted as a topological band structure for the non-Hermitian Hamiltonian. (f) the ±c gap has a finite
closed region for finite W0 rather than a single closed fine-tuning point when varying Ω/�0. From [228].

where D=; ≡ D=+;. Alternatively, we can define

�
=<
:,8 9 (�) =

∑
;,U

(
D
',=;

:U,8

)∗
D
',;<

:U, 9

� − n:U − ;Ω + i0
(6.57)

Which of the above definitions, (6.56) or (6.57), is better depends on the situation. One can say that
the !' projector is more mathematical straightforward. However, it may give a negative result on
the physical observables. On the other hand, the '' case has the problem that the inner product is
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decaying
〈Ψ':U (C) | Ψ

'
:U (C)〉 = e−Γ:0C (6.58)

Or in another word, |Ψ'〉 and 〈Ψ' | are not orthogonal. This is somehow suitable since the Hamiltonian
has a loss term which is purely imaginary. This choice also prevents the computed occupation number
to be negative, which happens by using the !' projector.

The (time-averaged) occupation spectrum of � is

�
<
:,8 9 (�) ≡ Im �

00
:,8 9 (�) (6.59)

recall that the n:U is in general complex, which makes the imaginary part lorentzian with a finite
width.
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Figure 6.12: � (�, :) measured in the wave-guide experiments. See also the Fig. 6.11. One can see that it have
the feature of the Thouless pump that only when the time-reversal symmetry is broken, i.e. i = 0, the current is
non zero. From [228].
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6.2 Fast Thouless pump with dissipation

In the experiment (Fig. 6.12) one measures the energy-momentum resolved intensities which are
defined as

� (�, :) =
〈
Ψ: (�) | Ψ: (�)

〉
=

∑
=,<,UV

∑
;,W

�
;∗
:V�

;
:U

(
D
',=;

:VW

)∗
D
',;<

:,WU(
� − Y∗:V − ;Ω − 80

) (
� − Y:U − ;Ω + 80

) (6.60)

If we approximate the initial density matrix that is diagonal for Floquet indices, the above formula can
be simplified tod

�U (�, :) =
〈
Ψ
=
:U (�) | Ψ

=
:U (�)

〉
=

∑
=,<,;,W

�
;∗
:U�

;
:U

(
D
',=;

:UW

)∗
D
',;<

:,WU��� − Y:U − ;Ω��2 (6.61)

For a single site initial excitation, the only difference between the (6.60) and (6.61) is the denominator
modulus squared or not. The � (�, :) is plotted for different losses in the Fig. 6.11. Where one can
see that the complete winding is restored by the time-dependent periodic dissipation with enough
maximum strength W0.

6.2.4 Occupation spectrum

This also allows us to compute the initial occupationN of the Floquet states Ψ:U, just as we discussed
before in (6.25), with small modification for the non-Hermitian case

N8 (�) =
∑
:,U

Im

(
1
c

Ψ
',∗
:U,8
(0)Ψ':U,8 (0)

� − n:U + i0+

)
(6.62)

here one can see that the N8 (�) is always positive. Note the drawback for this definition is again that
the exact projector is not used and the basis is not orthogonal, although it is positive defined.

The C0 = 0 occupation number spectrum can be computed by the modes D:U directly, for the setup
that at C = 0 only one site is excited Ψ:U�(0) = 〈k:�(0) |Ψ:U (0)〉 and the occupation spectrum is

N�(�) =
∑
U

X(� − nU,:) |�:U |
2 |Ψ:U (0) |

2
=

∑
U

X(� − nU,:)Ψ
∗
:U�(0)Ψ:U�(0) (6.63)

=
∑
U

X(� − nU,:) (
∑
=

D
=∗
:U�) (

∑
<

D
<
:U�)

Used only the ' (right) states, the N� can be computed in the same way.
The N�(�) and N� (�) for different losses W0 are plotted in Fig. 6.13 analog to the standard

Rice-Mele model Thouless pump result in the previous sections, see Fig. 6.8. The windings around the
FFZ torus are completed for high enough loss, for instance, W0/�0 = 0.4. The losses for initially excited
� or � are different, which can be seen in the model Hamiltonian that the particle (quasi-particle)
experiences difference loss when it flies along the high loss route or the low loss route. This is reflected
in the Fig. 6.13 as well. For W0 = 0 the �/� the initial choices are identical up to the sign of the
slopes. However, when switching on the time-dependent and sub-lattice dependent loss W0 ≠ 0, the �
initial excitation has a larger spectral broadening and have a mixed left and right moving occupations,
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though the spectra have the 0 and ±c gaps are both closed. The � initial excitation gives a complete
integer winding and thus a quantized charge pump, with a relatively small spectral broadening. This
means a not so short lifetime decaying Thouless pump.
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Figure 6.13: (a-c) The N�(�) and (d-f) the N� (�) for different loss strength, in logarithm scale. See also
Eq. (6.63).

6.2.5 Pump charge and current

The current operator [171, 232] can be simply computed from the non-loss part of � (C) which we call
it �ℎ, by �̂ (C) = 1

#0

∑
: m�

ℎ
: (C)/m: for the non-Hermitian case as well, the result is

�̂ (C) = 1
2#

∑
:

[
8�: (C)1

†
:
(C)0: (C) − i�∗: (C)0

†
:
(C)1: (C)

]
(6.64)

where �: (C) = −�1(C)4
−8:0/2 + �2(C)4

+8:0/2 with �1(C), �2(C) defined in Eq. (6.43). The current
expectation value we compute by using the solution k(C) of the ordinary differential equation through
0
†(C) |0〉 = k�(C), 1

†(C) |0〉 = k� (C) and

〈�̂〉 (C) =
(
k
∗
�(C) k

∗
� (C)

) (
�̂��(C) �̂�� (C)
�̂��(C) �̂�� (C)

) (
k�(C)
k� (C)

)
(6.65)
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Figure 6.14: Charge pumped per cycle and the time dependent current density computed by directly solving the
ODE. The legends in the plots on the first row are for the W0.

for the initial condition k: (C = 0) = (1, 0)ᵀ, which corresponds to locally excite a single site in the
one dimensional lattice with the spatial dimension 3B = 1.
Since the system has a loss term, the wave function is decaying as well as the current expectation

value. To get a constant output to help us see the transport behavior better, we normalize the current
by �norm(C) = 〈�̂ (C)〉 /

∑
8 k
∗
8 (C)k8 (C). For the results obtained by directly solving the time-dependent

Schrödinger equation see Fig. 6.14.
Although the numerical result for the Floquet Green’s functions will not be presented in this chapter,
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Figure 6.15: (a) The experimental picture. Note that the scale is logarithmic. (b) The center position of the
wave packet. From [228].

here I present the discrete Fourier space �:,<= which is especially useful to compute the steady
current through the formula � ∼ Tr[�:�

<
: ], where �: = �:,<= and �

<
: = �

<
:,�� (l),the trace is taken

in the Floquet space and with a integration/summation of the l and : . For computing the Fourier
coefficients. Use the identity of Jacobi-Anger expansion identity

4
8I cos \

=

∞∑
==−∞

8
=J= (I)4

8=\ (6.66)

where J= (I) is the Bessel function of the first kind

J= (I) =
(
1
2
I

)= ∞∑
:=0
(−1):

(
1
4 I

2
) :

:!Γ(= + : + 1) (6.67)

If let I = −i_ and \ = ΩC then

4
_ cosΩC

=

∞∑
==−∞

i=J= (−i_)4i=(ΩC) (6.68)
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Use the above expansions, the Fourier coefficients of the hopping are �1(C) = �04
−_
4
_ sinΩC

=∑∞
==−∞ �1,=4

i=ΩC

�1,= = �04
−_J= (−i_) = �04

−_(−i)=�= (_) (6.69)

and for �2(C), and �2(C) = �04
−_
4
_ cosΩC

=
∑∞
==−∞ �2,=4

i=ΩC one has

�2,= = �04
−_i=J= (−i_) = �04

−_
�= (_) (6.70)

Then define �<= = �<−=, it is straightforward to compute the mode coefficients

(m:�:)<= =
(
+i0

2
�1(C)4

+i:0/2 − i
0

2
�2(C)4

−i:0/2
)
<=

(6.71)

=
i0
2
�08
−=
4
−_− 1

2 i0:
(
i=4i0: − i<

)
J<−= (−i_) (6.72)

Here we used relation �= and (�)
∗
=, i.e., (�)

∗
= = (�−=)

∗, and ((m:�:)
∗)<= = ((m:�:)=<)

∗.
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6.3 Summary

In this chapter, we discussed the Thouless pump by the Rice-Mele model. Further, we discussed the
dissipative non-adiabatic Thouless pumps which are realized in the plasmonic wave-guide experiments.
The result shows that the quantized charge pump can be restored by time-dependent stagger onsite
losses, where the loss strength is always strong for one species of the site and weak for another. We
have done quantitative numerical computations to verify our understanding. Let us summarize this
chapter by the following graph.

Wave-guide experiment

Non-adiabatic quantized pump

Floquet Topological phases

Rice-Mele model

Thouless pump

Time dependent loss

Low drive frequency Medium drive frequency

Adiabatic quantized pump

Figure 6.16: Summary of Thouless pumps and non-adiabatic Thouless pumps
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CHAPTER 7

Interacting and periodically driven systems:
Floquet-Keldysh self-consistent field theory

In this chapter, we review the dynamical mean-field theory (DMFT) and then use its Floquet-Keldysh
version to study a Rice-Mele Hubbard model. The Floquet-Keldysh DMFT, as well as the non-
equilibrium DMFT, is pioneered by the study of Petra Schmidt and Hartmut Monien [239]. The
dynamical mean-field theory is one of the most important and widely used methods for studying
strongly correlated systems. Some representative reviews and lecture notes are [240–243]. The
diagrammatic extension to nonlocal correlations such as is discussed in [77]. Detail discussions of the
non-equilibrium DMFT can be found in [3].
As we have seen in previous chapters the Rice-Mele model and Thouless pump on it give us one

of the simplest examples of periodically driven topological phases. The dissipative nonadiabatic
Thouless pump introduced in the previous chapter gives us a example that dissipation can be a resource
for exotic phenomena, such as topological transport. On the other hand, a natural and intrinsic source
of dissipations is the fermion-fermion interaction, e.g. the Hubbard interaction. For the Hubbard
interactions, although the interactions are unitary, the dissipation of single-particle quantities exists
when we treat the many-body background as an effective bath1, analogue to the collision integral we
have seen in the quantum Boltzmann equation where the single quasiparticles can decay. How can
these dissipations apply to transport, and can the drive and interaction introduce new phases? It is
also natural to ask if interaction-introduced dissipations are compatible with the Thouless pump?
On the other hand, we can find that the Rice-Mele model has a representative band structure and
drive frequency dependences. The bandwidth variation of the Rice-Mele model may also help us
to understand phenomena in driven topological matters in general, as well as the interplay between
the interaction and the drive. In this chapter, we will try to solve the fermionic Rice-Mele-Hubbard
model with the Floquet-Keldysh dynamical mean-field theory and try to get qualitative answers to the
questions above.

7.1 Hubbard model and conserving approximation

In this section, we review the diagrammatics of the Hubbard model.

1 Where we integrated out some degrees of freedom of the system.
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Recall that the general partition function of a four-fermion a particle-particle interaction can be
written as [57], which we discussed in the DSE chapter

exp, [[, 9] = / [[, 9] =
∫

d[k̂] exp
{
[0k̂0 +

1
2
901k̂0k̂1 −

1
24
_0123k̂0k̂1k̂2k̂3

}
=

∫
d[k̂]4−(

(7.1)
Here we use the Euclidean notation for a while. The typical concrete example of the above type model
is the Hubbard model, which is a lattice model with spin 1

2 fermions. Let us define

k̂0 = k̂GU =

(
kG↑, kG↓, k̄G↑, k̄G↓

)
(7.2)

For simplicity we will drop the “hat” of k̂ in this section. We will mostly follow [57]. To reach the
quartic term of the Hubbard model, choose

_0123 = −nUVWX*XGHXGIXGF (7.3)

where n0123 is the Levi-Civita tensor. The G, H, I, F are space time variables, UVWX are (super-) field
indices. The contraction is straightforward, for clarity, we write out the space-time integrals

− 1
24
_0123k0k1k2k3 =

1
24
*

∫
GHIF

nUVWXkGUkHVkIWkF X

=
1
24
*

∫
G

(kG,1kG,2kG,3kG,4 + 23 anti-symmetric permutations)

=

∫
g

*
∑
8

k̄8↑(g)k8↑(g)k̄8↓(g)k8↓(g)

(7.4)

where, as we defined, kG,1 = kG↑, kG,2 = kG↓, kG,3 = k̄G↑, and kG,4 = k̄G↓. At the last step, we put
the spatial coordinates on a lattice and used the lattice position index 8.

The quadratic part is chosen as

1
2
901k0k1 =

1
2

∫
GH

©­­­«
kG↑
kG↓
k̄G↑
k̄G↓

ª®®®¬
ᵀ ©­­­«

0 0 9GH,13 0
0 0 0 9GH,24

9GH,31 0 0 0
0 9GH,42 0 0

ª®®®¬
©­­­«
kH↑
kH↓
k̄H↑
k̄H↓

ª®®®¬ (7.5)

Simple to set

9GH,13 = − 9GH,31 = 9GH,24 = − 9GH,42 = −X(x − y)X(G0 − H0)m
G

0 − CX(x ± a − y)X(G0 − H0) (7.6)

where a is the unit lattice vector. Here C is the hopping (the tunneling between sites). The notation
“C” is standard, though one may need to change it when considering real time formalism to avoid
confusions. The above setting gives us

1
2
901k0k1 =

∫
g

−
∑
8f

k̄8f (g)mgk8f (g) − C
∑
〈8 9 〉f

k̄8f (g)k 9 f (g) (7.7)
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Here 〈8 9〉 means the nearest neighbors on the lattice. And we defined g = G0

Consider the paramagnetic case, the Green’s function can be written as

�01 =

©­­­«
0 0 �GH,↑↑ 0
0 0 0 �GH,↓↓

−�HG,↑↑ 0 0 0
0 −�HG,↓↓ 0 0

ª®®®¬ (7.8)

where the off-diagonal terms in spin space are switched off.
Recall that the second order ΓΦ is

Γ2 = Γ1 −
1
48
_0CAB_1423�01�C4�A2�B3 (7.9)

Perform the contractions give us

Γ2 = Γ1 −
1
2
*

2
�GH,↓↓�GH,↑↑�HG,↓↓�HG,↑↑ (7.10)

This is clearly 2-particle irreducible (or skeleton). Use 2.114, Σ01 = −XΓΦ/X�10. The corresponding
*

2 order self-energies are then

Σ2,GH,↑↑ = −
X(Γ2 − Γ1)
X�HG,↑↑

=
*

2

2
�GH,↑↑�HG,↓↓�GH,↑↑ (7.11)

Σ2,GH,↓↓ = −
X(Γ2 − Γ1)
X�HG,↓↓

=
*

2

2
�GH,↓↓�GH,↑↑�HG,↑↑ (7.12)

This again defines a self-consistent theory under the conserving approximation.
Use ( =

∫
g
(∑8f k̄8f (g)mgk8f (g) − �̂), we can write down the Hamiltonian of the Hubbard model.

For instance, the 1-dimensional Hubbard model with operators can be written as [244]

� = −C
!∑
9=1

∑
f=↑,↓

(
2
†
9 ,f
2 9+1,f + 2

†
9+1,f2 9 ,f

)
+*

!∑
9=1
= 9↑= 9↓ (7.13)

where = = = 9 f = 2
†
9 ,f
2 9 ,f . We replaced k → 2. The local Hilbert space of site 9 has the following

states
|0〉 , 2

†
9 ,↑ |0〉 , 2

†
9 ,↓ |0〉 , 2

†
9 ,↑2
†
9 ,↓ |0〉 (7.14)

The |0〉 is the empty state where no electron is present.

7.2 Dynamical mean-field theory

7.2.1 Cavity construction

There are several different ways to construct the dynamical mean-field theory. The most popular way
is the cavity construction [240, 243]. The cavity construction provides a clear and intuitive picture for
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the local approximation of the strongly correlated systems where a local effective bath emergence. It
also gives a direct mapping from the lattice model to the quantum impurity model. This mapping
allows for practical uses and applications to realistic strongly correlated materials [241].

A dynamical and self-consistent mean-field J(l) is bridging a local impurity problem to a lattice
problem when we transform the lattice problem to a single site problem embedded in a time-dependent
environment. This bridging is conceptually analog to the traditional static mean-field theory, for
instance, that for the Ising model.

There are two steps in the construction, the 1/I expansion to leading order and matching the Green’s
functions to close the equations and reach self-consistency. Here the I is the coordination number that
is counting the connectivity of the lattice.

The dynamically updating will require the consistency conditions of

1. Local self-energy Σloc(l)

2. Dynamical effective bath function, hybridization, J(l)

Closely following [240], here we do detailed derivations of the cavity construction. Although detail
construction is not always important in applications, it still gives us some understandings of this
method. We will frequently use the square lattice as an example. In general, at least for the original
DMFT, the details of the lattice are less important. The important thing is the validity of the local
approximation and a local effective bath, where the effective bath is a dynamical mean-field.

The first step of the DMFT construction is a 1/I expansion, here I is the coordination number. The
power counting by the coordination number of the lattice model gives the lattice self-energy

Σ8 9 ≈ Σ88X8 9 = ΣlocX8 9 (7.15)

The reason of this approximation can be argued as follows [245]. Consider the 3B spatial dimensional
tight binding model, the dispersion reads nk = −2C

∑3B
9=1 cos : 9 , : 9 is the quasi-momentum one 9-th

direction. Consider large spatial dimensions 3B → ∞, the density of states � (l), which can be
regarded as a probability distribution, trend to a Gaussian distribution because of the central limit
theorem

� (l) |3B→∞ =
1

2c
�(l) |3B→∞ =

1
C
√

23B
√

2c
exp

{
− l

2

(
√

2C
√

23B)
2

}
(7.16)

If one requires the density of state to keep finite, then the hopping C should scale with the spatial
dimension as well. For instance, we can choose

C =
C∗√
23B

(7.17)

where C∗ is an effective hopping that is independent of the spatial dimension. The result is

� (l)3B→∞ =
1

C
∗√2c

exp

{
− l

2

(C∗
√

2)2

}
(7.18)

Now we can check the local self-energy approximation [3, 240, 241, 246]. The hopping scales like
C = C∗/

√
23B = C∗/

√
I, thus we can do a expansion in 1/

√
23B as in 1/# expansions. Consider the
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square lattice, 3B = 1, I = 2, 3B = 2, I = 4, and 3B = 3, I = 6. Thus in 3B spatial dimension, one site
on square lattice has I = 23B neighbors. Now let us consider the skeleton self-energy. For instance,
consider the sunset diagram Σ

sunset
8 9 ∼ �8 9�8 9� 98 with |8 − 9 | ≤ 1. It then has each line with non-local

contribution scales as �8≠ 9 ∝ 1/
√
3B that in total gives ∝ 1/

√
3

3
B . Since the self-energy Σ

sunset
8 9 can

choose 9 to be 23B neighbors for a given 8, its dimension dependence becomes ∝ 23B/
√
3

3
B = 2/

√
3B.

As a result, the nonlocal contribution is ∝ 1/
√
3B that in 3B →∞ vanishes. Obviously, the |8 − 9 | > 1

contribution vanishes even faster when 3B →∞. From the above arguments one can understand why
“infinite dimension” is widely used in literature. On the other hand, if one can construct a lattice in
low spatial dimension but has a large coordination number I, the local approximation should also
work well.

Let us summarize the scaling behavior of the hopping. For a general lattice model with the hopping
C8 9 , it should have

C8 9 ∼
(

1√
3B

) |8− 9 |
(7.19)

and

�8 9 ∼ C8 9 ∼
(

1√
3B

) |8− 9 |
(7.20)

We also define the symbol []1/3B which gives the power of (1/3B)
=

0 ∼
(

1
3B

)=
→ [0]1/3B = = (7.21)

For instance, [C8 9]1/3B = |8 − 9 |/2.

Now consider a general lattice partition function

/ =

∫ ∏
8f

d[2̄8f , 28f]4
−( (7.22)

with the action

( =

∫
g

(∑
8f

2̄8fmg28f −
∑
8 9 ,f

C8 9 2̄8f2 9 f − `
∑
8f

2̄8f28f +*
∑
8

=8↑=8↓

)
(7.23)

Note here that we use the imaginary time notation and the thermal equilibrium setup,
∫
g
=

∫ V
0 dg to

keep the notation close to [240]. As we will see, the DMFT approximate the spatial dependencies.
This means, if necessary, the time contour can be changed straightforwardly.

The cavity construction is starting by splitting the action into three parts, they are the cavity site
“>”, (>, the action with site > and all bonds to it removed, ( (>) , and the coupling between the site >
and the other sites, (J.

( = (> + ( (>) + (J (7.24)
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The explicit forms of them are

( (>) =

∫
g

( ∑
8≠>,f

2̄8f (mg − `)28f −
∑

8≠>, 9≠>,f

C8 9 2̄8f2 9 f +*
∑
8≠>

=8↑=8↓

)
(7.25)

(> =

∫
g

(∑
f

2̄>f (mg − `)2>f +*=>↑=>↓

)
(7.26)

(J =

∫
g

(
−

∑
8f

C8> 2̄8f2>f −
∑
9 f

C> 9 2̄>f2 9 f

)
(7.27)

The terms C8>2>f and C> 9 2̄>f can be treated as “external sources” before we take the functional
integral of 2̄>f and 2>f at the last step. To make the notation clear, we define

[8f ≡ C8>2>f
[̄ 9 f ≡ C> 9 2̄>f

(7.28)

Note we need to keep in mind that [̄ and [ are depending on 2̄>f and 2>f .
Here we suppress the spin indices since they do not play a role in the power counting of 1/I (or

1/3B). With the previous definitions, the partition function then can be rewritten as

/ =

∫
d[2̄>, 2>]4

−(> /̃ [[̄, [] (7.29)

where
/̃ [[̄, [] =

∫ ∏
8≠>,f

d[2̄8f , 28f]4
−((>) 4−(J

=

∫ ∏
8≠>,f

d[2̄8f , 28f]4
−((>) exp

{∑
8f

2̄8f[8f +
∑
9 f

[̄ 9 f2 9 f

} (7.30)

The /̃ can be regarded as a partition function of ( (>) with external sources presented. The Schwinger
functional of it can be defined as usual

4
,̃
= /̃ (7.31)

Expand the Schwinger functional ,̃ , we get a formally exact equation [70]

,̃ [[̄, [] =
∞∑
==1

,̃=

=

∞∑
==1

(−1)=

(=!)2
∑
81 · · · 9=

∫
[̄81
(g81) · · · [̄8= (g8=)[ 91 (g91) · · · [ 9= (g9=),̃

(=,=)
81 · · · 9=

(g81 · · · g8= , g91 · · · g9=)

(7.32)
Note the (−1)= is from that we normal ordered Grassmann sources [̄ and [. Here we neglected
constant terms. The ,̃ (=,=) means the result of functional derivative ,̃ functional =-times by [̄ and
then =-times by [.
If we keep only the lowest order of the connectivity, through power counting and comparing, we
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have
,̃ [[̄, [] = −

∫
g8 g 9

∑
8 9

[̄8 (g8)[ 9 (g9),̃
(1,1)
8 9
(g8 , g9) + . . . (7.33)

Here the first term on RHS is of order 0 in 1/3B, it is because C8 9 ∼ (1/
√
3B)
|8− 9 | . The “. . .” terms are

higher order in 1/I (or 1/3B) than the first term and vanishes in the limit I →∞. This is because the
power counting [240] of 1/3B shows that the dimension [,̃=]1/3B = = − 1, where ,̃ =

∑
= ,̃=. Some

further discussions can be found in [240].
If we rename the 2-point function ,̃ (1,1)

8 9
(g8 , g9) → � (>) ,8 9 (g8 , g9), clearly here � (>) ,8 9 means the

connected (2-point) Green’s function with “>” site removed. We keep the spin index suppressed, it
reads

,̃1 [[̄, [] = −
∫
g8 g 9

∑
8 9

C>8 2̄> (g8)C 9>2> (g9)� (>) ,8 9 (g8 , g9) (7.34)

where we used the definitions of the [ and [̄. From this expression, it is more clear that it gives
[,̃1]1/3B = 0. To convince ourselves, one can place 8 and 9 as nearest neighbors on the square lattice2,
and 9 one of the nearest neighbor of the “>”-site. Then the site 8 is at closest the next nearest neighbor of
the “>”-site. We immediately have C>8 ∼ (1/

√
3B)
|8−8> | = (1/

√
3B)

2, C 9> ∼ (1/
√
3B)
| 9−8> | = (1/

√
3B)

1,
and � (>) ,8 9 ∼ 1/

√
3B. The summations sums 3B possible ways to place 8, and the same for 9 . Thus∑

8 ∼ 3B, as well as
∑
9 ∼ 3B. Thus [,̃1]1/3B = 1 + 1/2 + 1/2 − 2 = 0.

This means we now have an effective action in the local approximation (eff = (> − ,̃1

(eff =

∫
g

2̄> (g) (mg − `)2> (g) +
∫
g8 g 9

∑
8 9

C>8C 9>� (>) ,8 9 (g8 , g9)2̄> (g8)2> (g9) + (>,int (7.35)

In above (>,int =
∫
g
*=>↑(g)=>↓(g).

The first two terms in (7.35) are quadratic in 2-fields. Consider the time translation invariant case
and do the imaginary time Fourier transform to Matsubara frequency. Use /eff =

∫
�2̄>�2>4

−(eff ,
one reaches an effective free Green’s function which is corresponding to the quadratic part of the (eff

G −1
0

(
il=

)
= il= + ` −

∑
8 9

C>8C 9>�
(>)
8 9

(
il=

)
(7.36)

or
G −1

0
(
il=

)
= il= + ` − J(il=) (7.37)

If we define
J(il=) =

∑
8 9

C>8C 9>�
(>)
8 9

(
il=

)
(7.38)

The G0 is frequently called Weiss Green’s function since it is conceptually very closed to the Weiss
mean-field in the usual mean-field theory. Since here � (>)

8 9
is the propagator with the site “>” removed,

the propagations that have intermediate steps on the “>” site should be subtracted. This suggests an

2 The nearest is in the sense of Manhattan distances, i.e. the lines follows the lattice. More concretely one can consider
3B = 2, for drawing on a paper.
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important identity which we will use here without proof

�
(>)
8 9

= �8 9 − �8>�
−1
>>�> 9 (7.39)

Note since �8> and �> 9 both contain “>”-site, the double-counting should be canceled by dividing
the “>”-site returning propagator.
Now we have

J =
∑
8 9

C>8C 9>�
(>)
8 9

=
∑
8 9

C>8C 9>�8 9 −
∑
8 9

C>8C 9>�8>�
−1
>>�> 9 (7.40)

One can then transform the above equation into an equation between the local lattice Green’s
function and bare effective bath Green’s function G (l).
The derivation is as follows. For convenience, define

Z ≡ il= + ` − Σloc(il=) (7.41)

As argued at the beginning of this section, we can assume a local self-energy

Σ8 9 ∼ Σloc (7.42)

Now we can try to close the self-consistent loop. First we do Fourier transform for lattice indices,
use Ck =

∑
8 9 C8 94

ik · (x8−x 9 ) ,
∑

k Ck = 0, and the identity for lattice translational invariant quantities∑
8
′
9
′ 088′18′ 9′2 9′ 9 =

∑
k 0k1k2k , we have∑

8 9

C>8C 9>�8 9 =
∑
k

Ck Ck

il= + ` − Σloc(il=) − Ck
=

∫
n

�0(n)
n

2

Z − n (7.43)

and ∑
8 9

C>8C 9>�8>�
−1
>>�> 9 =

(∑
8

C>8�8>

) (∑
9

C 9>�> 9

) (
�
−1
>>

)
=

(∑
k

Ck
1

Z − Ck

) (∑
k

Ck
1

Z − Ck

) (∑
k

1
Z − Ck

)−1

=

(∫
n

�0(n)
n

Z − n

)2 (∫
n

�0(n)
1

Z − n

)−1

(7.44)

For the last equal signs in (7.43) and (7.44) we have used the identity∑
k

0(nk ) =
∫
n

�0(n)0(n) (7.45)

to transfer the momentum sum to an integration3 over the density of states � (l) = 1
2c �0(l). The

�0(l) is defined through � (l), where � (l) =
∑

k X(l − Ck ). Here
∫
n
=

∫ ∞
−∞

dn
2c .

3 A Hilbert transform.
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One can now rewrite the RHS of equation (7.40) and get

J =

∫
n

�0(n)
n

2

Z − n −
(∫
n

�0(n)
n

Z − n

)2 (∫
n

�0(n)
1

Z − n

)−1
(7.46)

There are two useful identities4∫
n

�0(n)n
2

Z − n = Z

∫
n

�0(n)n
Z − n , and

∫
n

�0(n)n
Z − n = −1 + Z

∫
n

�0(n)
Z − n (7.48)

where
∫
n
=

∫ ∞
−∞

dn
2c . By using them and perform some algebras, the equation (7.46) becomes

J(il=) = Z −
(∫
n

�0(n)
Z − n

)−1
= il= + ` − Σloc(il=) − �>> (7.49)

We can simply call � loc = �>>, then indeed we have

G −1
0 = Σloc + �

−1
loc (7.50)

where we used the definition G −1
0 = il= + ` − J(il=). Now the (7.15) and (7.50) actually close the

self-consistent loop.

The above derivations give an intuitive understanding of DMFT. However, one may want a recipe
that is simple to use. In the next section, we will discuss a standard way to relate the DMFT to the
single impurity Anderson model (SIAM), and perform the DMFT loop.

7.2.2 Single impurity Anderson model and DMFT loop

Here we sketch a standard way to present DMFT as a single impurity Anderson model with dynamical
hybridization. Using the arguments in the previous section, we can write the action into a single
impurity Anderson model (SIAM), called (SIAM. The bath electron is denoted as 2. And the local
“impurity” is denoted as 3. The action reads

(SIAM = (2 + (3 + (23 (7.51)

4 They can be proven by add and subtract a term, e.g,∫
n

�0 (n)n
Z − n =

∫
n

�0 (n)n − �0 (n)Z + �0 (n)Z
Z − n (7.47)
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where

(3 =

∫
C

(∑
f

3
†
f

(
imC − n3

)
3f +*=3↑=3↓

)
(23 =

∫
C

∑
8f

(
+82
†
8f
3f ++

∗
8 3
†
f28f

)
(2 =

∫
C

(∑
8 9 f

2
†
8f
(imC − ℎ̃8 9)2 9 f + ℎ.2.

) (7.52)

where we identified C8> = +8, 2>> = 3, and 28≠> = 28. Note, as a reminder, if one plugs this action
into the functional path integral the operators should be convert to Grassmann fields and functionally
integrated. And strictly speaking before the translation, the operators in the action should be normal
ordered. We can assume we always do this whenever needed. Moreover, we restrict to the single band
case here, for multi-band, see for instance the appendix of [247].

Clearly the corresponding Hamiltonian in momentum space reads

�SIAM = �3 + �2 + �23 (7.53)

where

�3 =
∑
f

n33
†
f3f +*=3↑=3↓, �2 =

∑
:f

ñ:2
†
:f
2:f , �23 =

∑
:f

(
+:2

†
:f
3f ++

∗
:3
†
f2:f

)
(7.54)

Since the SIAM action is quadratic in “2” fields. One can perform a functional version of the
Gaussian integral to integrate out the 2-electrons and reach

(eff = −
∫
CC
′

∑
f

3
†
f (C)�

−1
03 (C − C

′)3f (C
′) +

∫
CC
′

∑
f

3
†
f (C)J(C − C

′)3f (C
′) +*

∫
C

=3↑(C)=3↓(C) (7.55)

Here the so-called hybridization propagator J(C − C ′) is defined. We used the completing square trick
for Grassmann numbers [27]

k̄ k + [̄k + k̄[ =
(
k̄ + [̄ −1

)
 

(
k +  −1

[

)
− [̄ −1

[ (7.56)

Although we consider the simplest case where the  , or in this context the �−1
2 (:) for (eff , is a scalar

function, the  in general can be a matrix, and matrix multiplications are then implied.

The effective action after integration reads

(eff = −
∫
CC
′

∑
f

3
†
f (C)G

−1
0 (C − C

′)3f (C
′) +*

∫
C

=3↑(C)=3↓(C) (7.57)

In the frequency space, the definition of the G0 is

G −1
0 (l) = l − n3 − J(l) = �

−1
03 (l) − J(l) (7.58)
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In momentum space

J (l) =
∑
:

|+: |
2
�̃2 (l, :) =

∑
:

��+: ��2
l − ñ:

(7.59)

Here in J the ñ (or �̃2,:) and +; are parameters, and they should be solved to make the consistency
conditions

� loc
!
= � imp and Σloc

!
= Σimp (7.60)

Here we defined � imp ≡ �3 and Σimp ≡ Σ3 to stress they are corresponding to the impurity 3.

Note the Σimp is defined as the self-energy of the 3 electron with the action (eff , thus

Σimp(l) ≡ G −1
0 (l) − �

−1
imp (l)

= [l − n3 − J(l)] − �
−1
imp(l)

= �
−1
03 (l) − J(l) − �

−1
imp(l)

(7.61)

To see how to solve the dynamical mean field equations. Let us assume that we can compute
Σimp(l) through G0(l). Starting from a initial guess of the Σimp(l), one can then use the consistency
condition

Σloc
!
= Σimp (7.62)

to compute � loc(l), it reads

�
−1
loc =

[∑
:

[�−1
02,: − Σloc]

−1

]−1

=

[∑
:

[�−1
02,: − Σimp]

−1

]−1

(7.63)

Now the G0(l) can be updated by using the consistency condition

� imp
!
= � loc (7.64)

which gives
G −1

0 (l) = �
−1
imp(l) + Σimp(l) = �

−1
loc(l) + Σimp(l) (7.65)

And the G −1
0 (l) can be now used back to update Σimp which close the loop. The update procedure is

repeated will converge to a fixed point solution. This solution is then regarded as the solution of the
lattice local self-energy.

In above the J is hidden in G −1
0 . However we can also compute the hybridization J(l) through

�
−1
loc =

[∑
:

[�−1
02,: − Σloc]

−1

]−1

= �
−1
imp = �

−1
03 − J − Σimp (7.66)
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now use the consistency condition5 � imp = � loc, the J(l) is then

J(l) = �−1
loc(l) − �

−1
03 (l) + Σimp(l) (7.67)

Here the �03 seems to contain a free parameter n3 , it should be chosen as the local potential part
of the free local Green’s function. For the single-band case, it is trivial and usually zero. One may
absorb n3 into the real part of the J(l).
As a summary, the DMFT transferred the lattice problem into a single impurity Anderson model

with the hybridization function J(l), namely a local function depending on the bath density of state,
and the bath-impurity coupling +: . The J(l) is self-consistently determined6. Then J(l) is a
dynamical (time-dependent) generalization of the standard Weiss mean-field.

The DMFT loop can be summarized as

Initial guess or
−−−−−−−−−−−−→
previous iteration

Σ −−−−→
(7.66)

� loc −−−−→(7.65)
G0 −−−−−−−−−−−→Impurity solver

Σ −−−−−−−−−→
If converged

Result (7.68)

where we suppressed the “imp” and “loc” subscripts of the self-energies.

7.2.3 Special soluble cases

Though the dynamical mean-field approximation greatly simplifies the lattice problem, the analytical
solutions are still rarely founded. Here we review some of these special cases that analytical expressions
can be written down.

Note for the formula with the Matsubara frequencies � (il=) one can use the identity [97]

�
' (l) = [� (il=)]

'
= � (l + i0+) (7.69)

which is a substitution il= → l + i0+.

Non-interacting

The first example is the non-interacting case [242] where in Hubbard model

* = 0, Σimp = 0 (7.70)

The solutions are rather obvious. In terms of the Matsubara frequencies, they are

� loc(il=) = G0(il=) (7.71)

where
� loc(il=) =

∑
k

1
il= + ` − n3 − nk

(7.72)

5 Note that another possibility [248] to understand the consistency condition is to compute the self-energies from the + = 0
functions � ..,3 and � ..,2 , where + = 0 is marked as double dots .. since it is a decoupled setup. And the exact relation
Σ2 = +

2
� ..,3 from the Lippmann-Schwinger equation.

6 Closed related to the coherent potential approximation (CPA) in the context of the disorder systems [249], where an
effective media is used.
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7.2 Dynamical mean-field theory

Atomic limit

In the case where the hopping C = 0 the lattice model becomes individual atoms [242], and the kinetic
energy is zero, nk = 0, and thus J = 0. The Weiss Green’s function is

G −1
0 = il= + ` − n3 (7.73)

Here ` is the chemical potential. Map to retarded functions simply do il= → l + i0+. The local
Green’s function is

� loc(il=) =
1 − =/2
il= + ˜̀ + =/2

8l= + ˜̀−* (7.74)

and the self-energy is

Σimp(il=) =
=*

2
+

=
2 (1 −

=
2 )*

2

8l= + ˜̀− (1 − =
2 )*

(7.75)

where the chemical potential ˜̀ is using n3 as the reference ˜̀≡ ` − n3 and
=

2
=

4
V ˜̀ + 4V (2 ˜̀−* )

1 + 24V ˜̀ + 4V (2 ˜̀−* ) (7.76)

Here V = 1/) . If we set ˜̀= 0 then
=

2
=

1
34V* + 1

(7.77)

If we further take the zero temperature limit V→∞ and choose the attractive case* < 0 then =
2 = 1.

This is the full filling case, where Σ = * and � = 1/(il= −*). The spectrum is a single line at *.
For ˜̀= 0 and V→∞,* > 0 one has = = 0 that gives Σ = 0 and � = 1/(il=).

Another important case is the half-filling = = 1 where

� loc(il=) =
1/2

il= + ˜̀ + 1/2
8l= + ˜̀−* (7.78)

Falicov-Kimball model

The Falicov-Kimball model is a model which has the form closed to the Hubbard model. However
there are also sharp differences which are from the fact that the Falicov-Kimball model only has one
kind of mobile electron. One can think Falicov-Kimball model as the Hubbard model with electrons
with one kind of spin frozen. This specific structure greatly simplified the dynamics. Here let us
consider the minimal Falicov-Kimball model. It has spinless itinerant lattice electron “2” with a single
orbital that is coupled to a set of localized spinless electron “ 5 ” with a single level. The Hamiltonian
reads [221, 246]

�FK = −
∑
〈8 9 〉

C2
†
8
2 9 +*

∑
8

2
†
8
28 5
†
8
58 (7.79)

The degenerate spin degrees of freedom can be added as well as the coupling to the external magnetic
field and the local electron interaction [246]. The DMFT can be exactly solved for the Falicov-Kimball
model [250]. A detailed review can be found in [246]. The solution of the local Green’s function in
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terms of Matsubara frequencies is [246]

� loc(il=) =
F0

G −1
0

(
8l=

) + F1

G −1
0

(
8l=

)
−*

(7.80)

where F1 = 1−F0. The F1 has the physical meaning of the average density of the 5 electron. The F0
and F1 in general are nonlinear functions of the full local Green’s function � and the self-energy Σ. In
practice, one can set F1 to a constant, and solve Σ and �. To solve these nonlinear equations usually a
nonlinear solver is required, for instance, the self-consistent loop. Again G −1

0 = �
−1
03 − J = �

−1
loc +Σloc.

This solution is closed related to the Hubbard-III approximation [251]. A study of tuning the 5
electron to a non-zero hopping can be found in [252]. This model has been applied to the Floquet
DMFT in the early work of Tsuji, Oka and Aoki [221] and also in [253].

Two-site DMFT

A soluble example is suggested by Potthoff [254], called two-site DMFT. As its name suggests, the
DMFT here is an impurity site that couples with a single bath site.

In this setting, however, the self-consistent condition � imp
!
= � should be modified. The two

consistent conditions are now =imp
!
= = and +2 !

= I"
(0)
2 . Where = =

〈
=8↑

〉
+

〈
=8↓

〉
, and =imp ≡ 2=3 ,

and " (0)2 =
∑
9≠8 C

2
8 9 =

∫
3GG

2
d0(G). Here I is the quasi-particle weight. The hybridization reads

J(l) = +
2

l + ` − n2
(7.81)

where the n2 is the energy of the single bath site.
For half-filling, analytical solution [254] can be reached. Consider the Bathe lattice in infinite

dimension, i.e., semi-circular spectral function

�0(l) =
1
C
2
∗

√
4C2∗ − l

2 (7.82)

For half-filling ` = */2 and = =
〈
=8↑

〉
+

〈
=8↓

〉
= 1, the self-energy is

Σ(l) = *
2
+ *

2

8

(
1

l − 3+
+ 1
l + 3+

)
(7.83)

For the semicircular case " (0)2 =
∑
9≠8 C

2
8 9 = 1, the critical interaction strength is

*c = 6
√
"
(0)
2 = 6 (7.84)

The two site DMFT self-consistent condition gives

+ =

√
"
(0)
2 − *

2

36
(7.85)
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7.3 Non-equilibrium DMFT

This allows us to compute the interacting local spectral function without iteration, it reads

�(l) = �0(l + ` − Σ(l)) (7.86)

One can verify that the Mott transition happens when the interaction across the critical strength*c.
The quasi-particle peak is present in the metallic phase, agree with the three peak structure of the
Hubbard model.7 The quasi-particle weight I is

I = 1 − *
2

*
2
c

(7.87)

Away from half-filling, it may need to be treated numerically. The = ≠ 1 results can also be found in
the reference [254].

7.3 Non-equilibrium DMFT

It is now straightforward to change the time integration to contour time integration

(eff = −
∫
C(C ,C′)

∑
f

3
†
f (C)�

−1
03 (C, C

′)3f (C
′) +

∫
C(C ,C′)

∑
f

3
†
f (C)J(C, C

′)3f (C
′) +*

∫
C(C)

=↑(C)=↓(C)

(7.88)
With this effective impurity action, one can derive a set of equations for �'/�/ and thus the DMFT
for non-equilibrium systems [3]. From the discussions of the previous Keldysh chapter, we know that
the double contour gives an additional degree of freedom which can be regarded as the evolution of
distributions. Here the effective bath can have a dynamically updating distribution function as well,
which is on its Keldysh component. One can map the contour time integral to a real-time integral with
tensor vertices in the same manner as we did in the Keldysh chapter.

Another way to derive [3, 243] the DMFT on the contour time path may be starting from the local
“Phi”-functional from ΓΦ =

∑
8 ΓΦ,88 [�].

7.4 Impurity solvers

7.4.1 Solvers

The impurity solvers that are available for non-equilibrium DMFT (at least before 2014) are reviewed
in [3]. Here we briefly discuss some of them, both in and out of equilibrium.

Iterating perturbation theory (IPT) and its extensions IPT is a weak coupling solver [240]. The
simplest version of the IPT is to use the 2nd order diagram from the Luttinger-Ward functional, without
self-consistent loops. The 2nd order version gives an interpolation between the non-interacting case
* → 0 and the atomic limit* →∞ and thus very successful to capture the Mott physics qualitatively
in equilibrium.

7 This is more closed to Fermi-liquid and different from the Falicov-Kimball model, where the quasi-particle peak is absent.
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Non-crossing approximation (NCA) and its extensions Non-crossing approximation (NCA) is
a strong coupling solver with the slave-boson technique. The standard NCA is non-perturbative in
Kondo energy (temperature). It correctly captures the atomic limit and the Kondo resonance. However,
it has some disadvantages that it does not give the correct infrared exponents, this can be cured
by further resummation [255]. The standard NCA has the strict & = 1 constraint has the causality
problem since it can exceed the unitary limit [241]. This problem may be fixed through a soften
constraint, & =

∑
= 0
†
=0= = @0# .

Monte Carlo solvers Several Monte Carlo methods for quantum many-body systems are available.
For the quantum impurity problem, the continuous-time Monte Carlo (CT-QMC) is usually the
choice [20], where a diagrammatic expansion is used for Monte Carlo sampling. It is called “continous
time” since time discretizations, which are error-producing, can be avoided. The CT-QMC has several
versions, by using the hybridization expansion, CT-HYB, by using interaction expansion, CT-INT,
and, by using the Hirsh-Fye method, where the Hubbard-Stratonovich auxiliary fields are used for
sampling, CT-AUX. In non-equilibrium situations, there are extensions of those methods. However,
the computational cost is usually larger where the sign problem also becomes serious in many systems.
Those issues are expected from the complexity of the real-time dynamics.

Numerical renormalization group (NRG) The numerical renormalization group is a Wilsonian
renormalization group method that can be traced back to Wilson’s original papers [65] on RG of the
Kondo model. It is very accurate and in many cases as the standard to compare with.

Exact diagonalization (ED) The Anderson impurity model can be exactly diagonalized, the major
bottleneck is again the exponentially increasing Hilbert space.

Tensor network solvers The tensor network methods, e.g., density matrix renormalization group
(DMRG) can be applied to the quantum impurity model and can be treated as impurity solvers [256].
They can be also combined with “auxiliary master equation”, see for instance [257].

Numerical packages for DMFT There are many good open-source packages, for examples:

• In equilibrium: Triqs [258], ALPS [259]

• Out of equilibrium: Nessi [260]

where the impurity solvers are usually provided.

7.4.2 Example: Real-time iterated perturbation solver in equilibrium

The result is shown in Fig. 7.1, which follows the reference [261] and the package8. Recall the simplest
Hubbard model

� = −
∑
f

C 〈8 9 〉2
†
8f
2 9 f −*2

†
8↑2
†
8↓28↑28↓ (7.89)

8 See https://github.com/Titan-C/pydmft from Óscar Nájera

170

https://github.com/Titan-C/pydmft


7.4 Impurity solvers

With * > 0 the repulsive interaction. Here 2†
8↓2
†
8↑28↓28↑ = −=8↑=8↓, and =8f = 2

†
8f
28f . The iterated

impurity solver is to replace lattice Green’s function by the Weiss Green’s function in the skeleton
self-energies, i.e., the self-energy from the ΓΦ of the 2-PI effective action.

� → G0, ΓΦ [�] → ΓΦ [G0] (7.90)

As an example, we consider a very simple and important case [240], the Hubbard model on the Bethe
lattice with I →∞, with time translational invariant, i.e., with a time-independent Hamiltonian, and
at half-filling. We consider the paramagnetic case

G0,f = G0, f̄ (7.91)

Rather than use Matsubara Green’s function, here we use the real time Keldysh Green’s functions.
However we will fix the distribution to equilibrium distribution function at the half-filling ` = 0

=(n) = =F(n) =
1

4
Vn + 1

(7.92)

This means that we do not evolve the distribution part and the Green’s functions always fulfill FDT.
For later usage we note that

=F(n) = 1 − =F(−n) (7.93)

which can be verified directly. Further, since we have particle-hole symmetry here, the Weiss Green’s
function gives a spectral function with the following symmetry property

�0(l) = �0(−l) (7.94)

As usual, we used the definition

�0(l) = i(G '
0 (l) − G �

0 (l)) = −2Im G '
0 (l) (7.95)

with the normalization condition
∫
l
�(l) =

∫
dl
2c �(l) = 1.

From the causal structure of the frequency space Green’s functions we have

2iIm Σ
' (l) = Σ> (l) − Σ< (l) (7.96)

Thus if we can compute Σ</> we can then compute Im Σ
' (l). The first-order correction is a Hartree

term which at half-filling is a shift of the chemical potential and can be absorb into the definition, thus
we neglect it here. As discussed before the skeleton diagrams for the second order,*2, are

Σ
>
= *

2 [G >
0 (n)] ◦ [G

>
0 (n)] ◦ [G

<
0 (−n)]

Σ
<
= *

2 [G <
0 (n)] ◦ [G

<
0 (n)] ◦ [G

>
0 (−n)]

(7.97)

where we used the paramagnetic condition G0,f = G0, f̄ which gives a factor of 2, and drop the spin
indices. The “◦” means convolution, here for frequency space it is defined as

0 ◦ 1 =
∫
l
′
0(l′)1(l − l′) =

∫
dl′

2c
0(l′)1(l − l′) (7.98)
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We can now use the FDT for fermion Green’s function

G <
0 (l) = i�0(l)=F(l) ≡ i�+(l)

G >
0 (l) = −i�0(l) (1 − =F(l)) ≡ −i�−(l)

(7.99)

where we defined short-hand notations �±. Use �0(−l) = �0(l) and =F(l) = 1 − =F(−l), we get
the identity

�+(l) = �−(−l) (7.100)

or equivalently G <
0 (l) = −G

>
0 (−l).

Now the lesser self-energy can be written as

Σ
< (l) = *2(−i3) [�+(n) ◦ �+(n) ◦ �−(−n)] (l)

= i*2 [�+(n) ◦ �+(n) ◦ �+(n)] (l) ≡ i2c*2
�+++(l)

(7.101)

where we defined 2c�+++ = [�+(n) ◦ �+(n) ◦ �+(n)] (l), and used �+(n) = �−(−n). Similarly, we
can derive

Σ
> (l) = −i2c*2

�+++(−l) (7.102)

Use 2iImΣ' = Σ' −Σ� = Σ> −Σ<, the imaginary part of the retarded self-energy in frequency space
is9

iIm Σ
' (l) = −ic*2(�+++(−l) + �+++(l)) (7.104)

Since Σ' (l) is an analytical retarded function, the real part of Σ' (l) can be computed by using the
Kramers-Krönig relation. For a retarded function, the real part is the Hilbert transform of “−1” times
its imaginary part

Re Σ' (l) = p.v.
∫

dl′

c

−Im Σ
' (l′)

l − l′
(7.105)

Here p.v.
∫
means the Cauchy’s principal value integral. We can define

H[�] (G) ≡ p.v.
∫ +∞

−∞

dn
c

�(n)
G − n (7.106)

then Re Σ' (l) = H[−Im Σ
'].

Now consider properties of the Bethe lattice [240, 262, 263] in I → ∞, the density of states are
now semi-circular

1
2c
�0,Bethe(n) =

1
2cC2∗

√
4C2∗ − n

2 (7.107)

Note that 2C∗ is the semi circle radius, C∗ is the effective hopping amplitude of the Bethe lattice10.

9 For numerics, one may need to write out the integral

�+++ (l) = 2c
(

1
2c

)3 ∫ Λ

−Λ
dl′

∫ Λ

−Λ
dl′′�+ (l

′)�+ (l
′′)�+ (l

′ + l′′ − l) (7.103)

where Λ is a UV cut-off which should be much larger than the non-interacting half-bandwidth Λ � �.
10 The the lattice dimension [263] 3; can be defined as lim=→∞ (ln 2=)/ln = = 3; , where 2= = 1 +<1 +<2 + . . . +<= as the

total number of sites that can be reached by = steps. Bethe lattice is special that it has 3; = ∞, even when it connectivity I
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7.5 Floquet DMFT

The semi-circular density of state gives a simple relation11 between the local Green’s function and
the hybridization

J(l) = C2∗� loc(l) (7.108)

The computation of the local Green’s function from its self-energy and density of states are also
simplified by noticing the Hilbert transform [240]

H
[
1
2
�0,Bethe

]
(Z) = 1

2C2∗

(
Z − B

√
Z

2 − 4C2∗

)
(7.109)

The H[. . .] means the Hilbert transform of . . . as we defined.
We now have DMFT equations

G '
0 (l) =

1
l + i0+ − J(l)

=
1

l + i0+ − C2∗�
'
loc(l)

(7.110)

�
'
loc(l) = H

[
1
2
�0,Bethe

]
(Z)

����
Z=l−Σ' (l)

(7.111)

and the DMFT loop
Σ
' −−−−−→

(7.111)
�
'
loc −−−−−→(7.110)

G '
0 −−−−−−−−−−−→(7.104),(7.105)

Σ
' (7.112)

After converged, the local spectral function is computed from

�loc(l) = −2Im �
'
loc(l) (7.113)

See Fig. 7.1 for plots, where we choose C∗ = 0.5�, and � = 1.0 is the energy unit as well as the
half-bandwidth.

7.5 Floquet DMFT

The Floquet-Keldysh DMFT is pioneered in the work [239], and later it has been applied in many
systems [3]. The Dyson equations (or Dyson-Schwinger equations) are general and exact quantum
relations for correlation functions. On the contour time path (CTP) These equations have a formal
structure that is almost identical to their equilibrium counterparts. The major difference is that the
statistical and spectral components are not related by the Fluctuation-Dissipation theorem (FDT), but
remains two degrees of freedom on top of all the detailed structure of the models. For the basis of
k1/2 and for two-point function, the Dyson equation is

�
−1(C1, C2) = �

−1
0 (C1, C2) − Σ(C1, C2) (7.114)

and can be derived from (2.113) by setting �2 = 0. Here all indices other than time are suppressed.
The above equation in a Floquet representation becomes matrix equations

�
−1
<= (l) = �

−1
0,<= (l) − Σ<= (l) (7.115)

is finite. This can be intuitively understood since it is a tree without cycle.
11 See, e.g., Ref. [240], Appendix.A.3.
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−6 −4 −2 0 2 4 6

U = 4.0

U = 3.0

U = 2.0

U = 1.0

U = 0.0

Figure 7.1: The G axis is l/�. The real time equilibrium DMFT for Hubbard model with iterated perturbation
solver with V = 1/) = 1000 at half-filling. The non-interacting density of states is chosen as semi-circular
with the half-bandwidth � = 1.0. The frequency is restricted to l ∈ [−6, 6], with 216

= 65536 points. The
spectral function �loc (l) = −2Im�

'
loc (l) for* = 0 to* = 4 with the step 0.5 are shown. The semi-circular is

corresponding to the Bethe lattice (the interior part of a Cayley tree [263])) at infinite dimension. The ±*/2 are
marked with arrows. One can see a phase transition from metallic phase to Mott insulator phase, the metal to
insulator transition (MIT). In between a quasi-particle peak located at l = 0 is clear visible.

here we used the identity to convert the convolution to discrete sums for Floquet Green’s functions.
[� ∗ �] (C1, C2) =

∑
; �<; (l)�;= (l). More details can be found in the work of Tsuji, Oka, and

Aoki [221]. Usually, solving matrix equations are much simpler than integral equations. However,
here it seems the exact matrix size is infinity. One then has to truncate the matrix for practical
computations. Fortunately, the needed matrix size will remain relatively small, especially for relatively
high driven frequencies. This can be seen by looking at the Floquet band structures. Since the index
< is corresponding to the <-th photon level, and the transition from 0-th photon level will need a
<-photon process that has the probability is decreasing rapidly for large |< |.

7.5.1 Self-consistent loop

The DMFT procedure is summarized in the following in Fig. 7.2

Weiss dynamical MF:

G0(l) =
[
�
−1
loc + Σ

]−1 Impurity solver Σ(l)

� loc(l) = 1
#:

∑
:

[
�
−1
0 (l, :) − Σ(l)

]−1
Σ(0) (l)

Figure 7.2: The DMFT loop applies to Floquet DMFT as well. All self-energies and Green’s functions should
be understood in Keldysh and Floquet space, so do the inversions.
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7.5 Floquet DMFT

In the Floquet-Bloch space, the self-energy of the lattice model and the impurity model have the
relation

Σ = Σ[G0]<= (l) (7.116)

where the self-energy is computed as Σ[G0] and has a flat : dependence, Σ[. . . ] represents the
self-energy functional. Using (7.116) the Dyson equation for lattice Green’s function � given by
(7.115) becomes

�
−1
<= (l, :) = �

−1
0,<= (l, :) − Σ[G0]<= (l) (7.117)

Note that here the lattice Green’s functions for different : have the same self-energy. Now, define the
local lattice Green’s function

� loc,<= (l) =
1
#:

∑
:

�<= (l, :) (7.118)

Where we have set the lattice constant 0 = 1. Since the hybridization between the impurity and the
bath is a dynamical Weiss mean-field and should be treated self-consistently, the impurity Green’s
function then should satisfy

G −1
0,<= = �

−1
loc,<= + (Σ[G0])<= (7.119)

Now starting from an initial guess of Σ[�] = Σ[G0], one can evaluate the self-consistent loop by
repeating (7.117) to (7.119) till reaches the convergence. The difference between the results of the
=-th iteration Σ[=] and the (= − 1)-th iteration Σ[=−1] should be small, that is

‖ Σ[=] − Σ[=−1] ‖< tolerance (7.120)

7.5.2 Self-energy and diagrammatics

As we discussed before the iterative perturbation theory to second order in* will require two skeleton
diagrams that the full propagators �<= (l) are replaced by the Weiss Green’s function G0,<= (l). The
frequency convolutions of the self-energy can be evaluated by multi-dimensional Fourier transform.
Combine the knowledge of the Keldysh tensor vertex, the Floquet representation, and the real time
DMFT with IPT, we can write down the diagrams as follows

Σ
8;
1 (C1, C2) = −i*0a8 9:;�

9: (C1, C1)X 9:X(C1 − C2) (7.121)

Σ
;;
′

2 (C1, C2) = *
2
0�

88
′
(C1, C2)a8 9:;�

9 9
′
(C1, C2)�

:
′
: (C2, C1)a8′ 9′:′;′ (7.122)

The tensor vertex is defined as before around (3.79)

W
(4)
8 9:;

=
1
2
*0

(
g

0 ⊗ g1 + g1 ⊗ g0
)
8 9:;

= *0a8 9:; (7.123)

where the W (4) is the bare 4-vertex with Keldysh indices, and a8 9:; is the tensor without interaction
strength multiplied. The*0 is Hubbard interaction.
Again g8 are the Pauli matrices that are for Keldysh space. The form of this vertex can be verified

by contracting the tensor vertex for Yukawa interaction [29], as we have done before for the general
cases in the Keldysh chapter, by setting the boson propagator � (G, H) = g0, or directly from the bare
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action of functional derivatives. These we have been discussed in the Keldysh chapter, see (3.79). The
first-order term, (7.121), is a Hartree term. Perform the tensor contraction, the result is Σ 1 = 0 and

Σ
'
1 (C1, C2) = −i*0�

 (C1, C1)X(C1 − C2) = Σ
�
1 (C1, C2) (7.124)

We can reach the above result by direct tensor contraction. Another way to see this is to use Feynman
rules, see for instance [224].
Note that a proper causal structure should be preserved if one transform to Floquet (frequency)

space.

Σ
'
1,<= (l) = −i*0

∫
l
′

∑
=
′
�
 

<−=+=′,=′ (l
′)40

′0+ (7.125)

For Σ2, (7.122), again perform the contractions, but in the +/− basis. The second-order term are

Σ
>
2 = *

2
0�

> (C1, C2)�
> (C1, C2)�

< (C2, C1) (7.126)

Σ
<
2 = *

2
0�

< (C1, C2)�
< (C1, C2)�

> (C2, C1) (7.127)

The above equations can be written down immediately, by marking the two vertices on the diagram by
+/− and −/+. Remind that

�
</>

= � ∓ 1
2

i� =
1
2
(� ± (�' − ��)) (7.128)

The Floquet representation of the second-order contribution [Σ2(C1, C2)]<= can be derived, sup-
pressing variables and indices other than time we have, with contour indices suppressed

[Σ2(C1, C2)]<<′ = *
2
0 [� (C1, C2)� (C1, C2)� (C2, C1)]<<′ (l)

= *
2
0

∑
B,=,B

′
,=
′

∫
l
′
l
′′
�BB′ (l

′)�==′ (l
′′)�B′+=′−<′,B+=−<(l

′ + l′′ − l) (7.129)

with the Floquet representation. For practical computations, the Wigner representation [3, 223, 239,
264] is useful, under it the Σ2 has the form

[Σ2]<(l) = *
2
0

∑
B,=

∫
l
′
,l
′′
�B (l

′)�= (l
′′)�−B−=+<(l

′ + l′′ − l) (7.130)

The Wigner and Floquet representation can be transformed to each other through (5.84)

�= (l) = �<+ =2 ,<− =2 (l − <Ω) (7.131)

or (5.79)
�<= (l) = �<−=

(
l + < + =

2
Ω

)
(7.132)

and usually with the aid of (5.85). We discussed them before in the Floquet chapter. Note that we can
reconstruct �= (l) by

�<= (l) l ∈ [−Ω/2,Ω/2) (7.133)

In practical numerical computations, the maximal absolute value |< | and |=|, thus their difference
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7.5 Floquet DMFT

|< − =|, are up to a truncation, where the �<−= has smaller and smaller available energy window for
higher harmonics |< − =| if it is reconstructed from �<=. Since the amplitude of higher harmonics
decays rapidly, we can usually pad the higher harmonics to match the length 0-th of the harmonics.

We then can compute the Dyson equation of �', �� and � . The Keldysh part of the self-energy
Σ
 can be obtained from Σ

> and Σ< directly through

Σ
 
<= (l) = [Σ

> + Σ<]<= (l) (7.134)

and
iIm Σ

'
<= (l) = [Σ

> − Σ<]<= (l) (7.135)

Note that the Keldysh self-energy and the Keldysh part of the Dyson equation will give a self-consistent
solution of the distributions or occupations, where if we restore the spatial dependence and make the
semi-classical quasiparticle approximation, then we can find a quantum Boltzmann equation [223].
The advanced self-energy can be computed from the retarded one using the general relation

Σ
�
<= (l) = [(Σ

')†]<= (l) = [Σ
'
=<(l)]

∗ (7.136)

Here the Hermitian conjugation is acting on all indices, including the Floquet indices <, =.

For a system with sublattice (flavor, orbital, etc.) structure we can write

ΣGH |[d |ff = −
XΓΦ

X�HG |d[ |ff
=

24
48
*

2
�GH |[d | f̄ f̄�HG |d[ | f̄ f̄�GH |[d |ff , no sum (7.137)

If we write out the sublattice indices, assume they are � and � for simplicity, then the self-energies
are

ΣGH |AA |ff =
1
2
*

2
0�GH |AA | f̄ f̄�HG |AA | f̄ f̄�GH |AA |ff , no sum

ΣGH |AB |ff =
1
2
*

2
0�GH |AB | f̄ f̄�HG |BA | f̄ f̄�GH |AB |ff , no sum

ΣGH |BA |ff =
1
2
*

2
0�GH |BA | f̄ f̄�HG |AB | f̄ f̄�GH |BA |ff , no sum

ΣGH |BB |ff =
1
2
*

2
0�GH |BB | f̄ f̄�HG |BB | f̄ f̄�GH |BB |ff , no sum

(7.138)

Note here no summation (integration) for same indices. If we neglect the spatial dependence of � and
apply the Keldysh vertex, the result in time space is

Σ
;;
′

[d |ff = −
XΓΦ

X�
98

d[ |ff

=
1
2
*

2
0�

88
′

[d | f̄ f̄a8 9:;�
9 9
′

d[ | f̄ f̄�
:
′
:

[d |ffa8′ 9′:′;′, no sum for f, f̄, d, [

(7.139)
Here we suppressed the time variables which follows the order of the Keldysh indices on superscript.
One can see that the time space structure is unchanged, so do the procedures needed to transform
to Floquet space, and the identities for real time Green’s functions. Although lengthy but straight
forward we can write done the full expression by using (7.130) in frequency space and in Wigner
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representation[
Σ
;;
′

[d |ff

]
l,<

=
1
2
*

2
0

[
�
88
′

[d | f̄ f̄

]
l
′ |B
a8 9:;

[
�
9 9
′

d[ | f̄ f̄

]
l
′′ |=

[
�
:
′
:

[d |ff

]
l
′+l′′−l |−B−=+<

a8′ 9′:′;′

(7.140)
where the same indices are summed or integrated except f, f̄, d, [.

Now for IPT solver of DMFT we do
� → G0 (7.141)

to reach the lowest order IPT.
Tomake contact with the standardDMFT construction, we can use that in time space the hybridization

function J = �−1
03 − G −1

0 is

J[d |ff′ (C1, C2) =
(
JAA |ff′ JAB |ff′

JBA |ff′ JBB |ff′

)
(C1, C2) (7.142)

In the single impurity Anderson model picture, it can be regarded as

J[d |ff′ (C1, C2) =
∑
:

+
†
:[f
(C1)�2,: |[d |ff′ (C1, C2)+:df′ (C2), no same index sum (7.143)

where �2 is the conduction electron bath Green’s function.

7.5.3 Couple to bath

To allow a steady-state solution, the diven system is usually connected to a bath, which can absorb the
heat generated by the drive. We consider here the fermionic bath [3, 169, 221, 265]

� = �sys + �mix + �bath (7.144)

where �mix =
∑
8, ? +?

(
2
†
8
18, ? + 1

†
8, ?
28

)
, and Σbath

(
C, C
′)
=

∑
? +?�bath, ?

(
C, C
′)
+?, in Keldysh space

the bath self-energy reads

Σbath =

(
Σ
'
bath(l) Σ

 
bath(l)

0 Σ
�
bath(l)

)
=

(
−8� −28�ℎ(l)

0 8�

)
(7.145)

Here the bath is at equilibrium with temperature V = 1/) , so that the ℎ(l) reads

ℎ(l) = tanh(Vl/2) (7.146)

For the system-bath hybridization we neglect the frequency dependence, i.e.

� (l) =
∑
?

c+
2
?X

(
l + `1 − n1,?

)
∼ � (7.147)

This is reasonable for a featureless bath that has a wide bandwidth, for instance a tight-binding
free fermion bath. In general, the frequency dependence may play a rule, e.g., for the topological
property [13].
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7.5 Floquet DMFT

Now we apply the Floquet DMFT to the Rice-Mele Hubbard model

7.5.4 Floquet DMFT for Rice-Mele model

The Hamiltonian of the Rice-Mele Fermi Hubbard model is

� (C) = �RM(C) + �int (7.148)

Where the �RM is same to the �RM in (6.1), however here we make some changes of the notations for
clarity

�RM(C) = −
#∑
8=1

(
�+(C)2

†
8+1 |B28A + �−(C)2

†
8+1 |A28B + ℎ.2.

)
+

#∑
8=1
+ (C)

(
2
†
8A28A − 2

†
8B28B

) (7.149)

where 
�+(C) = �0 + �1 cos(ΩC)
�−(C) = �0 − �1 cos(ΩC)
+ (C) = +0 ++1 sin(ΩC + q)

(7.150)

And

�int = −*
#∑
8=1

2
†
8A↑2

†
8A↓28A↑2A,8↓ −*

#∑
8=1

2
†
8B↑2

†
8B↓28B↑28B↓ (7.151)

The non-interacting part in Floquet space can be written into a block matrix with a tight binding
model style,

H = �<−= −ΩX<= =

©­­­­­­­­­­­«

. . .
. . .

. . . N0 −Ω1 N−1 0

N†−1 N0 N−1

0 N†−1 N0 +Ω1
. . .

. . .
. . .

ª®®®®®®®®®®®¬
Where12

N0 =
©­«
+0 �

:
0

�
:
0 −+0

ª®¬ , N−1 =
1
2

©­«
+1 −�:,q1

�
:,q

1 −+1

ª®¬
We set q = 0 and define

�
:
0 ≡ −�0(1 + cos(:00) − i sin(:00)), �

:
1 ≡ i�1(−1 + cos(:00) − i sin(:00)) (7.152)

12 Note here the �0/1 are hopping parameters.
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See also the (6.3). Now

�<−= (:) =

©­­­­­­­­­­­­­­­­­­­­­«

. . .
. . .

. . .
. . .

. . . +0 �
:
0 +1/2 −�:1 /2 0

. . . �
:
0 −+0 �

:
1 /2 −+1/2

. . . +1/2 �
∗:
1 /2 +0 �

:
0 +1/2 −�:1 /2

−�∗:1 /2 −+1/2 �
:
0 −+0 �

:
1 /2 −+1/2

. . .

+1/2 �
∗:
1 /2 +0 �

:
0

. . .

0 −�∗:1 /2 −+1/2 �
:
0 −+0

. . .

. . .
. . .

. . .
. . .

ª®®®®®®®®®®®®®®®®®®®®®¬

(7.153)

The basis is |:〉 ⊗ |<〉 ⊗ |[〉. Note �∗:1 ≡ (�
:
1 )
∗.

We will consider the paramagnetic case for simplicity, where

� ... |ff = � ... | f̄ f̄ (7.154)

Where f̄ is −f. And the Green’s functions are spin diagonal

� ... |ff′ = � ... |ffXff′ (7.155)

Moreover we will consider the self-energy that is strictly local in space, that means

Σ... |AB = Σ... |BA = 0 (7.156)

Since Hartree terms give an energy shift we can absorb it into energy definition as a shift of the
bath chemical potential, and we absorb it into the energy definition. Note in the presented model the
symmetry ΣAA = ΣBB is fulfilled very well in most of the cases during the iteration, one can see this
from the figures of the next section.

7.6 Numerical results

In the numerical computations, we always choose the static hopping as the energy unit

�0 = 1.0 (7.157)

and fix the model parameters as

+0 = 0, +1 = 1.0�0, �1 = 1.0�0 (7.158)

This simple parameter setting allows the Rice-Mele model to have an adiabatic quantized Thouless
pump phase, which is a semiconductor in low drive frequencies. For high drive frequencies it will
crossover to a metallic phase. This allows us to study the interplay between the semiconductor to
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Figure 7.3: Typical "dif" and "norm" during the self-consistent loop of the numerical computation. (Upper) The
integrated absolute value of the difference of adjacent time averaged Floquet Wigner retarded self-energy’s
zeroth component

∫
l
| [Σ'0 |AA]=+1 (l) − [Σ

'

0 |AA]= (l) |. (Lower) the normalization
∫
l
�(l) of the spectral

function �(l) ≡ −2Im �
'

0 |AA.

metal crossover and the metal to Mott insulator transition.
The lattice constant is always set to unity

00 = 1.0 (7.159)

We choose �0 as the energy unit, that means

l = l/�0, Ω = Ω/�0 (7.160)

We consider half-filling free fermion thermal external bath (7.145) with the parameters

V = 20�0, � = 0.1/�0 (7.161)

Here V = 20 () = 0.05�0) is a low enough temperature for Mott physics, but high enough to avoid
very sharp spectral features which usually make the converge harder. Γ = 0.1�0 for non-interacting
problem without external bath the dissipation is approaching zero, the external thermal bath gives a
finite dissipation even for non-interacting case which allows us to invert the Floquet Dyson equation
stably. Here we choose Γ = 0.1�0 which is small enough for a near quantization of non-interacting
Thouless pump for very low drive frequencies. For a high interaction strength, the dissipation of the
interaction, the imaginary part of the retarded self-energy, is usually much greater than 0.1�0, and the
results are expected to be not sensitive to this choice.

For very low drive frequency, the required Floquet matrix will be very large and hard to solve. Here
we choose the lowest drive frequency to be Ω = 1.0 where the Floquet matrix size still not too large.
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For the Ω scan we choose the total Floquet matrix size 2 ∗ = 5 × 2 ∗ = 5 as a function of Ω

= 5 (Ω) = 2
⌈ 0
2Ω

⌉
+ 1 + 1 (7.162)

where dGe means ceil G to next integer. We choose 0 = 11 and 1 = 4 to make = 5 an odd number,
which is required. Since for low Ω we have small Floquet Brillouin zone, the number of points per
Floquet Brillouin zone #l can be chosen lower to keep l mesh density, here we choose

#l (Ω) = 2
⌈
1
2
Ω × 28

⌉
(7.163)

This ensures #l is an even number. Although the #l (Ω) will not keep the mesh number density per
energy #l/Ω unchanged, it still gives a less varying mesh number density.

The convolutions of the self-energies are evaluated by using Fast Fourier Transform (FFT).
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7.6 Numerical results

7.6.1 Density plot for time-averaged spectral functions

In Fig. 7.4 we can see how the �tav. (l) ≡ −2Im�
'

0 |AA(l) changes with two relatively small interaction.
On the top panel of Fig. 7.4, we show* = 1.10 case. On the left hand side of the top panel, we show

a density plot for �tav. (l), and one the right hand side we show for Ω = 1.00, 4.56, 8.11, 11.67, the
momentum dependent spectral function �tav. (l, :) ≡ −2Im �

'

0 |AA(l, :) where � (l, :) is obtained
from the non-interacting Green’s function can the local self-energy Σ(l) computed from the Floquet-
DMFT. The * = 1.10 is actually very similar to the non-interacting case. For Ω < 2, there are
two bands. From the �tav. (l, :) for Ω = 1.0 one can see the two bands actually have their finer
structure, where each of them split into three small bands, which can be understood as the overlap of
the time-independent bands and the Floquet bands. It is worth noticing that this finer structure is not
so clear in the density plot because of the color code range we choose. For the slightly high drive
frequencies Ω ∼ 1.5 to Ω ∼ 4.0, there are two "eye" structures, indicating the avoided crossing of the
center Floquet band and the Floquet side bands, where a gap is generated. This can be best seen from
the momentum dependent spectral function on the right-hand side, where Ω = 4.56 is roughly a band
touching fine tuning point, where one can imagine that for lower Ω the Floquet side bands get closer
to the center bands in the l ∈ [−Ω/2,Ω/2), and level repulsion occurs.

On the lower panel of Fig. 7.4, we can see the case for* = 3.10. For this not so strong interaction,
the bands are smeared out because of the imaginary part of the self-energy. Or one can say that the
finite interaction makes incoherence, and the single-particle picture becomes less valid. However,
one can still see the density of states looks qualitatively unchanged. From the momentum dependent
�tav. (l, :) one can further verify this statement.
On the top panel of Fig. 7.5 we increase* to* = 5.10, at this interaction strength, the �tav. (l, :)

becomes less structured in the range of Ω ∼ 1.5 to Ω ∼ 6.0, although two Hubbard band like peak
indeed appears, the l ∈ [−*/2,*/2] gives a rather flat shape, there is no clear quasi-particle peak.
For higher drive frequency Ω > 7.5, the the quasi-particle peak reappears with two forming Hubbard
bands. For low Ω ∼ 1.0, one can still see the Rice-Mele two-band structure.

In the lower panel of Fig. 7.5, we increase* to* = 7.10. For low Ω where Ω ∈ [1.0, 2.5] there is
a crossover, that the center peak disappears, and the two upper Hubbard bands and two lower Hubbard
bands merge to one upper and one lower band. Here, a clear structure is established that one can
clearly see two Hubbard bands even for intermediate drive frequencies Ω ∼ 2.5 to Ω ∼ 7.5. However,
the center quasi-particle peak is highly suppressed from Ω ∼ 1.5 to Ω ∼ 7.5, and then appears. The
revival of this peak can be explained further by looking at the occupation spectrum and we will discuss
later. There is a new feature at Ω ∼ 2.5 to Ω ∼ 7.5 that two l = Ω/2 peak bridges the Hubbard band
to the center quasi-particle peak, this can be related to the avoid crossing of the center Floquet bands
and the side bands at the Floquet Brillouin zone boundary, where one can compare with Fig. 7.4 that
they are at l = Ω/2 as well.
We show time-averaged density of states �tav. = −2Im �

'

0 |��(l), and the effective distribution

=dist = Im �
<

0 |AA(l)/−2Im �
'

0 |AA(l) and occupation spectrum Im �
<

0 |��(l) in Fig. 7.6. From
the middle column, we can read the effective distribution for different interaction strengths * =

1.10, 3.10, 5.10, 7.10, 9.10 from the top to the bottom. The =dist is an analog to the familiar Fermi-Dirac
distribution, and the shape of it can be seen as a modification of the Fermi-Dirac distribution. The
most obvious difference is that the =dist has a Floquet side band structure, that the excitation to +Ω is
visible at a platform around l = Ω line. And around l = −Ω a square slot, or a valley is there. By
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increasing the*, those platforms and valleys doubled because of the Hubbard band structure, we can
see lower Hubbard bands (LHB) and upper Hubbard bands (UHB) clearly. An important feature of
the low temperature Fermi-Dirac distribution is that it has a stage around l = 0. The Fermi-liquid
theory gives that for even large interaction strength the stage in the distribution remains finite, where
the discontinuous part is proportional to the quasi-particle weight that corresponds to the spectral
weight of the center quasiparticle peak. From the Fig. 7.6 we can see that this stage is suppressed
at intermediate drive frequency, for instance Ω ∼ 5.0 when * = 9.10. One can expect that the
quasiparticle peak is then destroyed. By looking at =dist figures, one can see that the interaction gives
a “heating” effect to the distribution function, that effectively the temperature )eff around l = 0, if we
regard it as an approximate Fermi-Dirac distribution there, will be increased because of the decreasing
slope of the distribution function. This heating effect may also explain the strong suppression of the
center quasiparticle peak.13

Another thing about Fig. 7.6 is the l = Ω/2 line that bridges the Hubbard bands, LHB and UHB,
and the quasiparticle peak that reappeared at high drive frequencies. They can be best seen at the
spectral function plots of* = 9.10, however from the distribution plot we can hardly distinguish them
from the background.

13 There is actually an issue with one dimension system, that the Landau Fermi-liquid is not exactly valid even for relatively
weak interaction, and one dimensional systems are usually Luttinger liquid. Thus the quasiparticle situation maybe
different. Our treatment cannot be accurate for the one-dimensional systems. However, we can regard this computation as
a study of two band driven Hubbard model where local correlation is dominated and with one-dimensional density of
state as the input.
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Figure 7.4: (Left) −2Im�
'

0 |��(l) for differentΩ, (Right) The : dependent spectral function −2Im�
'

0 |��(l, :).
The position of Ω in the 4 right plots are marked by small triangles near the Ω ticks of the left plot.
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Figure 7.5: (Left) −2Im �
'

0 |��(l) for different Ω, (Right) �
'
00 |��(l, :). The position of Ω in the right plots

are marked by small triangles.
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Figure 7.6: (Left column) −2Im �
'

0 |��(l), (Middle column) =dist = Im �
<

0 |��(l)/−2Im �
'

0 |��(l), (Right
column) Im �

<

0 |��(l).
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7.6.2 Density of states and self-energies with higher harmonics

To get a closer look, we show the time-averaged density of states and higher harmonics of the Floquet
Wigner Green’s function in Fig. 7.7, Fig. 7.8, Fig. 7.10, Fig. 7.9, Fig. 7.11.The left two columns are
imaginary parts of the retarded Floquet Wigner Green’s function �

'

= (l). At the left most column
we plot the −2Im �

'

0 |AA(l) in black line, −2Im �
'

0 |BB(l) in red line and Im �
<

0 |AA(l) in gray area.
We also plot the effective distribution function 1 + =d where we shifted a constant for visibility. The
blue vertical lines mark the ±Ω/2. The second column on the left hand side we show −2Im�

'

= |[[ (l)
where we shift = ∗ � for each component for visibility. In the third column we show the self energy in
Wigner representation and its components in almost the same way.

In Fig. 7.7, the non-interacting or * = 0.01 case is shown. The self-energies on the right two
columns are zero. From the first column, we can clear see that for low drive frequency Ω = 1.0 there
are two bands with 3B = 1 density of states that with van Hove singularity at their band edge. The
distribution is closed to a step like Fermi-Dirac distribution, but with small peaks caused by the Floquet
side bands. For higher drive frequencies Ω = 2.78, 4.56, 6.33 the derivation of the Fermi-Dirac
function is bigger. Although a Fermi surface like structure at zero frequency l, the high/low energy
distributions are modified and inverted. This can be understood as =Ω excitations. One can see that
for Ω = 4.56 and Ω = 6.33 the additional peaks or valleys are at the integer multiples of Ω, as we have
seen in the density plots Fig. 7.6. From all those figures we can also see a density of state suppression
occurs at the ±Ω/2 or the Floquet Brillouin zone edge. Also for higher frequencies, there are stronger
excitation effects, this is expected since the Floquet state is now farther from the adiabatic state.

The higher harmonics of the imaginary part of the retarded Green’s function −2Im�
'

< |[[ (l) has a
structure that the < = +1 harmonics are the mirror of < = −1 harmonics, however +2 is equal to −2
case. Moreover, as expected, the higher harmonics shrinks when we increase Ω, since the different
Floquet replicas have a <Ω barrier reach each other. The strength of the harmonics also decreases as
a function of |< |.

In Fig. 7.8, and in Fig. 7.9 we show* = 3.10 the density of states and the Green’s function Floquet
components. This interaction strength is weak in the sense that the Hubbard side peaks are small, but
still strong enough for some sizable effects. The interaction generates some spectral broadening which
makes everything smoother compare to the noninteracting case especially for the van Hove singularity.
The gap at Ω/2 is also partially filled and still visible. On the right hand side now we have non zero
self-energies. The imaginary part of the retarded self-energy can be regarded as the damping rate of
the single particle state. That at Ω = 1.0 the rate is small around l = 0 and for Ω = 2.78 the rate has a
maximum at l = 0 indicates a strong suppress of the quasi-particle. Later, a valley is established and
becomes deeper at l = 0 for larger Ω, and the center peak becomes higher. The harmonics of the
self-energy behaves similarly as the Green’s function. However, the ±1 modes seem rather identical to
each other. We show Ω from 1.00 to 13.44 with step length 1.78.
In Fig. 7.10 and Fig. 7.11 we show* = 7.10 case. This interaction strength is strong enough and

close to the Mott transition that DMFT and iterated impurity solver can reproduce. Although the
details of the transition is model dependent, and we didn’t pass transition point here, still we can guess
from the relative weight of the center peak and the Hubbard bands. With* = 7.10 the local density
of states are never looks so closed to the non-interaction case, which one can compare with Fig. 7.7
to verify. And for Ω = 1.0 in Fig. 7.10 we find a 5 peak structure, corresponding to 2 lower and 2
higher Hubbard bands for the non-interacting 2 band, and a center quasi-particle peak. The AA and
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BB component are not exactly overlap to each other, this may because of some numerical error. The
distribution function not is very smooth for Ω up to 4.56, and most flattened for Ω = 4.56 with a high
effective temperature. This is a rather strong heating effect. The Ω = 6.33 in Fig. 7.10 is especially
interesting, there it seems the effective temperature is decreasing, and the previous mentioned l = Ω/2
slope peaks seem appear inside the center valley.

In Fig. 7.11, the top figure shows that there are two small side peaks. Those small shoulders are the
Ω/2 slope peaks that for small Ω from the Hubbard bands and go to the re-appeared center peak at
high Ω. They may be better identified from the self-energy plot on the right hand side. For the highest
Ω = 13.44 in this figure, one can see that the Fermi-liquid like self-energy that around l = 0 behaves
as l2, which is expected because we did not enter into the Mott insulator phase.

190



7.6 Numerical results

Figure 7.7: (Left two column) Non interacting density of state, from the Wigner-Floquet Green’s function,
normalized as −

∫
dl
2c 2Im �

'

0,AA = 1. The gray shaded area is the occupation Im �
<

0,AA. The components
�
'

<,[[ + < ∗ � are plotted on the right where � is an offset for plot visibility. (Right two column) The self
energies, here is zero.

191



Chapter 7 Interacting and periodically driven systems: Floquet-Keldysh self-consistent field theory

Figure 7.8: (Left two column) Density of state, from the Wigner-Floquet Green’s function, normalized as
−

∫
dl
2c 2Im�

'

0,AA = 1. The gray shaded area is the occupation Im�
<

0,AA. The components �
'

<,[[ + < ∗� are

plotted on the right where � is an offset for plot visibility. (Right two column) The self energies −Im Σ
'

0,[[

and −Im Σ
'

<,[[ + < ∗ �.
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Figure 7.9: (Left two column) Density of state, from the Wigner-Floquet Green’s function, normalized as
−

∫
dl
2c 2Im�

'

0,AA = 1. The gray shaded area is the occupation Im�
<

0,AA. The components �
'

<,[[ + < ∗� are

plotted on the right where � is an offset for plot visibility. (Right two column) The self energies −Im Σ
'

0,[[

and −Im Σ
'

<,[[ + < ∗ �.
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Figure 7.10: (Left two column) Density of state, from the Wigner-Floquet Green’s function, normalized as
−

∫
dl
2c 2Im�

'

0,AA = 1. The gray shaded area is the occupation Im�
<

0,AA. The components �
'

<,[[ + < ∗� are

plotted on the right where � is an offset for plot visibility. (Right two column) The self energies −Im Σ
'

0,[[

and −Im Σ
'

<,[[ + < ∗ �.
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Figure 7.11: (Left two column) Density of state, from the Wigner-Floquet Green’s function, normalized as
−

∫
dl
2c 2Im�

'

0,AA = 1. The gray shaded area is the occupation Im�
<

0,AA. The components �
'

<,[[ + < ∗� are

plotted on the right where � is an offset for plot visibility. (Right two column) The self energies −Im Σ
'

0,[[

and −Im Σ
'

<,[[ + < ∗ �.
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7.6 Numerical results

7.6.3 Time averaged current

We show the time-averaged current multiplied by the period ) , i.e. charge pumped in one period,
in Fig. 7.12. Where we compute the current by using the formula that is introduced in the previous
chapter in equation (6.24). We repeat the equations here and change the notation to make them
consistent within this chapter, we define

(m:�
′
:)
∗
= −i

00
2
�+(C) + i

00
2
�−(C)4

+8:00 (7.164)

The definition of �+ and �− one can find in (7.150). And then we define � =
∫ )

0 dC�curr(C) can be
computed as

� =
i

00#:

∑
:

∑
<=

2c
Ω

∫
|l | ≤Ω/2

(
[m:�

′
:]<= [�

<
BA]=<(l, :) + [(m:�

′
:)
∗]<= [�

<
AB]=<(l, :)

)
(7.165)

Or in short � = i
0#:

∑
:

2c
Ω

∫
|l | ≤Ω/2 Tr�

[
m:�

′
:�

<
BA + (m:�

′
:)
∗
�
<
AB

]
(l, :) with a "Floquet trace" Tr� .

The Green’s functions we used is in the Floquet representation and the lesser component is computed as
usual by using the local :-independent self-energy and :-dependent non-interacting Green’s functions
through � (l, :) = [�−1

0 (l, :) − Σ(l)]
−1.

The fourier coefficients are

[(m:�
′
:)
∗]<−==0 =

00
2
�0(−i + i cos(:00) + sin(:00)) (7.166)

[(m:�
′
:)
∗]<−==−1 = −

00
4
�1(1 + cos(:00) − i sin(:00)) (7.167)

[(m:�
′
:)
∗]<−==+1 = −

00
4
�1(1 + cos(:00) − i sin(:00)) (7.168)

Where [(m:�
′
:)
∗]<= = [(m:�

′
:)
∗]<−= and [(m:�:)

∗]<= = ( [m:�:]<=)
∗

There in Fig. 7.12 two sides of a same data are shown, the � vs. * and � vs. Ω. One can see
that the current is in general reduced by increasing interaction * in this setting. The Ω dependent
is more complicated. The noninteracting current has a "(" shape curve, that around Ω = 1.1 there
is an enhancement, which can be understood by Floquet side band here is moving away from each
other, and the level repulsion becomes weaker. This means the gap, especially at quasi-energy Ω/2
and Ω/2, becomes smaller. This local minimum is lifted when* increases. This kind of behavior is
also consistent with the arguments we made in the Section. 6.1.

197



Chapter 7 Interacting and periodically driven systems: Floquet-Keldysh self-consistent field theory

0 1 2 3 4

Ω

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

J

0.0

0.6

1.1

1.6

2.1

2.6

3.1

3.6

4.1

U

0 1 2 3 4

U

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

J

0.8

1.1

2.1

3.1

4.1

Ω

Figure 7.12: (Left) Time averaged current � vs. Ω, the legends are for different *. (Right) Time averaged
current � vs. *, the legends are for different Ω. � defined in (7.165).
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7.6.4 Time-averaged spectral functions with k dependence

In this section we plot : dependent spectral function �(l, :) = −2Im �0(l, :) for further references.
One can compare them with the Fig. 7.4 and the Fig. 7.5.

Figure 7.13: Plots of −2Im �
'

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 3.10
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Figure 7.14: Plots of −2Im �
'

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 3.10
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7.6 Numerical results

Figure 7.15: Plots of −2Im �
'

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 7.10
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Figure 7.16: Plots of −2Im �
'

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 7.10

202



7.6 Numerical results

Figure 7.17: Plots of Im �
<

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 3.10
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Figure 7.18: Plots of Im �
<

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 3.10
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Figure 7.19: Plots of Im �
<

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 7.10
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Figure 7.20: Plots of Im �
<

0,AA (l, :) for different Ω. (Left)* = 1.10, (Right)* = 7.10
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7.7 Floquet NCA

7.7 Floquet NCA

Although the iterative perturbation theory (IPT) impurity solver can give qualitative reasonable results,
for strong Hubbard interactions or away from half-filling it is usually not efficient even in equilibrium.
For strong coupling physics, the non-crossing approximation (NCA) impurity solver becomes the
choice. The NCA is a conserving approximation and a hybridization expansion, which is suitable for
very large interaction strength, and can be improved systematically. The NCA and its extensions are
reliable strong coupling impurity solver with mild numerical cost, and those features applies usually
equally well in the studies of periodically driven non-equilibrium real time dynamics, namely Floquet
systems. For late time physics which is required for periodically driven non-equilibrium steady state
that need to evolve the systems for many periods, the Floquet NCA is especially efficient, origin from
its conserving nature. The Floquet NCA can be also applied to periodically driven heavy fermion
systems, and multi-orbital problems, where many other methods hard to treat.
Here we review and discuss the non-crossing approximation, which can be treated as an impurity

solver for the Floquet DMFT [3].
Recall the single impurity Anderson model (SIAM) read

(SIAM = (2 + (3 + (23 (7.169)

where

(3 =

∫
C

(∑
f

3
†
f

(
imC − n3

)
3f +*=3↑=3↓

)
(7.170)

(23 =

∫
C

∑
8f

(
+82
†
8f
3f ++

∗
8 3
†
f28f

)
(7.171)

(2 =

∫
C

(∑
8 9 f

2
†
8f
(imC − ℎ̃8 9)2 9 f + ℎ.2.

)
(7.172)

Slave-boson technique, is a parton construction for local impurity. It rewrites 3 as a composite particle
with a constraint, here we consider* →∞ case, where double occupancy is not possible

3f = 1
†
5f , & ≡ 1†1 +

∑
f

5
†
f 5f = 1 (7.173)

The states of the local Hilbert space are rewritten into slave-boson fields 1 for the hole and fermion
fields 5f for the singly occupied site in the enlarged space, a projection in the end should be applied.
For reviews of its application in Kondo physics see [255]. Similar techniques have a long history,
e.g. the Schwinger boson and Abrikosov fermion [266]. They have been successfully applied to spin
models [267], Hubbard model and its relatives [8].

7.7.1 NCA equations

The periodically driven system, for instance, the driven SIAM, has been studied by using the non-
crossing approximation in the reference [268]. The Keldysh method was applied to the quantum dot
transport many years ago, in the 1990s, in the work of Meir and Wingreen [269]. The time-domain
version is studied in [270].
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The boson-fermion interaction part is

( 5 1 =

∫
C

∑
kf

+kf

(
2
†
kf
(C) 5f (C)1

†(C) + ℎ.2.
)

(7.174)

Here we summarize the Floquet-NCA formalism, which can be derived by an "integrated out"
procedure, or through the conserving approximation [255], by the derivatives of ΓΦ

ΓΦ = −
∫
C1C2

∑
kf

|+kf |
2
� 5 f (C2, C1)�2kf (C1, C2)�1 (C1, C2) (7.175)

For simplicity here we assume14

+kf = + (7.176)

Which means we can write
�2f =

∑
k

�2kf (7.177)

Recall the tensor vertices we defined in the Keldysh method chapter for Schwinger-Keldysh formalism
are

W
+
9: =

(
1 0
0 0

)
= +1

2

(
g

0 + g3
)
9:
, W

−
9: =

(
0 0
0 −1

)
= −1

2

(
g

0 − g3
)
9:

(7.178)

or
W

cl ≡ 1
√

2

(
1 0
0 1

)
=

1
√

2
g

0
, W

q ≡ 1
√

2

(
0 1
1 0

)
=

1
√

2
g

1 (7.179)

On CTP with tensor vertices the ΓΦ then reads

ΓΦ = −+
∑
f

W
:

8 9 � 5 f |A8�2f | 9B�
:F
1 W

F
AB + (7.180)

where a fermionic pesudo-particle (also called pesudo-fermion or spinon) “ 5 ” for singly occupied
state, “light” slave boson “1” for empty state and conduction electron “2”. Note we have a complex
boson here. The self-energies are

Σ 5 f (C1, C2) = −i
XΓΦ

X� 5 f (C2, C1)
= i+2

�2f (C1, C2)�1 (C1, C2) (7.181)

Σ1 (C1, C2) = i
XΓΦ

X�1 (C1, C2)
= −i+2

∑
f

� 5 f (C2, C1)�2f (C1, C2) (7.182)

Or on CTP they are

Σ 5 |8A = −i
XΓΦ

X� 5 f |A8
= i+2

W
:

8 9 �2f | 9B�
:F
1 W

F
AB (7.183)

Σ
:F
1 = i

XΓΦ

X�
:F
1

= −i+2
∑
f

W
:

8 9 � 5 f |A8�2f | 9BW
F

AB (7.184)

14 Though a momentum dependent and spin dependent + are possible, we restrict our self to the simplest case that without
them.
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The extended Hilbert space contains unphysical states which should not affect physical quantities.
The physical subspace is the & = 1 space where has a single impurity. Thus, projection is needed after
the NCA loop converges. The projection to the sector & is introduced by the Lagrange multiplier _
though _(& − 1). In practice, one can project [255] by computing the conduction electron self-energy

Σ2f (C1, C2) = −i
XΓΦ

X�2f (C2, C1)
= i+2

� 5 f (C1, C2)�1 (C2, C1) (7.185)

and then use the T-matrix result [255] for the projected result

+
2
�3f = Σ2f (7.186)

To keep the evolution equations inside the & = 1 sector we need to do further analysis. Define the
fugacity [269]

Z ≡ 4−8V_ (7.187)

The fugacity power counting gives

�
<
5 ,1 ∼ $ (Z), �

>
5 ,1 ∼ $ (1) (7.188)

in the i_ ensemble. Thus the equation with different orders of$ (Z) decouples. We canmatch the orders,
and find that the self-consistent loop can be split into two major steps. The Floquet representation and
Floquet Wigner representation can be reached straightforwardly, which we summarize in the Table. 7.1
and Table. 7.2.

Note the quadratic part of the action in the extended space is

( 5 =

∫
C

∑
kf

2
†
kf
(C) (imC − nk + `)2kf (C) +

∑
f

5
†
f (C) (imC − n 5 + `) 5f (C)

(1 =

∫
C

1
†(C)imC1(C)

(7.189)

The 3 electron spectrum or other physical quantities can be reached by a projection procedure,
which can be guaranteed by a conserving approximation in & = 1 sector with Keldysh method. The
last step is that the �3 can be computed by

�
'
3f (l) =

/&=0

/&=1

[
�
>
1 (C2, C1)�

<
5 f (C1, C2) − �

<
1 (C2, C1)�

>
5 f (C1, C2)

]
(7.190)

And in Floquet Wigner representation

�
'
3f (l) =

/&=0

/&=1

∫
l
′

[
�
>
1 |= (l

′)�<5 f |<−= (l + l
′) − �<1 |= (l

′)�>5 f |<−= (l + l
′)
]

(7.191)
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�
> ∼ $ (1) �

< ∼ $ (Z)

Initial guess or previous loop gives �>1 Initial guess or previous loop gives �<1

Σ
>
5 by using �

>
1 , �

>
2 Σ

<
5 by using �

<
1 , �

<
2

Σ
'
5 by Σ

>
5 , then get �

'
5 by Dyson equation �

<
5 by �

'
5 Σ

<
5 �

�
5

�
>
5 by �

'
5 Σ

<
1 by using �<5 , �

>
2

Σ
>
1 by using �>5 , �

<
2 �

<
1 by �'1Σ

<
1�

�
1

Σ
'
1 by Σ>1 , then get �

'
1 by Dyson equation Back to the top

�
>
1 by �'1

Back to the top

Table 7.1: Sketch of the procedures. The �>2 , �
<
2 are inputs and will not be update during the loops. Where we

suppressed indices and labels other than Keldysh labels and species labels.

7.7.2 Construction details

Here we partially follow [269]. From the definition of the and the parton form of the 3 electron.15

3f = 1
†
5f + f 5

†
−f0 (7.192)

Where we have 1 for the empty state, 5 for the singly occupied state, and 0 for the doubly occupied
state. The constraint is

& ≡ 1†1 +
∑
f

5
†
f 5f + 0

†
0 = 1 (7.193)

This is because a site can only choose to be empty or singly occupied or doubly occupied, and cannot
be, for instance, empty and occupied at the same time. The simplest case of the NCA is that for
* →∞ where the terms contain “0” can be dropped, since the double occupied state are not possible
to reach. Thus we have

3f = 1
†
5f (7.194)

& ≡ 1†1 +
∑
f

5
†
f 5f = 1 (7.195)

Under the above definitions, we can write & = = partition function on CTP as

/&== = Tr
[
d&==)̂C exp

{
−i

∫
C(C)

�8 q̂
8

}]
(7.196)

15 See also, for instance, Chapter 9 of [271]
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Usual identities Use in NCA Further in Floquet

�
>
5 ,1 − �

<
5 ,1 = �

'
5 ,1 − �

�
5 ,1 → �

>
5 ,1 = �

'
5 ,1 − �

�
5 ,1 �

>
<= (l) = �

'
<= (l) − �

�
<= (l)

Σ
>
5 ,1 − Σ

<
5 ,1 = Σ

'
5 ,1 − Σ

�
5 ,1 → Σ

>
5 ,1 = Σ

'
5 ,1 − Σ

�
5 ,1 Σ

>
<= (l) = Σ

'
<= (l) − Σ

�
<= (l)

�
'
5 ,1 = \ (Cr) [�

>
5 ,1 − �

<
5 ,1] → �

'
5 ,1 = \ (Cr)�

>
5 ,1 �

'
= H̃[�>]

Σ
'
5 ,1 = \ (Cr) [Σ

>
5 ,1 − Σ

<
5 ,1] → Σ

'
5 ,1 = \ (Cr)Σ

>
5 ,1 Σ

'
= H̃[Σ>]

�
<
5 ,1 (C1, C2) =

∫
C3 ,C4

�
'
5 ,1Σ

<
5 ,1�

�
5 ,1 �

<
<= = �

'
<;Σ

<
;B�

�
B=

Σ
>
5 (C1, C2) = +i+2

�
>
1 (C1, C2)�

>
2 (C1, C2) → +i+2 ∫

l
′
,=
�1 |= (l

′)�2 |<−= (l − l
′)

Σ
<
5 (C1, C2) = +i+2

�
<
1 (C1, C2)�

<
2 (C1, C2)

Σ
>
1 (C1, C2) = −i+2

�
>
5 (C2, C1)�

<
2 (C1, C2) → −i+2 ∫

l
′
,=
� 5 |= (l

′)�2 |<−= (l + l
′)

Σ
<
1 (C1, C2) = −i+2

�
<
5 (C2, C1)�

>
2 (C1, C2)

Table 7.2: Equations used in Floquet NCA. Many indices are suppressed for clarity, they can be restored from the
context. The Hilbert transform for the continuous frequencies are defined H̃[�] ≡

∫
l
′ � (l, Ca) 1

l−l′ . Where �
is in the Floquet Wigner representation. Note the last formula for the Floquet-Wigner case, the < − = is because
the average time does not depend on the order of C, C ′.

In* →∞ case
�8 q̂

8
= �

1
†1
† + �11 + � 5 † 5

† + � 5 5 + �3†3
† + �33 (7.197)

Where 3 should be regarded as composite operator and its corresponding source terms are for
generating physical correlation functions. Now we assume the initial density matrix is a mix state
thermal density matrix with & = =

d&== = d0X&,= = 4
−V�0X&,= (7.198)

Here we also assume that at the initial time only time independent part of non-interacting Hamiltonian
contributes, that is the Hamiltonian

�0 = �
0
1 + �

0
5 (7.199)
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Figure 7.21: Floquet NCA solution for the time averaged spectral function �3 (l) for single impurity Anderson
model, n 5 (C) = n0 + n1 cos(ΩC), with n0 = −0.5, + =

√
0.2, Ω = 1.0, total number of Floquet modes = 5 = 15.

The electron bath has a gaussian DoS and the variance f2 where f = 1. Here we used equal distance mesh, and
210 points in each driven frequency Ω interval. Blue lines are Ω/2 + =Ω.

where �0
1 is corresponding to the time independent Hamiltonian of the action (1, �

0
5 is corresponding

to the time independent Hamiltonian of ( 5 . We repeat the action here

( 5 =

∫
C

(∑
kf

2
†
kf
(C)

(
imC − nk + `

)
2kf (C) +

∑
f

5
†
f (C)

(
imC − n 5 (C) + `

)
5f (C)

)
( 5 1 =

∫
C

+
∑
kf

(
2
†
kf
(C) 5f (C)1

†(C) + ℎ.2.
)

(1 =

∫
C

1
†(C)imC1(C)

(7.200)

where in this section we only assume n 5 (C) can be time-dependent for simplicity. Note that the total
Hamiltonian � is commuting with &

[�,&] = 0 (7.201)

thus, & is conserved.
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Now we can use the identity

X&,= = V

∫ c/V

−c/V

d_
2c
4
−iV_(&−=)

=

⨏
_

4
−iV_(1†1+∑f 5 †f 5f−=) (7.202)

where we defined a short-hand notation
⨏
_
= V

∫ c/V
−c/V

d_
2c . Rewrite [269, 272] /&== to

/&== =

⨏
_

4
i=V_

/ (_) ≡ / [=] (7.203)

Here the / [=] is a short hand notation for the =-th (for 4
−i=V_) Fourier component of / (_). Importantly

we now have a partition function / (_) without constraint

/ (_) = Tr
[
4
−V (�0+i_&))̂C exp

{
−i

∫
C(C)

�8 q̂
8

}]
(7.204)

Thus, the & = = sector partition function can be projected from / (_) through a Fourier transform.
And for & = = the terms at different order of the “fugacity”

Z ≡ 4−iV_ (7.205)

Terms except those with total order $ (Z=) will be projected out in the end. As we know, the physical
subspace is = = 1 or $ (Z1).
The usefulness of the extended Hilbert space can now be understood, that is

• We can use / (_) with the convenience that all usual field theoretical techniques can be applied.

Note that one will need to evaluate the projection of the derivatives of the Schwinger functional

, (_) = −i ln / (_) in the extended space. Without any loss of generality we use,
(23)
[1] ≡ ,

(33†)
[1] as

an example, where one can replace (23) to (=3) when it is necessary. The projection to & = 1 can be
reached through

,
(23)
[1] =

⨏
_

4
i=V_

,
(23) (_) = −i

⨏
_

4
i=V_ /

(23) (_)
/ (_)

Im _→−∞−−−−−−−−→ −i
/
(23)
[1]
/ [0]

(7.206)

Here we need to expand / (_) = ∑
< 4
−i<V_

/ [<] , and then expand around Z = 4−iV_ → 0, which can
be reached by _ = iIm _, Im _ → −∞. Note that we assumed / (23)[0] = 0 which is satisfied because
& = 0 is the case that no physical 3 impurity is presented.16 We also used / (13) (_) = 0, since 3 is
fermionic.

Now define
, = −i ln / [1] (7.207)

The second functional derivative of Schwinger functional which is legendre transformed directly from

16 The functional derivatives with auxiliary particles 1 and 5 are not necessary 0. Obviously when & = 0, it is possible that
〈1†1〉&=0 = 1
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/ [1] = /&=1 is

,
(23)
[1] = −i

/
(23)
[1]
/ [1]

(7.208)

Note the difference between, and, , and the relation between their functional derivatives is

,
(23)
[1] =

/ [0]
/ [1]

,
(23)
[1] (7.209)

which agrees with [269].

The 3 electron Green’s function is

�3f = ,
(33†)
[1] =

/ [0]
/ [1]

,
(33†)
[1] (7.210)

This is achieved by partial derivatives of the sources of the terms

�33 + �3†3
† (7.211)

and then send source terms to zero.

Now we discuss the NCA equations. To reach a set of self-consistent equations, we do power
counting in the extended space with the partition function / (_). A natural choice of the greater and
lesser functions is

�
>
1 = ,

(1−1
†
+)

[0] , �
>
5 f = ,

( 5− 5
†
+ )

[0]

�
<
1 = ,

(1+1
†
−)

[1] , �
<
5 f = ,

( 5+ 5
†
− )

[1]

(7.212)

Given that
�
>
5 ,1 ∼ $ (Z), �

<
5 ,1 ∼ $ (1) (7.213)

This can be roughly understood as where �>5 ,1 is measuring holes, �<5 ,1 is measuring particles. That
power counting is consistent with the fluctuation-dissipation theorem in equilibrium with the fugacity
entering the Boltzmann weight.

To proceed, we require the order Z is conserved during the self-consistent loop. From

�
>,<

5 ,1
= �

'
5 ,1Σ

>,<

5 ,1
�
�
5 ,1 (7.214)

we know
�
'/�
5 ,1
∼ $ (1) (7.215)

Now we can match the order of Z , obviously

�
'
5 ,1 = \ (Cr) [�

>
5 ,1 − �

<
5 ,1] → \ (Cr) [�

>
5 ,1] (7.216)

In the end we will have Table. 7.2 for NCA equations in the extended space.

To get physical observables we still need projections. The projected retarded impurity Green’s
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function �'3 is

�
'
3f (C1, C2) = \ (Cr) [�

>
3f − �

<
3f]

=
/ [0]
/ [1]

\ (Cr) [�
>
1 (C2, C1)�

<
5 f (C1, C2) − �
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1 (C2, C1)�

>
5 f (C1, C2)]

(7.217)

The projected keldysh impurity Green’s function � 3 can be written as

�
 
3f (C1, C2) = �

>
3f + �

<
3f

=
/ [0]
/ [1]
[�>1 (C2, C1)�

<
5 f (C1, C2) + �

<
1 (C2, C1)�

>
5 f (C1, C2)]

(7.218)

The above projection equations can be simply derived if we neglect the vertex corrections, i.e., we
treat 5 and 1 are only correlated to themselves, by

�3f (C1, C2) ∼ 〈)̂C3f (C1)3
†
f (C2)〉 = 〈)̂C 5

†
f (C1)1(C1)1

†(C2) 5f (C2)〉
∼ 〈)̂C 5f (C2) 5

†
f (C1)〉 〈)̂C1(C1)1

†(C2)〉
= � 5 f (C2, C1)�1 (C1, C2)

(7.219)

The observables thus can be computed. As an example we have shown the time averaged spectral
function computed from our code in Fig. 7.21.
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7.8 Summary

7.8 Summary

In this chapter we studied the Rice-Mele Hubbard model by using Floquet-Keldysh dynamical mean-
field theory. We computed single-particle observables, the spectral functions and the time-averaged
current density. We find that the increasing static Hubbard interaction or the drive frequency will
suppress the current. On the other hand, the quasiparticle is only appears for low and high frequencies,
but not in the intermediate drive frequencies. In the intermediate drive frequency regime, there are
strong heating effects. We also find an interesting Ω/2 slope at relatively strong coupling, which can
be related to the topological nature of the model.

Many further works could be done in the future, which we will discuss them in the next section.
Let us summarize this chapter by the following graph.

Conserving approximation

Self-consistent field theory

Keldysh Floquet

Dynamical mean field theory Impurity solver

Hubbard model

NCA

IPT

Drive interacting topological phase

Drive RM Hubbard model Transport

Figure 7.22
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7.9 Outlook

Here we provide some outlooks for the future studies.
Several things can be done with the tools in our hands. In principle, we can drive the interaction

periodically in an almost arbitrary way, and also include different time dependence for the sites in
the unit cell. This is a way to approach the time-dependent dissipation that has been realized in the
wave-guide experiment [228] and the transport current can be possibly enhanced by this kind of
engineered interaction.

Another thing is if we can choose a more reliable real-time impurity solver for the strong coupling
limit rather than the IPT. Since we have the NCA solver for some simple driven system at hand, the
NCA solver [3, 273] is promising and can be applied to our problem soon.
In this work, we focus on the Rice-Mele model. The method we used is very general and can

be even better to be applied to lattice models in higher dimensions [169], and to many other exotic
phases [6], for instance, the Weyl semi-metals, the heavy fermions systems, the high temperature
superconductors.

In this work, we studied the Floquet system by using Floquet-Keldysh Green’s functions, and DMFT.
There are many improvements that can be done in the future, and some of them are very important
quantitatively and even qualitatively.

One direction is to use real-time Kadanoff-Baym equations [90]. Since all the computations in this
thesis are relying on the non-equilibrium steady states assumption, the validity may need to be checked.
Rather than use frequency space Green’s functions, one can alternatively solve the Kadanoff-Baym
differential equations in time space, where the transient dynamics toward a possible steady-state can
be studied.

Last but not least, another question would be if the dynamical mean-field theory is always reliable.
The local approximation is exact only for the infinite spatial dimension, or infinite coordination
numbers. The momentum dependence, or namely the non-local correlations, can be important in low
dimensions in equilibrium. What are their effects out of equilibrium with the periodic drive is an
interesting question. It may even be important for the true stable or metastable steady states. For the
momentum dependence, we may apply the non-local extensions [77] of the DMFT, and extend them to
non-equilibrium. Or we can use other techniques, such as the functional renormalization group [274].
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