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1. Introduction 
 

1.1 Familial Adenomatous Polyposis 

 

Familial adenomatous polyposis (FAP), an autosomal dominant inherited gastrointestinal 

(GI) tumor syndrome is characterized by the development of multiple (100-1000) 

adenomatous polyps in the colon and rectum (Gryfe, 2009; Petersen et al., 1991; Nishisho 

et al., 1991). The prevalence of FAP is reported to be 1:6850 to 1:31250 with no regional 

differences (Yen et al., 2022). Men and women are affected with equal frequency (Syngal 

et al., 2015; Yen et al., 2022). 

Adenoma formation commonly starts during childhood. The first symptoms appear at an 

average age of 16 years (Yen et al., 2022; Stec et al., 2010; Yang et al., 2021a). With  

35 years, 95 % of FAP patients are diagnosed with polyps (Yen et al., 2022; Yang et al., 

2021a). The adenomatous polyps have the potential to develop into cancerous tumors if 

left untreated (Yen et al., 2022). The development of colorectal cancer (CRC) is almost 

inevitable in patients with classical FAP and the risk increases with age. In untreated 

patients, the average age of CRC diagnosis is 39 years (Yen et al., 2022; Yang et al., 

2021a; Stec et al., 2010). To reduce the risk of cancer development and improve their 

quality of life, individuals with FAP are typically advised to undergo regular surveillance 

and prophylactic colectomy (Lynch and La Chapelle, 1999; Stec et al., 2010; Campos, 

2014; Nieuwenhuis and Vasen, 2007; Campos et al., 2015; Yen et al., 2022).  

FAP is caused by heterozygous germline mutations of the adenomatous polyposis coli 

(APC) gene, which is a tumor suppressor gene (Aitchison et al., 2020; Testa et al., 2018; 

Bodmer et al., 1987; Groden et al., 1991). According to Knudson’s 2-Hit hypothesis, 

heterozygous carriers of a germline mutation need a somatic mutation in the second allele 

to induce adenoma formation by loss of heterozygosity (Knudson, 1971). The APC gene 

is located on chromosome 5q21-q22 and consists of 15 exons encoding a protein of  

2843 amino acids with a molecular weight of 309 kilodalton (Barber et al., 1994; Plawski 

and Slomski, 2008; Plawski et al., 2004; Brosens et al., 2005; Aitchison et al., 2020; 

Bodmer et al., 1987). Genotype-phenotype correlations in colonic polyposis are well 

established and show that in FAP mutations at the 5’ part of exon 15 are most frequently 
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mutated within the mutation cluster region between codons 1286 and 1513 (Miyoshi et al., 

1992; Aitchison et al., 2020; Newton et al., 2012; Nieuwenhuis et al., 2009). Typical 

mutations at codon 1061 and 1309 lead to an early development of adenomas and CRC 

(Fig. 1; Brosens et al., 2005; Stec et al., 2010).  

A milder form of FAP named attenuated FAP (aFAP) has mutations mostly at the ends of 

the APC gene (Fig. 1, Brosens et al., 2005). AFAP is associated with fewer colonic (<100) 

polyps and a later onset of CRC (Brosens et al., 2005). 

The majority of APC mutations lead to a truncated form of APC resulting in a loss of 

function (Plawski et al., 2004). In the normal intestinal mucosa, the APC protein is a tumor 

suppressor of the Wnt signaling pathway (Hankey et al., 2018). 

 

Fig. 1: Schematic representation of the adenomatous polyposis coli (APC) gene. 
Most mutations in FAP occur in codon 1061 and 1309 whereas aFAP mutations classically 
appear at the ends of the APC gene. (adapted from Brosens et al., 2005) 
 

The Wnt signaling pathway controls the cell cycle, proliferation, migration, differentiation 

and apoptosis. The APC protein interacts with β-catenin, leading to degradation of  

β-catenin by the proteasome along with GSK-3β, CK1α and axin (degradation complex) 

(Logan and Nusse, 2004; Testa et al., 2018). When Wnt binds to the N-terminal  

extra-cellular cysteine-rich region of a Frizzled family receptor, a member of the 

superfamily of G-protein-coupled receptors, the degradation complex is inhibited (Pai et 

al., 2017; Logan and Nusse, 2004). That leads to the accumulation of β-catenin in the 

cytoplasm, its translocation into the nucleus and after binding T-cell transcription factor or 
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lymphoid enhancer factor to the transcription of Wnt target genes (Pai et al., 2017; Logan 

and Nusse, 2004). 

The mutated APC protein loses its ability to bind and degrade β-catenin, so that the  

Wnt/β-catenin pathway is permanently activated (Fig. 2). As a result, β-catenin causes the 

transcription of its target genes without a Wnt signal (Logan and Nusse, 2004). The 

dysregulation of the Wnt signaling pathway is associated with the development of tumors 

in humans (Lecarpentier et al., 2019). 

 

Fig. 2: APC function in the Wnt signaling pathway. (A) Functional APC assists in 
targeting β-catenin for degradation. (B) Loss of APC leads to accumulation of β-catenin 
and the transcription of Wnt target genes after binding T-cell transcription factor (TCF) or 
lymphoid enhancer factor (LEF). (adapted from Rusan and Peifer, 2008; Jeong et al., 
2018). 
 

Besides the development of colorectal adenomas and cancer, FAP is also associated with 

numerous extra-colonic manifestations such as gastric and duodenal adenomas, 

osteomas, dental abnormalities, congenital hypertrophy of the retinal pigment epithelium, 

soft tissue tumors, desmoid tumors, and other malignancies such as thyroid carcinomas, 

malignant central nervous system tumors (medulloblastoma), or hepatoblastomas 
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(Jasperson et al., 2010; Campos et al., 2015; Yen et al., 2022; Gurbuz et al., 1994; Groen 

et al., 2008).   

The development of duodenal adenomas is the most common extra-colonic manifestation 

of FAP, with a lifetime risk of developing duodenal adenomas of nearly 100 % (Brosens 

et al., 2005; Bülow et al., 2004). As a result, FAP patients have a significantly higher risk 

(4-12 %) of developing duodenal carcinoma than the general population (Brosens et al., 

2005; Jasperson et al., 2010; Latchford et al., 2009).  

To classify duodenal polyposis, a staging system was developed by Spigelman et al. in 

1989 that included number, size, histology, and degree of dysplasia of duodenal polyps 

(Spigelman et al., 1989).  Based on a score of the Spigelman staging (SS) system (Tab.1), 

patients can be classified into five different stages (0-IV), with stage 0 being present in the 

absence of polyps and stage IV representing severe polyposis (Spigelman et al., 1989). 

Since there is an association between SS and the risk of developing duodenal carcinoma 

this classification forms an important basis for determining the intervals between 

screenings and therapeutic intervention options (Dinarvand et al., 2019).  

Tab. 1: Spigelman stages for grading duodenal polyposis in FAP. (adapted from 
Groves et al., 2002b) 

Criteria Points 

 1 2 3 

Polyp number 1-4 5-20 >20 

Polyp size (mm) 1-4 5-10 >10 

Histology Tubular Tubulovillous Villous 

Dysplasia Mild Moderate Severe 

Stage 0: 0 points, stage I: 1-4 points, stage II: 5-6 points, stage III: 7-8 points,  

stage IV: 9-12 points 

 

Based on the observation that patients with severe polyposis have a higher risk of 

developing duodenal carcinoma (Bülow et al., 2004), duodenal adenomas are also 

thought to follow the adenoma-carcinoma sequence in a manner similar to colon 

adenomas (Spigelman et al., 1994; Muto et al., 1975). In addition, adenoma tissue either 

as a component of or adjacent to duodenal carcinoma has been demonstrated in over  
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90 % of malignancies (Spigelman et al., 1994). However, the growth of duodenal 

adenomas is much slower than that of adenomas in the colon (Burke et al., 1999). 

For colorectal manifestations, mutations associated with severe or early disease or mild 

progression have been described (Nieuwenhuis and Vasen, 2007). The correlation 

between APC mutation and duodenal polyposis is not as clear as previous studies have 

yielded conflicting results. Whereas Friedl et al. failed to identify any clear relationship, 

Bertario et al. observed a distinct pattern of disease for mutations between codon 976 and 

1067 and other studies demonstrated a severe phenotype in carriers of mutations in exon 

15, particularly distal to codon 1400 (Friedl et al., 2001; Bertario et al., 2003; Groves et 

al., 2002a). 

Consistent with these conflicting results, duodenal phenotype and clinical course are 

found to vary even between carriers of the same genetic variant, suggesting that factors 

other than genotype play a role (Brosens et al., 2005; Takao et al., 2021). 

The local immune system is of particular interest in this context, as many studies have 

confirmed the impact of local immune responses on development, progression, and 

treatment outcomes in a variety of different tumors. 

 

1.2 The gastrointestinal immune system  

 

To protect the GI tract from digested exogenous microorganisms and pathogens, there 

are a variety of intestinal barriers belonging to the immune system (Fig. 3). The surface of 

the GI tract is covered by a layer of intestinal epithelial cells (IECs) which are organized 

in a crypt and villus pattern (Montalban-Arques et al., 2018; Peterson and Artis, 2014). 

The main IECs in the intestine are enterocytes (Fedi et al., 2021). They have a microvilli 

structure, which gives the intestine the largest epithelial surface area in the human body 

and allow efficient nutrient absorption (Mason et al., 2008). The IECs are attached to one 

another and are sealed at their apical borders by tight junctions to prevent uptake of small 

molecules (Mason et al., 2008). Within the crypts, there are pluripotent intestinal epithelial 

stem cells which renew the surface continuously and can differentiate into all other 

intestinal cell types (Peterson and Artis, 2014; Fedi et al., 2021). Paneth cells also reside 
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in the crypt and secrete antimicrobial proteins (AMPs) to establish and maintain the 

intestinal microbiota (Lueschow and McElroy, 2020). 

The microvilli are covered by a mucus layer produced by goblet cells located in between 

the enterocytes, which allows nutrients to pass through and prevents pathogens and 

larger molecules from entering (Mason et al., 2008). The mucus layer also prevents direct 

contact between epithelial cells and the microbiota (Murphy and Weaver, 2018; 

Montalban-Arques et al., 2018). Moreover, the mucus layer contains secretory 

immunoglobulin A (SIgA) which binds to the microbiota and prevents them from attaching 

to the epithelial cells. The gut microbiome consists of trillions of microorganisms that live 

in a symbiotic relationship with their host (Murphy and Weaver, 2018; Bevins and 

Salzmann, 2011). Even if the composition of the microbiota varies between individuals, 

the commensal microbiota plays an important role in the maintenance of the intestinal 

barrier functions and regulation of the mucosal immune system (Bevins and Salzmann, 

2011). Other IECs are enteroendocrine cells producing hormones that have a key role in 

food digestion, tissue repair and enterocyte differentiation (Bevins and Salzman, 2011; 

Fedi et al., 2021; Gribble and Reimann, 2019). The basolateral surface of the IECs 

associates with the intestinal lamina propria (LP). Not only IECs and the microbiota have 

functions in maintaining tissue homeostasis and prevent pathogens from entering, also 

immune cells within the intraepithelial layer and in the LP crosstalk with each other to 

maintain homeostasis and protect the barrier from external pathogens.  
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Fig. 3: The intestinal immune system. Intestinal epithelial cells (IEC) including 
enterocytes, goblet, paneth, enteroendocrine, stem cells, innate immune cells (T, B cells, 
intraepithelial (ie) innate lymphoid cells (ILC), ie lymphocytes (IEL), macrophages, 
dendritic cells (DC)) and the commensal bacteria protect the body from external 
pathogens among others with mucus, secretory immunoglobulin A (SIgA) and 
antimicrobial peptides (AMP). (adapted from Mowat and Agace, 2014) 
 

The immune cells protecting the intestinal barrier are divided into innate and adaptive 

immune cells. Innate immune cells are able to react fast to invading pathogens and include 

monocytes, macrophages, dendritic cells (DCs), granulocytes (eosinophils, neutrophils 

and basophils), natural killer (NK) cells and innate lymphoid cells (ILCs) (Murphy and 

Weaver, 2018). The adaptive immune system consists of B and T lymphocytes. Contrary 

to the innate immune cells, their response is highly specific to the pathogen (Murphy and 

Weaver, 2018).  
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All of these barrier protectors have to work together to circumvent altered intestinal 

microenvironments and intestinal barrier defects that can lead to inflammation (Okumura 

and Takeda, 2017; Vancamelbeke and Vermeire, 2017).  

Inflammation caused by an altered immune response can contribute to cancer 

development in several ways. Chronic inflammation induced by infectious agents, 

environmental insults, or autoimmunity can create an environment that is favorable for 

cancer growth (Greten and Grivennikov, 2019). In addition to direct damage to epithelial 

cells (Vacante et al., 2020), inflammation can lead to deoxyribonucleic acid (DNA) damage 

(Kawanishi et al., 2017) and the production of cytokines (Landskron et al., 2014), which 

promote uncontrolled cell growth and tumor formation. These factors are all induced by 

immune cells. Hereby, ILCs play a putative role. With their secreted cytokines, they 

contribute to inflammation and can in turn facilitate tumor growth and progression 

(Pasquale et al., 2021). 

 

1.3 Innate lymphoid cells and their plasticity 

 

The ILC family is part of the innate immune system and is comprised of several subtypes 

with distinct functions. These include NK cells, which have cytolytic abilities against  

virus-infected cells, and were first identified in 1975 (Herberman et al., 1975; Kiessling et 

al., 1975). In 1997, lymphoid tissue inducer (LTi) cells were identified and found to be 

involved in the formation of secondary lymphoid organs during fetal development (Mebius 

et al., 1997). Moreover, helper ILCs, which have three additional subsets, were initially 

described in 2008 (Cella et al., 2009; Cupedo et al., 2009; Neill et al., 2010; Satoh-

Takayama et al., 2008; Spits and Di Santo, 2011). In recent years, the understanding of 

helper ILCs has advanced through further research and refinement of their concept (Artis 

and Spits, 2015; Zhong et al., 2018). However, our understanding of helper ILCs is still 

limited as they are found in smaller numbers and in less accessible tissues compared to 

other lymphocyte subsets.  

Helper ILCs are commonly defined as being lineage (Lin)- cells (excluding myeloid, stem, 

NK, T and B cells) that express the interleukin (IL)-7 receptor α (Cluster of Differentiation 

(CD)127) (Spits et al., 2013). They  are located in peripheral tissues and abundant at 
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mucosal sites (Vivier et al., 2018). Thus, ILCs were initially thought to represent “tissue-

resident cells”, but further evidence has demonstrated that ILCs, much like other immune 

cells, have the ability to move between and within organs during periods of inflammation 

(Jacquelot et al., 2022). Their main role is to support early stages of innate immune 

response via the secretion of cytokines, which plays an important role in the immune 

response, inflammation, tissue homeostasis and repair (Saez et al., 2021; Vivier et al., 

2018). They have a lymphoid lineage, similar to NK, T, and B cells, and are characterized 

by their secretion of cytokines, similar to those produced by adaptive T cells. Therefore, 

helper ILCs are commonly referred to as the innate counterpart of T helper (Th) cells (Artis 

and Spits, 2015; Vivier et al., 2018). 

The ILC subsets include group 1 ILCs (ILC1), the innate counterpart of Th1 cells, which  

function as protection against intracellular pathogens (viruses) and tumors (Vivier et al., 

2018), group 2 ILCs (ILC2), which mimic Th2 cells and protect against parasites and 

allergens (Vivier et al., 2018) as well as group 3 ILCs (ILC3), the counterpart of Th17 cells, 

which help to prevent the entry of bacteria and fungi and to maintain the epithelial barrier 

together with DCs and macrophages (Vivier et al., 2018).  Although all three groups are 

considered to arise from the same ID2+ ILC precursor (ILCP), differences in transcription 

factors usage and dependency, expression of subtype-specific surface molecules, such 

as tyrosine-protein kinase ckit (CD117) and prostaglandin D2 receptor 2 (CRTH2) and 

specific cytokine secretion patterns allow for the clear characterization of each subset 

(Spits et al., 2013) (Fig. 4).  

 



20 

 
Fig. 4: Development of helper ILCs and their produced cytokines and functions. ILC 
develop from CLPs (Common lymphoid progenitor), CILPs (Common innate lymphoid 
progenitor), CHILPs (Common helper ILP) to ILCP (innate lymphoid cell progenitor). The 
ILC subsets arise from ILCPs and can be differentiated with their transcription factors, 
cytokines and functions. (adapted from Shi et al., 2022) 
 

ILC1s are a very heterogeneous group as they include NK cells, helper ILC1s and 

intraepithelial (ie) ILC1s (Cella and Robinette, 2021). Helper or CD127+ ILC1s have 

neither CD117 nor CRTH2 but express the T-box transcription factor TBX21 (T-bet) and 

secrete interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) after activation 

with IL-12, IL-18 and/or IL-15 (Artis and Spits, 2015; Spits et al., 2013). Although they 

share many characteristics with NK cells, they lack the ability to release granzyme and 

perforin, do not express eomesodermin (EOMES), and do not exhibit any or only minimal 

cytotoxic activity. IeILC1s are found within the ie cell surface and are commonly defined 

as CD127-, natural cytotoxicity triggering receptor 2 (NKp44)+ and integrin alpha E 

(CD103)+ (Cella and Robinette, 2021). They express T-bet and EOMES and sometimes 

secrete perforin and granzymes which still makes it difficult to differentiate them from NK 

cells (Cella and Robinette, 2021).  

ILC2s express the transcription factor GATA-binding protein 3 (GATA3) and retinoic acid 

related orphan receptor (ROR) alpha (Artis and Spits, 2015; Spits et al., 2013; Vivier et 



21 

al., 2018). Upon stimulation with IL-25, IL-33, thymic stromal lymphopoietin (TSLP) and/or 

tumor necrosis factor-like cytokine 1A (TL1A) ILC2s secrete IL-5, IL-4, IL-9, IL-13 and/or 

amphiregulin (AREG) (Artis and Spits, 2015; Spits et al., 2013; Vivier et al., 2018). They 

are commonly characterized by the expression of CRTH2 and display a high expression 

of killer cell lectin-like receptor B1 (KLRB1/CD161) and G1 (KLRG1) (Hazenberg and 

Spits, 2014; Mjösberg et al., 2011). 

ILC3s express CD117, depend on RORγt and produce typically IL-17A, IL-22, 

granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-8, IL-2, TNF-α and  

IFN-γ after stimulation with aryl hydrocarbon receptor (Ahr) ligands or IL-1β and IL-23 

(Artis and Spits, 2015; Spits et al., 2013; Vivier et al., 2018). ILC3s can be further 

subdivided by their NKp44 receptor expression. NKp44+ ILC3s induce the secretion of  

IL-22 and NKp44- ILC3s produce IL-17A (Artis and Spits, 2015; Hoorweg et al., 2012; 

Spits et al., 2013; Vivier et al., 2018).  

However, circulating NKp44- CD117+ ILCs express low levels of RORγt, do not secrete 

cytokines and can differentiate into a variety of ILC lineages so that they are better known 

as ILCPs (Lim et al., 2017). Multipotent ILCPs circulate in peripheral blood and can 

differentiate dependent on the local microenvironment of the tissues (Lim et al., 2017; Bal 

et al., 2016). This explains their heterogeneity in several tissues such as the low amount 

of ILC2s in the gut (Krämer et al., 2017) whereas they are more abundant in the lung 

(Grove et al., 2016) and skin (Bernink et al., 2019; Mjösberg et al., 2011). 

Mature ILC subsets within the tissue can also differentiate according to the local 

microenvironment and their plasticity is influenced by factors such as Ahr (Qiu et al., 

2013), notch ligands (Golub, 2021) and cytokines (Golebski et al., 2019).  

In-vitro studies have shown that tonsil NKp44- ILC3s can convert into ILC1s and NKp44+ 

ILC3s when exposed to IL-2 (Bernink et al., 2013). Human NKp44+ ILC3s can be 

converted to IFN-γ-producing ILC1-like cells in the presence of a cytokine milieu of  

IL-12, IL-15, and IL-18 (Fig. 5), as indicated by an upregulation of T-bet and  

down-regulation of RORγt (Bernink et al., 2015; Cella et al., 2019; Vonarbourg et al., 

2010). On the other hand, IL-1β and IL-23 have been shown to reverse the conversion of 

ILC1s to IL-22-producing NKp44+ ILC3s (Bernink et al., 2015; Cella et al., 2009). 
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Intermediates of ILC1s and ILC3s have been found in the intestinal mucosa, affirming the 

conversion (Cella et al., 2019). Moreover, in steady state conditions, ILC3s are increased 

in the colon, whereas under inflammatory conditions, ILC1s are increased, indicating a 

conversion from ILC3 to ILC1 (Bernink et al., 2015; Takayama et al., 2010; Lim et al., 

2017).  

 

Fig. 5: Plasticity of ILCs. ILC subsets can convert according to specific ligand signaling 
in all ILC subsets. (adapted from Saez et al., 2021) 
 

The conversion of NKp44+ ILC3s to NKp44- ILC3s has been established to be 

transforming growth factor beta 1 (TGF-β1) dependent in mice (Viant et al., 2016). The 

reversion can be induced by IL-23 and Notch signaling (Klose et al., 2013; Rankin et al., 

2013). In addition, changes in the microbiota may also be involved in the conversion of 

NKp44- ILC3s to NKp44+ ILC3s. 

ILC2s also exhibit plasticity and can convert into ILC1s and ILC3-like cells when exposed 

to IL-25 (Colonna, 2018; Huang et al., 2015). Additionally, IL-1β, IL-23, and TGF-β have 

been shown to induce the transformation of ILC2s into ILC3s or ILC3-like cells (Bernink 

et al., 2019; Golebski et al., 2019), which is dependent on Notch signaling (Zhang et al., 

2017) and Ahr (Li et al., 2018). Moreover, both human and mouse ILC2s have been 

demonstrated to convert into ILC1-like cells which secrete IFN-γ in response to IL-12 and 

IL-1β (Lim et al., 2016; Ohne et al., 2016; Silver et al., 2016; Colonna, 2018). However, it 
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remains unclear whether ILC1s and ILC3s can be converted to ILC2s via cytokines such 

as IL-4 (Bal et al., 2016; Golebski et al., 2019).  

The high plasticity of mature helper ILCs enables them to rapidly adapt to changes in the 

local microenvironment, allowing them to quickly respond to inflammatory signals. 

Nevertheless, further research is required to comprehend the impact of ILC plasticity in 

inflammatory disorders and diseases, such as cancer. 

 

1.4 Innate lymphoid cells in intestinal homeostasis and inflammatory diseases 

 

ILCs are crucial for the immune response, inflammatory processes and protection against 

pathogens at mucosal sites (Saez et al., 2021; Vivier et al., 2018). They are important 

players in maintaining the intestinal homeostasis, where they increase in frequency from 

the human upper to the lower GI tract (Krämer et al., 2017). In the upper GI tract, ILC1s 

are the dominant group, whereas in the ileum and colon ILC3s are more abundant 

(Krämer et al., 2017; Saez et al., 2021). ILC2s are hardly found in the adult gut (Krämer 

et al., 2017; Saez et al., 2021). The major function of ILCs is the secretion of cytokines 

(Marafini et al., 2015). To protect the intestinal barrier against pathogens and tissue 

damage, ILCs are activated by cytokines and alarmins of epithelial cells and other innate 

immune cells to maintain the intestinal homeostasis (Ignacio et al., 2017).  

ILC1s are known to protect against intracellular pathogens such as viruses and tumors by 

producing the pro-inflammatory cytokines IFN-γ and TNF-α, thereby triggering an immune 

response (Fuchs, 2016; Coman et al., 2022). Additionally, they also help in inflamed 

intestinal tissue by secreting TGF-β1 to expand epithelial crypts and drive intestinal 

epithelial remodeling (Jowett et al., 2021). Although the interaction of ILC1s with the 

commensal microbiome is only incompletely understood, data obtained in mouse studies 

suggest that T-bet is upregulated by the microbiota and important for the interplay 

between DCs, ILC1s and the microbiota (Klose et al., 2013; Powell et al., 2012; Saez et 

al., 2021). ILC1s also have the capability to protect against bacteria such as Clostridium 

difficile and Toxoplasma gondii  to maintain tissue homeostasis (Gury-BenAri et al., 2016).  
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Despite their low frequency at intestinal mucosal sites in humans, ILC2s have a variety of 

functions in mice. Their most prominent function is protecting the intestines against 

helminths by secreting cytokines such as IL-13 (Moltke et al., 2016). This cytokine is 

produced in response to IL-25 secreted by tuft cells in the epithelial layer, which results in 

increased goblet and tuft cells and the removal of parasites through mucus (Moltke et al., 

2016; Gerbe et al., 2016; Schneider et al., 2018). Additionally, ILC2s produce and secrete 

AREG, which can trigger epidermal growth factor receptor (EGFR) signaling of regulatory 

T (Treg) cells to enhance their immunosuppressive potential (Zaiss et al., 2013; Luo and 

Villablanca, 2021). Together with the enteric nervous system, ILC2s also play a role in 

achieving intestinal immune homeostasis (Xu et al., 2019). 

ILC3s are activated by IL-23 and IL-1β secreted by DCs and macrophages in the LP, 

which triggers the secretion of IL-22, IL-17A and GM-CSF. IL-22-producing ILC3s protect 

intestinal stem cells from tissue damage by activating stem cell proliferation, thereby 

increasing the epithelial barrier function (Zeng et al., 2019; Sonnenberg et al., 2012; 

Hanash et al., 2012). They prevent the dissemination of commensal bacteria into the 

intestinal lumen which normally results in systemic inflammation (Zeng et al., 2019; 

Sonnenberg et al., 2012; Hanash et al., 2012). To further help maintaining intestinal 

homeostasis, their cytokines activate paneth cells to produce AMPs which kill pathogens 

(Guo et al., 2014). Through the expression of their histocompatibility complex class II, they 

interact with CD4+ T cells to regulate the adaptive immune response and the commensal 

bacteria (Hepworth et al., 2013). IL-17A produced by ILC3s protects the intestinal barrier 

by regulating tight junctions (Lee et al., 2015). Additionally, IL-17A recruits neutrophils to 

inflammatory sites to promote the immune response (Flannigan et al., 2017).  

The dysregulation of intestinal ILCs has been linked to the development of several 

diseases such as inflammatory bowel diseases (IBD) (Forkel and Mjösberg, 2016; Chuang 

et al., 2022; Saez et al., 2021), autoimmune diseases (celiac disease) (Marafini et al., 

2015) and food allergies (Pasha et al., 2019). During chronic intestinal inflammation, 

microbial dysbiosis can lead to an excessive production of pro-inflammatory cytokines 

such as IL-12, IL-18, IL-23 and IL-1β secreted by inflammatory DCs and macrophages 

(Geremia and Arancibia-Cárcamo, 2017). This in turn activates and increases subsets of 

ILCs which secrete high levels of IFN-γ and IL-17A (Geremia and Arancibia-Cárcamo, 
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2017). The high amount of these ILC-derived cytokines stimulates the recruitment of 

additional inflammatory cells such as neutrophils and exacerbates the chronic nature of 

inflammation and tissue damage. Increased levels of IFN-γ and TNF-α secreted by ILC1s 

is considered to increase the permeability of the intestinal epithelial cell barrier, thus 

allowing bacterial entry and further promoting inflammation (Ganal-Vonarburg and Duerr, 

2020; Bernink et al., 2013).  A lack of protection by decreased ILC3s in the colon of IBD 

patients may contribute to the development of IBD (Ganal-Vonarburg and Duerr, 2020; 

Bernink et al., 2013). High levels of IL-33 have been shown to be a contributing factor to 

the development of food allergies, as it promotes the expansion and activation of ILC2s, 

which in turn produce high concentrations of IL-4 and suppress Treg cell activity (Noval 

Rivas et al., 2015). 

Also in other tissue compartments such as the pulmonary system (Grove et al., 2016; Hsu 

et al., 2021) and the skin (Zhou et al., 2020), ILCs have been shown to play a major role 

in inflammatory diseases, albeit with different functions that depend on the local 

microenvironment.  

This highlights the complex nature of ILCs which can demonstrate plasticity depending on 

the particular microenvironments within the body. This plasticity can give rise to either 

protective or pathogenic functions during inflammatory diseases. Furthermore, 

inflammatory states, such as in patients with IBD, have been linked to an increased risk 

of developing CRC. It is likely that the tumor microenvironment (TME) also contributes to 

modulating ILC plasticity and function, potentially leading to tumor progression. 

 

1.5 ILCs in cancers 

 

The initiation of cancer is induced by sporadic (external factors) or hereditary mutations in 

tumor suppressor genes leading to abnormal cell growth. The cellular and molecular 

elements surrounding the tumor, known as the TME, are essential for the growth and 

spread of cancer. The TME is a complex system consisting of tumor cells, stromal cells, 

blood vessels, immune cells and extracellular matrix (Anderson and Simon, 2020). In the 

TME, the cells communicate with each other through secretion of cytokines in a 

dysregulated manner (Elsawa et al., 2011; Landskron et al., 2014; Borowczak et al., 2022; 
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Li et al., 2020a). Immune cells can detect these tissue changes and eliminate abnormal 

cells in a process called immunosurveillance (Warner et al., 2022). However, nowadays 

the process is rather divided, with immune cells acting as pro- or anti-tumor effectors that 

either promote or inhibit tumor progression (Elsawa et al., 2011; Landskron et al., 2014; 

Borowczak et al., 2022; Li et al., 2020a). The role of T and NK cells in tumor suppression 

and their anti-tumorigenic effects are well established; in contrast, less is known about the 

role of ILCs in this regard and cannot be definitively classified as either pro- or anti-

tumorigenic. This may be due to their ability to rapidly adapt to changing conditions, such 

as the local cytokine microenvironment, and their ability to alter their phenotype and 

cytokine production in response to changes in the TME. However, recent research has 

emphasize the significant role of ILCs in determining the TME and affecting the genesis 

and spread of cancer (Atreya et al., 2019; Bruchard and Spits, 2022; Wang et al., 2020a).   

In order to effectively combat tumor growth and eliminate cancer cells, immune cells must 

migrate to the tumor. Studies have indirectly demonstrated that ILCs are able to migrate 

to tumors, as increased levels of ILCs have been detected in peripheral blood of cancer 

patients (Loyon et al., 2019; Bie et al., 2014; Weerdt et al., 2016). It is also likely that ILCs 

expand or convert in the TME as increased numbers of ILC subsets have been observed 

in several cancers such as breast and GI cancer (Salimi et al., 2018), lung cancer (Carrega 

et al., 2015) hepatocellular carcinoma (HCC) (He et al., 2022) and CRC (Carrega et al., 

2020; Goc et al., 2021). The underlying mechanism by which ILCs expand in the TME 

remains elusive (Jacquelot et al., 2022). However, the increased ILCs may be either 

present due to the recruitment of ILCs to the tumor, or the expansion or conversion in 

another subset within the tumor which has yet to be explored (Ducimetière et al., 2019). 

Normally, ILC1s would rather be anti-tumorigenic eliminating cancer cells with IFN-γ and 

TNF-α but in several carcinomas such as HCC, ILC1s exhibit an impaired 

immunosurveillance function due to decreased ILC1s (He et al., 2022). In other cancers, 

their frequency were found to be increased such as in peripheral blood mononuclear cells 

(PBMCs) and tumor-infiltrated lymph nodes of melanoma patients (Ercolano et al., 2020) 

and CRC tissues (Carrega et al., 2020; Qi et al., 2021; Goc et al., 2021) but exhibited an 

impaired cytokine secretion ability. This impaired immunosurveillance function is thought 

to contribute to the observed pro-tumorigenic role of ILC1s. In CRC, studies have reported 
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a conversion of ILC3s into ILC1s (Cella et al., 2019; Goc et al., 2021). Furthermore, Goc 

et al. (2021) demonstrated that the decrease in ILC3s reduced the interaction with T cells 

and promoted tumor development. This highlights the plasticity of ILCs in the TME. 

However, depending on the cancer and the TME, ILC1s can also be anti-tumorigenic 

(Dadi et al., 2016; Kansler et al., 2022). ILC1-mediated cytotoxicity against tumor cells 

has been demonstrated in chromophobe renal cell carcinoma, and it has been found that 

this cytotoxicity is reliant on the production of IL-15 by the tumor cells (Kansler et al., 

2022). In a mouse model of mammary tumors, ILC1s infiltrating tumors have been found 

to exhibit direct tumor-killing activity by producing high levels of granzyme B (Dadi et al., 

2016).  

In certain types of cancer, such as breast, gastric cancer (Salimi et al., 2018), CRC (Jou 

et al., 2022), PBMCs of acute promyelocytic leukemia patients (Trabanelli et al., 2017) 

and non-small cell lung cancer (Shen et al., 2021), ILC2s have been found to increase in 

number, and their presence has been linked to poor prognosis and survival. ILC2s 

together with myeloid-derived suppressor cells have also been shown to impair the anti-

tumor response (Jou et al., 2022). Accordingly, ILC2 have been found to suppress NK 

cell-mediated anti-tumor immunity, leading to increased lung metastases and mortality 

(Schuijs et al., 2020). On the other hand, ILC2s have been found to possess anti-tumor 

functions through their interaction with eosinophils (Ikutani et al., 2012; Jacquelot et al., 

2021), and CD8+ T cells. For instance, in a mouse model of melanoma, ILC2s were found 

to inhibit tumor growth by recruiting CD8+ T cells via IL-33, which contributed to tumor 

suppression (Okuyama et al., 2022).  

As mentioned earlier, ILC3s have pro-tumorigenic effects in CRC by inhibiting anti-tumor 

T cell response (Carrega et al., 2020; Goc et al., 2021). Additionally, squamous cell 

carcinoma (SCC) is associated with a conversion of ILC1s to ILC3s leading to tumor 

progression (Koh et al., 2019). Similarly, in HCC, a conversion of ILC1s to NKp44- ILC3s 

has been reported and linked to the development of HCC in mice (Liu et al., 2019). 

Moreover, in a mouse model of IBD, it was found that IL-22-producing ILC3s promote 

bacteria-induced CRC (Kirchberger et al., 2013). However, ILC3s have also been shown 

to have anti-tumorigenic effects. For instance, in a mouse model of skin cancer, IL-12 

initiated local anti-tumor immunity by stimulating ILC3s (Eisenring et al., 2010). 
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Furthermore, in lung cancer, ILC3s have been demonstrated to migrate to tumors, inhibit 

tumor growth via chemokine ligand 20 and IL-1β which leads to the recruitment of anti-

tumor immune cells (Bruchard et al., 2022) and contribute to the formation of protective 

tumor-associated tertiary lymphoid structures (Carrega et al., 2015). 

Thus, the exact role of ILCs in tumorigenesis is likely to be complex and may vary 

depending on the specific type of cancer, the stage of disease, and the tumor 

microenvironment. Further research is needed to fully understand the role of ILCs in 

cancer and to develop effective immunotherapies targeting these cells. 

Unfortunately, there is not much known regarding the phenotype and function of ILCs in 

upper GI cancers and even less is known about their role in hereditary GI cancer 

syndromes such as FAP. Although some mouse data has indicated the importance of 

ILCs in upper intestinal adenoma formation (Chen et al., 2019b), and IL-17A production 

in a FAP mouse model (APCmin/+ mice) has been suggested to promote tumor growth 

(Chae et al., 2010; Chae and Bothwell, 2015), this increase in IL-17A production was not 

observed by another group (Agüera-González et al., 2017). 

 

1.6 Aim  

 

The mechanisms underlying the development of duodenal adenomas in FAP patients are 

still incompletely understood. However, the lack of a clear genotype-phenotype correlation 

indicates that factors other than the genotype play a role here. Given the increasing body 

of evidence suggesting a link between the local immune system and various aspects of 

tumor development, progression, and treatment outcomes, this study aimed to thoroughly 

characterize the immune cell infiltrate in the duodenum of patients with FAP and to 

determine the underlying regulatory mechanisms with the overall goal to explore the 

potential role of the duodenal immune response in the development of duodenal 

adenomas in FAP patients. 
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2. Material and methods 
  

2.1 Material 

2.1.1 Devices 

Tab. 2: Used devices for sample processing and data analysis. 
Device Manufacturer 

Centrifuge 5810R Eppendorf AG 

CO2-Incubator Forma Thermo Fisher Scientific  

FACSAriaTM Fusion BD Biosciences 

FACSCantoTM II BD Biosciences 

Light microscope DM IL Leica Microsystems GmbH 

LightCycler® 96 Real-Time PCR System Roche 

LSR FortessaTM BD Biosciences 

Multipipette plus Eppendorf AG 

NanoDrop™ 1000 Thermo Fisher Scientific 

NovaSeq 6000 sequencer Illumina 

pH-Meter Portamess 911  Knick Elektronische Messgeräte GmbH 

Pipettes (1000, 200, 100, 10 μL) Eppendorf AG 

Pipetus® Hirschmann Laborgeräte GmbH 

Rotator stator homogenizer Bandelin electronic 

Safety cabinet Gelaire Flow Laboratories GmbH 

sterile workbench  Renggli AG 

TapeStation System 4200 Agilent 

Vortex-Genie 2  Scientific Industries 

Water bath Köttermann Labortechnik 
 

2.1.2 Consumables 

Tab. 3: Consumables used in this study. 
Material Manufacturer 

1.5 ml reaction vials Sarstedt AG 

70 µm Nylon cell strainer Corning® 
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Cell culture flasks (25, 75 cm2) Greiner Bio-One 

Cell scraper Sarstedt AG 

Cell culture plates CellStar® (6, 12, 24, 48, 
96 Well)  

Greiner Bio-One 

CellStar® tubes (50, 15 mL) Greiner Bio-One 

Cryovials CryoPure Sarstedt AG 

FACS tubes Sarstedt AG 

Nalgene® disposable filtration system Thermo Fisher Scientific 

Pasteur pipettes Brand® 

Pipette tips (1000, 200, 100, 10 μL) Greiner Bio-One 

Pipettes CellStar® for Pipetus® Greiner Bio-One 

96-well PCR microplate STARLAB International GmbH 

 

2.1.3 Reagents 

Tab. 4: Reagents used in this study. 
  Cat. Nr. Manufacturer 

2-Mercaptoethanol M6250-100ML Sigma Aldrich® 

Antibiotic-Antimycotic 15240062  
 

GibcoTM 

Advanced DMEM/F12 12634-010 GibcoTM 

Ascorbic acid A1300000  
 

European 
Pharmacopoeia 

Bovine serum albumin (BSA)  A9418 Sigma Aldrich® 

Brefeldin A (BFA)  BML-G405 Enzo Life Sciences  

Ca++/Mg++-free Hanks Balanced 
Salt Solution (10x HBSS) 

21765029 GibcoTM 

Cell Recovery Solution 354253 CorningTM 

Collagenase Type IV LS004189 Worthington® 

DMEM 41965-039 GibcoTM 

Dimethyl sulfoxide (DMSO) A3672 AppliChem GmbH 

Dithiothreitol (DTT)  10708984001 Sigma Aldrich® 

10x DPBS (without Ca++/Mg++) P04-53500 PANBiotech 

Ethanol A1613 AppliChem GmbH  
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ethylenediaminetetraacetic acid 
(EDTA) 

A3145 AppliChem GmbH 

Fetal Bovine Serum (FBS)  Sigma Aldrich® 

Gentamicin G2023 USBiological 

Gentle Cell Dissociation Reagent 
(GCDR) 

100-0485 STEMCELLTM 
Technologies 

Goat serum S26 Sigma-Aldrich® 

Ham’s F-12 Nutrient Mix 21765029 GibcoTM 

HEPES 90909C Sigma-Aldrich® 

Hoechst 33342 Fluorescent Stain 62249 Thermo Fisher 
Scientific 

HS-Nuclease  GE-NUC10700 MoBiTec  

Human AB serum H3667-100ML Sigma Aldrich® 

Human serum albumin (HSA) 001052-31826  
 

CSL Behring 

IntestiCult™ Organoid Growth 
Medium (OGM) (human)  

6010 STEMCELLTM 

Technologies 

Ionomycin 9995 Cell Signaling 
Technology  

Matrigel® Matrix 356237 CorningTM 

N-acetyl cysteine (NAC) A7250 Sigma-Aldrich® 

Pancoll, human P04-601000 PanBiotecTM 

Paraformaldehyde (PFA)  158127 Merck KGaA  

Penicillin-Streptomycin (P/S) P06-07050 PanBiotecTM 

Phorbol-12-myristat-13-acetat 
(PMA) 

9905 Cell Signaling 
Technology  

Phosphate-buffered saline (PBS) 18912014 GibcoTM 

ProlongTM Gold antifade reagent P36930 InvitrogenTM 

RPMI-1640 21875034 GibcoTM 

Sodium azide 26628-22-8 Merck KGaA 

Sodium selenite S5261-10G Sigma-Aldrich®, USA 

Triton-X 9036-19-5 Merck KGaA 

TrueBlack® Lipofuscin 23007 Biotium 
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2.1.4 Antibodies 

Tab. 5: List of antibodies used for flow cytometric analysis. 
Antigen Conjugate Clone Cat.-Nr. Manufacturer 

CD103 AF700 Ber-ACT8 NBP1-9756-
4AF700 

NovusTM 

CD117 (ckit) PE/Vio615 REA787 130-111-598 Milteny Biotec 

CD117 (c-kit) PE/Cy7 104D2 313212 BioLegend® 

CD123 FITC 6H6 306014 BioLegend® 

CD127 (IL-7Ra) BV605 A019D5 351334 BioLegend® 

CD127 (IL-7Ra) BUV737 HIL-7R-M21 612794 BD 
Biosciences 

CD14 FITC M5E2 301804 BioLegend® 

CD161 APC/Cy7 HP-3G10 339928 BioLegend® 

CD19 FITC HIB19 302206 BioLegend® 

CD1a FITC HI149 300104 BioLegend® 

CD20 FITC 2H7 302304 BioLegend® 

CD200R BV421 OX-108 329314 BioLegend® 

CD294 (CRTH2) BV711 BM16 350124 BioLegend® 

CD294 (CRTH2) PerCP-Cy5.5 BM16 350116 BioLegend® 

CD294 (CRTH2) BV421 BM16 562992 BD 
Biosciences 

CD3 FITC UCGT1 300406 BioLegend® 

CD303 (BDCA-2) FITC AC144 130-113-192 Milteny Biotec 

CD336 (NKp44) BV786 P44-8 744304 BD 
Biosciences 

CD336 (NKp44) APC P44-8 325109 BioLegend® 

CD336 (NKp44) PerCP-Cy5.5 P44-8 325114 BioLegend® 

CD34 FITC 581 343504 BioLegend® 

CD4 FITC OKT4 317408 BioLegend® 

CD4 BV805 SK3 612887 BD 
Biosciences 

CD4 PE-Cy7 RPA-T4 300512 BioLegend® 

CD45 BUV395 HI30 563792 BD 
Biosciences 

CD45 BV805 HI30 564914 BD 
Biosciences 
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CD49a  PerCP/eFluo
r710 

TS2/7 46-9490-42 eBioscienceTM 

CD5 FITC UCHT2 300606 BioLegend® 

CD5 BV805 L17F12 748492 BD 
Biosciences 

CD56 BUV563 NCAM16.2 612928 BD 
Biosciences 

CD8a FITC REA734 130-110-677 Milteyi Biotec 

CD94 FITC DX22 305504 BioLegend® 

CD94 BV737 HP-3D9 748787 BD 
Biosciences 

CD94 FITC HP-3D9 555888 BD 
Biosciences 

CD94 APC-Vio770 REA113 130-101-146 Milteyi Biotec 

EOMES eFluor660 WD1928 50-4877-42 eBioscienceTM 

FcεR1α FITC AER-37 (CRA-1) 334608 BioLegend® 

FCR Block     130-059-901 Milteny Biotec 

GATA3 BUV395 L50-823 565448 BD 
Biosciences 

IFN-y PE/Dazzle 
594 

4S.B3 502545 BioLegend® 

IFN-y BV421 4S.B3 502532 BioLegend® 

IL-13 PE JES10-5A2 501903 BioLegend® 

IL-17A PerCP-Cy5.5 BL168 512314 BioLegend® 

IL-17A PE BL168 512306 BioLegend® 

IL-2 BV650 MQ1-17H12 500334 BioLegend® 

IL-22 APC IL22JOP 17-7222-82  InvitrogenTM 

IL-8 PE/Cy7 E8N1 511416 BioLegend® 

IL-8 PE E8N1 511408 BioLegend® 

IL1R1 PE  FAB269P-
100 

R&D Systems® 

KLRG1 (MAFA) BV421 SA231A2 367706 BioLegend® 

NKp80 PE/Vio770 4A4.D10 130-105-068 Milteny Biotec 

NKp80 FITC 4A4.D10 130-094-843 Milteny Biotec 

NKp80 APC/Vio770 REA845 130-112-593 Milteny Biotec 

NKp80 PE REA845 130-112-590 Milteny Biotec 
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RORyt PE AFKJS-9 12-6988-82 eBioscienceTM 

RORyt BV421 Q21-559 563282 BD 
Biosciences 

T-bet BV711 O4-46 563320 BD 
Biosciences 

TCRαβ FITC IP26 306706 BioLegend® 

TCRγδ FITC B1 331208 BioLegend® 

TNF-α BV785 MAb11 502948 BioLegend® 

Isotype controls:     

 APC eBR2a 17-4321-81 eBioscienceTM 

 BV421 MOPC-21 400158 BioLegend® 

 BV711 X40 563044 BD 
Biosciences 

 BUV395 X40 563547 BD 
Biosciences 

 PE eBR2a 12-4321-80 eBioscienceTM 

 

Tab. 6: List of used antibodies for immunofluorescence and blocking. 
Antibody Host Class Conc. / 

Dilution 
Cat. Nr. Manufacturer 

anti-Epcam mouse  Monoclonal 5 µg/ml MA1-10196 InvitrogenTM 

anti-Duox2 rabbit Polyclonal 5 µg/ml NB110-61576SS NovusTMBiologicals 

anti-

Lysozyme 

rabbit Polyclonal 5 µg/ml NBP2-61118 NovusTMBiologicals 

anti-Muc2 rabbit Monoclonal 5 µg/ml MA5-32654 Thermo Fisher 

Scientific 

anti-IL-17A goat Polyclonal 2 µg/ml AF-317-SP R&D Systems® 

anti-NKp46 goat Polyclonal 2 µg/ml AF-1850 R&D Systems® 

anti-mouse 

AF488  

donkey Polyclonal 4 µg/ml ab150105 abcam 

anti-rabbit 

AF555 

donkey Polyclonal 4 µg/ml ab150070 abcam 
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2.1.5 Oligonucleotides 

Tab. 7: List of primers used for qRT-PCR. (Fw = forward, Rev = reverse) 
Gene Fw Primer 5’-3’ Seq Rev Primer 5’-3’ Seq 

CAPN8 GACTTCCAGGAGAACTATGCGG TCCGAGTGTAGGAAGAGCAGCT 

CDH3 CAGGTGCTGAACATCACGGACA CTTCAGGGACAAGACCACTGTG 

CEMIP ACCGAGCACATTCCAACTACCG GGCAGAGATGATTGAGAGGAACG 

DL1 GATTCTCCTGATGACCTCGCA TCCGTAGTAGTGTTCGTCACA 

DL4 GTCTCCACGCCGGTATTGG CAGGTGAAATTGAAGGGCAGT 

DUOX2 CTGGGTCCATCGGGCAATC GTCGGCGTAATTGGCTGGTA 

DUOXA2 AACGGCGTACTGCCTTTTTAC GAGAAGAACTCTCACCAACCAAA 

EEF1A1 CCG TTC TTC CAC CAC TGA TT CTT TGG GTC GCT TTG CTG TT 

IFNg GTATTGCTTTGCGTTGGACA GAGTGTCGAGACCATCAAGGA 

IL12A TGCCTTCACCACTCCCAAAACC CAATCTCTTCAGAAGTGCAAGGG 

IL13 TTTCGCGAGGGACAGTTC CAAGGGGAAGGCTGAGGT 

IL15 CCATCCAGTGCTACTTGTGTTTA

CTT 

CCAGTTGGCTTCTGTTTTAGGAA 

IL17A CGG ACT GTG ATG GTC AAC 

CTG A 

GCA CTT TGC CTC CCA GAT CAC 

A 

IL18 ACTGGTTCAGCAGCCATCTT TGCAGTCTACACAGCTTCGG 

IL1B GAA GCT GAT GGC CCT AAA CA AAG CCC TTG CTG TAG TGG TG 

IL2 CCAAGAAGGCCACAGAACTGA AATGGTTGCTGTCTCATCAGC 

IL22 CTC TGG ATA TGC AGG TCA 

TCA C 

AGT GCT GTT CCC TCA ATC TG 

IL23A CTC AGG GAC AAC AGT CAG 

TTC 

ACA GGG CTA TCA GGG AGC A 

IL33 AAG GCA AAG CAC TCC ACA GT CAA AGA AGT TTG CCC CAT GT 

IL4 CCAACTGCTTCCCCCTCTG TCTGTTACGGTCAACTCGGTG 

IL5 TGGAGCTGCCTACGTGTATG TTCGATGAGTAGAAAGCAGTGC 

IL8 AAA TTT GGG GTG GAA AGG TT TCC TGA TTT CTG CAG CTC TGT 

KI67 TCCTTTGGTGGGCACCTAAGAC

CTG 

TGATGGTTGAGGTCGTTCCTTGA

TG 
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KRT7 TCCGCGAGGTCACCATTAAC GCTCTGTCAACTCCGTCTCAT 

LGR5 CCTGCTTGACTTTGAGGAAGAC

C 

CCAGCCATCAAGCAGGTGTTCA 

LYZ TCAATAGCCGCTACTGGTGTA ATCACGGACAACCCTCTTTGC 

MUC-2 GGAGATCACCAATGACTGCGA GAATCGTTGTGGTCACCCTTG 

S100P CTCAAGGTGCTGATGGAGAAGG GAACTCACTGAAGTCCACCTGG 

TGFb1 TGGCGATACCTCAGCAACC CTCGTGGATCCACTTCCAG 

TL1A CACATACCTGCTTGTCAGCC TGTGAAGGTGCAAACTCCTG 

TNFa CTCTTCTGCCTGCTGCACTTTG ATGGGCTACAGGCTTGTCACTC 

TSLP ATG TTC GCC ATG AAA ACT 

AAG GC 

GCG ACG CCA CAA TCC TTG TA 

TSPAN1 TGCTGTGGTCGCCTTGGTGTAC TGGTGAAGCCACAGCACTTGAG 

 

2.1.6 Kits 

Tab. 8: List of used Kits. 
Kits Manufacturer 

Blue S’ Green qPCR Kit Biozym® 

Cytofix/Cytoperm™ Fixation/Permeabilization Kit BD Bioscience 

eBioscience™ Foxp3 / Transcription Factor Staining 
Buffer Set 

InvitrogenTM 

GeneJet RNA Purification Kit Thermo Fisher Scientific 

LEGENDplex™ Human Th Cytokine Panel kit Biolegend® 

QuantiTect® Reverse Transcription Kit Qiagen 

Zombie Aqua™ Fixable Viability Kit Biolegend® 

 

2.1.7 Cytokines 

Tab. 9: Used human recombinant cytokines. 
Cytokines Cat. Nr. Manufacturer 

IL-1β 11340015 Immunotools 

IL-2 130-097-743 Miltenyi Biotec 

IL-22 11340223 Immunotools 

IL-23 11340233 Immunotools 
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IL-17A 570504 Biolegend® 

IL-7 130-095-367 Miltenyi Biotec 

IL-8 11349084 Immunotools 

TNF-α 11343015 Immunotools 

 

2.1.8 Buffer and media 

Tab. 10: Preparation of used buffers and cell culture media. 
Buffer/Medium Component 

10x NAC 1.25 g NAC in 1x HBSS (pH 7.4) 

Antibody buffer 1 % BSA, 0.05 % Triton-X, 0.04 % sodium acid in 1x DPBS 

Blocking buffer 5 % goat serum, 1 % BSA, 0.1 % Triton-X, 0.04 % sodium acid in 
1x DPBS 

Cell culture 
Medium (cRPMI)  

10 % FBS, 1 % P/S in RPMI1640 

Digestion Medium 100 U/ml Collagenase Type IV, 25 U/ml HS-Nuclease in cRPMI 

DMEM + 1 % BSA 15 mM HEPES, 1 % BSA in Advanced DMEM/F12 

Freezing Medium 10 % DMSO in cRPMI 

NAP buffer 7.44 g EDTA, 7.35 g sodium citrate trisodium salt dihydrate, 700 g 
ammonium sulfate in H2O (pH 5.2) 

OP9 Medium 10 % FBS, 1 % P/S in DMEM 

OP9 
Differentiation 
Medium 

10 % human AB serum, 1 % Antibiotic-antimycotic, 20 mg/ml 
ascorbic acid, 0.05 mg/ml sodium selenite, 24 mM  
2-mercaptoethanol in Ham’s F12 Nutrient Mix  
 

Organoid Growth 
Medium (OGM) 

50 µg/ml gentamycin in OGM Human Basal Medium with organoid 
supplement (1:1) 
 

Pre-Digestion 
Medium 

154 µg/ml DTT, 5 mM EDTA, 0.25 % 1x NAC, 1 % P/S in 1x HBSS 

Thawing Medium 25 U/ml HS-Nuclease in cRPMI 

 

2.1.9 OP9/OP9-DL1/OP9-DL4 stromal cells  

 

OP9, OP9 expressing Notch ligand Delta-like (DL) 1 and OP9 expressing Notch ligand 

DL4 were kindly provided by Prof. Dr. Marcus Uhrberg, Prof. Dr. Juan Carlos Zuniga-

Pflucker and Prof. Dr. Diefenbach (Mohtashami et al., 2013). 
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2.1.10 Human Samples 

 

For this study, 20 - 35 ml of heparinized whole blood was taken from FAP and non-FAP 

patients by the Gastroenterology-Hepatology outpatient clinic and the Immunology 

outpatient clinic of the Medical Clinic and Polyclinic I of the University Hospital Bonn. All 

subjects underwent esophagogastroduodenoscopy and colonoscopy for adenoma and 

cancer screenings. Duodenal and colonic normal and adenomatous mucosa from FAP 

patients were collected (Tab.11). Normal mucosa was obtained from non-FAP patients 

who served as controls. Tonsils were obtained from Medical Clinic and Polyclinic for 

Otolaryngology after tonsillectomy. All patients signed an informed consent form for the 

use of the patient material for scientific testing purposes. The study had been approved 

by the local ethics committee of the Medical Faculty, University of Bonn (079/13, 040/16, 

and 493/20). All research was performed in accordance with both the Declarations of 

Helsinki and Istanbul. 

Tab. 11: Patient characteristic.   
non-FAP patients FAP patients 

Duodenal tissue: 35 90 

Spigelman stage (0-IV):     

SS 0   11 

SS I   19 

SS II   19 

SS III   27 

SS IV   12 

Duodenal Adenoma   22 

Colonic tissue 20 30 

Colonic Adenoma  19 

PBMCs 15 37 

Tonsil 3  
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2.2 Methods 

 

2.2.1 Isolation of intestinal lymphocytes  

 

According to established protocols, intestinal lymphocyte isolation was carried out from 

macroscopically normal and adenomatous intestinal tissue samples obtained during 

routine endoscopy (Bernink et al., 2013; Krämer et al., 2017). The tissue samples were 

treated with pre-digestion medium (Tab. 10) for 45 min at 37°C to remove epithelial tight 

junctions and mucus. After centrifugation (3 min, 50 g), the supernatant was collected, 

and tissue samples were then treated with digestion medium (Tab. 10) at 37°C for 60 min. 

After being filtered through a 70 µm nylon cell strainer using a cell scraper, the 

intraepithelial cells from the collected supernatant were combined with the lamina propria 

cells. The samples were then pre-frozen in in a polystyrene tray at -80°C using 0.5 ml 

freezing medium (Tab. 10) and cooled down at a rate of 1°C/min. After 24 h, the cells were 

moved to -150°C for long-term preservation until used for phenotypic and functional flow 

cytometric analysis or ILC sorting on OP9 feeder cells. 

 

2.2.2 Isolation of PBMCs 

 

Using density gradient centrifugation, peripheral blood mononuclear cells (PBMCs) were 

isolated from fresh, heparinized blood. Heparinized, diluted whole blood was applied on 

top of Pancoll. The interphase containing lymphocytes was collected after centrifugation 

at 1000 g for 15 min without a pause. The lymphocytes were PBS washed, then pelleted 

at 500 g for 10 min with a pause. The cells were frozen as biopsies and used for 

phenotypic and functional flow cytometric analysis. 

 

2.2.3 Isolation of tonsil lymphocytes 

 

For isolation of tonsil lymphocytes, tonsils were cut into small pieces and squeezed 

through a stainless-steel mesh. Single lymphoid cells were isolated using Pancoll gradient 
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centrifugation as PBMCs. Similar to intestinal lymphocytes, the cells were frozen and used 

for ILC sorting for further experiments with OP9 stromal cells. 

 

2.2.4 Thawing of cells 

 

Thawing of lymphocytes was performed at 37°C in the water bath for 1-2 min until the ice 

crystals were dissolved. The thawed cell suspension was added to a 15 ml falcon and 

thawing medium was gradually added in drips until the dimethyl sulfoxide (DMSO) 

concentration was at least diluted by <0.1 %. The cell suspension was centrifuged  

(350 g, 10 min) to remove the freezing and thawing medium. Cells were maintained in 

cRPMI (Tab. 10) for further experiments. 

 

2.2.5 Cell stimulation for intracellular staining 

 

To stimulate lymphocytes of intestinal biopsies or PBMCs, approx. 200000 cells were 

incubated in 48 well plates in 500 µl cRPMI (Tab. 10). PMA (50 ng/ml) and Ionomycin  

(1 µg/ml) (P/I) were appended to the culture to measure their overall functional capacity. 

After 1 h, Brefeldin A (BFA) was added to perform a flow cytometric analysis of cytokine 

production. Unstimulated cells were used as controls. 

 

2.2.6 Cultivation of OP9, OP9-DL1 and OP9-DL4 feeder cells 

 

OP9 stromal cells, OP9 expressing Notch ligand delta-like (DL) 1 or DL4 (OP9-DL1, OP9-

DL4) derived from mouse bone marrow stromal cells were used as feeder cells. They were 

kindly provided by Prof. Dr. Marcus Uhrberg and Prof. Dr. Juan Carlos Zuniga-Pflucker 

and Prof. Dr. Andreas Diefenbach (Mohtashami et al., 2013). They were cultured in OP9 

medium (Tab. 10) at 37 °C and 5 % carbon dioxide (CO2).  
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2.2.7 Co-incubation of ILC3s and OP9-DL4 

 

To co-incubate sorted ILCs with OP9 feeder cells, the OP9 cells were seeded in 24 well 

plates (10000 cells/well) for bulk culture, irradiated (25 Gray) two days prior to the addition 

of sorted NKp44- ILC3s and recovered in differentiation medium (Tab. 10) (Cichocki and 

Miller, 2010). Sorted duodenal or tonsil NKp44- ILC3 (100-1000 cells) were added to OP9, 

OP9-DL1 and/or OP9-DL4 feeder cells and incubated with differentiation medium 

supplemented with 10 ng/ml cytokines (IL-2, IL-23, IL-7 and IL-1β) (Tab. 9). Every 2-3 

days the medium was changed, the supernatants were frozen at -20°C and 10 ng/ml  

IL-2, IL-23, IL-7, and IL-1β were added to the culture. After short- (3 days) or long-term 

(10-12 days) culture, the NKp44- ILC3s were analyzed or sorted and used for further 

experiments. The supernatants were analyzed with the Legendplex assay to detect 

cytokine secretion. 

 

2.2.8 Generation of intestinal organoids 

 

A piece of a biopsy was used to isolate intestinal crypts. The intestinal crypts containing 

stem cells were isolated, passaged, thawed and cryopreserved according to IntestiCult 

Organoid Growth Medium (OGM) protocol (STEMCELLTM TECHNOLOGIES Inc). More 

precisely, tissue samples were washed with ice-cold PBS and minced in small pieces. 

After centrifugation, tissue pieces were incubated 30 min in Gentle Cell Dissociation 

Reagent (GCDR, STEMCELL). After centrifugation, ice-cold DMEM + 1 % BSA was added 

and crypts were removed from tissue by vigorously pipetting. 1000 crypts/matrigel dome 

were plated in a 24 well plate. OGM with gentamycin (50 μg/mL) (Tab.10) was added and 

changed every 2-3 days. After 5-7 days, the organoids were splitted with GCDR, analyzed 

by immunofluorescence or quantitative real-time polymerase chain reaction (qRT-PCR). 

 

2.2.9 Stimulation of organoids and Co-Culture 

 

To stimulate organoids with recombinant cytokines (Tab. 9), organoids were cultured 5 

days in OGM. After 5 days, organoids were stimulated with 10 ng/ml cytokines. After  
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20 h, the organoids were harvested using Cell Recovery solution (CorningTM) for 30 min 

on ice. Organoids were pelleted and frozen at -80°C for RNA isolation or directly stained 

for immunofluorescence microscopy. 

Additionally, organoids were co-cultured with duodenal NKp44- ILC3s according to 

previously published protocols (Schreurs et al., 2021). Therefore, 45 cells/µl sorted 

NKp44- ILC3s (before expanded on OP9-DL4 cells for 12 days) were added to the 

organoids per Matrigel® dome and stimulated every two days with IL-1β and IL-23 to 

activate ILC3s. After 5 days, Organoids and ILC3s were harvested for RNA isolation, 

supernatants were collected and stored at -20°C until further use. 

 

2.2.10 Flow cytometry analysis and cell sorting 

 

To prepare the lymphocytes for flow cytometric analysis and sorting, the cells were thawed 

with thawing medium (Tab. 10), centrifuged at 350 g for 10 min and washed with DPBS. 

After centrifugation, dead cells were stained with Zombie AquaTM Fixable Viability Kit 

(Biolegend®) for 10 min at room temperature (RT) in the dark, washed with DPBS and 

centrifuged. The cell surface was stained with specific antibodies (Tab. 5) for 10 min at 

RT in the dark. After further washing and centrifugation steps, the cells were analyzed or 

further prepared for cytokines or transcription factor analysis. 

For intracellular analysis of transcription factors the eBioscienceTM Foxp3 Transcription 

Factor Staining Kit (InvitrogenTM) and for cytokines the Cytofix/CytopermTM 

Fixation/Permeabilization Kit (BD Bioscience) was used (Tab. 8). Permeabilization, 

fixation, and washing was performed according to manufacturer’s protocols. 

FACS data was acquired using a BD LSR-FortessaTM Cytometer (BD Bioscience) and 

analyzed using FlowJo® Software V10.7.1. Cell sorting was performed using a 

FACSAriaTM Fusion (BD Biosciences).  
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2.2.11 Legendplex 

 

Cytokine secretion in supernatants was assessed by cytokine bead array (LEGENDplex™ 

Human Th Cytokine Panel Kit, Biolegend®), including data acquisition on a BD 

FACSCanto II and analysis using the software provided by the manufacturer 

(LEGENDplex™ Data Analysis Software). 

 

2.2.12 Immunofluorescence microscopy 

 

Intestinal tissues or organoids were fixed with 4 % paraformaldehyde (PFA) for 10 min at 

RT washed and incubated with blocking buffer for 30 min at RT (Tab. 10). After washing 

steps, tissue or organoids were incubated with primary antibodies in antibody buffer 

overnight at 4°C (Tab.6, Tab. 10). After washing, the secondary antibody was added for 

45 min at RT in the dark (Tab. 6, Tab. 10). The nucleus was stained with 1:1000 dilution 

Hoechst for 1 min at RT. Trueblack®Lipofuscin (Biotium) was used to quench lipofuscin 

auto fluorescence for 5 min. After washing with water, the organoids or intestinal tissues 

were treated with one drop of ProlongTM Gold antifade reagent (InvitrogenTM) to protect 

the fluorescent dyes from fading. A coverslip was then placed on top, and after drying, 

samples were imaged using a fluorescence microscope DM IL (Leica Microsystems 

GmbH). 

 

2.2.13 RNA extraction 

 

RNA was extracted from human intestinal biopsies and organoids. Therefore, fresh 

samples were frozen in NAP buffer and stored at -80°C until further use. RNA extraction 

was performed following the manufacturer’s instructions (GeneJET RNA Purification Kit, 

Thermo FisherScientific). The lysis buffer was supplemented with 40 mM Dithiothreitol 

(DTT). The intestinal biopsies were homogenized by using a rotator-stator homogenizer 

(Bandelin electronic). The RNA concentration was measured with a NanoDrop™ 1000 

(Thermo Fisher Scientific). 
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2.2.14 cDNA synthesis 

 

The extracted RNA was transcribed into cDNA according to QuantiTect® Reverse 

Transcription Kit (Qiagen) in accordance with the manufacturer's protocol. 

 

2.2.15 qRT-PCR 

 

qRT-PCR was performed on a LightCycler® 96 Real-Time PCR System (Roche) with the 

Blue S’ Green qPCR Kit (Biozym®) using the primer sets depicted in Tab.7 to measure 

relative mRNA expression. Relative target gene expression was calculated by the 2^-ΔCq-

method using mean expression of the house keeping gene EEF1A1 as reference for 

normalization. 

 

2.2.16 Bulk-RNA-Sequencing Analysis 

 

For bulk-RNA-seq analysis, the normal (n=4) and adenomatous (n=4) mucosa of FAP 

patient and normal (n=4) mucosa of non-FAP patient was used and RNA was isolated 

according to manufacturer's protocol (GeneJET RNA purification kit, Thermo Scientific, 

Germany). Further analysis was performed from Deutsches Zentrum für 

Neurodegenerative Erkrankungen (DZNE, Bonn). The quality and quantity of the 

extracted RNA were assessed using the Agilent TapeStation 4200 and Nanodrop 

spectrophotometer, respectively. The extracted RNA was subjected to library preparation. 

The resulting libraries were sequenced. The raw sequencing data were subjected to 

quality control using FastQC, and then aligned to the reference human genome (GRCh38, 

ver. 33) using the STAR 2.7.3a for alignment. The aligned reads were quantified using the 

featureCounts program to generate raw read counts for each gene. The raw counts were 

normalized using the trimmed mean of M-values method, and differential gene expression 

analysis was performed using the DESeq2 (ver.1.38.1) package in R (ver. 4.2.2). The 

differentially expressed genes were defined as those with a fold change of > |1.5| and a 

false discovery rate (FDR) (or even p-value adjusted p-adj by BH) of <0.05. 
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2.2.17  Statistical Methods 

 

Graphpad Prism software was used to analyze the data. To evaluate significance a paired 

or unpaired t-test with a two-tailed p value p < 0.05 and a 95 % confidence interval was 

used (Wilcoxon or Mann-Whitney test). For more than two datasets a one-way analysis of 

variance (ANOVA) was performed (Kruskal-Wallis (KW) test or Friedman test) and 

corrected for multiple comparisons with the False Discovery Rate (FDR). Significance was 

defined as p < 0.05 (*); p < 0.01 (**); p < 0.001 (***); p < 0.0001 (****) and p>0.05 (ns). 

Correlations between two variables were tested by Pearson-test. Flow cytometric 

analyses with mean fluorescent intensity (MFI) was calculated using the geometric mean. 

Graphs show the mean ± standard deviation (SD). The figures were partly generated 

using Servier Medical Art, provided by Servier, licensed under a Creative Commons 

Attribution 3.0 unported license. 
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3. Results 
 

Duodenal adenoma formation in FAP patients, particularly the relationship between 

genotype and phenotype, is still poorly understood suggesting additional factors to 

contribute to the onset of the disease. Therefore, the goal of this study was to improve the 

understanding of the impact of duodenal lymphocytes in the duodenal adenoma formation 

of FAP patients.  

Due to the scarcity of information on human ILCs, the innate counterpart of Th cells, in 

the GI tract and GI malignancies and their important role in cancer progression, a 

phenotypic and functional characterization of ILCs in duodenal adenomas of FAP patients, 

normal mucosa of FAP patients and normal mucosa of non-FAP controls was carried out 

(Fig. 6). To this end, tissue-resident lymphocytes were examined using multicolor flow 

cytometry, a qRT-PCR analysis of duodenal biopsies and bulk-RNA-seq was conducted. 

To investigate the effect of immune cells, duodenal organoids were generated.  

Duodenal biopsy samples were collected from 88 FAP and 35 non-FAP patients. The 

adenomatous tissue of 22 FAP patients could be included in this study. From 2 FAP 

patients only adenomatous material could be obtained. Normal mucosa of non-FAP 

patients was used as control. 

 

Fig. 6: Study design. Illustration of the patient’s cohort and the number of samples in the 
duodenum.  
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3.1 Identification of increased ILCs in the duodenal normal mucosa and adenomas of 

FAP patients 

 

First, we analyzed frequency and composition of the lymphocyte compartment in 

macroscopically normal and adenomatous duodenal mucosa of FAP patients compared 

to normal mucosa of non-FAP controls. To this end, tissue-resident lymphocytes were 

isolated, analyzed and gated according to previously published gating strategies and 

surface marker profiles (Freeman et al., 2013). Various immune cells could be identified 

within the human duodenum (Fig. 7). Total lymphocytes were identified using only viable 

single cells with the marker CD45. T cells were gated using CD3 and further subdivided 

in cytotoxic T and Th cells with CD8 and CD4. Additionally, double positive CD4 and CD8 

T cells were found. NKT cells expressed CD3 and CD56 and NK cells were CD3- CD56+. 

B cells were identified using CD19. 

 

Fig. 7: Identification of lymphocytes in the duodenum. Gating strategy for 
lymphocytes defining T cells as CD45+CD3+CD4+, CD8+ or CD4+CD8+, B cells as 
CD45+CD19+, NKT cells as CD45+CD56+CD3+, NK cells as CD45+CD56+CD3-. 
 

The frequency of total CD45+ lymphocytes did not differ significantly between 

adenomatous (n=15) and normal mucosa (n=76) of FAP patients and normal mucosa 

(n=24) of non-FAP controls (Fig. 8A). There were no significant differences between the 

normal (n=7) and adenomatous (n=7) mucosa of FAP patients and the normal mucosa 
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(n=8) of non-FAP controls for any of the T cell subsets, including CD8+, CD4+ and 

CD4+CD8+ T cells, nor for B, NKT, and NK cells of CD45+ cells (Fig. 8B-H). Nevertheless, 

we found a slight reduction of CD3+, CD8+ and CD4+CD8+ cells in the normal and 

adenomatous mucosa of FAP compared to non-FAP patients (Fig. 8B/C/E). 

 

Fig. 8: Frequency of lymphocytes in the duodenal normal and adenomatous 
mucosa of FAP patients compared to normal mucosa of non-FAP controls. (A) 
Frequency of CD45+ cells as percentages of the total cell count in the duodenal normal 
(n=76) and adenomatous (n=15) mucosa of FAP patients compared to normal mucosa 
(n=24) of non-FAP controls (B-H)  Frequency of CD3+ T cells, CD8+ T, CD4+ T, CD8+CD4+ 
T, CD56+CD3+ NKT, CD56+CD3- NK and B cells as percentages of CD45+ cells in the 
duodenal normal (n=7) and adenomatous (n=7) mucosa of FAP patients compared to 
normal mucosa (n=8) of non-FAP controls. Error bars showing SD. Statistical significance 
analyzed by Kruskal-Wallis (KW) test, corrected for multiple comparisons by controlling 
the FDR (Benjamini, Krieger and Yekutieli). 
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However, analyzing innate lymphoid cells (ILCs), defined as CD45+ CD127+ Lin- (CD3, 

CD4, CD5, CD14, CD19, CD20, TCRγδ, TCRαβ, BDCA-2, CD1a, CD34, NKp80, CD94, 

FcεR1a and CD123) (Bernink et al., 2013; Björklund et al., 2016) (Fig. 9A), we observed 

significantly increased frequencies of total duodenal ILCs (CD45+ Lin- CD127+) in FAP 

patients (n=76) with highest numbers found in adenomatous (n=15) tissue (Fig. 9B). Given 

these findings and the known roles of ILCs in malignancies (Yuan et al., 2021), we 

performed a more in-depth analysis of this particular lymphocyte subset. 

 

Fig. 9: Identification of increased ILCs in the duodenum of FAP patients. (A) ILCs 
were gated as single viable CD45+ Lin- (CD3, CD4, CD5, CD14, CD19, CD20, TCRγδ, 
TCRαβ, BDCA-2, CD1a, CD34, NKp80, CD94, FcεR1a, CD123) CD127+ cells. ILC 
subsets are divided with CD117 and CRTH2. (B) Frequency of total ILCs (Lin- CD127+) as 
percentages of viable CD45+ cells in normal (n=76) and adenomatous (n=15) mucosa of 
FAP patients and normal mucosa (n=24) of non-FAP controls. Error bars showing SD. 
Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). 
 

3.2 Phenotypical analysis of duodenal ILCs 

 

Following standard gating strategies frequencies of CD117- CRTH2- ILC1s and CD117+ 

CRTH2- ILC3s could be detected in duodenal tissue, whereas only negligible numbers of 

CRTH2+ ILC2s were found, confirming previous reports of our group (Krämer et al., 2017) 

(Fig. 9A, Fig. 11).  
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To validate the identity of these ILC subsets, ILC1s and ILC3s were further characterized 

regarding expression of surface markers and transcription factors (TF) (Artis and Spits, 

2015; Simoni and Newell, 2018).  

ILC3s expressed the transcription factor RORγt but were negative for GATA3 a TF 

characteristic for ILC2, the ILC1-associated TF T-bet and EOMES, a NK cell specific TF 

(Fig. 10A/B) (Artis and Spits, 2015; Simoni and Newell, 2018). ILC3s also expressed other 

ILC3-specific surface markers such as IL1R1, CD56, CD103, CD200R and NKp44 (Fig. 

10C). The ILC1-specific transcription factor T-bet was hard to be visualize in any subset 

(Fig. 10B). However, ILC1s expressed specific surface markers such as CD56, CD49a 

and NKp44 (Fig 10C), which altogether confirmed the identity of this ILC subpopulation.   

 

Fig. 10: Phenotype of ILC1 and ILC3 in the duodenum. (A) Mean fluorescent intensity 
(MFI) of RORγt in ILC1 (yellow, n=31), ILC3 (green, n=36) and an isotype control (grey, 
n=11). (B) Representative histogram showing expression of the transcription factors 
RORγt, EOMES, T-bet and GATA3 in ILC1, ILC3 and an isotype control. (C) 
Representative histograms displaying ILC-specific surface markers of ILC1 (CD117-

CRTH2-), ILC3 (CD117+CRTH2-) and an isotype control. Error bars showing SD. 
Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). 
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Comparing the frequencies of ILC subsets in the normal mucosa (n=76) and adenomas 

(n=15) of FAP patients as well as in normal non-FAP (n=24) mucosa, we found numbers 

of ILC1s to be significantly increased in the normal and adenomatous mucosa of FAP 

patients (Fig. 11A).  

The most prominent alterations, however, were found for the ILC3 subset. Here, we not 

only observed significantly increased numbers in normal and adenomatous FAP mucosa 

compared to controls but also significant differences between non-adenoma and 

adenoma tissue in FAP patients (Fig. 11A/B). Accordingly, ILC3s represented the 

dominant ILC subset in FAP adenomas, suggesting these cells to play a prominent role in 

FAP-associated adenoma formation (Fig.11B).  

 

Fig. 11: Increased ILC3 in normal and adenomatous mucosa of FAP patients. (A) 
Frequency of CD117-CRTH2- ILC1, CRTH2+ ILC2 and CD117+CRTH2- ILC3 among 
viable CD45 in non-FAP (n=24) controls and normal (n=76) and adenomatous (n=15) 
mucosa of FAP patients. (B) Mean frequency of CD117-CRTH2- ILC1 (yellow), CRTH2+ 
ILC2 (black) and CD117+CRTH2- ILC3 (green) of CD127+ total ILCs. Error bars showing 
SD. Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). 
 

Further analyses of ILC3 subsets demonstrated that frequencies of NKp44- ILC3s were 

significantly whereas NKp44+ ILC3s were only slightly increased in normal and 

adenomatous mucosa of FAP patients (Fig. 12A/B). Additionally, the FAP-associated 

duodenal accumulation of ILC3s were mainly attributable to an increase in NKp44- ILC3s 
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within total ILCs (Fig.12C). The frequency of NKp44- ILC3s was already increased in the 

normal mucosa of FAP patients with SS 0 without any adenomas (Fig. 12D). 

 

Fig. 12: Increased frequencies of NKp44- ILC3s in the normal and adenomatous 
mucosa of FAP patients. (A-B) Frequency of NKp44+ (A) and NKp44- (B) 
CD117+CRTH2- ILC3 among viable CD45+ cells in the normal mucosa of non-FAP (n=24) 
controls and normal (n=76) and adenomatous (n=15) mucosa of FAP patients. (C) 
Frequency of NKp44+ and NKp44- ILC3 among CD127+ ILCs in the normal mucosa of 
non-FAP (n=20) controls and normal (n=62) and adenomatous (n=12) mucosa of FAP 
patients. (D) Frequency of NKp44- ILC3 among CD45+ cells in the normal mucosa of non-
FAP (n=24) controls and normal (Spigelman Stage (SS) 0: n=10, SS I-II: n=28, SS III-IV: 
n=38) and adenomatous (n=15) mucosa of FAP patients. Error bars showing SD. 
Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). 
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Moreover, phenotypic characterization of duodenal ILC3s did not reveal any significant 

differences in the expression of cell surface markers or transcription factors between non-

FAP controls and normal and adenomatous mucosa of FAP patients (Fig.13).  

 
Fig. 13: ILC3-specific markers in the duodenum of FAP and non-FAP patients. 
Representative histograms displaying ILC-specific markers of duodenal ILC3s in the 
normal mucosa of non-FAP, FAP and in FAP adenoma with isotype control (upper lane). 
 

3.3 Functional analysis of ILC3s in FAP and non-FAP patients 

 

According to our finding of increased ILC3s in FAP duodenal tissue and based on the 

knowledge that ILC3s have an importance in the intestinal homeostasis due to their 

cytokine secretion ability, we also analyzed the overall functional potential of duodenal 

ILC3s in non-FAP controls, normal and adenomatous tissue of FAP patients. 

Thus, we stimulated tissue-resident lymphocytes with PMA (50 ng/ml) and Ionomycin  

(1 µg/ml) (P/I) for 4 h in the presence of BFA for the last 3 h to stain intracellularly for ILC-

specific cytokines and analyzed them by flow cytometry (Fig. 14).   

ILC3s produced the cytokines IL-17A, TNF-α, IL-2 and IL-8 whereas IL-22 and IFN-γ could 

be barely observed after P/I stimulation (Fig. 14, Fig. 15C).  
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Fig. 14: Produced ILC3 cytokines. Representative gating of intracellular cytokine  
(IL-17A, IL-22, IL-8, IFN-γ, IL-2 and TNF-α) production of ILC3s in duodenal adenomatous 
and normal mucosa of FAP and non-FAP patients. 
 

Comparing ILC3s of normal mucosa of non-FAP (n≥8) controls, the normal mucosa (n≥27) 

and adenomas (n≥4) of FAP patients in terms of their cytokine production, only frequency 

of IL-17A-producing ILC3s differed significantly (Fig. 15A). Other cytokines such as  

IL-22, IL-8, IL-2, TNF-α and IFN-γ did not show significant differences between the cohorts 

(Fig. 15A/C). Increased IL-17A production of ILC3s was already seen in normal duodenal 

tissue of FAP patients but was even higher in FAP adenomas (Fig. 15A). 

FAP-associated increase in IL-17A production by ILC3s was also confirmed when the 

proportion of IL-17A+ ILC3s relative to the total CD45+ lymphocyte population was 

analyzed (Fig. 15B). 
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Fig. 15: Increased IL-17A production of ILC3s in FAP patients. (A) Intracellular  
IL-17A and IL-22 production of ILC3s in adenomatous (n≥4) and normal mucosa (n≥27)   
of FAP and non-FAP (n=10) patients. (B) Frequency of IL-17A+ ILC3 among CD45+ cells 
in duodenal adenomatous (n=7) and normal mucosa (n=27) of FAP and non-FAP (n=10) 
patients. (C) Intracellular IL-8, IL-2, TNF-α and IFN-γ percentages of ILC3s in 
adenomatous (n≥5) and normal mucosa (n≥44) of FAP and non-FAP (n≥8) patients. Error 
bars showing SD. Statistical significance analyzed by KW test, corrected for multiple 
comparisons by controlling the FDR (Benjamini, Krieger and Yekutieli). 
 

To see whether there is a difference in IL-17A production between NKp44- and NKp44+ 

ILC3s, we next stratified ILC3s according to NKp44 expression, which confirmed NKp44- 

ILC3s as the main producers of IL-17A (Fig. 16A).  
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Comparing the cohorts regarding IL-17A production of ILC3 subsets, the significantly 

increased IL-17A production of ILC3s in the normal mucosa (n=26) and adenomas (n=7) 

of FAP patients could only be observed in NKp44- ILC3s and not in NKp44+ ILC3s (Fig. 

16B). 

 

Fig. 16: Elevated IL-17A-producing NKp44- ILC3 in FAP patients. (A) Percentages of 
IL-17A+ cells of NKp44+ and NKp44- ILC3s (n=35) in the duodenum. (B) Percentages of 
IL-17A+ cells of NKp44+ and NKp44- ILC3s in duodenal adenomatous (n=7) and normal 
mucosa (n=26) of FAP and non-FAP patients (n=10). Error bars showing SD. Statistical 
significance analyzed by Mann-Whitney test (A) and KW test (B), corrected for multiple 
comparisons by controlling the FDR (Benjamini, Krieger and Yekutieli). 
 
 
3.4 Increase in IL-17A-producing NKp44- ILC3s in FAP is a specific finding in the 

duodenum 

 

To ascertain whether the aforementioned findings are also seen in other compartments, 

we also examined colon tissue and PBMCs of FAP patients in addition to the duodenum. 

Therefore, blood of non-FAP (n=15) and FAP (n=37) patients as well as colonic biopsies 

of non-FAP (n=11) and FAP (n=23) patients were collected. Additionally, 12 colonic 

adenomas of FAP patients were analyzed. 

As could be expected, frequencies and composition of the ILC compartment differed 

significantly between duodenum, the colon tissue and peripheral blood with highest 

numbers of total CD127+ ILCs and CD117+ CRTH2- ILC3s found in colon samples (Fig. 
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17A/C, Fig. 9, Fig. 11). Frequencies of total CD127+ ILCs and CD117+CRTH2- ILCs, which 

are considered to represent circulating ILC precursor (ILCPs) rather than mature ILC3 

(Lim et al., 2017) were lowest in PBMCs and did not differ between the groups (Fig. 

17B/C). In contrast to our findings in the duodenum, we observed a marked reduction in 

both total ILCs and ILC3s in FAP adenoma compared to normal FAP mucosa (Fig. 17A) 

but an increase in ILC1s (Fig. 17C).  

 

Fig. 17: Increased ILC3s in FAP adenoma is duodenum specific. (A) Frequency of 
total Lin- CD127+ ILCs and CD117+ CRTH2- ILC3s among CD45+ cells in adenomatous 
(n=12) and normal (n=23) mucosa of FAP and non-FAP (n=11) patients in the colon. (B) 
Frequency of total Lin- CD127+ ILCs and CD117+ CRTH2- ILCPs among CD45+ cells in 
peripheral blood of FAP (n=37) and non-FAP (n=15) patients (C) ILC distribution in 
adenomatous and normal mucosa of FAP and non-FAP patients in the duodenum and 
colon, and peripheral blood of both cohorts. Error bars showing SD. Statistical significance 
analyzed by Mann-Whitney test (B) and KW test (A), corrected for multiple comparisons 
by controlling the FDR (Benjamini, Krieger and Yekutieli). 
 



58 

Further analysis confirmed that ILC3s in the colon are mainly composed of cells 

expressing the surface marker NKp44 (Fig. 18A) and showed that the decreased 

frequency of total ILC3s in colon adenomas was primarily caused by a decrease in NKp44+ 

ILC3s (Fig. 18B). PBMCs were only composed of NKp44- ILCPs (Fig. 18A).  

 

Fig. 18: Differential expression of NKp44 in colonic and duodenal ILC3. (A) 
Representative histogram of the NKp44 expression in CD117+CRTH2- ILCs in the 
duodenum, colon and peripheral blood with isotype control. (B) Frequency of NKp44+ and 
NKp44- ILC3s among CD127+ ILCs in adenomatous (n=12) and normal mucosa (n=23) of 
FAP and non-FAP patients (n=11) in the colon. Error bars showing SD. Statistical 
significance analyzed by KW test corrected for multiple comparisons by controlling the 
FDR (Benjamini, Krieger and Yekutieli). 
 

Next, we compared the IL-17A production of colonic and duodenal ILC3s. To this end, 

tissue-resident colonic lymphocytes were stimulated with P/I and tested for their capacity 

to produce IL-17A. 

In contrast to our findings in the duodenum, functional analysis of colonic ILC3s did not 

reveal any significant changes in the IL-17A production between the normal and 

adenomatous mucosa of FAP patients and normal mucosa of non-FAP controls (Fig. 

19A). The IL-17A production of ILC3s was significantly higher in the duodenum than in 

the colon in the normal and adenomatous mucosa of FAP patients (Fig.19A/B). These 

differences were only found in FAP and not in non-FAP patients.  
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Fig. 19: Increased IL-17A-producing ILC3s in FAP patients is duodenum specific. 
(A) Percentages of IL-17A+ ILC3s in colonic and duodenal adenomatous (n≥7) and normal 
mucosa (n≥23) of FAP and non-FAP patients (n=10). (B) Representative intracellular  
IL-17A production of ILC3s in adenomatous mucosa of FAP patients in the duodenum and 
colon tissue. Error bars showing SD. Statistical significance analyzed by KW test 
corrected for multiple comparisons by controlling the FDR (Benjamini, Krieger and 
Yekutieli). 
 

Similar observations were made when colon ILC3s were stratified according to NKp44 

expression as neither NKp44+ nor NKp44- ILC3s displayed any significant alteration in  

IL-17A production in FAP compared to non-FAP controls (Fig. 20A/B). In summary, the 

increase of IL-17A+ NKp44- ILC3s is a duodenum-specific effect. 

 
Fig. 20: IL-17A production of colonic NKp44+ and NKp44- ILC3s. (A-B) Percentages 
of IL-17A production of NKp44+ (A) and NKp44- (B) ILC3s in colonic adenomatous (n=6) 
and normal (n=15) mucosa of FAP and non-FAP (n=5) patients. Error bars showing SD. 
Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). 
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3.5 Duodenal microenvironment 

 

3.5.1 Increased ILC3-related factors in FAP tissue 

 

ILC biology is regulated by the local microenvironment (Vivier et al., 2018). Particularly, it 

has been demonstrated that cytokines such as IL-1β and IL-23A and Notch ligands Delta-

like (DL)1 and DL4 are crucial for controlling intestinal ILC development, maturation, and 

function (Heinrich et al., 2022; Golub, 2021). 

Thus, the mucosal ILC-specific cytokine microenvironment and Notch ligand expression 

was analyzed to better understand the factors involved in duodenal accumulation of  

IL-17A-producing ILC3s in FAP. Therefore, qRT-PCRs of normal (n=32) and 

adenomatous (n=8) tissues of FAP patients and normal tissues (n=13) of non-FAP 

patients were performed.  

We found that the relative mRNA levels of a number of cytokines involved in the 

expansion, differentiation and activation of ILCs (IL33, IL1B, IL23A, TGFb1 and IL12) 

(Vivier et al., 2018) were significantly increased in the adenomatous mucosa of FAP 

patients compared to non-FAP control tissue (Fig. 21).  

With regard to the observed FAP-associated duodenal accumulation of IL-17A-producing 

ILC3s, the finding of significantly increased mRNA levels of IL23A and IL1B was of 

particular interest, as these cytokines were also significantly increased in the normal 

mucosa of FAP patients and play an important role in the activation of cytokine secretion 

of ILC3s (Fig. 21).  
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Fig. 21: Increased cytokines in the duodenum of FAP patients. IL33, IL1B, IL23A, 
TGFb1 and IL12 mRNA expression in duodenal normal (n=32) and adenomatous (n=8) 
mucosa of FAP and non-FAP (n=13) patients in relation to EEF1A1. Error bars showing 
SD. Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). 
 

To test for a potential relation between the increased number of IL-17A-producing NKp44- 

ILC3s in the FAP duodenum and the expression of IL1B or IL23A, we performed 

correlation analyses. These revealed a significant correlation between the number of  

IL-17A+ NKp44- ILC3s and the mRNA expression levels of both cytokines (Fig. 22).  

 

Fig. 22: Correlation analyses. (A-B) Correlation of duodenal mRNA levels of IL1B (A) 
and IL23A (B) with IL-17A+ NKp44- ILC3s. 
 

In addition to analyzing cytokine expression in duodenal tissue, we also performed qRT-

PCR on normal (n=9) and adenomatous (n=8) colon tissue from both FAP patients and 
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patients without FAP (n=9). The results showed that, in contrast to duodenal tissue in the 

colon, the relative mRNA levels of IL1B were not significantly increased in either normal 

or adenomatous colon tissue from FAP patients (Fig. 23A). Regarding IL23A, a slightly 

increased relative mRNA expression was found in the colonic tissue of FAP patients 

compared with the normal mucosa of non-FAP controls. However, this difference was also 

not statistically significant (Fig. 23B), further highlighting the differences between FAP-

associated alterations in colon and duodenum.  

 

Fig. 23: Higher IL1B and IL23A levels are duodenum-specific in FAP. (A-B) IL1B (A) 
and IL23A (B) mRNA expression in colon adenomatous (n=8) and normal (n=9) mucosa 
of FAP and non-FAP (n=9) patients in relation to EEF1A1. Error bars showing SD. 
Statistical significance analyzed by KW test, corrected for multiple comparisons by 
controlling the FDR (Benjamini, Krieger and Yekutieli). Experiment performed in 
cooperation with Meike Wagner. 
 

Next, we analyzed the relative mRNA expression of DL1 and DL4 in the duodenum, which 

was significantly increased in both adenomatous (n=8) and normal (n=32) duodenal 

mucosa of FAP patients compared with non-FAP (n=13) patients (Fig. 24A). Of note, we 

found frequency of duodenal IL-17A+ NKp44- ILC3s to correlate significantly with mRNA 

levels of both DL4 and DL1 (Fig. 24C). No such differences were found in colon tissue 

(Fig. 24B).  
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Fig. 24: Higher DL1 and DL4 levels in the duodenum of FAP patients. (A-B) DL1 and 
DL4 mRNA expression in duodenal (A) and colonic (B) adenomatous (n=8) and normal 
(n≥9) mucosa of FAP and non-FAP (n≥9) patients in relation to EEF1A1. (C) Correlation 
of duodenal DL1 and DL4 to IL-17A+ NKp44- ILC3s. Error bars showing SD. Statistical 
significance analyzed by KW test, corrected for multiple comparisons by controlling the 
FDR (Benjamini, Krieger and Yekutieli). Experiment performed in cooperation with Meike 
Wagner. 
 

We then carried out in-vitro cultures to further support a role for elevated IL-1β/IL-23 and 

DL1/DL4 expression on ILC3 expansion and activity in FAP patients. After 12 days of 

culturing freshly sorted duodenal NKp44- ILC3s (n=3) on DL4-expressing OP9 (OP9-DL4) 

cells in the presence of IL-1β, IL-23, IL-7 and IL-2, we observed an increased cell count 

of NKp44- ILC3s and robust IL-17A concentrations in the resulting supernatants, indicating 

that ILC3s can be expanded and activated under these conditions (Fig. 25A/B). To better 

understand the role of DL1 vs DL4 stimulation, we next sorted NKp44- ILC3s (n=3) on 

either OP9, OP9-DL1 or OP9-DL4 feeder cells. In this approach, tonsil ILC3s were used 
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instead of duodenal ILC3s because direct co-culture was not possible due to the relatively 

small amount of duodenal ILCs available and the fact that after in-vitro expansion the 

responsiveness of the cells to stimulation was significantly altered (Fig. 25C). Analyzing 

the resulting supernatants after three days of culture in the presence of IL-1β and IL-23 

demonstrated highest IL-17A concentrations in the presence of OP9-DL4 feeder cells, 

indicating an important role of DL4 in regulation of NKp44- ILC3 activity (Fig. 25C/D).  

 

Fig. 25: Increased IL-17A production of NKp44- ILC3s on OP9-DL4 stromal cells. (A) 
Cell count of sorted NKp44- CD117+ ILC3s on day 0 and co-cultured with OP9-DL4 after 
stimulation with IL-1β, IL-23, IL-7 and IL-2 on day 12 (B) IL-17A production in the 
supernatant of sorted duodenal NKp44- ILC3s co-cultured with OP9-DL4 after stimulation 
with IL-1β, IL-23, IL-7 and IL-2 on day 0 and 12. (C-D) IL-17A production in the supernatant 
of OP9-DL4 expanded duodenal (C) and of tonsil (D) NKp44- ILC3s growing on OP9, 
OP9-DL1 and OP9-DL4 feeder cells after 3 days of stimulation with IL-1β, IL-23, IL-7 and 
IL-2. Error bars showing SD. Statistical significance analyzed by Wilcoxon test and KW 
test, corrected for multiple comparisons by controlling the FDR (Benjamini, Krieger and 
Yekutieli). 
 

All together, these data suggest increased levels of IL-1β and IL-23 together with 

increased DL4 expression to be involved in duodenal accumulation of IL-17A-producing 

ILC3s in FAP. 
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3.5.2 Differentially expressed genes in the duodenal adenoma 

 

After demonstrating that IL-17A-producing NKp44- ILC3s are increased in FAP duodenal 

tissue, we next assessed how these cells might contribute to the development of 

adenomas. As data on the molecular mechanisms involved in duodenal adenoma 

formation in FAP patients is limited, we first performed bulk-RNA-seq analysis to identify 

differentially expressed genes (DEGs) in the normal and adenomatous mucosa of FAP 

duodenal tissue compared to normal mucosa of non-FAP controls. 

Principal component (PC) analysis revealed significant differences between FAP 

adenoma (n=4) tissue, normal mucosa of FAP (n=4) and non-FAP (n=4) patients (Fig. 

26). 

 

Fig. 26: FAP adenoma differs from normal mucosa of FAP and non-FAP patients. 
Principal component (PC) analysis was performed of bulk-RNA-seq data of duodenal 
normal (yellow) and adenomatous (red) mucosa of FAP and normal (green) mucosa of 
non-FAP patients. Data were normalized and batch-corrected prior to analysis. Each point 
represents the gene expression profile of a single sample. Figures created in cooperation 
with Emilia De Caro (DZNE, Bonn). 
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We identified a total of 183 genes that were significantly upregulated and 81 which were 

downregulated in FAP adenoma compared to control tissue. Comparing the FAP 

adenoma with the normal FAP mucosa, 117 genes were found to be upregulated and 34 

genes displayed decreased expression.  

A more detailed analysis revealed significant upregulation of several genes known to be 

involved in tumor formation and progression, including CAPN8, encoding for Calpain 8, a 

member of a family of intracellular calcium-activated neutral cysteine proteinases and 

involved in cancer initiation, progression, and metastasis (Zhong et al., 2022; Storr et al., 

2011; Lan et al., 2021); TSPAN1, encoding for Tetraspanin 1, which has been shown to 

promote growth of breast cancer cells via mediating PI3K/Akt pathway, to be involved in 

head and neck SCC and increased in CRC (Garcia-Mayea et al., 2020; Wu et al., 2021; 

Chen et al., 2009); CEMIP, (Cell migration-inducing and hyaluronan-binding protein) 

which affects the Wnt and EGFR signaling pathways and is involved in the progression of 

various tumors including CRC and gastric cancer (Chen et al., 2022; Fink et al., 2015; 

Matsuzaki et al., 2009); KRT7 (Keratin 7) which has been shown to promote epithelial-

mesenchymal transition in ovarian cancer (An et al., 2021); CDH3 (P-Caherin), S100P 

(calcium-binding protein) and DUOX2 (dual oxidase 2) which have been found to be 

overexpressed in CRC (Kumara et al., 2017; Wang et al., 2012; Zhang et al., 2021) (Fig. 

27).  
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Fig. 27: Identification of differentially expressed genes in FAP adenoma compared 
to non-FAP controls. Dot plot of DEGs in FAP adenoma and non-FAP control tissue, 
based on bulk-RNA-seq data. Genes with a log2 fold change >1.5 or <-1.5 and an adjusted 
p-value <0.05 are considered differentially expressed and are highlighted in red or blue, 
depending on whether they are up- or downregulated. Figures created in cooperation with 
Emilia De Caro (DZNE, Bonn). 
 

To confirm these results, mRNA expression of these genes was measured by qRT-PCR 

in duodenal adenoma (n=9), normal (n=17) tissue from FAP patients, and the normal 

mucosa of non-FAP controls (n=13). The DEGs (CAPN8, TSPAN1, CEMIP, KRT7, CDH3, 

S100P and DUOX2) were significantly increased in FAP adenoma tissue compared to 

normal mucosa of FAP and non-FAP control tissues, supporting the bulk-RNA-seq 

findings (Fig. 28). Additionally, DUOXA2, the maturation partner of DUOX2, also showed 

increased mRNA expression in FAP adenoma tissue (Fig. 28). CDH3, DUOX2 and 

DUOXA2 were significantly increased in normal FAP compared to normal non-FAP tissue 

(Fig. 28). Altogether, these findings suggested a role for CAPN8, TSPAN1, CEMIP, KRT7, 

CDH3, S100P and DUOX2 in the duodenal adenoma formation in FAP patients. 
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Fig. 28: Higher mRNA expression of specific bulk-RNA-seq DEGs in duodenal FAP 
adenomas. mRNA expression of CAPN8, TSPAN1, CEMIP, KRT7, CDH3, S100P, 
DUOX2 and DUOXA2 in duodenal adenomatous (n=9) and normal mucosa (n=17) of FAP 
and non-FAP patients (n=13). Error bars showing SD. Statistical significance analyzed by 
KW test, corrected for multiple comparisons by controlling the FDR (Benjamini, Krieger 
and Yekutieli). 
 

3.5.3 IL-17A induces DUOX2 and DUOXA2 expression in duodenal organoids 

 

Finally, we analyzed whether IL-17A-producing NKp44- ILC3s might be involved in the 

transcriptional program of the DEGs and thus in promoting adenoma formation in FAP. 
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To this end, we generated duodenal organoids from normal duodenal mucosa (n=3) of 

FAP patients and non-FAP (n=3) controls (Fig. 29A).  

The presence of duodenal cells, such as goblet and paneth cells, was confirmed through 

a combination of immunofluorescence analysis and qRT-PCR using Muc-2 (mucin-2) and 

LYZ (lysozyme) as markers, respectively (Fig. 29B/C). Additionally, qRT-PCRs were used 

to analyze the expression of KI67 (marker for proliferating cells) and LGR5 (marker for 

stem cells) in duodenal organoids (Fig. 29C). These analyses did not reveal any significant 

differences in the expression of these molecules between duodenal organoids of FAP 

patients and non-FAP controls (Fig. 29C). 

 

Fig. 29: Characterization of duodenal organoids. (A) Representative images of 
duodenal organoids on day 0, 2 and four (scale bar 200 µm). (B) Representative 
immunofluorescence images of duodenal organoids stained with Hoechst (nuclei), 
Epcam, Mucin-2 (Muc-2 for goblet cells) and lysozyme (LYZ for paneth cells) (scale bar 
20 µm). (C) mRNA expression of MUC-2, KI67, LYZ and LGR5 (for stem cells) in duodenal 
organoids of FAP (n=3) and non-FAP (n=3) controls. Error bars showing SD. Statistical 
significance analyzed by Mann-Whitney test. 
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Immune and stromal cells as potential cytokine-producers are absent in organoid cultures. 

Therefore, we could evaluate potential effects of recombinant IL-17A and IL-17A-

producing NKp44- ILC3s, respectively on duodenal epithelial cells using the established 

duodenal organoid model (Chen et al., 2019a). 

Thus, duodenal organoids were stimulated with 10 ng/ml recombinant human IL-17A after 

5 days of culture. Following additional 20 h, organoids were then analyzed with respect to 

expression of genes differentially expressed in the bulk-RNA-seq analysis, namely 

CAPN8, TSPAN1, CEMIP, KRT7, CDH3, S100P, DUOX2, and DUOXA2. Interestingly, 

only DUOX2 and its maturation factor DUOXA2 were significantly elevated after IL-17A 

stimulation, whereas no such alterations were found for the other analyzed genes (Fig. 

30). 

 

Fig. 30: IL-17A induces DUOX2 and DUOXA2 in duodenal organoids. mRNA 
expression of CAPN8, TSPAN1, CEMIP, KRT7, CDH3, S100P, DUOX2 and DUOXA2 in 
duodenal organoids (n=6) unstimulated and stimulated with IL-17A for 20 h. Error bars 
showing SD. Statistical significance analyzed by Wilcoxon test. 
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To further assess the impact of IL-17A-producing NKp44- ILC3s on duodenal organoids, 

OP9-DL4 feeder cells were used to expand Lin- CD127+ CD117+ NKp44- ILC3s from 

normal duodenal mucosa of FAP patients. 

After 12 days, the expanded ILC3s were sorted again, NKp44- ILC3s co-cultured with 

duodenal organoids (n=4) in matrigel and stimulated every two days with recombinant  

IL-1β and IL-23 to activate ILC3s. After 4 days, the organoids were lysed and mRNA 

expression of DUOX2 and DUOXA2 was analyzed.  

In line with our findings after stimulation with recombinant IL-17A, we observed DUOX2 

and DUOXA2 levels to be significantly higher in organoids co-cultured with NKp44- ILC3s 

than in organoid controls (Fig. 31A). Additionally, on day two and four, we found increased 

levels of IL-17A in supernatants from organoid co-cultured with NKp44- ILC3s (Fig. 31B). 

 

Fig. 31: Stimulated duodenal NKp44- ILC3s induce DUOX2 and DUOXA2 mRNA 
expression in duodenal organoids. (A) mRNA expression of DUOX2 and DUOXA2 of 
duodenal organoids (n=4) co-cultured with or without NKp44- ILC3s in presence of IL-1β 
and IL-23. (B) IL-17A in the supernatant of duodenal organoids co-cultured with or without 
NKp44- ILC3s in presence of IL-1β and IL-23 after 2 and four days. Error bars showing 
SD. Statistical significance analyzed by Mann-Whitney test. 
 

To confirm IL-17A being involved in NKp44- ILC3s induced upregulation of DUOX2 and 

DUOXA2 mRNA expression and to verify specificity of our findings, we next cultured 

organoids (n=6) in supernatants of NKp44- ILC3s expanded on OP9-DL4 in the presence 

or absence of an IL-17A blocking antibody. As is shown in Fig. 32, we found blocking of  

IL-17A with a specific antibody to prevent NKp44- ILC3s induced increase in DUOX2 and 
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DUOXA2 mRNA expression, whereas no such effects were observed for the isotype 

control, indicating an IL-17A mediated effect of NKp44- ILC3s (Fig. 32). 

 

Fig. 32: Increased DUOX2 and DUOXA2 expression of duodenal organoids 
incubated with IL-17A supernatant of NKp44- ILC3s. DUOX2 (A) and DUOXA2 (B) 
mRNA expression of duodenal organoids (n=6) that were incubated with IL-17A 
supernatant with or without IL-17A blocking antibody or isotype control. Error bars showing 
SD. Statistical significance analyzed by Friedman test, corrected for multiple comparisons 
by controlling the FDR (Benjamini, Krieger and Yekutieli). 
 

Accordingly, after stimulating duodenal organoids (n≥3) with other ILC3-specific cytokines 

such as IL-22, TNF-α, IL-2, and IL-8 for 20 hours, an enhanced expression of DUOX2 and 

DUOXA2 was not observed (Fig. 33).  
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Fig. 33: Increased DUOX2/A2 expression is IL-17A specific. DUOX2 (A) and DUOXA2 
(B) mRNA expression of unstimulated and stimulated (IL-22, IL-17A, TNF-α, IL-2 and  
IL-8 (10 ng/ml)) duodenal organoids (n≥3) for 20 h. Error bars showing SD. Statistical 
significance analyzed by KW test, corrected for multiple comparisons by controlling the 
FDR (Benjamini, Krieger and Yekutieli). 
 

 

Finally, we evaluated Duox2 expression on the protein level using immunofluorescence 

staining of duodenal adenomatous (n=3) and normal mucosa (n=3) tissue of FAP and 

non-FAP (n=3) patients, which confirmed upregulation of Duox2 in FAP adenomas, further 

supporting a role of Duox2 in the adenoma formation of FAP patients (Fig. 34). 
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Fig. 34: Increased Duox2 in adenomatous tissue of FAP patients. (A) Representative 
immunofluorescence staining of adenomatous (n=3) and normal mucosa (n=3) of FAP 
and normal mucosa of non-FAP (n=3) patients with Hoechst (blue), Epcam (green) and 
Duox2 (red). (B) Percentages of stained Duox2 in three different patients per cohort. 
Various images (n≥17) were measured with the threshold of ImageJ and related to the 
measured threshold of Hoechst. Error bars showing SD. Statistical significance analyzed 
KW test, corrected for multiple comparisons by controlling the FDR (Benjamini, Krieger 
and Yekutieli).   
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4. Discussion 
 

Familial adenomatous polyposis is an autosomal dominant inherited GI tumor syndrome 

caused by an APC mutation resulting in the development of numerous colonic adenomas 

which almost inevitably become CRC if prophylactic colectomy is not performed. After 

prophylactic colectomy, the duodenum is of particular clinical relevance, as the majority 

of FAP patients also develop duodenal adenomas resulting in a significantly increased 

risk of duodenal carcinoma. 

Unfortunately, the management of duodenal polyposis remains challenging due to the 

high recurrence rate of duodenal adenomas (Richard et al., 1997). Therefore, patients 

have to undergo regular endoscopic surveillance and close monitoring is mandatory and 

in the case of advanced Spigelman stages (SS IV), pancreatico-duodenectomy (Whipple's 

surgery) or pylorus-preserving duodenectomy may be the only options. However, both 

endoscopic treatment and duodenectomy are associated with procedure-associated risks 

and can be burdensome for patients. Therefore, there is a strong clinical need for the 

development of novel immune-modulating and/or pharmacological therapeutic 

approaches to reduce adenoma formation. 

Thus, a more comprehensive understanding of the mechanisms contributing to adenoma 

formation is crucial.  

The rather weak genotype-phenotype correlation in duodenal polyposis and the 

observation that patients with the same pathogenic APC variant may represent with 

different clinical courses underlines the importance of other - non-genetic - factors 

(Brosens et al., 2005; Groves et al., 2002b). 

The local immune response may represent such an additional modulating factor as both 

innate and adaptive immune cells have been shown to regulate tumor formation 

(Gonzalez et al., 2018). 

Therefore, the aim of this project was to perform a detailed analysis of the duodenal 

immune infiltrate in normal and adenomatous mucosa of FAP patients in comparison to 

non-FAP controls.  
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The study identified elevated levels of total ILCs, especially ILC3s in duodenal adenomas 

and normal mucosa of FAP in comparison to normal mucosa of non-FAP patients. ILC3s 

in adenomas and normal mucosa of FAP patients produced more IL-17A compared to 

non-FAP controls. This increase was specific for NKp44- ILC3s. Furthermore, we 

observed FAP to be associated with increased mRNA expression of genes that are 

optimal for ILC3 activation, growth and differentiation, namely IL1B, IL23A, DL1 and DL4 

(Heinrich et al., 2022; Müller and Romagnani, 2022). To further explore the potential role 

of IL-17A-producing ILC3s in human duodenal adenoma formation we next performed 

bulk-RNA-seq analysis which indicated a role for DUOX2 and DUOXA2, which have been 

shown to promote cancer progression (Zhang et al., 2021; Wang et al., 2015). IL-17A and 

stimulated, IL-17A-producing NKp44- ILC3s were found to induce the expression of 

DUOX2 and DUOXA2.  

The data suggest that IL-17A-producing NKp44- ILC3s might play a role in the duodenal 

adenoma formation of FAP patients and may have a pro-tumorigenic effect. In the next 

chapters, these findings are discussed. 

 

4.1 Identification of increased frequencies of NKp44- ILC3s in normal and adenomatous 

mucosa of FAP patients 

 

The immune cell microenvironment in duodenal normal and adenomatous mucosa in FAP 

patients has not been characterized in detail before. This study demonstrates that 

duodenal frequencies of CD4+ Th cells, CD8+ cytotoxic T cells, CD4+CD8+ T cells, B cells, 

NKT and NK cells did not vary significantly between normal or adenomatous duodenal 

tissue from FAP patients and normal non-FAP tissue. Similar results have also been 

observed in a FAP mouse model (APCMin/+) initially described by Su et al. (Su et al., 1992). 

These mice carry a heterozygous germ-line mutation at codon 850 of the APC gene (Su 

et al., 1992), resulting in adenomas in the small intestine and colon. Subsequent studies 

observed frequency of CD4+, CD8+ T and NK cells in the small intestinal LP and adenomas 

of APCMin/+ to be similar to that observed in WT mice, whereas B cells were found to be 

decreased in SI adenomas of APCMin/+ mice (Wang et al., 2020b; Akeus et al., 2014; Chae 

et al., 2010; Tanner et al., 2016). However, an altered tumor immunosurveillance 
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response of APCMin/+ T cells and increased Tregs have been found indicating an 

involvement of CD4+ and CD8+ T cell subsets in the progression of FAP (Akeus et al., 

2014; Chae and Bothwell, 2015; Tanner et al., 2016; Yang et al., 2021a). Therefore, 

further investigations are necessary to determine whether human duodenal T cell subsets 

and NK cells play a role in the early development of duodenal adenomas. While the 

frequencies of the main lymphocyte populations were examined in the present study, it is 

possible that subsequent studies may reveal differences in numbers of specific 

subpopulations, functional capacity, or spatial distribution in the tissue, which all could 

affect adenoma development.  

However, the present study observed frequencies of total ILCs, the innate counterpart of 

CD4+ Th cells to be significantly elevated in duodenal normal and adenomatous mucosa 

of FAP patients in comparison to normal non-FAP mucosa. Although the overall 

frequencies of ILC1s and ILC3s were significantly increased in the FAP mucosa, the 

increase in ILC3s was more substantial. As a result, the total duodenal ILC population in 

FAP patients, especially within adenomas was primarily composed of ILC3s, which were 

mainly NKp44- ILC3s. ILC2s were rarely found in the duodenal mucosa of both FAP and 

non-FAP patients, which is in line with previous research conducted by our group (Krämer 

et al., 2017). Upon activation by IL-1β, IL-23 or Ahr ligands ILC3s secrete cytokines 

including IL-22, IL-2, IL-8, TNF-α and IL-17A (Artis and Spits, 2015; Spits et al., 2013; 

Vivier et al., 2018). The specific cytokine profile depends on the subtype of ILC3s, with 

NKp44- ILC3s preferentially producing IL-17A, whereas NKp44+ ILC3s secrete IL-22 

(Cella et al., 2009; Hoorweg et al., 2012). In the present study, we found duodenal NKp44-

ILC3s in the normal mucosa of FAP patients, and to an even greater extent in FAP 

adenoma tissue, to produce significantly more IL-17A compared to non-FAP controls after 

P/I stimulation whereas no such differences were observed for other ILC3-related 

cytokines such as IL-8, IL-2, IL-22 and TNF-α.  

Regarding the mechanism(s) potentially involved in FAP-associated duodenal 

accumulation of IL-17A-producing NKp44- ILC3s several scenarios can be envisioned.  

First, increased duodenal migration of IL-17A-producing NKp44- ILC3s to or impaired 

egress from the duodenum could explain our findings. However, ILCs are considered to 

be primarily tissue-resident cells (Gasteiger et al., 2015) that circulate only to a limited 
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extent and, in particular, cytokine-producing mature ILC3s are almost absent in peripheral 

blood (Lim et al., 2017). Moreover, the frequency and composition of the circulating ILC 

pool were not different between FAP patients and controls, which also argues against 

such a mechanism.  

Alternatively, the underlying genetic mutation in the APC gene may directly affect ILC 

functions. Indeed, APC has been shown to modulate lymphocyte function. As an example, 

Agüera-González et al. (2017) found APC to ensure T cell receptor-triggered activation 

through Nuclear Factor of Activated T cells and demonstrated APC deficiency in mice to 

impair Treg differentiation and the acquisition of a suppressive phenotype (Agüera-

González et al., 2017). More recently, Mastrogiovanni et al. demonstrated APC to regulate 

T lymphocyte migration (Mastrogiovanni et al., 2022). While we cannot entirely rule out 

the involvement of such a process, our observations that IL-8, IL-2, IL-22, and TNF-α 

production remained unaffected, along with the increased IL-17A production being 

specifically observed in the duodenum and not in the colon might rather argue against 

such a mechanism.  

However, APC mutation and potentially other involved genetic co-factors might indirectly 

affect the ILC3 compartment via alteration of the local microenvironment. In line with this, 

Li et al. (2020b) found differentially expressed genes in the colonic normal mucosa of FAP 

patients compared to normal mucosa of patients with sporadic CRC and increased 

lymphocyte subsets in high grade adenomas and carcinomas of FAP patients indicating 

alterations in the microenvironment due to germline APC mutation (Li et al., 2020b). FAP 

normal mucosa already exhibited enhanced metabolic processes and proliferative activity, 

which may be due to the long-term effects of inherited mutations in the APC gene (Li et 

al., 2020b). Moreover, a neoepitope derived from a novel human germline APC gene 

mutation in FAP has been demonstrated to show selective immunogenicity and to induce 

a cytotoxic T cell response in controls but not in FAP patients suggesting that CD8+ T cells 

from individuals carrying this germline APC mutation have been tolerized to the mutation 

(Majumder et al., 2018). Additionally, it is particularly interesting to note that changes in 

the mucosal microenvironment are also found in other hereditary cancer syndromes such 

as Lynch syndrome (LS) compared to non-LS control specimens, which further differs 

between tumor-free LS carriers and LS tumor patients (Bohaumilitzky et al., 2022). The 



79 

alterations in the local microenvironment might also be possible due to microbial 

dysbiosis. In line with this, unpublished data of our group and Liang et al. (2020) 

demonstrated that APC mutation was closely related to changes of gut microbiota (Liang 

et al., 2020). A direct interplay between the microbiome and FAP-associated ILC3 

accumulation could not be studied so far. 

ILCs have been shown to proliferate, differentiate and become activated in response to 

the local microenvironment (Gao et al., 2017; Bernink et al., 2015; Bal et al., 2016). 

Moreover, there is compelling data demonstrating ILC subsets can convert their 

phenotype and function depending on the local microenvironment (Bernink et al., 2015; 

Cella et al., 2019; Vonarbourg et al., 2010). Accordingly, frequencies and composition of 

the ILC compartment can vary depending on the tissue or organ-specific milieu (Simoni 

et al., 2017; Simoni and Newell, 2018; Krämer et al., 2017). Furthermore, disease-

associated alterations of the microenvironment, as can be found in chronic inflammation, 

significantly affect ILC composition (Saez et al., 2021; Bernink et al., 2019; Bernink et al., 

2013). In line with this, IL-17A-producing NKp44- ILC3s have been found in various 

pathologies including cystic fibrosis (Golebski et al. 2019), psoriasis (Bernink et al., 2019) 

and inflammatory bowel diseases (Creyns et al., 2020). 

The local cytokine microenvironment plays a crucial role in this context. In particular, 

cytokines belonging to the common γ-chain family (IL-7, IL-15) are essential for the 

development of all known ILC subsets (Nagasawa et al., 2018). IL-7 is critical for the 

development of ILC2 and ILC3 subsets, while IL-15 has an important role in developing 

ILC1s (Nagasawa et al., 2018). In addition to IL-7 and IL-15, numerous cytokines have 

been found to regulate ILC differentiation and plasticity. For example, IL-12 and IL-18 

have been demonstrated to drive plasticity from ILC2s and ILC3s in ILC1s (Bernink et al., 

2015; Cella et al., 2019; Vonarbourg et al., 2010), whereas IL-4 might promote the 

differentiation of human ILC3s and ILC1s in ILC2s (Bal et al., 2016; Golebski et al., 2019).  

Interestingly, we observed duodenal mRNA levels of IL23A and IL1B to be increased in 

both normal and adenomatous biopsies of FAP patients. IL-23 and IL-1β are critical 

players in the immune system, particularly in the context of inflammatory responses and 

regulation of immune cells, shaping the immune response to various challenges, including 

infection and malignancy (Langowski et al., 2006; Li et al., 2012). IL-23 is a heterodimeric 
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cytokine composed of two subunits, p19 and p40, which belong to the IL-12 cytokine 

family (Oppmann et al., 2000). It is mainly produced by antigen-presenting cells such as 

dendritic cells and macrophages (Oppmann et al., 2000). IL-23 is known for its essential 

role in the maintenance and expansion of Th17 cells, a subset of Th cells involved in the 

pathogenesis of several autoimmune and inflammatory diseases (Cauli et al., 2015).  

IL-1β, a member of the IL-1 family, is a potent pro-inflammatory cytokine synthesized 

predominantly as an inactive precursor by monocytes, macrophages and dendritic cells 

(Lopez-Castejon and Brough, 2011). Upon activation by inflammasomes, IL-1β is cleaved 

to its active form and secreted to orchestrate a variety of immune and inflammatory 

processes (Lopez-Castejon and Brough, 2011). Of note, both cytokines have been shown 

to contribute to the expansion and regulation of ILCs by driving the conversion of ILC1s 

and ILC2s to ILC3s and subsequently modulating mucosal immune responses (Bernink 

et al., 2015; Cella et al., 2009; Golebski et al., 2019). In addition, IL-1β and IL-23 stimulate 

the production of IL-17A and IL-22 by ILC3s (Vivier et al., 2018) suggesting a potential 

role for these cytokines in the development of FAP-associated adenomas. 

In line with this, we observed a correlation between IL23A and IL1B mRNA levels and 

frequency of duodenal IL-17A-producing NKp44- ILC3s. In addition, recombinant human 

IL-23 together with IL-1β induced expansion of duodenal NKp44- ILC3s on OP9-DL4 

feeder cells, confirming previous results of other groups (Lim et al., 2017). Finally, we 

found stimulation of NKp44- ILC3s cultured in the presence of OP9-DL4 feeder cells or 

duodenal organoids to induced IL-17A production. Altogether these findings suggested 

increased mucosal IL-23 and IL-1β, most likely together with additional alterations of the 

local microenvironment, to promote duodenal accumulation of IL-17A-producing NKp44- 

ILC3s. 

At present, the precise mechanisms underlying the elevated levels of IL-23 and IL-1β, as 

well as the specific cells implicated, remain unclear. As previously stated, IL-23 and IL-1β 

are generated by diverse immune cells, including dendritic cells and macrophages, in 

response to microbial pathogens and inflammatory cues (Geremia and Arancibia-

Cárcamo, 2017). Consequently, it is plausible to hypothesize that FAP-associated 

modifications in the duodenal microenvironment, microbiome and/or disruptions in the 
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epithelial barrier may provoke corresponding inflammatory events. Nevertheless, further 

investigation is warranted in subsequent studies to confirm this hypothesis.  

Alternatively, one could also consider the possibility that the increased mRNA levels of 

IL23A and IL1B, as well as accumulation of IL-17A-producing NKp44- ILC3, are not 

causally implicated in FAP-associated adenoma development but rather represent a 

response to duodenal adenomatosis. However, elevated IL-17A-producing NKp44- ILC3 

frequencies were also observed in the duodenal mucosa of FAP patients without duodenal 

adenomas, which challenges such an explanation. 

Interestingly, production of IL-17A in response to IL-1β/IL-23 stimulation was scarcely 

detectable in the absence of feeder cells or organoids, indicating additional factors to be 

important in this context. Upregulation of Notch ligands may represent such a factor. The 

Notch signaling pathway has been highly conserved throughout evolution and controls 

numerous developmental decisions, including cell fate, homeostasis, and survival, in 

various tissues during embryonic and adult life (Bray, 2016; Golub, 2021). It is a key 

pathway that enables communication between two neighboring cells to repeatedly 

regulate numerous developmental tasks, thereby participating in the development and 

differentiation of many immune cell populations and may also regulate their survival and 

functions (Golub, 2021; Yasutomo, 2017). Vertebrates have four distinct Notch receptors, 

designated Notch 1-4, that can interact with five known ligands, namely Delta-like (DL) 1, 

3, 4, Jagged 1, and 2 (Golub, 2021). 

Regarding ILCs, Notch signaling plays an essential role in maintaining intestinal 

homeostasis by regulating the differentiation and function of ILCs and is importantly 

involved in the activation, growth, and differentiation of ILC3s (Croft et al., 2022; Golub, 

2021).  

Sustained activation of Notch signaling is required to maintain intestinal NKp44+ ILC3s 

identity (Chea et al., 2016), whereas TGF-β signaling counteracts the effect of Notch 

signaling during NKp44- ILC3 differentiation (Viant et al., 2016). Regarding cytokine 

production of ILC3s, Notch signaling has been shown to indirectly affect IL-22 secretion 

in the intestinal mucosa, by regulating the maturation of ILC subsets in the tissue and 

balancing their abundance, rather than directly altering their secretion whereby Notch 
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signaling, together with Ahr, is required for the development of intestinal IL-22-producing 

NKp44+ ILC3s (Lee et al., 2011; Qiu et al., 2012; Viant et al., 2016; Golub, 2021). 

However, the Notch signaling pathway may also affect IL-17A production. For example, it 

has been demonstrated that Notch signaling is responsible for ILC2s acquiring ILC3 

features, as it can promote the expression of RORC leading to IL-17A secretion without 

impacting ILC2 functions (Golebski et al., 2019; Zhang et al., 2017).  

We observed mRNA expression of the Notch ligands DL4 and DL1 to be increased in both 

normal mucosa and adenomas of FAP patients. More importantly, we found DL4 and DL1 

mRNA levels to positively correlate with numbers of IL-17A-producing NKp44- ILC3s, 

suggesting Notch signaling to be involved in FAP-associated increase of the ILC subset. 

Functional experiments indicated that specifically DL4 might be important in this context 

as only culturing of NKp44- ILC3s in the presence of OP9-DL4 cells induced a significant 

upregulation of IL-17A, whereas no such effects were observed in the presence of OP9 

or OP9-DL1 cells.  

Altogether, these observations suggested Notch signaling together with IL-23 and IL-1β 

to be involved in duodenal expansion of IL-17A-producing NKp44- ILC3s. This is in 

contrast to reports demonstrating these stimuli to promote expansion of IL-22-secreting 

NKp44+ ILC3s (Croft et al., 2022; Rankin et al., 2013). However, composition of ILC3 

subsets in vivo depends on the balance between different signals in the local 

microenvironment. For instance, TGF-β has been shown to block Notch signaling, thereby 

increasing numbers of NKp44- ILC3s (Viant et al., 2016). Of note, we observed increased 

TGF-β mRNA expression in normal and adenomatous duodenal mucosa of FAP patients, 

which might suppress NKp44+ ILC3s expansion. In line with this, NKp44+ ILC3s of ILCs 

did not increase in normal and adenomatous mucosa of FAP patients which argues 

against a conversion of NKp44+ into NKp44- ILC3s. As ILC1s of ILCs decrease, a 

conversion of ILC1s to NKp44- ILC3s is much more likely. Accordingly, previous studies 

have reported a direct conversion from ILC1s to IL-17A-producing NKp44-ILC3s with  

IL-23 (Liu et al., 2019; Koh et al., 2019), which could be relevant to the findings in this 

study. Further investigation using in-vitro culture of duodenal ILC subsets on OP9 feeder 

or normal or adenomatous FAP cells stimulated with IL-23 could provide additional 

insights into this conversion. 
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In conclusion, the normal and adenomatous microenvironment of the duodenum in FAP 

patients provides a perfect milieu for NKp44- ILC3 growth and activation. However, further 

research has to be performed to elucidate the mechanisms underlying the increased 

mRNA levels of IL1B/IL23/DL4. While IL-23 and IL-1β, along with Notch ligand DL4, are 

well-established factors involved in the expansion and activation of NKp44+ ILC3s, the 

mechanisms behind the increased presence of NKp44- ILC3s in the normal and 

adenomatous mucosa of FAP patients and whether it involves a conversion from ILC1s 

to NKp44- ILC3s requires further investigation. 

 

4.2 Duodenum-specific increase of IL-17A-producing NKp44- ILC3s 

 

The composition and function of the ILC pool have been shown to be compartment-

specific (Krämer et al., 2017). A gradient exists within the GI tract, characterized by a 

decrease in the frequency of conventional NK cells from the proximal to distal GI tract, 

while the frequency of helper ILCs increases (Krämer et al., 2017). Notably, the colon 

exhibits a particularly high prevalence of NKp44+ ILC3s (Krämer et al., 2017).  

This compartmentalization is also observed in patients with FAP. In these individuals, over 

90 % of colonic ILCs were identified as ILC3s, with the majority expressing NKp44. 

Interestingly, the differences between respective intestinal sections might extend to the 

processes involved in adenoma formation as we observed frequencies of total ILC3s and 

NKp44+ ILC3s to be lower in FAP colonic adenomas compared normal mucosa of FAP 

and non-FAP patients, which was in sharp contrast to our findings in the FAP duodenum. 

These observations of reduced ILC3 numbers in colon adenomas parallel findings in 

sporadic CRC patients, where a decrease in ILC3 populations was identified within tumor 

tissue (Carrega et al., 2020; Goc et al., 2021; Qi et al., 2021).  

This data suggests that ILC3s might play a more protective role in the colon, potentially 

due to the distinct cytokine profile of colon ILC3s when compared to their duodenal 

counterparts. For instance, unlike in duodenal NKp44- ILC3s, increased IL-17A production 

was not observed in colonic NKp44- ILC3s.  
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The phenotypical and functional differences in ILCs between the duodenum and colon of 

FAP patients may be indicative of variations in the local microenvironment. Accordingly, 

increased mRNA levels of IL23A, IL1B, DL1, and DL4 were detected in the duodenum of 

FAP patients, but not in colonic normal and adenomatous FAP mucosa. This finding 

implies that ILC3s may have a different role or be regulated differently in the colonic 

normal and adenomatous microenvironment of FAP patients. In line with the hypothesis, 

previous studies demonstrated that in sporadic CRC tissue, a conversion of ILC subsets 

may occur, resulting in an increase in ILC1s and a decrease in ILC3s, particularly NKp44+ 

ILC3s (Cella et al., 2019; Goc et al., 2021). In this context, ILC3 to ILC1 conversion has 

been proposed to be associated with a loss of the protective function of ILC3s in the CRC 

microenvironment, characterized by a lack of anti-T cell response due to a decreased 

interaction between ILC3s and T cells (Goc et al., 2021).  

Further investigation is required to better understand this context-dependent role of ILC3s 

in adenoma formation.  

 

4.3 The role of IL-17A-producing NKp44- ILC3s in duodenal adenoma formation 

 

Our data suggest IL-17A-producing NKp44- ILC3s to be involved in duodenal adenoma 

formation and thus, potentially in the establishment of duodenal cancer. Similar 

observation has been made in SCC (Koh et al., 2019) and in a mouse model of HCC (Liu 

et al., 2019). In line with our data, suggesting IL-23 induced increase in IL-17A-producing 

NKp44- ILC3s being involved in duodenal adenoma formation, Chan et al. (2014) 

demonstrated that overexpression of IL-23 in wild-type (WT) mice induced duodenal 

tumorigenesis, while mice lacking the IL-23p19 chain displayed reduced intestinal tumor 

growth (Chan et al., 2014; Grivennikov et al., 2012). Of note, mice deficient in immune 

cells (RAG2-/- x IL-2Rγc-/-) were resistant to tumor formation triggered by IL-23, whereas 

tumor development did not differ between RAG1-/- (deficient in mature T and B cells) and 

WT mice, suggesting a critical role for ILCs in the development of IL-23-induced duodenal 

tumors (Chan et al., 2014). Moreover, the reduction in tumor numbers observed in both 

IL-17A-/- mice following IL-23 overexpression and APCMin/+ mice with an IL-17A-/- genotype 
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further supports a pro-tumorigenic role for IL-17A-producing NKp44- ILC3s in FAP (Chae 

et al., 2010). IL-17A is a pro-inflammatory cytokine that plays a role in host defense, 

promotes inflammation and recruits immune cells such as neutrophils to the site of 

infection (Jin and Dong, 2013). It has been implicated in various pathologies such as 

psoriasis (Bernink et al., 2019) where dysregulation of IL-17A can contribute to chronic 

inflammation and tissue damage (Zhao et al., 2020).  

In cancer, IL-17A has been shown to contribute to tumor growth, angiogenesis, and 

metastasis (Yang et al., 2014). The mechanisms by which IL-17A boosts tumors are 

thought to be diverse. In the HCC mouse model studied by Liu et al. (2019), IL-17A-

producing NKp44- ILC3 inhibited CD8+ T cell immunity by promoting lymphocyte apoptosis 

and limiting their proliferation, thereby boosting cancer development (Liu et al., 2019). 

Alternatively, IL-17A may promote cancer growth by stimulating the production of pro-

inflammatory cytokines and chemokines (Wang et al., 2009), which can attract immune 

cells and promote tumor cell proliferation. In addition, IL-17A may also directly enhance 

tumor cell survival and invasion by activating signaling pathways that are involved in these 

processes (Liu et al., 2022). 

Our data suggest that induction of DUOX2/DUOXA2 might represent an additional 

potential mechanism by which IL-17A produced by NKp44- ILC3s may promote duodenal 

adenoma formation. Duox2 is a member of the NOX family of NADPH oxidases and 

produces hydrogen peroxide (H2O2) when it forms a complex with its maturation factor, 

DuoxA2 (Bedard and Krause, 2007; Dang et al., 2020). NADPH oxidases serve as the 

first barrier of the intestinal epithelium and take part in the innate immune response of the 

intestinal mucosa (Leto and Geiszt, 2006; Grasberger et al., 2015; Dang et al., 2020) but 

also play a role in the development of various carcinomas with elevated Duox2 expression 

being observed in liver cancer, pancreatic cancer, and prostate cancer (Lu et al., 2011; 

Wang et al., 2015; Wu et al., 2013a; Lyu et al., 2022; Cao et al., 2021; Qi et al., 2016; 

Zhang et al., 2021). In addition, Duox2 was found to be highly expressed in CRC and to 

promote CRC cell invasion and metastasis by affecting the ubiquitination status of 

ribosomal protein uL3 (Zhang et al., 2021). Moreover, Duox2 has also been shown to 

affect the response to GI cancer treatment (Kang et al., 2018; Nguyen et al., 2015). 



86 

We found recombinant human IL-17A as well as IL-17A-producing NKp44- ILC3s to 

specifically induce increased expression of DUOX2/DUOXA2 in duodenal organoids, 

whereas no such effects were observed for IL-22, TNF-α, IL-2, and IL-8. Furthermore, we 

found blocking of IL-17A with a specific antibody to prevent upregulation of DUOX2, 

induced by supernatant of NKp44- ILC3s. Ex vivo analyses confirmed increase 

DUOX2/DUOXA2 gene and protein expression in duodenal adenoma tissue in FAP, which 

is in line with earlier reports (Thiruvengadam et al., 2019). Furthermore, a germline 

mutation in the DUOX2 gene has been linked to adenomatous polyposis (Yang et al., 

2021b).  

Altogether, these findings indicate IL-17A being involved in the regulation of Duox2 and 

suggest a role for Duox2/DuoxA2 in FAP-associated duodenal adenoma formation. 

Consistent with this hypothesis, previous research indicated IL-17A to trigger an 

upregulation of DUOX2 expression in various cell lines (Wu et al., 2019). Moreover, it has 

been demonstrated that IL-17A can induce DUOX2 expression by interacting with its 

receptors, IL17RA and IL17RC (Wu et al., 2013b). This interaction subsequently activates 

the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-

activated protein kinase (MAPK) signaling pathways (Yan et al., 2019). The p65 subunit 

of NF-κB is then able to bind to a canonical NF-κB binding site located on the human 

DUOX2 promoter, which in turn induces DUOX2 expression (Wu et al., 2013b).  

IL-17A induced increased DUOX2 expression might lead to increased H2O2 production as 

has been observed in various cell lines (Dang et al., 2020; Wu et al., 2013b; Wu et al., 

2019; Wu et al., 2022). H2O2 belongs to reactive oxygen species (ROS) and plays an 

important role in tissue homeostasis, cellular signaling, differentiation, and survival (Liu et 

al., 2023). An increase in the cellular levels of H2O2 may play a key role in malignant 

transformation (López-Lázaro, 2007). H2O2 is known to be linked to enhanced apoptosis 

(Hirpara et al., 2001), DNA damage, and mutations that cause oxidative stress and 

contribute to genomic instability, which in turn promotes the development of adenomas 

and the growth of tumors (Burgueño et al., 2021; D'Errico et al., 2008; Wu et al., 2013b; 

Wu et al., 2019; Lee et al., 2002).  

In conclusion, this study sheds light on the molecular mechanism of IL-23 induced IL-17A-

producing NKp44- ILC3s in duodenal adenoma formation, and highlights the role of  
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IL-17A in the regulation of DUOX2 expression. The findings provide new insights into the 

early stages of intestinal carcinogenesis and its potential therapeutic targets. 

 

4.4 Outlook/Limitations 

 

Several limitations of this study need to be addressed. First, the biopsy samples used 

were rather small and weight could not be determined. In addition, intestinal intraepithelial 

and LP cells were merged, making comparisons with other studies difficult. Flow cytometry 

analyses of ILCs and other lymphocyte subsets were performed based on CD45+ cells 

rather than related to tissue weight or analyzed within tissue sections as done by 

Bohaumilitzky et al. (Bohaumilitzky et al., 2022). In this study, quantitative analyses were 

performed using immunohistochemical staining to obtain accurate data on T cells subsets. 

However, this technique cannot be applied to ILCs due to the relative scarcity of these 

cells and because a variety of different surface markers are required to reliably identify 

ILCs. For future experiments, spatial transcriptomic and multiplexed imaging technologies 

such as Co-detection by indexing (CODEX) (Black et al., 2021) should be applied to gain 

better insights into the spatial relationships between ILCs and other cells within the tissue. 

In the present study, we tested in situ characterization of ILCs using  the Multi-Epitope-

Ligand-Cartography (MELC) technology, staining 100 antigens on a single tissue section 

(Schubert et al., 2006). However, ILCs remained hard to detect, as only a small portion of 

the tissue section could be analyzed.  

To acquire more comprehensive information about smaller cell subsets, such as ILCs, 

Treg, and Th17 cells, and their contribution to adenoma formation, the duodenal immune 

infiltrate should be further investigated using advanced flow cytometry instruments that 

enable simultaneous analysis of a greater number of marker molecules, like the Sony 

ID7000TM Spectral Analyzer.  

We performed single cell RNAseq (scRNAseq) of sorted Lin- cells from duodenal normal, 

adenomatous of FAP, and normal mucosa of non-FAP patients to investigate the gene 

expression profile of ILCs and identify potential molecular mechanisms involved in the 

duodenal adenoma formation. However, the quality and quantity of the data was not 
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sufficient for a robust analysis, and contamination with T and B cells occurred. Therefore, 

scRNAseq should be performed using purified ILCs or even better purified ILC3s. Since 

ILCs are present in low numbers in small biopsies, pooling of ILCs from a large number 

of biopsy samples may be necessary to obtain valid measurements. Utilizing duodenum 

resectates could help increase the number of ILCs/ILC3s, although implementing this 

approach is challenging, given that only a small percentage of FAP patients with SS IV 

undergo duodenectomy or Whipple surgery. ScRNAseq of ILC3s in colon, colonic 

adenomas, or CRC samples (Qi et al., 2021; Wang et al., 2021) has already been 

conducted, making it worthwhile to compare these findings with scRNAseq data from 

duodenal and colonic adenoma and tumor samples in FAP patients.  

At present, endoscopic surveillance and polypectomy, along with duodenectomy for 

patients with extensive duodenal polyposis, serve as the standard approach to prevent 

duodenal cancer development. Additionally, colectomy is performed in nearly all FAP 

patients to reduce the risk of colon cancer. Considering the risks associated with these 

procedures and the potential post-operative decline in quality of life, numerous clinical 

trials have been conducted to evaluate drug-induced reduction of polyp burden, with the 

primary focus of these trials being the treatment of colonic adenomas (Giardiello et al., 

1993; Giardiello et al., 2002; Cruz-Correa et al., 2002; Cruz-Correa et al., 2006; Steinbach 

et al., 2000). Even if some of these studies reduced the number of colonic adenomas, the 

effect was only partial and a prophylactic colectomy was still recommended in the study 

participants (Giardiello et al., 1993; Samadder et al., 2016; Giardiello et al., 2002; 

Steinbach et al., 2000; Cruz-Correa et al., 2002; Ulusan et al., 2021). Regarding duodenal 

polyposis, Sulindac, a non-steroidal anti-inflammatory drug, did not display any significant 

effect on duodenal adenoma formation although some authors discussed its potential use 

as an additional treatment following endoscopic polyp excision (Burke et al., 2020; Burke 

et al., 2016; Nugent et al., 1993; Richard et al., 1997). Other trials testing celecoxib (COX-

2 inhibitor), erlotinib (EGFR inhibitor) or a combination of erlotinib and sulindac observed 

some reduction in duodenal polyp burden (Samadder et al., 2016; Samadder et al., 2022; 

Phillips et al., 2002; Ulusan et al., 2021). However, these effects have only been 

investigated over short periods, and it remains uncertain whether they genuinely prevent 
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cancer development in these individuals. Consequently, further research and insight into 

the tumor growth process in FAP are necessary. 

The findings of the present study indicate IL-23-induced increase in IL-17A-producing 

NKp44- ILC3s to play a role in the duodenal adenoma formation, which implies ILC3s,  

IL-17A and/or IL-23 might represent putative targets for chemoprevention of duodenal 

adenoma and carcinoma formation. Accordingly, there are already several clinical trials 

targeting ILC-related factors in other diseases, such as IBD (Cobb and Verneris, 2021). 

Guselkumab, a human immunoglobulin monoclonal antibody against the p19 subunit of 

IL-23, is effectively used in psoriasis patients and has been tested in IBD patients with 

promising results (Sandborn et al., 2022; Howell et al., 2018). Based on these promising 

results and the established role of the IL-23/IL-17A/JAK/STAT3 pathway in GI cancers 

(Owen et al., 2019; Huynh et al., 2017; Iwakura and Ishigame, 2006; Gaffen et al., 2014), 

a clinical trial using guselkumab has also recently been performed in FAP patients 

(NCT03649971, 2018-2022). Although the final results of this trial have yet to be reported, 

it is tempting to speculate that suppressing the IL-23 signaling pathway should at least in 

part prevent accumulation and activation of IL-17A-producing NKp44- ILC3, thereby 

positively affect duodenal adenoma formation. In line with this hypothesis, Creyns et al. 

(2020) observed reduced frequencies of NKp44- ILC3s but an increase of NKp44+ ILC3s 

in colonic and ileal tissue of IBD patients following treatment with ustekinumab  

(IL-12/IL-23 inhibitor) (Creyns et al., 2020). Nevertheless, it remains unclear whether this 

observed effect is solely attributed to IL-23 inhibition, or if IL-12 blockade may also play a 

role. Additionally, it would be worthwhile to investigate if similar alterations are detectable 

in the duodenal mucosa. Thus, future studies examining duodenal and rectal/pouch ILCs 

in FAP patients following guselkumab treatment, could provide valuable insights. 

However, when considering potential ILC3/IL-17A targeting studies, it is crucial to 

recognize the complex nature of IL-17A effects, as anti-IL-17A treatment could potentially 

result in negative consequences. Clinical trials using the anti-IL-17A monoclonal 

antibodies brodalumab and secukinumab in IBD patients revealed a worsening of the 

disease phenotype (Fauny et al., 2020; Hueber et al., 2012). Hueber et al. (2012) 

hypothesized that IL-17A blockade might disrupt its protective function within the intestine, 

suggesting that targeting IL-23 may be a more promising approach (Hueber et al., 2012). 
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In summary, this study demonstrates that IL-23/IL-1β induced IL-17A production of 

NKp44- ILC3s can induce DUOX2 expression and might promote the duodenal adenoma 

formation in FAP patients. Blocking of ILC3-targeting factors might be a putative target for 

clinical trials in FAP patients.  
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5. Abstract 
 

Familial adenomatous polyposis (FAP) is an inherited gastrointestinal tumor syndrome. 

Apart from colonic polyposis and colorectal cancer, the occurrence of duodenal adenomas 

is the most common intestinal manifestation of FAP, resulting in a significantly increased 

risk of developing duodenal cancer compared to the general population. Only a proportion 

of FAP patients develop duodenal adenomas and the extent of duodenal polyposis varies 

considerably. Even within carriers of the same genetic variant of the adenomatous 

polyposis coli (APC) gene, duodenal phenotype and clinical course vary, indicating that, 

in addition to the genotype, other factors such as the local immune system play a role. 

Here, we analyzed the potential role of innate lymphoid cells (ILCs) in the duodenal 

adenoma formation in FAP. Intestinal lymphocytes were isolated from normal and 

adenomatous tissue samples of 90 FAP and 35 non-FAP patients obtained during routine 

endoscopy and analyzed regarding phenotype and function by flow cytometry. Mucosal 

mRNA levels were assessed by qRT-PCR and bulk-RNA-seq. Furthermore, duodenal 

organoids were generated to analyze ILC function during adenoma formation.  

Frequency of total ILCs was significantly increased in normal duodenal mucosa in FAP 

patients compared to controls and was highest in FAP adenoma tissue. This was 

especially true for group 3 ILCs (ILC3s). More importantly, we found FAP to be associated 

with an increased IL-17A production of duodenal NKp44- ILC3s. No such findings were 

made regarding colon ILC3s in FAP, indicating a duodenum-specific effect. Cytokines 

such as IL-1β and IL-23A and the Notch ligand Delta-like 4 (DL4) have been shown to be 

important in the regulation of intestinal ILC3 differentiation, maturation and function. We 

found IL1B, IL23A, and DL4 mRNA expression to be significantly elevated in FAP 

duodenal adenoma and normal tissue and to correlate positively with the frequency of  

IL-17A+ NKp44- ILC3s. Accordingly, we observed culturing NKp44- ILC3s on DL4 

expressing OP9 feeder cells (OP9-DL4) in the presence of IL-1β/IL-23 to significantly 

increase ILC3’s IL-17A production. Furthermore, bulk-RNA-seq and qRT-PCR revealed 

that duodenal adenomas of FAP patients had higher levels of dual oxidase 2 (DUOX2) 

and its maturation factor DUOXA2, which can promote cancer due to increased H2O2 
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production. Functional studies demonstrated both recombinant IL-17A and activated 

NKp44- ILC3s to induce expression of DUOX2 and DUOXA2 in duodenal organoids. 

These results suggest IL-17A-producing NKp44- ILC3 to be involved in duodenal adenoma 

formation in FAP patients. 
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