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Abstract 

In pig breeding immune traits are considered to serve as potential biomarkers for pig’s health-

competence. A limited number of published studies indicate medium to high heritabilities (h2) 

for several immune traits. Genetic variance and covariance components of immune traits were 

estimated in chapter 3 to examine the quantitative genetic background of these traits. For this 

purpose, blood samples were collected for Landrace (LR) (n=611) and Large White (LW) 

(n=544) piglets and their biological dams (n=298, 272, respectively) in a short period around 

birth. Immune profile was covered by 22 traits including immune cells, red blood cell 

characteristics, and cytokines. Maternal impacts on piglet’s immune profile were investigated 

as well as close phenotypic and genetic-based relationships in a multivariate approach. Immune 

traits showed low to high breed-specific h2. Strong positive genetic correlations (rg) were 

estimated among red blood cell characteristics (0.77 to 0.99) as well as among cytokines (0.48 

to 0.99). The litter impact on piglet’s immunity was examined and strengthened already 

observed breed differences. In LR h2 (0.22 to 0.15) and litter effect (c2) (0.52 to 0.44) for IFN-

γ decreased after statistical consideration of maternal impact. In LW a decrease in h2 (0.32 to 

0.18) for IFN-γ and an increase in c2 (0.54 to 0.56) was observed.  

The development of selection strategies requires deep investigations with appropriate statistical 

genome-wide association study approaches to explore the joint genetic foundation for health 

biomarkers. Consideration of previously established rg between immune traits were used to 

identify pleiotropic genetic markers. For this reason, several univariate (uv) and multivariate 

(mv) genetic association testing methods were applied on immune traits in chapter 4. Mv 

GWAS approaches detected 647 associations for different mv immune trait combinations that 

were summarized to 133 quantitative trait loci (QTL). SNPs for different trait combinations 

(n=66) were detected with more than one mv method. Most of these SNPs are associated with 

red blood cell related immune trait combinations. With uv methods shared markers were not 

observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs 

for LR and LW. 

Most immune traits are heritable and are promising to cover global breed-specific 

immunocompetence in animals. With uv and mv approaches, the joint genetic background of 

immune traits was demonstrated by revealing immune relevant potential candidate genes. 

Investigated traits can be used to gain a breeding-based health improvement in piglets whereby 

special attention has to be laid on the relationship between immunocompetence and further 

performance characteristics.  



 

 
 

Zusammenfassung 

In der Schweinezucht werden Immunmerkmale als potenzielle Bioindikatoren der 

Gesundheitskompetenz betrachtet. In einer begrenzten Anzahl von Veröffentlichungen wurden 

für eine Reihe von Immunmerkmalen mittlere bis hohe Heritabilitäten (h2) geschätzt. Im 

Rahmen dieser Arbeit wurden, wie in Kapitel 3 beschrieben, genetische Varianz- und 

Kovarianzkomponenten geschätzt. Dazu wurden in einem kurzen Zeitraum um die Geburt 

Blutproben von Landrasse (n=611) und Large White (n=544) Ferkeln und ihren biologischen 

Müttern (n=298 bzw. 272) entnommen. Das Immunprofil wurde durch 22 Merkmale 

einschließlich Immunzellen, Erythrozyten-Charakteristika und Zytokinen abgedeckt. Die 

Auswirkungen der Mutter auf das Immunprofil des Ferkels sowie vorherrschende, enge, 

phänotypische und genetische Beziehungen wurden in einem multivariaten (mv) Ansatz 

untersucht. Immunmerkmale zeigten niedriges bis hohes rassespezifische h2. Es wurden starke 

positive genetische Korrelationen (rg) zwischen den Merkmalen der roten Blutkörperchen (0,77 

bis 0,99) sowie zwischen den Zytokinen (0,48 bis 0,99) geschätzt. Der Wurfumwelteffekt (c2) 

auf die Immunität der Ferkel wurde untersucht und verstärkte bereits beobachtete 

Rassenunterschiede. In LR betrugen die h2 (0,22 bis 0,15) und c2 (0,52 bis 0,44) für IFN-γ nach 

statistischer Berücksichtigung des maternalen Effekts. Bei LW wurde eine Abnahme von h2 

(0,32 bis 0,18) und eine Zunahme von c2 (0,54 bis 0,56) beobachtet. 

Die in Kapitel 3 festgestellten rg wurden zur Identifikation von pleiotropen, genetischen 

Markern genutzt. Aus diesem Grund wurden verschiedene univariate (uv) und mv genetische 

Ansätze angewendet. Deren Anwendbarkeit und Aussagefähigkeit wurden in Kapitel 4 

untereinander empirisch verglichen. Mv Ansätze detektierten 647 Assoziationen für 

verschiedene Immunmerkmalskombinationen, wovon 66 SNPs mit mehr als einer mv Methode 

nachgewiesen werden konnten. Mit uv Methoden wurden keine gemeinsamen Marker zwischen 

den Rassen beobachtet, während mv Ansätze zwei gemeinsame SNPs zwischen LR und LW 

aufweisen konnten. 

Für die meisten Immunmerkmale wurde eine moderate bis hohe, rassespezifische h2 festgestellt. 

Mit uv und mv Ansätzen konnte der gemeinsame genetische Hintergrund von 

Immunmerkmalen untersucht und potenzielle, immunrelevante Kandidatengene aufgedeckt 

werden. Immunmerkmale können zu einer züchterischen Verbesserung der Gesundheit von 

Ferkeln beitragen. Hierbei sollten allerdings die Beziehungen der Immunmerkmale zu weiteren 

Leistungsmerkmalen in Betracht gezogen werden. 
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1.1. Challenges in sustainable pig breeding 

The requirements for the management of animal products are complex and challenging. This 

includes the economic point of view, legal constraints, demands of the consumer and 

understanding of the stock farmers. One important challenge for animal scientists is to reconcile 

the interests of various actors from today’s perspective. The systems of livestock production 

are currently being massively criticized. In 2015, 83% of Europeans believed the welfare of 

farmed animals should be better protected than it is now (European Commission, 2017). Animal 

breeding research can provide a sustainable contribution to improve the livestock production 

systems regarding profitability, human nutrition, environmental load, resource management, 

and animal welfare. This results in a need to design genetic strategies that support the balance 

between the single factors. Genetic improvement of production traits is desirable, but possible 

genetic antagonisms between production traits and any other characteristics require specific 

attention.  

Since improved data recording and processing (Best Linear Unbiased Prediction (BLUP), 

computing power, biotechnological approaches) become more effective, strong and sufficient 

focus was set on production traits in pig’s selection. Initially, major progress was seen in carcass 

traits, growth rate, and meat quality while reproductive characteristics had little attention 

(Merks 2000). As pig production increased, improvements in litter size were achieved through 

better management, nutrition and implementation of genetic selection for litter size. This course 

of action led to a lack of balance between fitness, animal welfare and production traits (Prunier 

et al. 2010). The selection for high leanness, feed efficiency, and litter size may have resulted 

in correlated responses in the abilities of pigs to overcome immune challenges (Rauw et al. 

1998; Knap and Rauw 2008). The reproductive endocrine system is directly impaired as a result 

of resource-demanding, adverse environmental conditions that compromise immune response 

traits. As a consequence, the adaptive ability to deal with intense stress is significantly (Knap 

and Rauw 2008). Therefore, nowadays breeding progress is emphasized on increase in 

performance, improving the quality of the animal product, health status, as well as environment 

and resource compatibility (Merks et al. 2012). 

Until now, the mechanisms involved in porcine immunity have not been fully understood. 

Quantitative information on the genetic variation of immune related health traits within 

genotypes is needed. Literature information for unchallenged pigs is scarce because immune 

traits are difficult to measure and to quantify on a large number of animals with various genetic 

backgrounds. Besides, immune traits are quantitative traits where the expression is influenced 

by the genome and environmental effects. Additionally, many gene locations are involved in 
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the expression of quantitative traits. Usually, such complex traits are characterized by a low 

heritability (Mangino et al. 2017). Maintaining balanced homeostasis requires a high level of 

interaction between the distinct immune traits. The genetic relationship between the traits and 

to performance characteristics needs to be assessed continuously in order to reveal the genetic 

mechanism. The uncovered common genetic basis can help to understand the system governing 

the balance of immune cells in peripheral blood of protective immunity. As a consequence, it 

is important to develop suitable statistical analysis methods to explore such complex 

relationships.  

Multivariate models are commonly used to estimate phenotypic, genetic and environmental 

variances, covariances, and correlations for multiple traits in animal breeding programs. In 

cases where traits are correlated, a multivariate model can gain more accuracy than a univariate 

model benefiting from connections in the data due to residual covariance between the traits. 

Furthermore, traits with low heritabilities benefit more when analyzed together with traits with 

high heritabilities in a multivariate analysis (Isik et al. 2017). Whereas multivariate methods 

are common in estimating genetic parameters or breeding values these methods are rarely used 

in genome-wide association studies (GWAS). Against this background it should be particular 

worthwhile to investigate the applicability and meaningfulness of multivariate methods for the 

statistical analysis of immune traits. 

1.2. Scope of this thesis 

The objective of this thesis was to analyze and discuss the prospects of application of 

multivariate methods paying special attention to the presumed low heritable and complex 

porcine immune traits. To achieve this goal, genetic parameters of immune traits were 

estimated. In order to examine the impacts of the maternal effects on the offspring's immunity 

genetic and environmental influences are taken into consideration during the statistical analysis. 

As a way to identify pleiotropic genetic markers associated with immune traits, multivariate 

approaches for genome-wide association tests were applied.  

Chapter 2 introduces the genetic foundation of porcine immune traits. The benefit of the 

immunocompetence of the piglet and the dam are discussed. The application of univariate and 

multivariate genome-wide association methods to analyze the genetic foundation of desired 

traits is introduced. 

This thesis includes two studies: Figure 1 gives an overview of all performed analysis steps in 

the studies. 

In the first study, in chapter 3 the quantitative genetic background of immune traits was 

conducted. Data sets of purebred LR and LW subset pig populations from 2010 to 2017 were 
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provided by the German breeding organization Bundeshybridzuchtprogramm (BHZP) GmbH. 

From each litter, one male and one female piglet, as well as, their biological dam were chosen 

for blood sample collection. Blood samples of piglets were collected on average around 45 days 

after birth. From the biological dams of all phenotyped piglet’s blood was sampled in a short 

period postpartum (7 days). Complete blood count, haptoglobin and cytokines were examined 

as immune traits to characterize immunocompetence. In order to elaborate on the genetic 

potential for the dam's immunocompetence, genetic and environmental influences are taken 

into consideration during the analysis. The genetically correlated immune traits and networks 

are accessed through the application of principal component analysis. 

In the second study, in chapter 4, different genome-wide association approaches were used to 

identify genes and genetic markers for immune traits. The detection of pleiotropic single 

nucleotide polymorphisms in immune traits of piglets from two maternal lines was carried out 

using multivariate approaches besides a univariate frequentist and Bayesian approach. We 

empirically compared the results obtained using principal component analysis, canonical 

correlation analysis, meta-analysis, and a multivariate Bayesian linear regression approach with 

those obtained using univariate tests. 

The general discussion included in chapter 5 aims to debate the gain of knowledge and further 

challenges due to the application of multivariate approaches on immune traits. Moreover, a 

possible way to implement immune traits into selection strategies is presented. 
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Step 1. Variance component analysis 

Immune traits in piglet data set 
à Evaluate piglet’s genetic potential for 
global immunocompetence 

Step 2a. Principal component analysis 
Immune traits in dam data set 
à Examine dam’s environmental influence 
on piglet’s immunocompetence 

Step 2b. Variance component analysis 

Immune traits in piglet data set 
à Include dam’s principal components of 
immune traits as covariates  

Step 3a. Principal component analysis 

Immune traits in piglet data set 
à Condense phenotype information  

Step 3b. Variance component analysis 

Principal components as new dependent 
traits in piglet data set  
à Observe influence of information 
condensation 

Step 1. Bayesian networks 

à Combinations of immune traits based on 
conditional (in) dependencies 

Step 2. Univariate GWAS 

- Linear regression (PLINK)  
- Bayesian linear regression 

(BIMBAM) 
à SNPs and candidate genes 

Step 3. Multivariate GWAS 

- Principal component analysis (R) 
- Canonical correlation analysis 

(mvPLINK) 
- Meta-Analysis (TATES) 
- Bayesian multivariate linear 

Regression (mvBIMBAM) 
à Pleiotropic SNPs and candidate genes 

Figure 1: Workflow of the studies included in this thesis  

GWAS= Genome-wide association study, SNP= Single nucleotide polymorphism 
 

Blood sample collection post-partum  
♂/♀ Piglets (∅ 35 days) 
       Dams   (∅ 7 days) Landrace 

 
 
 
 

Large White 
 
 
 
 

Immune trait phenotypes 
Complete blood count, haptoglobin, cytokines 

Genotype  
Illumina PorcineSNP60v2 bead chip 

Study 1: Genetic analysis 
Immune traits in piglet and dam data set 

Study 2: GWAS 
Immune traits in piglet data set 
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2.1. Immunocompetence 

The animal production sector is actively searching for appropriate solutions to the issue that 

new phenotypes are needed due to the requirements of pork value chain partners and consumer 

expectations. Sometimes there seems to be a disconnect between selection for efficiency of 

production and animal welfare. Selection for high production efficiency may result in undesired 

correlated responses in other traits for example litter size and piglet survival (Rauw et al., 1998). 

The motivation is to avoid such adverse effects with different strategies. Moreover, the 

emergence of antibiotic resistance and society's demands for healthier, sustainable livestock 

production systems require specific solutions for various disciplines including animal breeding. 

Health-related traits can be incorporated into pig breeding programs in order to produce 

healthier, resilient, and disease-resistant pigs. 

Direct and indirect breeding approaches can be used to improve animal robustness and disease 

resistance (Colditz & Hine, 2016; Knap, 2005; Viney et al., 2005; A. H. Visscher et al., 2002). 

Direct methods require exposure to pathogens and can therefore intend the genetic susceptibility 

to specific disease incidences. However, this type of method is information-intensive, time-

consuming, expensive, and is considered critical against the background of animal welfare 

legislation. The alternative and indirect approach focuses on global animal 

immunocompetence. However, in this case, detailed knowledge of the different elements of 

immunocompetence and components of the immune system is required. Immunocompetence 

has been defined by Wilkie and Mallard (1999) as “the ability of the body to produce an 

appropriate and effective immune response when exposed to a variety of pathogens”. A more 

detailed definition is used by Knap and Bishop (2000) as a broad sense to indicate the capability 

of the host to launch an immune response of sufficient specificity and magnitude, roughly 

indicating the effective quality of the host's immune system. The immune system can be 

assessed immunologically by measuring the immune traits. Humoral and cellular components 

of the immune system are considered biologically relevant parameters to value 

immunocompetence (Viney et al., 2005; A. H. Visscher et al., 2002). It is possible to categorize 

these traits into innate and adaptive immunity, although there are also traits considered bridges 

between the two types (Tizard, 2013; Zimmerman et al., 2012). 

2.2. The innate and adaptive immune systems 

The immune system has two functional divisions: innate and adaptive. The innate immune 

response contains phagocytic cells (macrophages, neutrophils) and the production of various 

cytokines, chemokines, and proteins. Besides providing antimicrobial protection, they recruit 

cells through inflammatory processes and activate the adaptive immune system. The adaptive 
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immune system includes B and T cells, cytokines, and antibodies providing a pathogen-specific 

memory (Calder, 2007). Immune responses to infection include both innate and adaptive actions 

involving different cell types, mediators, and chemical agents (Figure 2) (Zimmerman et al., 

2012). The immediate defensive response to the rapid destruction of invaders is the task of 

innate immunity. More slowly process, adaptive immunity develops when foreign antigens bind 

to B or T cell antigen receptors and trigger strong defensive responses. Communication within 

one of the immune systems as well as between the innate and adaptive immune systems is 

brought about by direct cell-to-cell contacts involving cell surface proteins and the production 

of chemical messengers (e.g. cytokines) which send signals from one cell to another. Each 

cytokine can have multiple activities on different cell types (Tizard, 2013). Way of example, 

tumor necrosis factor α (TNF-α), interleukin (IL) 1, and IL-6 are among the most important 

cytokines produced by monocytes and macrophages. These cytokines activate neutrophils and 

monocytes to initiate bacterial and tumor cell killing, increase adhesion molecule expression on 

the surface of neutrophils, stimulate T- and B-lymphocyte proliferation, initiate the production 

of other proinflammatory cytokines and acute phase protein synthesis in the liver (Calder, 2007) 

(Figure 2). 

  



Literature review 

9 

 

Figure 2: Mobilization of the innate and adaptive immune response (Zimmerman et al., 2012) 

PMN= Polymorphonuclear neutrophils, TLR= Toll-like receptors, TNF-α= Tumor necrosis 

factor α, IL= Interleukin, IFN= Interferon, NK= Natural killer cells 

  



Literature review 

10 

2.3. Opportunities of breeding for immunocompetence 

The most important element of animal breeding is to determine the breeding goal. Breeding 

goals and selection indexes determine how genetic improvement should be achieved. For all 

species, the breeding goal has shifted from being primarily production-driven to being more 

balanced on a equivalent improvement of production, efficiency, health, and functional traits 

(Berghof et al., 2018). Piglet production is primarily determined by the number of weaned 

piglets per sow. In response, breeding organizations have focused on improving litter size, 

leading to an increase in the number of piglets born alive. This course of action resulted in 

higher amounts of piglet losses (Alonso Spilsbury, 2007; Baxter et al., 2013; Edwards, 2002; 

Grandinson et al., 2010; Hellbrügge et al., 2008; Heuß et al., 2019; Rutherford et al., 2013). 

Previous studies have stressed the multifaceted causes of piglet mortality between the genetic, 

nutritional, management, and stock persons interventions. Piglet survivability is particularly  

important in the period between conception and weaning. Genetically, the complex 
relationship between direct genetic (h2), maternal genetic (m2), and common litter (c2) effects 
are presumed to determine individual immune system and piglet survival (

 
Figure 3) (Knol, Leenhouwers, & van der Lende, 2002; Roehe et al., 2010).  

The selection of traits directly related to production performance has greatly improved over the 

past few decades in commercial pig breeds, while health-related traits have traditionally played 

a minor role (Ernst & Steibel, 2013). New challenges face the pig production industry due to 

the emergence of antibiotic resistance and society's demands for healthier livestock products 

(Berghof et al., 2018). As one of the most important factors contributing to productivity, 
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profitability, and welfare, animal health is influenced by several factors, including the co-

infection of pathogens such as viruses or bacteria, environmental stressors, and management 

practices. To produce pig populations with more resilient, well-being and disease-resistant, 

health-related traits have become an emerging and challenging development in pig breeding 

programs (Cheng et al., 2014). To enhance animal robustness and disease resistance, breeding 

approaches have mainly focused on direct and indirect methods (A. H. Visscher et al., 2002; P. 

M. Visscher et al., 2012). To target the genetic resistance/susceptibility to specific diseases, 

direct methods usually require exposure to the infectious agents (Knap & Bishop, 2000).  

There are several challenges associated with this approach, including cost, time, animal welfare, 

and information requirements. It is possible to determine the global immunocompetence of 

animals without signs of infection using an indirect approach, but comprehensive knowledge 

of the different components of the immune system is required (Knap & Bishop, 2000; A. H. 

Visscher et al., 2002). The immunocompetence of an individual can be measured based on 

immune traits as these traits are considered biologically relevant (A. H. Visscher et al., 2002). 

Hence, genetic markers that link health-related traits to disease resistance and robustness may 

contribute to a proper breeding of pigs. 

 

 

 



Literature review 

12 

Figure 3: Presumed network of immunity and piglet survival (modified according to Roehe et 

al. (2010) and Heuß (2019) 

 

The genetic potential of piglet survival at the piglet’s level can be described as h2 for this trait 

(Roehe et al., 2010). The genetic capability of the dam to rear vital piglets and contribute to 

piglet survival is represented as m2 (Knol, Leenhouwers, & van der Lende, 2002; Roehe et al., 

2010). It refers to an inheritance pattern for certain genes in which the genotype of the mother 

directly determines the phenotype of her offspring (Brooker, 2012). Furthermore, genetic 

effects can simultaneously influence the immune system and therefore, would have an indirect 

impact on piglet survival. Quantitative genetic studies of piglet survival traits at the sow or 

piglet level showed mostly low h2 and considerable environmental influence (Heuß, 2019).  

Immune-related traits can be used as further biomarkers for general immunocompetence and 

piglet survival. To reach that goal, relationships within individual components of the immune 

system and the contribution of the immune system to piglet survival as well as further 

performance characteristics have to be well examined. 

2.4. Fetal immunity in pigs and maternal genetic potential for immunocompetence 

All components of the innate and adaptive immune systems of the pig develop in utero and are 

functional at birth. However, they are less efficient than in an adult pigs (Hammerberg et al., 

1989). Since the newborn piglet has not yet been exposed to an antigen, humoral and cell-

mediated immune responses to infectious agents and stressors have to be developed after 

exposure to antigens. After exposure, it will take seven to ten days for a primary antibody or 

cell-mediated immune response to develop (Zimmerman et al., 2012). During this critical 

period of susceptibility, resistance to infection depends on passive-mediated immunity 

transferred from the sow to the piglet via colostrum. Neonatal pigs have been shown to absorb 

colostral lymphocytes from their intestinal tract into the bloodstream (Tuboly et al., 1988; 

Williams, 1993). After 24 hours absorbed cells derived from colostrum were found in the liver, 

lungs, lymph nodes, spleen, and gastrointestinal tissue. Their direct functional impact on the 

piglet’s immune system is not fully understood, yet. However, piglets that had absorbed the 

colostral lymphocytes had higher lymphocyte blastogenic responses to mitogens than control 

piglets (Williams, 1993). The mechanism of how the passively transferred lymphocytes 

transmit clinically significant cell-mediated or antigen-specific immunity from the sow to the 

piglet is not well examined, yet. 
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The epitheliochorial placenta in the sow prevents the transfer of maternal antibodies to the 

fetuses before birth, so piglets receive antibodies only postnatally through colostrum and milk 

(Matías et al., 2017). Additionally, neonates have limited ability to synthesize antibodies 

endogenously (Brambell, 1970). Therefore, maternal immunoglobulins, immune cells, and 

modulators provide a primary form of immune defense for offspring early in life. Maternal 

effects occur when offspring phenotype is determined not only by its genotype and environment 

but also determined by maternal genotype and phenotype (Kirkpatrick & Lande, 1989). 

Colostrum components protect neonates from disease, support immune system development, 

induce tolerance, immune priming, antigen neutralization, and the development of immune 

memory (Bandrick et al., 2008). Contrariwise, maternal-derived antibody-mediated immunity 

has been shown to downregulate endogenous immunoglobulin synthesis (Klobasa et al., 1981). 

The role of maternal cellular mediated immunity in the development of the newborn’s animal 

immune status has remained unclear. Maternal colostral labeled cells cross the neonatal 

intestinal epithelium and migrate to several immune tissues (Tuboly et al., 1988). By practicing 

a protective effect in the digestive tract and leading to partial tolerance, they may stimulate the 

immune system of the newborn piglet. Although m2 effects only influence the performance of 

growing pigs shortly and indirectly, they may offer opportunities for genetic improvement. 

Therefore, in chapter 3 the evaluation of the genetic potential of the sow for piglets’ 

immunocompetence by estimating c2 and consideration of the environmental impact of the 

dam’s immune profile is further described. 

2.5. Genetic foundation of immune traits 

Previous genetic studies have provided knowledge about genetic differences in immune-related 

traits which are presented in Table 1 (Clapperton et al., 2009; Edfors-Lilja et al., 1998; Flori, 

Gao, Laloë, et al., 2011; Hermesch & Luxford, 2018). Heritability, as h2 for white blood cells 

(WBC) (e.g. neutrophiles, lymphocytes, monocytes, eosinophils, basophils) can be 

characterized as moderate to high (0.40 to 0.80). Hereby, obvious breed differences should be 

noticed. Red blood cells (RBC) and their characteristics (mean corpuscular volume (MCV), 

mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC)) 

demonstrate a moderate h2 (0.41-0.62). Haptoglobin, as an acute phase protein, has scattered 

values of h2 from 0.14 to 0.55. Flori, Gao, Laloë, et al. (2011) estimated low h2 for cytokines 

(0.00-0.11), except IL-10 (0.35) and IL-12 (0.51). In general, innate immunity shows a slightly 

greater genetic variance (0.14-0.72) than adaptive immunity (0.22-0.61). Estimations of h2 are 

very diverging between previous studies. Discrepancies among the described results can be 

caused by the number of analyzed animals or investigated breeds. Furthermore, research 
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designs differ in sampling periods, immune challenges, and statistical methods for variance 

component estimation. The genetic variability of immune traits is further described in chapter 

3. 
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Table 1: Heritability estimates for immune-related traits found in different studies (continued) 

Immune traits 

 

Edfors-Lilja 

et al. (1994) 

Henryon et 

al. (2006) 

Clapperton 

et al. (2008) 

Clapperton 

et al. (2009) 

Flori, Gao, 

Oswald, et 

al. (2011) 

Mpetile et al. 

(2015) 

Ponsuksili et 

al. (2016) 

Bovo et al. 

(2019) 

n 220 4204 500 606 443 518 591 843 

Breed 

 

 

Swedish 

Yorkshire 

 

Duroc, 

Landrace, 

Yorkshire 

Large White 

 

 

Large White, 

Landrace 

 

Large White 

 

 

Yorkshire 

 

 

Landrace 

 

 

Italian Large 

White 

 

WBC 0.44 (0.29) 0.25 (0.05) 0.24 (0.15) 0.28 (0.11) 0.73 (0.20) 0.23 (0.19) 0.23 0.31 (0.07) 

Neutrophils  0.22 (0.04)   0.61 (0.20) 0.31 (0.21)  0.24 (0.07) 

Lymphocytes 0.24 (0.21) 0.24 (0.05)   0.72 (0.21) 0.15 (0.19) 0.49 0.31 (0.06) 

Monocytes  0.22 (0.04) 0.52 (0.17) 0.26 (0.13) 0.38 (0.20) 0.36 (0.20)  0.15 (0.04) 

Eosinophils  0.30 (0.05)   0.80 (0.21) 0.58 (0.12)  0.14 (0.06) 

Basophils      0.12 (0.19)  0.19 (0.06) 

Platelets     0.56 (0.19) 0.11 (0.23) 0.39 0.31 (0.06) 

RBC     0.43 (0.20) 0.62 (0.25) 0.41 0.36 (0.07) 

Hemoglobin      0.56 (0.13) 0.40 0.36 (0.06) 

Hematocrit     0.57 (0.03) 0.06 (0.14) 0.34 0.27 (0.06) 

MCV      0.47 (0.24) 0.69 0.39 (0.07) 

MCH      0.37 (0.24) 0.67 0.40 (0.06) 

MCHC      0.04 (0.16) 0.67 0.24 (0.06) 
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Immune traits 

 

Edfors-Lilja 

et al. (1994) 

Henryon et 

al. (2006) 

Clapperton 

et al. (2008) 

Clapperton 

et al. (2009) 

Flori, Gao, 

Oswald, et 

al. (2011) 

Mpetile et al. 

(2015) 

Ponsuksili et 

al. (2016) 

Bovo et al. 

(2019) 

n 220 4204 500 606 443 518 591 843 

Breed 

 

 

Swedish 

Yorkshire 

 

Duroc, 

Landrace, 

Yorkshire 

Large White 

 

 

Large White, 

Landrace 

 

Large White 

 

 

Yorkshire 

 

 

Landrace 

 

 

Italian Large 

White 

 

IFN-γ     0.00 (0.17)    

IL10     0.35 (0.19)    

IL12     0.51 (0.20)    

IL1-β     0.12 (0.19)    

IL4     0.15 (0.18)    

IL6     0.11 (0.19)    

IL8     0.00 (0.17)    

TNF-α     0.00 (0.19)    

Haptoglobin  0.14 (0.07)  0.20 (0.11) 0.55 (0.21)    

WBC=white blood cells, RBC=red blood cells, MCV= mean corpuscular volume, MCH= mean corpuscular hemoglobin, MCHC= mean corpuscular 

hemoglobin concentration, IFN-γ = interferon-γ, IL= interleukin, TNF-α= tumor necrosis factor-α. The standard error is presented in parentheses 
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Correlations between the various players within the immune system show a complex network 

of associations following biological relationships. Clapperton et al. (2008) investigated the 

relationships between immune parameters and growth performance. Negative correlations 

between some of the investigated leucocyte blood cells and daily gain were found under lower 

health status on farms, whereas, monocytes and an acute phase protein showed a negative 

correlation with the average daily gain under high health conditions on farms. Genetic 

correlations (rg) from Flori, Gao, Laloë, et al. (2011) are mostly weak, except between subtypes 

of WBC like monocytes, neutrophils, and lymphocytes (0.4). Furthermore, a positive 

relationship between haptoglobin and pro-inflammatory cytokines such as IL-8 and TNF-α is 

described by a rg above 0.4. Moreover, genetic markers for a share of neutrophils and 

lymphocytes in swine are found in the same regions as quantitative trait loci (QTLs) for 

cytokines interferon (IFN) and IL-10 (Lu et al., 2011), indicating close genetic-based 

relationships between immune cells and mediators. Such interrelations provide indications for 

a pleiotropic genetic structure that can be further analyzed with multivariate statistical 

approaches as described in chapters 3 and 4.  

2.6. Detection of immune-relevant QTL and genetic markers 

To explore the additive genetic background of immune-related phenotypes genome-wide 

association studies (GWAS) and QTL mapping can be used. The basis of QTL mapping is the 

association between genetically determined phenotypes for quantitative traits and molecular 

genetic markers such as single nucleotide polymorphisms (SNPs). In this approach, the 

identification of QTLs at the sites of already known markers is realized (Gondro et al., 2013). 

Several QTL studies revealed markers for red and white blood cells (Cho et al., 2011; Edfors-

Lilja et al., 1998; Gong et al., 2010; Reiner et al., 2007, 2008; S. Yang et al., 2009; Zou et al., 

2008) as well as cytokine (Uddin et al., 2011) across all chromosomes.  

Pig QTL Database (Hu et al., 2019) supplies information about 3236 QTLs for traits related to 

immune capacity and 2900 QTLs for blood parameters. These subcategories are combined into 

a superset of QTLs about health, which comprises 6761 QTLs. For example, MCV is placed in 

an overall top 17 QTL associations in the whole Pig QTL Database with 558 observed QTLs 

for this blood parameter. The Figure 4 demonstrates an example of a cytogenetic map for all 

the pig chromosomes with detected QTLs influencing the health trait and blood parameter mean 

corpuscular Vvlume (MCV). distribution of QTLs across all of the Sus Scrofa Chromosomes 

(SSC) illustrates the polygenic structure of immune and health-related traits.   
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Figure 4: Cytogenetic map of the pig with all QTLs influencing mean corpuscular volume 

(MCV) adapted from Pig QTL Database (animalgenome.org, 2019) 

Red QTL lines represent significant and light blue lines for suggestive statistical evidence 

 

GWAS studies serve to detect variants, in particular, SNPs, at genomic loci that are associated 

with a complex trait in a population. GWAS are based upon the principle of linkage 

disequilibrium (LD) at the population level, whereby LD represents the nonrandom association 

between alleles at different loci. In general, loci that are placed closer together have stronger 

LD than loci that are far apart on a chromosome. The strength of the statistical association 

between alleles at two genome loci depends e.g. on their allele frequency (P. M. Visscher et al., 

2012). Usually, GWAS studies are realized in three steps: (1) find study objects with sufficient 

variation for the phenotype of interest, (2) utilize desoxyribonucleic acid (DNA)-chip to 

identify alleles at adequate SNP genome positions, and (3) identify statistically different SNPs 

based on allele frequencies. Typically, the results of a GWAS as the statistical difference with 

the SNPs are visualized by a Manhattan plot. An example of such a conception is given in Figure 

5, where each dot represents a genetic marker. The x-axis illustrates all porcine chromosomes 

and the y-axis quantifies the significance value for the detected associations.   
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Figure 5: Manhattan plot of whole-genome association analysis for hemoglobin in Large White 

modified according to Dauben et al. (2021) 

Manhattan plot is focusing on a putative pleiotropic region SSC5 illustrated in a red box. This 

region can be found between 65.8 to 65.9 Mega base pairs and include SNPs like 

ASGA0025952 and H3GA0016570. Genome-wide significance is computed with a Bonferroni 

correction with an adjusted p-value < 0.05 and is indicated by a blue line (Dauben et al., 2021) 

 

 

Since 2007 the detection of loci associated within a GWAS has resulted in new biological 

knowledge about common diseases and other complex traits. The proportion of genetic 

variation explained by significant SNPs is usually very low (< 10%). However, for many 

diseases like type 2 diabetes, multiple sclerosis and Crohn’s disease the proportion of explained 

genetic variance is substantial, reaching from 10 to 20%. In addition, GWAS discoveries for 

common diseases and complex quantitative traits have given important biological insights with 

direct clinical relevance. The combination of large sample sizes and stringent significance 

testing has led to a large number of robust and replicable associations across populations and 

species (P. M. Visscher et al., 2012).  

Methodology development to increase the statistical power of GWAS is important for 

heterogeneous traits, especially in studies with small sample sizes. Previous GWAS 

successfully identified genetic markers as SNPs associated with different phenotypes such as 

RBC- and WBC-related traits (Ballester et al., 2020; Bovo et al., 2020; Bovo et al., 2019; Luo 

et al., 2012; Ponsuksili et al., 2016; Wang et al., 2013; F. Zhang et al., 2014; Z. Zhang et al., 

2013) and cytokines like IFN and IL-10 (Dauben et al., 2021; Lu et al., 2013) (Table 2). Results 

of detected SNPs and candidate genes helped to clarify, verify and reveal several QTLs for 

immune related traits. GWAS application with univariate approaches and detected SNPs as well 

as candidate genes for immune traits is further described in chapter 4.  
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Normally, detected SNPs are distributed over the whole porcine genome and explain only a 

small amount of the variation for the trait of interest. In addition, immune traits are difficult to 

measure and quantify in a large number of animals with various genetic backgrounds. 

Therefore, it is crucial to develop methods where immune traits can be analyzed jointly to 

increase statistical power to detect genetic variants and explore the presumed biological-

genetical structure.  
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Table 2: Overview of published porcine GWAS studies performed for hematological traits and 

cytokines 

Reference Inter alia traits* Pig population N 

univariate GWAS 

Luo et al. (2012) RBC, HMG, HMT, MCV, MCH, 

MCHC  

LW x Minzhu 

F2 

430 

Wang et al. (2013) RBC, HMG, HMT, MCV, MCH, 

MCHC, PLT, WBC, NEU, LYM, MON 

Large White, 

Landrace, 

Songliao Black 

421, 

68, 

79 

Lu et al. (2013) IFN-γ, IL-10 Landrace, 

Yorkshire, 

Songliao Black 

68, 

415, 

79 

Z. Zhang et al. (2013) RBC, HMG, HMT, MCV, MCH, 

MCHC, WBC, PLT, LYM, MON 

White Duroc x 

Erhualian F2 

1912 

F. Zhang et al. (2014) ERY, HMG, HMT, MCV, MCH, 

MCHC, PLT, WBC, LYM 

Sutai 436 

Ballester et al. (2020) RBC, HMG, HMT, MCV, MCH, 

MCHC, PLT, WBC, NEU, LYM, 

MON, EOS, HAP 

Duroc 432 

Dauben et al. (2021) RBC, HMG, HMT, MCV, MCH, 

MCHC, PLT, WBC, NEU, LYM, 

MON, EOS, BAS, HAP, IFN-γ, IL-10, 

IL-12, IL-1β, IL-4, IL-6, IL-8, TNF-α 

Landrace, 

Large White 

534, 

461 

Univariate GWAS, Bayesian univariate GWAS 

Ponsuksili et al. 

(2016) 

RBC, HMG, HMT, MCV, MCH, 

MCHC, PLT, WBC, LYM 

Landrace 591 

Univariate GWAS, Bayesian univariate GWAS, multivariate GWAS 

Bovo et al. (2019) RBC, HMG, HMT, MCV, MCH, 

MCHC, PLT, WBC, NEU, LYM, EOS, 

BAS, MON 

Large White 843 

GWAS= genome-wide association study, RBC=red blood cells, HMG= hemoglobin, HMT= 

hematocrit, MCV= mean corpuscular volume, MCH= mean corpuscular hemoglobin, MCHC= 

mean corpuscular hemoglobin concentration, PLT=platelets, WBC=white blood cells, NEU= 

neutrophils, LYM= lymphocytes, EOS= eosinophils, BAS= basophils, MON= monocytes, 
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IFN-γ = Interferon-γ, IL= Interleukin, N=Number of animals, *overlapping traits with own 

studies in chapters 3 and 4 

 

2.7. Multivariate approaches for QTL detection 

Generally, GWAS are performed on a single phenotype of interest, in an univariate (uv) trait 

manner. In recent years, a variety of multivariate (mv) methods have been proposed to analyze 

multiple phenotypes simultaneously to investigate their joint association with an SNP 

(Galesloot et al., 2014; Porter & O'Reilly, 2017; Salinas et al., 2018; Vroom et al., 2019b). 

Since mv information is increasingly available and pleiotropy is a common phenomenon within 

and between traits, the development of powerful mv analysis procedures is needed to detect an 

associated SNP.  

The association between complex traits and genome-wide SNP markers is typically analyzed 

in a uv manner for each trait. Mv analyses, on the other hand, could provide several advantages 

if multiple, correlated traits are analyzed together. In uv analyses, the additional information 

provided by the covariance between traits is ignored; in a mv analysis, however, it increases the 

power in the presence of genetic correlation between the traits. An additional advantage of mv 

procedures is that many of them can test a single trait for association with a set of variables. In 

comparison to analyzing all traits separately, this reduces the number of tests performed (Zhu 

& Zhang, 2009). Furthermore, when pleiotropy is present, where a single genetic variant affects 

multiple traits, a mv GWAS is more appropriate than a cross-trait comparison using uv analyses 

(Galesloot et al., 2014). 

Considering different conceptual classifications for mv methods (Galesloot et al., 2014; Vroom 

et al., 2019b; Q. Yang & Wang, 2012) the methods can be distinguished by their statistical 

properties in regression-based (direct), transformation-based (indirect), and composition test 

(uv-based). According to this classification, regression-based methods model the effects of the 

genetic variant directly on the traits without changing the general format and nature of the trait 

data. On the contrary, transformation-based methods are based on the reduction of the trait 

dimension. In the first step, initial traits are modified than in the second step transformed traits 

are regressed on the genetic variant. Uv-based composition tests combine the p-values or test 

statistics obtained from uv analyses to test a mv hypothesis for example in a meta-analysis 

(Figure 6). 



Literature review 

23 

Combination tests have the challenge of interpreting phenotypic correlations between p-values 

or test statistics resulting from associated traits in the phenotypical context within which they 

are conducted.  

 

 

Figure 6: Conceptual classifications for multivariate methods were modified according to 

Galesloot et al. (2014) 

T1, …Tn= trait, GV=genetic variant. Statistical properties of multivariate methods can be 

distinguished in regression-based (direct), transformation-based (indirect), and composition-

based (univariate-based) 

 

 

Mv genetic association methods, regardless of their statistical foundation, need to deal with a 

significant correlation between the simultaneously modeled traits dependent on the tested GV. 

Different methods are used to accomplish this. Combination tests use a correction factor or 

permutation. Regression-based tests implement two solutions: either traits are treated as 

predictors (e.g. MultiPhen) or residual trait correlations are accommodated in a background 

covariance matrix (e.g. MANOVA, GEE, LMM). Transformation-based tests explicitly 

incorporate the covariance between the traits into the new variates. Thus, for the selection of a 

suitable mv method to apply to immune traits, several types of mv GWAS approaches were 

available: uv-based, indirect, and direct mv methods. Representative approaches of each type 

were selected subjectively in the study included in chapter 4. In the following sections, the 
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subjective selected mv methods are introduced briefly. Details about the statistical background 

of the methods are given in the original literature (Everitt & Hothorn, 2011; Ferreira & Purcell, 

2009; Scutari, 2010; Servin & Stephens, 2007; Stephens, 2013; van der Sluis et al., 2013; Weller 

et al., 1996). 

Beyond the described methods in this section, there are also further software extensions, 

packages, and approaches which perform mv GWAS e.g. GEMMA (Zhou & Stephens, 2014b), 

WOMBAT (Meyer, 2007), aSPUset (Kim et al., 2016), GUESS (Bottolo et al., 2013), BMTME 

(Montesinos-Lopez et al., 2016). Multi-SNP GWAS methods aim to increase power by 

reducing the residual variance by including other genetic variants as predictors in the model 

(Galesloot et al., 2014). However, reviews and studies of mv GWAS approaches state that there 

is no one most powerful method and that the different existing methods should be viewed as 

complementary (Galesloot et al., 2014; Porter & O'Reilly, 2017; Zhou & Stephens, 2014b). 

Except for the recent study from Bovo et al. (2019), mv GWAS methods have not been applied 

to porcine immune traits, yet. In the study from Bovo et al. (2019), in addition to an uv GWAS, 

a Bayesian method and a mv GWAS have been applied to hematological traits for slaughtered 

Italian LW pigs. Thus, the importance of gaining a deeper understanding of the performance of 

mv methods to identify strategies of analysis to maximize discovery potential and pleiotropic 

genetic structure is highlighted. It is important to mention that in the comparison studies the 

predictor of interest is the genetic variant, i.e. SNP. However, in practice, even more, complex 

factors and additional covariates such as sex, age, and genetic principal components are 

standardly included in the statistical model to consider all biological influences and to correct 

for population stratification.  

2.7.1. Principal component analysis  

A commonly used indirect method is the principal components analysis (PCA). PCA, as a mv 

technique, analyzes a large amount of data and aims to reduce its dimensionality while 

preserving as much of its original variation as possible. To achieve this, the original variables 

are transformed into linear combinations, called the principal components (PCs). The PCs are 

uncorrelated and are ordered so that the first few of them account for most of the variation in 

the original variables (Everitt & Hothorn, 2011). PCs derived from the components of the 

eigenvectors of the phenotypic covariance matrix which explain the largest proportion of the 

original phenotype are then used in place of the original phenotypes (Weller et al., 1996). PCA 

is among the oldest forms of mv analysis, having been introduced originally by Pearson (1901) 

and independently by Hotelling (1933) . It remains a popular method for displaying mv data in 
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a lower dimensional space and for simplifying other analyses of the data because it provides a 

convenient way to display mv data. 

2.7.2. Canonical correlation analysis  

Canonical correlation analysis (CCA) is applied to two sets of variables (phenotypic 

measurements and the genetic variant) to extract a number of independent pairs of variables 

that explain as much covariance between the two sets (Ferreira & Purcell, 2009). Whenever 

there are multiple variables in each set, the objective of CCA is to find the linear functions of 

the variables in one set that are maximally correlated with the linear functions of the variables 

in the other set. The process of finding coefficients that define the required linear functions is 

similar to the PCA. Nevertheless, this technique isn't as widely used as other mv techniques, 

perhaps because the results of such an analysis are frequently difficult to interpret. As with PCs, 

the coefficients of each original variable in each canonical variate can be interpreted by looking 

at the coefficients of each original variable. Using canonical variates to interpret the original 

variables may provide insight into how the two sets are related to each other. The variances and 

covariances of the original variables in the two sets may differ considerably, which affects the 

sizes of the coefficients in canonical variates. 

2.7.3. Meta-analysis 

Meta-analytical approaches compute a single summary statistic across study populations or 

phenotypes. For example, TATES (trait-based association test that uses the extended Simes 

procedure) requires the phenotype correlation matrix and the P-values obtained from uv GWAS 

analyses to calculate associations across the traits. By combining the uv phenotype-specific 

GWAS results as p-values, TATES generates one trait-based p-value. Using a method described 

by Li et al. (2011), an eigenvalue decomposition of the correlation matrix between the p-values 

associated with phenotypes is used to estimate the effective number of p-values. After 

transforming this trait correlation matrix to the eigen-decomposition of this p-value correlation 

matrix, the uv p-values are weighted according to this matrix. A minimum of these weighted p-

values is chosen as the corrected p-value for the joint association (van der Sluis et al., 2013).  

2.7.4. Bayesian multivariate approaches 

Direct methods, for example, Bayesian multivariate approaches with the software SNPTEST or 

mvBIMBAM can be applied for multi-trait analyses. MvBIMBAM (mv Bayesian imputation-

based association mapping) performs Bayesian mv regression to test for association and to 

partition the phenotypes according to the SNP-effect in the same step (Servin & Stephens, 2007; 
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Stephens, 2013). Bayes Factors were employed to assess the association between each 

phenotype group and the genetic variant. Analyses are based on mv regression models, with 

inputs (n x d) matrices of d phenotypes for each individual. According to the mvBIMBAM 

approach, response variables are grouped into three categories based on their statistical 

association with genetic variants: undirect, direct, and indirect. A set of models runs through 

partitions of the coordinates. 

2.7.5. Trait networks and structural equation models 

It is computationally intensive to realize all possible mv combinations for all immune 

phenotypes. Interaction between variables can be modeled with networks, paths, and graphs. 

The Bayesian network (BN) provides conditions for determining dependencies and 

independencies among variables (Scutari et al., 2014). Therefore, with a BN it is also possible 

to uncover conditional dependencies among immune traits.  

BNs are graphical representations of probability distributions over a set of variables. Pearl 

(1988) has extended conditional independence (of random variables) to disjoint node subsets 

by assuming the different random variables are independent. Accordingly, in the BN approach, 

the graphical structure of the network was learned using model selection algorithms, and then 

the local distribution function parameters were estimated based on the learned structure. 

Different types of algorithms can be used to obtain the model from the network structure 

(Scutari, 2010). A score-based structure learning algorithm is a general heuristic optimization 

technique for solving the problem of learning the structure of a BN. An output of this algorithm 

is a graphical structure that shows how well the BN fits the data set, measured by a score. 

Using structural modeling such as a BN, a mv modeling strategy is developed that accounts for 

recursive effects (effects from one phenotype are passed onto another) and simultaneous 

(reciprocal) structures among its variables, unlike standard mv statistical methods (Goldberger, 

1972). Using SEM-GWAS, Momen et al. (2019) were also able to partition the source of the 

SNP effects into direct and indirect effects, allowing a better understanding of the relevant 

biological mechanisms. However, mv GWAS without structural equation modeling does not 

take into account network structure between phenotypes, estimating overall SNP effects across 

phenotypes, rather than combining direct and indirect SNP effects.  

2.8. Accessing genetic pleiotropy 

According to the literature contributing to Pig QTL Database (Hu et al., 2019), most of the 

detected genetic markers for health-related traits explain small amounts of phenotypic variance, 

are distributed across the porcine genome, and show polygenic genetic structure by being linked 
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to further genomic areas. Sharing the same genetic foundation between hematological traits, 

showed that pleiotropic QTLs are common in hematological traits like hematocrit, RBC, and 

MCV (F. Zhang et al., 2014). Pleiotropy refers to a single gene or genetic variant that affects 

multiple, different, phenotypic traits (Solovieff et al., 2013). In the context of complex traits, 

which are influenced by many small genetic effects across the genome (P. M. Visscher et al., 

2012), pleiotropy can be considered at the SNP level. Identifying pleiotropic SNPs can lead to 

a greater understanding of the underlying biological network between complex traits, and 

identify biological pathways enriched for effects on clusters of traits for further investigation.  

Pleiotropy can arise in different forms, and distinguishing between them is important for 

understanding the biological implications. Several types of pleiotropy are distinguished further 

in biological, mediated, and spurious pleiotropy. Biological pleiotropy occurs when one gene 

has a direct effect on at least two different traits. Spurious pleiotropy is defined as a genetic 

variant falsely identified to be associated with more than one phenotype, whereas mediated 

pleiotropy exists if one phenotype is causally related to another phenotype (Solovieff et al., 

2013). In chapter 3 moderate to high rg (0.4-0.8) between immune traits like hematological 

parameters and cytokines, which were measured in LR and LW piglets and their biological 

dams, are described. Consideration of close relationships between multiple immune traits can 

be used to boost statistical power to detect joint SNPs, which was applied in chapter 4. Most 

mv GWAS methods are not optimized for the detection of pleiotropic genetic variants. 

Furthermore, these approaches do not require a pleiotropic effect to gain power over the uv 

approach. However, mv GWAS methods have the potential to further describe the pleiotropic 

effect of a genetic variant on multiple complex traits, which was done in chapter 4. 
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3.1. Abstract 

Improving the immunocompetence towards pathogens represents a desirable objective of 

breeding strategies to increase resilience. However, the immune system is complex and the 

genetic foundation of the underlying components is not yet clarified. In the present study, we 

focused on 22 blood parameters of 1144 Landrace (LR) and Large White (LW) piglets at the 

age of six to seven weeks. The immune profiles covered immune cells, red blood cell 

characteristics, and cytokines. Genetic parameters based on pedigree information along with 

possible environmental effects were estimated. Litter effects play an important role in the 

expression of immune parameters of their young progenies. Hence, litter impacts on the piglet’s 

immune profile including the immune parameters of the dam itself were investigated by 

different models. To incorporate the complexity of the immune network, the data were further 

investigated with a principal component analysis.  

Immune traits showed low to high breed-specific heritabilities (h2). Strong positive genetic 

correlations (rg) were estimated among red blood cell characteristics (0.77 to 0.99) as well as 

among cytokines (0.48 to 0.99). Neutrophils and lymphocytes illustrated a high negative rg (-

0.96 to -0.98). The litter impact on piglet’s immunity was examined and strengthened already 

observed breed differences. In LR h2 (0.22 to 0.15) and litter effect (c2) (0.52 to 0.44) for IFN-

γ decreased after statistical consideration of maternal impact. In LW a decrease in h2 (0.32 to 

0.18) for IFN-γ and an increase in c2 (0.54 to 0.56) was observed. Here, sufficient correlations 

were detected within various immune traits and functional biological networks of principal 

components. Most immune traits are heritable and are promising to cover global breed-specific 

immunocompetence in pigs. The analysis of immune traits has to be extended in order to find 

an optimal range and to characterize relationships between immunity as well as performance to 

gain an improved immune system without accidental losses in productivity. 

Keywords: Variance components, immune traits, maternal impacts, principal component 

analysis, pig. 
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3.2. Introduction 

In pig breeding programs the development of breeding strategies to increase resilience 

represents a desirable objective. Improving immunocompetence towards pathogens could 

contribute to achieving this challenging goal. However, the immune system is very complex, 

and little is known about the genetic foundation of its parameters. Some genetic studies provide 

insights into the genetic variability of the immune parameters in pigs (Ballester et al., 2020; 

Bovo et al., 2019; Clapperton et al., 2009; Clapperton et al., 2008; Edfors-Lilja et al., 1998; 

Flori, Gao, Laloë, et al., 2011; Henryon et al., 2006; Hermesch & Luxford, 2018; Mpetile et al., 

2015; Ponsuksili et al., 2016). From this can be concluded that immune responsiveness and 

disease resistance are quantitative traits regulated by the effects of numerous genes influenced 

by a variety of environmental factors (Mallard et al., 1992). However, the number of 

observations, the underlying breeds as well as non-genetic effects like the time of blood 

sampling, housing conditions including the hygienic farm concept, and infection pressure are 

very divergent. As a result, heterogeneous and non-consistent environmental as well as genetic 

parameters have been reported. Moreover, various studies (Flori, Gao, Laloë, et al., 2011; 

Mallard et al., 1992) have postulated, that animals bred for high production output could be 

more susceptible to pathogens.  

Against this background, we focused on the immunocompetence of purebred Landrace (LR) 

and Large White (LW) piglets, raised under the definable condition of two nucleus farms with 

high hygienic status. Within these herds, piglets were born under comparable conditions with 

low infection pressure. Authors of already published variance component studies for health-

related traits (Clapperton et al., 2005; Hermesch & Luxford, 2018; Ponsuksili et al., 2016) 

pointed out that traits which tend to represent the immunocompetence should be effortless to 

measure and to reproduce without any impairment, disease symptoms, or inflammatory and 

pathological signs. Therefore, for the purpose of this study pigs were not treated in any way. 

Our evaluation represents the first step towards a deeper insight into the genetic foundation of 

immune traits of breeding animals. 

Many influences on a piglet’s immune system have been described in the literature 

(Zimmerman et al., 2012). During the first days of life, maternal effects have a strong impact 

on the piglet’s innate and adaptive immunity and thus, have an influence on the piglet’s survival 

(Heuß et al., 2019). Passive maternal-derived humoral and cellular immunity provide additional 

essential protection for newborn piglets, who receive antibodies only postnatal through the 

colostrum (Bouma et al., 1998). Colostrum and milk serve primarily to transfer systemic and 

local protection due to maternal-derived humoral and cellular immunity and to influence the 
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development of systemic and mucosal immunity through provided hormones, antimicrobial 

proteins, and growth factors (Bandrick et al., 2008; Salmon et al., 2009; Zimmerman et al., 

2012). Moreover, maternal genetic effects influence piglet survival directly (Knol, Ducro, et 

al., 2002; Roehe et al., 2010). Therefore, research on the maternal and litter impact requires an 

emphasis on neonatal immunity development. Since piglet mortality mostly occurs during early 

development, even maternal and litter effects of short duration may have important 

consequences (Grindstaff et al., 2003). Furthermore, a low genetic correlation between the 

transfer of maternal antibodies and the offspring's adult reproductive rate and some components 

of the immune response has been observed e.g., in chickens (Biozzi et al., 1982; Martin et al., 

1990). In pigs, maternal influences have been shown to modulate offspring's birthweight, 

farrowing, pre-weaning, and total piglet survival (Knol, Ducro, et al., 2002; Roehe et al., 2010).  

It is well known that the immune system is a high-dimensional complex network with key nodes 

along with highly expressed relationships between the participating components. To 

incorporate these expected dependencies, multivariate (mv) approaches seem to be a promising 

analysis option. Principal components analysis (PCA) allows reducing correlated traits into a 

set of uncorrelated variables called principal components (PCs). This statistical method detects 

patterns in the data by their similarities and differences and compresses the data information 

(i.e., by reducing the number of dimensions) without much loss of information (Hair, 2009; 

Weller et al., 1996). 

The objectives of this study were to estimate the genetic parameters of immune traits, to 

investigate the genetic associations between these traits by PCA, and to examine the impacts of 

the dam's immune profile on their offspring's immunity. 
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3.3. Material and Methods 

3.3.1.  Animals and phenotypic measurements 

Data sets of purebred LR and LW subset pig populations were recorded from 2010 to 2017 and 

were provided by the German breeding organization Bundeshybridzuchtprogramm (BHZP) 

GmbH as been already described in Dauben et al. (2021). The animals within the nucleus 

populations were kept under high hygienic conditions and reflect the genetic diversity of both 

populations concerning their different breeding objectives. From each litter, one male and one 

female piglet, as well as, their biological dam were chosen for blood sample collection. Animals 

were apparently healthy and average in physical development. Blood samples of piglets (LR: 

n=611 and LW: n=533) were collected on average around 45 days (32-60) after birth by 

puncturing the Vena jugularis and were collected in three 7.5ml monovette containing 

Ethylenediaminetetraacetic acid. As an additional trait, piglets were weighed individually after 

blood sample collection. From the biological dams (LR: n=298 and LW: n=272) of all 

phenotyped piglet’s blood was sampled in a short period postpartum (7 days). The blood sample 

collection period for piglets (45 days after birth) was chosen because at this age piglet's 

immunity is still under development (Tizard, 2013) and the importance of maternal antibodies 

decreases. For dams, the recorded immune profile should characterize the postnatal passive 

immune transmission from sow to the progeny.  

Complete blood count (red blood cells (RBC), hemoglobin, hematocrit, mean corpuscular 

volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin 

concentration (MCHC), platelets, white blood cells (WBC), neutrophils, lymphocytes, 

monocytes, eosinophils, basophils, band and other remaining cells) was performed with an 

ADVIA® 2120 hematology system, a flow cytometry-based system, and a pig-specific setting, 

as described by Harris et al. (2005). Besides, serum haptoglobin was measured in 0.5 ml serum. 

Peroxidase activity of the haptoglobin-hemoglobin complex was carried out by a 

spectrophotometric method. Hematology analysis and haptoglobin were measured in an 

external laboratory of synlab.vet GmbH immediately after blood samples arrived on the same 

day. 

Cytokine levels (interferon-γ, interleukin-10, interleukin-12, interleukin-1β, interleukin-4, 

interleukin-6, interleukin-8, tumor necrosis factor-α) in serum samples were analyzed with a 

Porcine Cytokine/Chemokine Multiplex Magnetic Bead Panel (Merck KGaA) enabling the 

simultaneous measurement of multiple cytokines. Immunoassay of serum samples was 

performed using 22 plates according to the manufacturer´s protocol. These fluorescence 

intensity measurements were performed using Luminex® 200 with xPONENT 3.1 software in 
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the external laboratory of the Flow Cytometry Core Facility, Medical Faculty, University of 

Bonn. A general overview of all investigated immune traits in piglets and dams as well as their 

summary statistics are presented in the results section 3.1 . Cytokines were measured in the 

detectable concentration ranges with the chosen assay quantification method. High standard 

errors for the mean values are caused by a high reported variation range of the cytokines. To 

consider low values and the resulting left-skewed distribution of the raw cytokine and 

haptoglobin measurements, observations were log-transformed. Records of piglet’s and dam’s 

immune traits were excluded when they met at least one of the following criteria: Haptoglobin 

≤ 0.01 mg/ml, Neutrophils =0%, Lymphocytes ≤ 10%, Band cells ≥ 20%, Cytokine’s bead 

count < 50. In total, measurements from at least 522 LR piglets and 456 LW piglets as well as 

261 LR dams and 231 LW dams were used for further analysis.  

3.3.2.  Statistical analysis 

Variance component analysis of immune traits  

Variance components of immune traits were estimated by using an animal model 1 as follows: 

𝑦!"# = 𝑓𝑖𝑥! + 𝑎!" + 𝑐!# + 𝑒!"# 

The estimation of the genetic parameters was performed within a breed for immune traits (𝑦!"#) 

of the complete blood count, haptoglobin, and cytokines. Model 1 includes all relevant fixed 

effects (𝑓𝑖𝑥!), given as the class effects parity (𝑃𝐴𝑅!:1-4), herd-year-season-sex (𝐻𝑌𝑆𝑆": 1-12). 

Moreover, age 4𝑎𝑔𝑒!"#$6 and weight 4𝑤𝑡!"#$6 and interaction between age and weight 

(𝑎𝑔𝑒 × 𝑤𝑡)!"#$ at the time of sample collection were included in the model as covariates. 

Porcine Cytokine/Chemokine Multiplex Magnetic Bead Panel method requires the 

quantification of samples distributed among 22 analytical plates. Therefore, 𝑝𝑙# was included 

as a random term for cytokine immune traits.. The effects breed (LR or LW) or sex (boar or 

sow) were not included as main factors in the model because of the hierarchical classification 

of these effects within HYSS classes. To quantify differences between breeds or sexes, linear 

contrasts between relevant HYSS classes were constructed and tested via a series of Tukey-

Tests. We used the fixed part of model (1) (𝑓𝑖𝑥!) to analyze the impact of fixed effects within 

and between the two breeds. In the combined data set, linear contrasts were used to present 

potential effects of breed and farm. Because in the investigated combined data set most herds 

kept only one breed and one sex, the interpretation of linear contrasts between breeds and sex 

is impaired because of possible uncorrected environmental effects. The significance levels of 

(1) 



Genetic parameters of immune traits for Landrace and Large White pig breeds 

34 

fixed effects included in the statistical model as well as relevant linear contrasts were obtained 

by a generalized linear model using R (R Core Team, 2019). 

In addition, this model was extended by the random, uncorrelated additive genetic 4𝑎!"6 and 

litter (𝑐!#) effects. The estimation of the additive genetic effects incorporated the relationship 

matrix of all piglets 4𝑎!"6, which could be traced back almost completely up to the 8th 

generation. Litter effects (𝑐!#) include the litter information of each dam, and it was assumed 

that, (𝑐!#)-effects were independent and identically distributed. As usual heritability (h2) and 

litter effects (c2) were expressed as the ratios of additive genetic variance (𝜎%&): phenotypic 

variance 4𝜎'&6 or litter variance 𝜎(&:𝜎'&.  

With a series of overlapping mv approaches (up to six traits per analysis) phenotypic (rp) and 

genetic (rg) correlations between all immune traits were established applying model 1. Based 

on the model (1) we have estimated the genetic parameters within a breed. This was motivated 

by the distinct genetic distance between the LR and LW breeds. This distance was calculated 

by means of available SNP information and has been published in the work of Dauben et al. 

(2021). Genetic parameters of each trait were estimated in combination with almost all possible 

sets of other traits. Identical parameters with their standard errors which were estimated in 

different mv runs were averaged using the median. In rare cases, the convergence criteria of the 

REML analysis could not be reached, so some genetic correlations were not estimable. These 

exceptions occur if the h2 of one or more traits used in the mv model were close to zero. The 

calculations were conducted in VCE 5.1 (Kovač & Groeneveld, 2003).  

Statistical consideration of maternal effects 

In statistical model 1 random litter effects (𝑐!#) were included to take into account mainly the 

common environment of the littermates. To consider the dam's environmental influences more 

rigorously, immune traits of the dam were integrated as an environmental effect into the genetic 

analysis of the piglet data. For this purpose, the highly correlated immune traits of the dam were 

centered, scaled, and condensed via PCA. This analysis was performed within biological 

functional networks (BFN) a) immune cells (Cell), b) RBC and haptoglobin (RBC) or c) 

cytokines (Cyto). In the genetic analysis of the piglet data, resulting first and second dam’s PCs 

which belong to the corresponding BFN as the piglet immune target trait were used as additional 

covariates in model 1. According to the statistical PCA principles (details are given in Weller 

et al. (1996)), PCA transformation of n traits resulted in n number of phenotypically 

uncorrelated variables conducted from the components of the eigenvectors of the phenotypic 

covariance matrix. Eigenvalue stands for the part of phenotypic variability explained by the 
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corresponding PC variable. The importance of each immune trait within the different PC can 

be quantified by their loadings. PCA was conducted in R (R Core Team, 2019).  

Multivariate analysis of piglet’s immune traits  

Similarly, to the above section: statistical consideration of maternal effects, PCA techniques 

were used to condensate the highly correlated piglet’s immune observations within the different 

BFN and breeds. An overview of PCs within the BFN together with their loading composition 

for the piglet data set is presented in the results section 3.5. Based on this information, it might 

be possible to interpret PCs in a summarizing, biological manner. The number of resulting PCs 

per BFN which were finally used to characterize piglet’s immune system derived from 

eigenvalues of the correlation matrix. Applying Kaiser’s criterion (Braeken & van Assen, 

2017), PCs with eigenvalues above a threshold of 1.0 were used in the following analysis. 

Variance components of resulting PCs as new dependent variables were estimated by using the 

mv approach as has been described in the section above: Variance component analysis of 

immune traits.  
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3.4. Results 

3.4.1.  Immune trait values and influencing factors 

The results from the ANOVA after formulating a generalized linear mixed model are shown in 

the Table S1. For most immune traits in the LR and LW piglet’s data set HYSS effect had a 

significant influence. Age had a breed-specific effect on several phenotypes. In the LR piglet 

data set age influenced immune traits like MCV, MCH, platelets, WBC, and haptoglobin 

whereas it only had significant impacts on hemoglobin, hematocrit, MCH, and MCHC in the 

LW piglet data set. LR and LW immune traits like MCV, neutrophils, lymphocytes, and 

monocytes were influenced by the weight at the time of blood sample collection. Besides, 

weight also had a significant impact on RBC, hemoglobin, hematocrit, MCH, MCHC, 

eosinophils, IL-1 β, and IL-4 for LR piglets. The interaction of the covariates age and weight 

remained significant for haptoglobin, IL-1β, IL-4 in LR and for RBC, hemoglobin, hematocrit, 

and MCHC in LW.  

Descriptive statistics of phenotypic measurements of all piglets and dams separated by breed 

are given in the Table S2. The measured band and other remaining cells were excluded from 

further investigations because these traits showed a phenotypic variance close to zero. Breed 

differences were investigated by comparing the mean values of the immune traits and by linear 

contrasts between relevant HYSS classes that were constructed and tested. In total, 14 traits 

(RBC, hemoglobin, hematocrit, MCV, MCH, MCHC, neutrophils, lymphocytes, basophils, IL-

10, IL-12, IL-1β, and IL-8) revealed significant (p < 0.05) differences between the breeds. The 

neutrophil value in LR piglets was 6% higher than in LW (47.64% to 41.48%), whereas the LR 

lymphocyte value was 7% lower in comparison to LW (45.84% to 52.89%). For the mean 

values of platelets, WBC, monocytes, eosinophils, haptoglobin, IFN-γ, IL-4, and TNF-a no 

significant differences between the breeds within the piglets' data set were found.  

Within the dams’ data set, similar breed contrasts regarding RBC, hemoglobin, hematocrit, 

platelets, and monocytes means were detected. For example, the neutrophil value in LR dams 

(58.58%) was 5% higher than in LW (53.85%), whereas the lymphocyte value was 6% in LR 

(31.43%) was lower than in LW dams (37.46%).  

There are possible uncorrected environmental effects in the investigated data set since most 

herds kept only one breed and one sex. The interpretation of linear contrasts in the combined 

data set is therefore impaired. 
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3.4.2.  Genetic parameters for immune traits 

Heritabilities and c2 effects for 22 immune traits were estimated within the LR and LW breed 

applying animal model 1 (Table 3). The h2 and c2 estimates were classified as high (h2 > 0.40), 

moderate (0.10 < h2 ≤ 0.40), and low (h2 ≤ 0.10) as has been suggested by Flori, Gao, Laloë, et 

al. (2011). In both breeds, the h2-estimates for eight traits were categorized as high.  

High h2 were found for MCH and MCV in both breeds and RBC, hemoglobin, hematocrit, and 

TNF-α within LR. In contrast, h2 close to zero were found for MCHC in the LR breed and 

hematocrit, platelets, WBC, eosinophils, basophils, and haptoglobin within the LW breed.  

Regarding both breeds moderate to high established c2 were only present in platelets, 

monocytes, and cytokines whereas for most immune cells and haptoglobin c2 values showed 

almost no variability. Particular high c2 effects were estimated for the cytokines IFN-γ, IL-10, 

IL-1β, IL-4, and IL-6 in a range of 0.46 to 0.61 in both breeds.  
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Table 3: Direct genetic and litter effects for immune variables of Landrace and Large White 

piglets 

Trait 
Landrace Large White 

σ2p h2±SE c2±SE σ2p h2±SE c2±SE 

RBC 0.11 0.41±0.10 0.05±0.04 0.17 0.36±0.08 0.03±0.03 

Hemoglobin 13476.89 0.41±0.11 0.08±0.05 17281.73 0.18±0.08 0.09±0.04 

Hematocrit 0.001 0.43±0.11 0.05±0.04 0.001 0.09±0.06 0.08±0.04 

MCV 69.39 0.53±0.10 0.09±0.05 72.93 0.61±0.10 0.11±0.05 

MCH 1.06 0.41±0.08 0.04±0.03 0.79 0.66±0.12 0.08±0.05 

MCHC 2.56 0.02±0.02 0.02±0.02 1.06 0.15±0.07 0.14±0.05 

Platelets 264740234.31 0.24±0.08 0.20±0.05 410896818.95 0.01±0.02 0.26±0.05 

WBC 472.63 0.18±0.06 0.08±0.04 942.49 0.08±0.07 0.15±0.06 

Neutrophils 7575.96 0.25±0.08 0.10±0.04 10465.29 0.12±0.08 0.16±0.05 

Lymphocytes 7823.40 0.30±0.08 0.11±0.04 10241.44 0.14±0.08 0.16±0.05 

Monocytes 4.67 0.32±0.09 0.03±0.04 9.24 0.17±0.07 0.33±0.06 

Eosinophils 5.24 0.22±0.08 0.07±0.04 1.30 0.06±0.05 0.04±0.03 

Basophils 0.02 0.22±0.08 0.04±0.03 0.001 0.03±0.04 0.14±0.05 

Haptoglobin 0.001 0.18±0.07 0.07±0.04 0.01 0.03±0.03 0.04±0.03 

IFN-γ 0.31 0.22±0.08 0.52±0.06 0.42 0.32±0.10 0.54±0.06 

IL-10 0.06 0.24±0.10 0.56±0.06 0.15 0.25±0.10 0.53±0.06 

IL-12 0.001 0.34±0.13 0.36±0.07 0.001 0.18±0.09 0.38±0.07 

IL-1β 0.04 0.17±0.09 0.51±0.06 0.07 0.16±0.09 0.46±0.06 

IL-4 0.22 0.19±0.09 0.52±0.06 0.40 0.27±0.13 0.45±0.07 

IL-6 0.08 0.35±0.09 0.52±0.06 0.17 0.31±0.10 0.50±0.06 

IL-8 0.01 0.15±0.08 0.23±0.06 0.02 0.36±0.11 0.17±0.06 

TNF-α 0.08 0.61±0.09 0.28±0.06 0.07 0.13±0.08 0.46±0.06 

RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, 

MCHC=mean corpuscular hemoglobin concentration, WBC=white blood cells, IFN-

γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, h2=heritability, c2=litter effect, 

σ2p=phenotypic variance, cytokines are log-transformed, bold font indicates high h2 or c2 above 

0.4 



Genetic parameters of immune traits for Landrace and Large White pig breeds 

39 

3.4.3.  Genetic correlations between immune traits 

Pairwise rg and rp for all mv combinations in LR and LW can be found in Tables S3 and S4. 

Figure 7 provides a graphical overview of the genetic parameters, where h2 can be found on the 

diagonal, rp under the diagonal, and rg above the diagonal for LR and LW piglets. The color key 

from red to blue was chosen to illustrate the classification of positive as well as negative genetic 

parameters in high, moderate, and low. The ellipses have their eccentricity parametrically 

scaled to the correlation value and are shaded to display high or low as well as positive or 

negative correlations. Regarding both breeds, 106 (LR) and 135 (LW) rg among different 

immune traits exceeded an absolute value of 0.4. Regarding consistent across-breed 

correlations, RBC characteristics were highly positively correlated with each other. As 

expected, particular high positive rg were found between MCH and MCV (rg: 0.99 to 0.94, LR 

and LW, respectively). Furthermore, MCHC was highly positively correlated with monocytes 

(0.64 to 0.93) and basophils (0.94 to 0.97).  

Hemoglobin and hematocrit were highly positively correlated with the cytokines IFN-γ (rg: 0.71 

to 0.43, LR and LW, respectively and rg: 0.69 to 0.40, LR and LW, respectively) and TNF-α 

(0.65 to 0.79 and 0.61 to 0.88). In addition, RBC showed high positive correlations with 

cytokines like IL-1β (0.40 to 0.75) and TNF-α (0.61 to 0.96). Between immune cells, different 

relationships were found. Neutrophils showed a high positive correlation with WBC (0.62 to 

0.72), whereas they showed a high negative correlation with lymphocytes (-0.98 to -0.96). 

Furthermore, lymphocytes were highly negatively correlated with WBC (-0.71 to -0.58). 

Between cytokines such as IFN-γ, IL-10, IL-1β, IL-4, IL-6, and TNF-α high positive rg were 

estimated. In addition, haptoglobin was highly negatively correlated with cytokines like IL-1β 

(-0.89 to -0.71), IL-4 (-0.96 to -0.47), and Il-6 (-0.73 to -0.84) in both breeds. 

The remaining rg revealed a contrasting relationship between the two investigated breeds. MCV 

was highly positively correlated with cytokines like IFN-γ, IL-10, IL-1β, IL-4, and IL-6 in LR 

piglets (0.42 to 0.66) but was highly negatively correlated in LW piglets (-0.44 to -0.90). MCH 

showed similar relationships to cytokines IFN-γ, IL-10, and IL-1β within the breeds LR (0.40 

to 0.52) and LW (-0.47 to -0.84). A high positive relationship between monocytes, eosinophils, 

and TNF-α was observed for LR (0.53 to 0.40), whereas in LW high negative estimates (-0.82 

to -0.85) could be observed. 
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Figure 7: Graphical display of genetic parameters for immune variables in the piglet data set 

Heritabilities (h2) on the diagonal. Phenotypic correlations (rp) under the diagonal and genetic 

correlations (rg) above the diagonal. RBC=red blood cells, MCV=mean corpuscular volume, 

MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin concentration, 

WBC=white blood cells, IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, 

LR=Landrace, LW=Large White 
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3.4.4.  Maternal influences on piglet’s immunity 

Along with the piglet’s genetic effect, we intended to investigate how a dam influences her 

offspring’s immune system through the provided environment. To consider the dam’s 

environmental influences in a more specific way, the first and second immune PCs of the dam 

were integrated as covariables into the genetic analysis of the piglet’s immune traits. As has 

been described in section: statistical consideration of maternal effects, these PCs of the dam 

correspond to the BFN of the target immune trait of the piglet. These PCs reflect the specific 

parts of the immune system of the dam which might operate as an environmental effect for the 

immune traits of the piglet (Table S5).  

In general, these covariables had only negligible consequences for the magnitude of maximum 

0.05 for the estimated genetic parameters (Table S6). Within cytokines, the consideration of 

dam’s PCs led to a small, breed-specific shift between h2 and c2 effects. For example, in LR h2 

for IL-8 decreased from 0.15 to 0.12 in favor of c2 effects which increased from 0.23 to 0.24. 

The exact opposite was observed for LW piglets, where h2 for IL-8 increased from 0.36 to 0.38 

and c2 decreased from 0.17 to 0.16. In addition, h2 for RBC (0.41 to 0.36) and MCH (0.41 to 

0.29) in LR was lowered after consideration for maternal environmental effect. For all other 

examined immune traits, the inclusion of immune PCs of the dam into the statistical model has 

changed h2 or c2 as well as rg estimates only to a minor extent. 

3.4.5.  Accessing highly correlated immune networks in piglets 

Theoretically, PCA aims for a more powerful analysis of the immune traits by reducing the 

dimension of information and therefore, allowing the detection of key players in 

immunocompetence. Variance component estimation was performed for PCs as new dependent 

variables of piglet’s immune traits within BFN. According to the BFN and breed, three to four 

PCs were extracted (Table S7). The loading values for these PC-specific traits indicate how 

much the respective immune traits contribute to a particular PC. Moreover, the loadings can 

help to interpret estimated variance component results according to their biological function. 

Loading values for the first PC of each BFN are also presented as pie charts in Figure 8. We 

used a threshold of |0.3| to classify the immune trait within a BFN into the classes “contributing” 

or “not contributing”. Within BFN RBC, PC1RBC explains ~37% of the variation in both breeds 

(LR: 37.23%, LW: 37.49%). This PC is mainly influenced by the directly measured RBC 

characteristics of hemoglobin, hematocrit, and RBC (Figure 8, Table S7). On the contrary, 

PC2RBC (LR: 22.43%, LW: 22.84%) is mainly influenced by the calculated ratio MCH and 
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MCV (only in LR). Within the PC3RBC and PC4RBC which also explain more than 10% of the 

variation, MCHC and haptoglobin are the main actors (Table S7).  

Within the BFN Cells PC1Cell (LW: 35.96%, LR: 35.49%) is dominated by neutrophils and 

lymphocytes, which were known to be negatively correlated and influenced by the time point 

of blood sampling (Figure 8). On the other hand, PC2Cell can be characterized by the percentages 

of eosinophils and WBC (only in LW) (Table S7). 

In BFN Cyto PC1Cyto explains most of the phenotypic variation (LR: 68.13%, LW: 60.13%). 

This PC is similarly influenced by all examined cytokines (Figure 8). Apart from that the 

chemokines IL-12 and Il-8 are less contributing to PC1Cyto but dominate in PC2Cyto for LW 

piglets (Table S7).  

In general, PCs of the two breeds LW and LR can hardly be compared because their 

composition based on loading values is partly different. In contrast, we assumed that the 

variance components of the first PCs of each BFN (PC1Cell, PC1RBC, PC1Cyto) are comparable 

between the breeds due to similarities in the contribution based on their loading values (Figure 

8). 
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Figure 8: Loading composition for first principal components within piglet’s functional biological networks 

PC=principal component, LR = Landrace, LW=Large White, RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean 

corpuscular hemoglobin concentration, WBC=white blood cells, IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α. PCs are estimated within three distinguished 

biological functional networks like cells (Cell), RBC, and additional RBC characteristics including haptoglobin (RBC), and cytokines (Cyto).
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3.4.6.  Genetic parameters for condensed immune traits 

Estimated h² and c2 for relevant PCs in LR and LW piglets are presented in Table 4. Within the 

LR BFN Cell, PC1Cell to PC3Cell show moderate h2 (0.18 to 0.31) and mostly low c2 (0.04 to 

0.06). In contrast to that, in LW only PC1Cell shows a h2 (0.12) > 0.1 whereas c2-values are on 

a slightly higher value (0.10 to 0.16).  

For the BFN RBC in LR piglets, moderate (PC2RBC, PC3RBC) to high (PC1RBC) h2 were 

estimated in a range of 0.13 to 0.50, whereas c2-effects were low (0.04 to 0.07). However, for 

LW piglets PC1RBC showed only a low h2 (0.07), which is surprising because the composition 

and loadings of PC1RBC in LW and LR are similar. PC2RBC, PC4RBC, and PC3RBC had moderate 

to high (0.14 to 0.58) h2 estimates in LW. Similar to the BFN Cell the estimates for c2-effects 

are higher than in LR in a range of 0.11 to 0.15. Within the BFN Cyto, all PCCyto were 

moderately heritable (0.27 to 0.32) in both breeds. Similar to the variance component estimation 

for single cytokines the estimated c2 values were particularly high for PC1Cyto in a range of 0.45 

to 0.56.  
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Table 4: Direct genetic and litter effects for principal components of Landrace and Large White 

piglets within biological functional networks 

BFN PC 
Landrace Large White 

σ2p h2±SE c2±SE σ2p h2±SE c2±SE 

 PC1 3.87 0.31±0.08 0.06±0.03 3.53 0.12±0.07 0.16±0.05 

Cell PC2 1.39 0.20±0.08 0.12±0.05 1.19 0.05±0.04 0.10±0.04 

 PC3 0.98 0.18±0.07 0.04±0.03 0.85 0.04±0.04 0.14±0.05 

 PC1 3.89 0.50±0.10 0.05±0.04 3.61 0.08±0.08 0.12±0.05 

RBC PC2 2.82 0.35±0.08 0.04±0.03 3.28 0.58±0.11 0.11±0.05 

 PC3 1.04 0.13±0.06 0.07±0.04 0.86 0.17±0.06 0.11±0.05 

 PC4     0.14±0.06 0.15±0.05 

Cyto PC1 6.10 0.32±0.10 0.53±0.06 10.69 0.27±0.09 0.57±0.06 

 PC2    0.88 0.32±0.10 0.30±0.06 

 

BFN = Biological functional network, PC=Principal component, σ2p=phenotypic variance,  

h2=heritability, c2=litter effect, BFN Cell=immune cells, RBC=Red blood cells, and RBC 

characteristics, Cyto=cytokines, bold font indicates high h2 or c2 over 0.4 value 
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3.4.7.  Genetic correlation between PCs of biological functional networks 

In an additional step, a mv approach provided rp and rg between relevant PCs of LR and LW 

piglets applying model 1. According to the PCA principles, the phenotypic correlation between 

PCs within a BFN should be close to zero (Weller et al., 1996), so only the genetic correlation 

of PCs among BFN was estimated. All estimates can be found in the Table S8. Graphical 

representation of the genetic parameters h2, rp, and rg for PCs in BFN is given in Figure 9. 

As has been described in the previous section 3.4.5 breed-specific comparison of PCs is difficult 

because their loading composition is partly different. However, in general, many estimated 

genetic relationships for PCs in BFN Cell, RBC, and Cyto were characterized as high in both 

breeds.  

In LR, high positive rg were observed between PC3Cell and PC1RBC, as well as PC2Cell and 

PC2RBC. Between the BFN Cell and Cyto, all rg were characterized as high (0.51 to 0.68), except 

for the relationship between PC1Cell and PC1Cyto, which was only moderately (0.17).  

In LW, high estimated rg were detected between PC4RBC and all PCs in the BFN Cell (0.89 to -

0.84). In addition, PC2Cell and PC2RBC, as well as PC3Cell and PC2RBC show high negative rg (-

0.89 to -0.64). Between the BFN Cell and Cyto, all rg were characterized as moderate to high 

(0.36 to -0.93). Further, between PC1Cyto and PC2RBC, a high negative (-0.70) rg was observed. 

However, the rg was highly positive (0.89) between PC1Cyto and PC3RBC.  

In addition, we observed that the first PCs of each BFN (PC1Cell, PC1RBC, PC1Cyto) can be 

compared between the breeds due to similarities in the contribution based on their loading 

values (Figure 8). Therefore, breed differences were observed for high rg between PC1Cyto and 

PC2Cell. In LR, PC1Cyto and PC2Cell were high positively correlated (0.51), whereas in LW they 

were high negatively correlated (-0.93). PC1Cyto and PC1RBC were high positively correlated in 

LR (0.68) whereas in LW this relationship was described as moderate (0.24). 
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Figure 9: Graphical display of genetic parameters for condensed variables in the piglet data set 

Heritabilities (h2) on the diagonal. Phenotypic correlations (rp) under the diagonal and genetic 

correlations (rg) above the diagonal. PC=Principal component, LR = Landrace, LW=Large 

White, PCs are estimated within three distinguished biological functional networks like cells 

(Cell), RBC and additional RBC characteristics including haptoglobin (RBC), and cytokines 

(Cyto). 
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3.5. Discussion 

In this study, the genetic background of immune traits and their complex relationships were 

investigated. For this purpose, 22 immune traits were analyzed in LR and LW piglets together 

with their biological dams. Genetic parameters were estimated and a mv approach using a PCA 

was initiated. The extension of the animal mixed model for additional covariate of dam’s PC 

allowed the investigation of environmental influences on piglet’s immunity. 

The comparison of phenotypic mean values between the breeds showed clear differences and 

was also confirmed by the neutrophil to lymphocyte ratio. Friendship et al. (1984) have reported 

that within the feeder, finisher pigs, and sows the number of lymphocytes exceeded the number 

of neutrophils, except for growing pigs. The numbers of neutrophils are expected to exceed 

lymphocytes in piglets because neonates were assumed to develop their adaptive immune 

systems (Farmer, 2015). In addition to the age, farm, physiological status (lactating or pregnant 

sow) of the pig can influence the hematological profile. Lactating sows had higher neutrophil 

and lower lymphocyte values than pregnant sows (Ježek et al., 2018). Breed differences for 

immune traits phenotypic values (e.g., neutrophil to lymphocyte ratio) are also reported for 

other breeds and will be explained further. Clapperton et al. (2005) demonstrated differences in 

innate immune traits between Meishan and LW pigs. Meishans had higher neutrophil and 

monocyte counts and lower lymphocyte counts. At the current state, it is not possible to 

characterize which ratio is beneficial for a stable or advantageous immune system; still, such 

differences in immune traits may have implications in the resistance to pathogen infection in 

these breeds. 

3.5.1.  Environmental effects affecting the immune traits 

As described in the method section, the estimation of genetic parameters was realized for the 

LR and LW piglets separately. The selection for the suitable environmental correction was 

achieved by including relevant significant fixed effects into the statistical model based on 

ANOVA results. Published reference studies (Ježek et al., 2018; Ponsuksili et al., 2016) have 

described significant influences of sex, breed, farm, physiological status, and parity for 

hematological profiles and cytokines. Our results partly confirm already published influencing 

factors. Discrepancies can be explained by the chosen blood sampling period and the 

investigated breeds. Finally, relevant effects based on literature and our results were included 

in the statistical model 1. Further, the environmental impact of the biological dam was analyzed 

and described in detail. 
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3.5.2.  Genetic foundation of immune traits for piglets 

The inclusion of immune traits in a selection program requires these traits to be heritable across 

generations. Our study confirms previous findings reporting a genetic foundation for immune 

traits with h2 estimates for several immune traits within the published range (Clapperton et al., 

2009; Clapperton et al., 2008; Edfors-Lilja et al., 1998; Flori, Gao, Laloë, et al., 2011; Hermesch 

& Luxford, 2018; Mpetile et al., 2015; Ponsuksili et al., 2016). Moderate h2 was found for RBC 

in LW piglets as reported by several authors (Flori, Gao, Laloë, et al., 2011; Mpetile et al., 

2015; Ponsuksili et al., 2016). High h2 for MCV were observed in both breeds and have been 

previously confirmed by Mpetile et al. (2015) in Yorkshire pigs and by Ponsuksili et al. (2016) 

in LR pigs. MCH showed high h2, which is comparable to the study of Ponsuksili et al. (2016) 

for LR pigs but has been in contrast to Mpetile et al. (2015) for Yorkshire pigs. Flori, Gao, 

Laloë, et al. (2011) have reported h2 for cytokines, however, their estimates for LW swine were 

very low. In the current study, there were high h2 for TNF-α in LR piglets and moderate h2 

estimates for all examined cytokines in LW piglets. Generally, there are numerous differences 

between these studies. Clapperton et al. (2008) estimated the h2 of two traits in common (WBC 

and monocytes) in approximately 500 LW pigs at 30 and 90 kg weight under two environments. 

Clapperton et al. (2009) evaluated unchallenged and unvaccinated pigs that were either at a 

farm without major swine pathogens or at a farm where swine pathogens were documented. 

Flori, Gao, Laloë, et al. (2011) measured many of the same traits as investigated in this study 

in 443 LW pigs one week after these were vaccinated against Mycoplasma hyopneumoniae. 

However, due to fundamental differences, inter-study results should be interpreted with caution.  

Variations between LR and LW as well as deviations between study results and the literature 

can be explained by genetic diversities among the breeds but also by heterogeneous 

environmental conditions or different effects included in the model. Breed differences described 

in the present study may be related to various disease resistance traits. In the literature, pigs 

from Duroc and Yorkshire breeds have been shown generally to be more resistant to clinical 

and subclinical diseases than pigs from LR and Hampshire breeds (Henryon et al., 2001). 

Genetic breed variation has also been reported between LR, LW, and Duroc in delayed-type 

hypersensitivity (DTH) and Immunoglobulin G (IgG) (Kikuchi et al., 2002). Large White 

showed a significantly higher DTH area than LR and Duroc. In IgG concentration, Duroc was 

significantly lower than LR and LW. Between LR and LW no statistical difference in IgG 

concentration was detected. In a comparative study on hematological traits in LR, LW and 

Chinese Songliao Black pig breeds higher values of lymphocyte count, monocyte count, and 

hemoglobin were observed for LR piglets in comparison to LW. In contrast, MCH and MCHC 
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were lower in LR than in LW piglets (Y. Liu et al., 2010). The authors interpret a higher immune 

trait value as beneficial for the immune capacity. Similar observations have been reported by 

Wilkie and Mallard (1999). Piglets selected for a high immune response revealed a better 

response to vaccination. However, for some stimuli such pigs seemed to generate some 

autoimmune reactions (Mallard et al., 1992; Wilkie & Mallard, 1999). Therefore, it is still 

necessary to identify an optima for immune traits. Incorporating resilience indicators into 

breeding programs seem to be promising for producing healthy and manageable livestock 

(Berghof et al., 2018). 

A consistent result of many studies is that pigs from breeds with high levels of reproduction 

(Meishan, LW) are more resistant to the effects of the Porcine reproductive and respiratory 

syndrome virus than pigs from lines selected for lean growth rate (Duroc, Pietrain) (Halbur et 

al., 1998; Petry et al., 2007; Vincent et al., 2005, 2006). However, other factors also influence 

the outcome of an immune response, for example, environmental factors and stressors 

(Clapperton et al., 2009; Farmer, 2015). Our results of additive genetic effects suggest that 

breed-specific selective breeding for immune traits is feasible. It is necessary to note that a 

sufficient genetic variance is essential for a high h2. Some of our investigated immune traits i.a. 

HMT in LR did not meet this requirement, so that it is questionable if a promising genetic 

response can be achieved in such cases.  

3.5.3.  Maternal impacts on piglet’s immune traits 

Besides additive genetic effects, further effects e.g. litter can additionally influence piglets’ 

immune traits. To test this hypothesis c2 was estimated by including the litter information as an 

additional random effect into the model during variance component estimation. Results for both 

breeds showed moderate to high c2 in common cytokines like IFN-γ, IL-10, IL-4, and IL-6. 

Above mentioned immune studies consider the litter effect and report similar results.   

In addition, several studies describe the maternal impacts on piglet’s immunity on an 

environmental level such as cell and antibody transfer, development of mucosal immunity, and 

colostrum intake (Bandrick et al., 2008; Hermesch et al., 2017; Salmon et al., 2009). Moreover, 

besides a low h2, Rohrer et al. (2014) were even able to estimate moderate maternal genetic 

effect in their genetic analysis of colostrum intake measured as γ-immunoglobulins complexes 

bound to ammonium sulfate (immunocrit). There is limited information concerning the impact 

of immune factors transferred from colostrum and milk to suckling piglets on their immune 

development. Due to the epitheliochorial placentation of the sow, the passive transfer of 

antibodies from mother to offspring occurs during colostrum intake only (Farmer, 2015).  
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Maternal effects can also arise indirectly, whereby an immune trait of the mother would affect 

some part of the variation in offspring’s phenotypic traits (Grindstaff et al., 2003). To consider 

an environmental impact, PCs of the dam’s immune traits were added as an additional covariate 

into the model. In general, this consideration led to a decrease in h2 while at the same time 

causing an increase in c2 and rg indicating that it is possible to adjust piglet’s immune 

measurements. The biological dam plays a crucial role in fetal and postnatal piglet survival 

through the provision of vital resources and by displaying good maternal behavior. The 

genotype and parity of the dam, as well as the dam’s physical condition during gestation and 

lactation influence piglet survival (Farmer, 2015) and, may have an indirect impact on the 

piglet’s immune system. This statement implies that breeding affords immune traits in piglets 

that can be accessed through the biological dam. 

3.5.4.  Close relationships between immune traits imply complexity of piglet’s 
immunity 

The immune system is a highly interactive network where the ability to send signals from one 

cell to another is crucial. Communication within the adaptive immune system and between the 

innate and adaptive immune systems occurs directly via cell-to-cell contact or by the production 

of cytokines as mediators (Zimmerman et al., 2012). This leads to the presumption that immune 

cells and cytokines may be phenotypically or genetically correlated. Furthermore, it is expected 

that underlying genes may have pleiotropic effects, by influencing several immune traits at the 

same time (Lu et al., 2011). To investigate this close correlated relationship between examined 

traits, rp and rg were estimated with a mv approach. As expected, a strong positive rg was 

observed between cytokines IFN-γ, IL-10, IL-1β, and IL-6 for both breeds. Pro-inflammatory 

cytokines (IFN-γ, IL-1β, and IL-6) are excreted by T-lymphocytes, monocytes, or macrophages 

and initiate an inflammatory response to regulate the host defense against pathogens. Anti-

inflammatory cytokines (e.g. IL-10) are secreted by macrophages, T- and B-lymphocytes and 

have an immunoregulatory role by suppressing inflammatory response (Zimmerman et al., 

2012). The importance of cytokines is emphasized by their function to alter metabolism. 

Cytokines IL-1, IL-6, and TNF-α have been found to modulate intermediary metabolism of 

carbohydrate, fat, protein substrates, regulate hypothalamic-pituitary outflow and act in the 

periphery and central nervous system (CNS) to reduce food intake (Johnson, 1997). Immune 

cells, but also microglial cells within the CNS can synthesize various cytokines (IL-1, IL-6, and 

TNF-α) at the same time (Fontana et al.). Increased mRNA and protein values of cytokines 

TNF-α, IL-1α, and IFN-γ within CNS have been observed in diseased animals infected with 
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encephalomyelitis (Renno et al., 1995). Therefore, cytokines demonstrate local effects, but can 

also act systemically to change animal behavior, metabolism, and neuroendocrine secretions.  

Besides cytokines, strong correlations were found between RBC and RBC characteristics. F. 

Zhang et al. (2014) found moderate to high rp for several hematological traits such as RBC and 

RBC characteristics like hematocrit, hemoglobin, MCV, MCHC in Chinese Sutai pigs. 

Furthermore, genome-wide association analysis for this trait revealed single nucleotide 

polymorphisms (e.g., ss107842725) located in ENSSSCG00000001232 gene on Sus Scrofa 

chromosome 7 which is associated with hematocrit, RBC, and MCV. Sharing the same genetic 

foundation between these traits’ authors express that pleiotropic quantitative trait loci are 

common on hematological traits.  

MCH amounts to the average hemoglobin level in a RBC (Zimmerman et al., 2012). The 

established high rg of MCHC to monocytes cannot be fully explained from the literature. 

According to a recent mouse model of deep vein thrombosis, monocytes contribute to tissue 

factor-driven coagulation (Rezende et al., 2014) and for this reason, may be associated with 

higher MCHC values.  

Estimated rg for immune factors are very rare in the literature for livestock, especially for 

piglets. Flori, Gao, Laloë, et al. (2011) estimated rg for components of innate and adaptive 

immunity and was able to show that these two pillars of the immune system are complementary. 

However, no clusters of innate or adaptive immunity were revealed and estimated rg for immune 

traits were mostly weak. Nevertheless, for the total number of white blood cells and different 

leucocyte subsets high positive rg were estimated which is consistent with our results. Estimated 

relationships highlight a strong connective network within the immune system where selection 

for several immune traits would affect other immune components and therefore, should be 

carefully examined. 
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3.5.5.  The multivariate analysis emphasizes compound relationships between 
immune traits 

PCA was chosen as a mv approach to reduce the dimensions of phenotypic immune 

measurement levels. Genetic parameters for direct immune measurements and PCs as new 

dependent immune variables are very similar. LR and LW showed consistent moderate to high 

h2 and c2 for RBC characteristics and cytokines and PCs which are composed of these 

phenotypes according to their loadings. Considering the rg results for PCs, analog relationships 

are found as in estimated mv rg between immune traits. For example, a close relationship was 

estimated between BFN RBC and Cyto, in detail PC1RBC and PC2Cyto were moderate to highly 

correlated. According to the loadings, PC2RBC is mostly composed of two immune traits: MCH 

and MCHC, which express mean hemoglobin and mean hemoglobin concentration. Most 

investigated cytokines (IFN-γ, IL-10, IL-1β, IL-4, IL-6, TNF-α) contribute variance to the 

PC1Cyto. As for mv direct rg, this relationship was also observed as a high positive correlation 

between hemoglobin and the cytokines IFN-γ as well as TNF-α. Stimulation of human WBC 

with purified hemoglobin led to the release of proinflammatory cytokines IL-8 and TNF-α 

(McFaul et al., 2000).  

The results obtained here demonstrate that PCA is a useful tool to condense information based 

on a phenotypic covariance matrix. The number of dependent variables can be reduced by 

applying this technique without losing important information (Weller et al., 1996). PCA 

provides from an originally large number of immune traits and variables a simpler basis for 

summarizing the data. A further advantage of a PCA is an appropriate weighting of immune 

traits within the PCs. Immunocompetence complex data was measured as immune traits in this 

study where a desirable directionality of an individual immune trait is unknown. PCs consider 

a proper weighting of these traits. Therefore, they represent an extraction of the desired and 

undesired direction of immune traits as the weighted sum of the original variables (Everitt & 

Hothorn, 2011).  
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3.6. Conclusion 

This study investigated the genetic background of immune traits in LR and LW piglets and their 

corresponding dams through immune profiling. Most of the examined immune traits show 

moderate to high genetic parameters including h2, c2, and rg. Condensed immune phenotypes as 

PCs allowed to uncover the complexity of the immune system networks. Most immune traits 

are heritable and are promising to cover global, but breed-specific immunocompetence in 

animals. The analysis of immune traits has to be extended to characterize relationships between 

immunity and performance to gain an improved immune system without accidental losses in 

productivity. 
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4.1. Abstract 

4.1.1.  Background 

Immune traits are considered to serve as potential biomarkers for pig’s health. Medium to high 

heritabilities have been observed for some of the immune traits suggesting genetic variability 

of these phenotypes. Consideration of previously established genetic correlations between 

immune traits can be used to identify pleiotropic genetic markers. Therefore, genome-wide 

association study (GWAS) approaches are required to explore the joint genetic foundation for 

health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-trait 

manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were 

applied on combinations out of 22 immune traits for Landrace (LR) and Large White (LW) pig 

lines.  

4.1.2.  Results 

In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented 

in PLINK and a Bayesian linear regression uv approach (BIMBAM) software.   Single 

Nucleotide Polymorphisms (SNPs) that were identified with both uv approaches (n=32) were 

mostly associated with immune traits such as haptoglobin, red blood cell characteristics and 

cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 647 

associations for different mv immune trait combinations which were summarized to 133 

Quantitative Trait Loci (QTL). SNPs for different trait combinations (n=66) were detected with 

more than one mv method. Most of these SNPs are associated with red blood cell related 

immune trait combinations. Functional annotation of these QTL revealed 453 immune-relevant 

protein-coding genes. With uv methods shared markers were not observed between the breeds, 

whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to 

unmapped positions for these markers, their functional annotation was not clarified.  

4.1.3.  Conclusions 

This study evaluated the joint genetic background of immune traits in LR and LW piglets 

through the application of various uv and mv GWAS approaches. In comparison to uv methods, 

mv methodologies identified more significant associations, which might reflect the pleiotropic 

background of the immune system more accurately. In genetic research of complex traits, the 

SNP effects are generally small. Furthermore, one genetic variant can affect several correlated 

immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong 

dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed 

immune-relevant potential candidate genes. Our results indicate that one single test is not able 
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to detect all the different types of genetic effects in the most powerful manner and therefore, 

the methods should be applied complementary. 

Keywords: Immune traits; Pigs; Multivariate; Genome-wide Association Studies; 

Immunocompetence; Animal Genetics  

 

4.2. Background 

In modern swine breeding conditions, the time around birth is one main critical period for piglet survival 

(Heuß et al., 2019; Theil et al., 2014). Development of breeding programs to increase general 

immunocompetence in order to improve piglet survival are desired. Enhancing the piglet’s immune 

capacity can result in further beneficial animal welfare and productivity of pigs. The immune system 

plays an essential role in the immunocompetence of piglets (Edfors-Lilja et al., 1994). For the progress 

of selection strategies, basic knowledge of the genetic foundation for phenotypes associated with global 

immunocompetence is required.  

Medium to high heritabilities (h2 0.4-0.8) have been estimated for several immune traits suggesting 

exceeding potential of the genetic impact (Clapperton et al., 2009; Flori, Gao, Laloë, et al., 2011; 

Hermesch & Luxford, 2018). GWAS and QTL mapping can be used to explore the genetic background 

of immune phenotypes. Several QTL studies revealed markers throughout all chromosomes for immune 

traits related to red and white blood cells (Cho et al., 2011; Edfors-Lilja et al., 1998; Gong et al., 2010; 

Reiner et al., 2007, 2008; S. Yang et al., 2009; Zou et al., 2008) as well as cytokines (Uddin et al., 2011). 

Previous GWAS successfully identified numerous genetic markers associated with different phenotypes 

such as hematological, leucocyte-related traits (Ballester et al., 2020; Bovo et al., 2019; Lu et al., 2013; 

Luo et al., 2012; Ponsuksili et al., 2016; Wang et al., 2013; F. Zhang et al., 2014; Z. Zhang et al., 2013) 

and cytokines like interferone (IFN) and interleukins (IL-10) (Dauben et al., 2021; Lu et al., 2013).  

Usually, GWAS addresses phenotypes in a univariate (uv) trait manner. However, a variety of 

multivariate (mv) methods were introduced to analyze multiple traits jointly (Zelterman, 2015). The 

utilization of mv methods is recommended to increase the statistical power to detect associations 

(Galesloot et al., 2014; Porter & O'Reilly, 2017; Wang et al., 2013). Previous results show moderate to 

high genetic correlation (rg 0.4-0.8) between immune traits (Roth et al., 2022) . Consideration of rg 

between multiple immune traits can be used to identify pleiotropic genetic markers. So far, Bovo et al. 
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(Bovo et al., 2019) reported uv and mv results for the largest number of 30 hematological and clinical 

biochemical traits in slaughtered pigs. In these studies, pleiotropic QTL and significant tag haplotypes 

with effects on multiple blood parameters were detected with mv analysis e.g., a mv Bayesian approach. 

The aim of this study was to identify genetic markers associated with immune traits. Besides uv GWAS 

the following mv statistical approaches have been applied and the results have been compared: Principal 

component analysis (PCA), Canonical correlation analysis (CCA), Meta-analysis (TATES) and one mv 

Bayesian linear regression approach (mvBIMBAM). Preliminary estimated genetic correlations (Roth 

et al., 2022) and the construction of biological network assisted the detection of pleiotropic QTL regions. 

Therefore, a LR and a LW population were investigated in order to identify biologically relevant 

pleiotropic markers related to health and immunity. 

 

4.3. Results 

An overview of the investigated data sets, animals and immune traits can be found in Dauben et al. 

(2021) and Roth et al. (2022). In brief, piglets of LR and LW were phenotyped for the complete and 

differential blood count (15 traits), eight cytokines and haptoglobin. The experiment was conducted 

under mostly practical, but high hygienic conditions and without challenging the animals (Dauben et al., 

2021). For the uv and mv analyses performed in this study, data sets of 522 LR and 461 LW piglets 

comprising 47,292 and 43,730 SNP markers, respectively, were used 

4.3.1. Genetic markers identified with uv GWAS approaches 

Linear and Bayesian linear regression-based approaches were applied to obtain uv GWAS 

results (Table S9). In total 401 significant associations were identified with PLINK (LR: 324, 

LW: 77; adjusted p-value < 0.05). For uv BIMBAM 32 associations were detected in total (LR: 

27, LW: 5; BF > 3.02). All SNPs observed with the uv Bayesian approach were also detected 

by the linear regression approach as implemented in PLINK. These results were mostly 

associated with immune traits related to red blood cells (RBC), cytokines, and haptoglobin 

(HAP). The identification of pleiotropic SNPs with uv GWAS is possible when genetic markers 

are detected across various traits. In total, 75 SNPs (PLINK: 70, 5: BIMBAM) were detected 

for multiple traits like RBC (RBC, HMG, HMT) and cytokines (IL1b, IL-4, IL-6, IL-10, Tumor 

Necrosis Factor-α (TNF)) within uv GWAS. Aditionally, the uv GWAS results were compared 
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across the investigated breeds, however, no overlapping markers were observed between the 

breeds (Figure S1).  

4.3.2. Principal component analysis of the immune traits 

Details of the analysis of the PCs within the breeds can be found in the study of Roth et al. 

(2022). In brief, within BFN red blood cells (RBC), PC1 RBC explains ~37% of the variation 

in both breeds (LR: 37.23%, LW: 37.49%). This PC is mainly influenced by RBC 

characteristics of haemoglobin, haematocrit and RBC. On the contrary, PC2 RBC (LR: 22.43%, 

LW: 22.84%) is mainly influenced by the calculated ratio of mean corpuscular haemoglobin 

(MCH) and mean corpuscular volume (MCV) (only in LR). Within PC3 RBC and PC4 RBC 

which also explain more than 10% of the variation, mean corpuscular haemoglobin 

concentration (MCHC) and haptoglobin are the main actors. Within the BFN cells, PC1 Cell 

(LW: 35.96%, LR: 35.49%) is dominated by neutrophils and lymphocytes, which were known 

to be negatively correlated and influenced by the time point of blood sampling. On the contrary, 

PC2 Cell can be characterized by the percentages of eosinophils and white blood cells (WBC) 

(only in LW). In BFN cytokines (Cyto), PC1 Cyto explains most of the phenotypic variation 

(LR: 68.13%, LW: 60.13%). This PC is similarly influenced by examined cytokines. Apart 

from that, the chemokines IL-12 and Il-8 have less impact on PC1 Cyto but dominate PC2 Cyto 

in LW piglets. PCs of the two breeds cannot be compared in general because their composition 

based on loading values differs from breed to breed. In contrast, we assumed that the variance 

components of the first PCs of each BFN (PC1 Cell, PC1 RBC and PC1 Cyto) are comparable 

between the breeds due to similarities in the contribution based on their loading values. 

4.3.3. Structural multivariate trait combinations 

The identification of causal relationships among immune traits before performing mv GWAS 

helps to reduce extensive computation effort impaired by the realization of all possible mv 

combinations for all available immune phenotypes. Immune trait combinations of interest were 

created by performing Bayesian Network (BN) analyses based on the hill-climbing algorithm 

(Scutari et al., 2019) for all immune traits in LR and LW data sets.  

The dependencies among the variables of the structural BN model strings are illustrated in 

Figure 10 and are presented in Table 5. In total 22 combinations were detected for LR and LW, 

respectively. In Table 1 the structure of the identified BN is displayed: a local structure is 

presented in square brackets [] with the first string identifying a node. There are two types of 

nodes: parents and children. The state input variables, or parents of the node, are listed after a 

vertical bar "|", separated by colons ":". Children of the node represent the interaction 
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determined by the conditional probability, derived from two or more parent nodes. One trait 

combination [HMT|HMG:Mean Corpuscular Hemoglobin Concentration (MCHC)] was 

identified in both breed-specific networks allowing investigations for trait combinations within 

as well as across the breeds. 

The causal relationships among the phenotypes are also displayed in Figure 10. Each of the 

nodes (e.g. RBC, white blood cells (WBC), IL10) represents the measured phenotypes. A 

directed arrow from one node to another means a direct causal effect. For example, in LR, HAP 

has a direct causal effect on the variable WBC, which in turn affects neutrophils (NEU) and 

IL1B. To accentuate functional biological networks of phenotypes, nodes are illustrated in 

different colors. Node frames are highlighted in red when variables are conditionally 

independent (HAP in LW and LR, PLT in LR). Additionally, colors are used for arrows to 

indicate parental relationships of the nodes in the structured model learned from the data sets.  

Although BNs do not serve as biological patterns, causal relationships between immune traits 

mostly represent biological functional subsets. Combinations mainly based of WBC, RBC, and 

cytokine-related clusters. The identified conditionally dependent traits by the network structure 

were used as mv trait combinations for mv GWAS.  
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Figure 10: Bayesian network for immune trait residuals 
RBC=red blood cells, HMG=hemoglobin, HMT=hematocrit, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin concentration, 

PLT=platelets, WBC=white blood cells, NEU=neutrophils, LYM=lymphocytes, MON=monocytes, EOS=eosinophils, BAS=basophils, HAP=haptoglobin, IFN=interferon-γ, IL=interleukin, 

TNF=tumor necrosis factor-α. Functional biological networks of phenotypes are illustrated as nodes in pale blue (   ) for WBC, light red (   ) for RBC, and yellow (   ) for cytokines. Node frames are 

highlighted in red to highlight conditionally independent variables. Colored arrows are used to indicate parental relationships of the nodes in the structured model learned from the data sets. 



Multivariate genome-wide associations for immune traits in two maternal pig lines 

62 

Table 5: Resulting structural model learned from a causal network 

Breed Conditional 
independent 

Conditional dependent 
with one parent 

Conditional dependent 
with two parents 

Conditional dependent  
with multiple parents 

LR [MCHC] [BAS|MON] [HMG|MCHC:IL10] [RBC|HMG:HMT:MCV:MCH] 
  [PLT] [EOS|PLT] [HMT|HMG:MCHC] [MCV|HMG:HMT:PLT] 
  [MON] [IL8|TNF] [MCH|MCV:MCHC] [WBC|HMT:EOS:HAP:IL8] 
  [HAP] [IL12|IFN] [IL6|IL10:IL1b] [LYM|NEU:MON:EOS:BAS: TNF] 
  [IFN]   [IL10|IFN:IL12] [NEU|RBC:WBC:MON:BAS] 
      [TNF|IFN:IL10] [IL1b|WBC:EOS:IL10:IL12] 
        [IL4|EOS:IL10:IL1b:TNF] 
LW [MON] [IL12|HAP] [MCV|IL12:IL6] [RBC|HMG:HMT:MCV:MCH:MCHC] 
  [HAP] [HMG|MCH] [HMT|HMG:MCHC] [WBC|RBC:HAP:IL1b] 
  [IFN] [MCHC|MCV] [MCH|MCV:MCHC] [NEU|HMT:MON:HAP:IFN: IL8] 
      [PLT|RBC:WBC] [LYM|NEU:MON:EOS:BAS] 
      [BAS|WBC:NEU] [EOS|MCV:PLT:WBC:IL8] 
      [IL1b|IL10:IL12] [IL10|HAP:IFN:IL12] 
      [IL8|HMT:WBC] [IL4|IL10:IL1b:IL6] 
        [IL6|IFN:IL10:IL1b] 
        [TNF|MON:IFN:IL12:IL6] 

LR=Landrace, LW=Large White, RBC=red blood cells, HMG=hemoglobin, HMT=hematocrit, MCV= mean corpuscular volume, MCH=mean corpuscular 
hemoglobin, MCHC=mean corpuscular hemoglobin concentration, PLT=platelets, WBC=white blood cells, NEU=neutrophils, LYM=lymphocytes, 
MON=monocytes, EOS=eosinophils, BAS=basophils, HAP=haptoglobin, IFN-γ= interferon-γ, IL=interleukin, TNF-α= tumor necrosis factor-α. Conditional 
dependencies are indicated as straight line. Local structure is presented in square brackets [] with the first string identifying a node. Parents of the node are listed 
after "|" and are separated by colons ":". Children of the node represent the interaction determined by the conditional probability, derived from two or more parent 
nodes. These parental relationships are also indicated in different colors for arrows in Figure 10. The causal network model was assigned in three categories for 
more comprehensive understanding of the model structure. Conditionally dependent traits identified by the network structure given in [] were used as trait 
combinations for multivariate genome-wide association study 
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4.3.4. Genetic markers identified with mv GWAS approaches 

Applying uv GWAS, the identification of pleiotropic genomic region is limited, especially in 

the situation of polygenic inherited traits. Therefore, the following four different mv approaches 

were applied on immune trait combinations for LR and LW in order to increase the detection 

power for pleiotropic SNP: PCA, CCA, TATES and mvBIMBAM. In total, 647 significant 

associated SNPs were detected with mv methods and can be found in the Additional Table S10. 

PCA was able to detect 98 (9 genome-wide and 89 chromosome-wide significant) and 26 (5 

genome-wide and 21 chromosome-wide significant) SNPs associated with the phenotypes for 

LR and LW, respectively.  

CCA revealed a variety of associated SNPs: 416 for LR and 151 for LW. For LR, 72 were 

genome-wide and 344 were chromosome-wide significant. For LW, 37 were genome-wide and 

144 were chromosome-wide significant.  

Twenty-eight genome-wide significant markers were determined with TATES for LR while 3 

genome-wide significant genetic variants were characterized as significant for LW.  

mvBIMBAM detected 8 and 23 genome-wide significant SNPs for LR and LW, respectively.  

All detected SNPs with mv methods were summarized to 190 QTLs, by assuming a 1 Mbp 

interval around significant SNPs. Out of these QTLs, 133 were located within or close located 

to protein-coding genes. Functional annotation of these QTLs revealed 453 protein-coding 

genes (Additional Table S10). 

4.3.5. Comparison across mv GWAS results 

SNPs that are identified with multiple mv methods are of particular interest to characterizing 

pleiotropy. In total, 66 SNPs were detected for different trait combinations with more than one 

mv method (Figure 11). Thirty-seven of these SNPs are associated with RBC related immune 

trait combinations (e.g. [RBC|HMG:HMT:Mean Corpuscular Volume (MCV):Mean 

Corpuscular Hemoglobin (MCH), HMG|MCHC:IL10, HMT|HMG:MCHC]. Thirteen SNPs are 

associated with WBC subtypes and 12 with cytokines. For example, SNP ALGA0073579 

(rs81442304) was identified with three mv methods CCA, TATES, as well as mvBIMBAM. 

CCA and TATES associated this SNP with BAS|MON in LR, whereas mvBIMBAM detected 

this association for cytokines IL-4|IL-10:IL-1b:IL-6 in LW. Currently, this SNP remains 

unmapped for Sscrofa 11.1. SNPs ALGA0086892 (rs81454413, SSC 15: 116.13 Mbp), 

ASGA0070586 (rs80818610, SSC15: 120.11 Mbp), and ASGA0070620 (rs80883544, SSC 15: 

120.35 Mbp) were detected by all four mv methods in LR for cytokines and a five immune trait 

combination of WBC, HMT, eosinophils (EOS), HAP, and IL-8. With PCA these SNPs were 

observed for the second PC in the biological functional network of cytokines (PC2 Cyto). 
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According to the contribution based on loading values, this PC  mainly contains cytokines IL-

12 and IL-8 (Roth et al., 2022). These SNPs are located on SSC 15 within an intron region of 

four Mbp (116.13 to 120.35 Mbp) (Figure 11, Table 6).  

 
Figure 11: Venn diagram of different methods used to detect significant multivariate 

associations for both breeds and significance types 

PCA=Principal component analysis, CCA=Canonical correlation analysis, TATES=Trait-

based Association Test that uses Extended Simes procedure, mvBIMBAM= multivariate 

Bayesian imputation-based association mapping. Multiple identical significant SNPs for 

different immune traits within a method are counted once.
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Table 6: Selected significant associated genetic markers identified with multivariate methods 

Breed Trait SSC SNP Pos m/M MAF p-value/BF Method Gene 

LR; 
LW 

BAS|MON, 
NEU|RBC:WBC:MON:BAS; 
IL-4|IL-10:IL-1b:IL-6 

 ALGA0073579  T/C 
0.01 
and 
0.21 

0.01/3.22 CCA, TATES, mvBIMBAM  

LR; 
LW 

HMG|MCHC:IL-10, 
PC4Cell; PLT|RBC:WBC 

 H3GA0016899  T/C 
0.04 
and 
0.16 

0.04 CCA, PCA  

LR 
IL-8|TNF, 
WBC|HMT:EOS:HAP:IL-8, 
PC2Cyto 

15 ALGA0086892 120.1 T/C 
0.50 

0.04/3.5 CCA, PCA, TATES, mvBIMBAM SPAG16 

LR 
IL-8|TNF, 
WBC|HMT:EOS:HAP:IL-8, 
PC2Cyto 

15 ASGA0070586 120.1 T/C 

0.41 

0.01/4.77 CCA, PCA, TATES, mvBIMBAM 

TNS1, RUFY4, 
CXCR2, ARPC2, 
GPBAR1, AAMP, 
PNKD, TMBIM6 

LR 
IL8|TNF, 
WBC|HMT:EOS:HAP:IL-8, 
PC2Cyto 

15 ASGA0070620 120.3 T/C 
0.39 

0.03/4.04 CCA, PCA, TATES, mvBIMBAM  

SSC=Sus scrofa chromosome, SNP=single nucleotide polymorphism, Pos=position [Mbp] m/M allele=minor/major allele, MAF=minor allele 

frequency, p-value =adjusted p-value after correction for stratification and multiple testing, BF=Bayesian factor, Gene=selected nearest gene within 

a progressive number of QTL based on ± 1Mbp distance from a significant SNP, LR=Landrace, LW=Large White, BAS=basophils, MON=monocytes, 

IL=interleukin, HMG=hemoglobin, HMT=hematocrit, NEU=neutrophils, RBC=red blood cells, WBC=white blood cells, PLT=platelets, IFN= 

interferon-γ, TNF=tumor necrosis factor-α, PC= principal component, Cell/Cyto=biological functional networks within the PCA cell/cytokines, 

PCA=principal component analysis, CCA=canonical correlation analysis, TATES=trait-based association test that uses extended Simes procedure, 

mvBIMBAM=multivariate Bayesian imputation-based association mapping.
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In addition, 152 markers were identified for multiple mv trait combinations (Table S10). 

Identical SNPs were mostly shared between immune traits related to functional biological 

immune trait subsets like RBC (e.g. [HMT|HMG:MCHC], MCH|MCV:MCHC], 

[RBC|HMG:HMT:MCV:MCH]), WBC subtypes (e.g. [NEU|RBC:WBC:Monocytes 

(MON):Basophils (BAS)], [Lymphocytes (LYM)|NEU:MON: EOS:BAS:TNF]) and cytokines 

(e.g. [IL1b|IL10:IL12], [IL4|IL10:IL1b:IL6], [IL6|IFN:IL10:IL1b]). These markers are 

distributed over all 18 chromosomes. Interestingly, 30% of identical markers are located on 

SSC 5 between 23.93 and 97.48 Mbp and cover 16 QTLs including 20 protein-coding genes 

(Figure 12).  
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Figure 12: Manhattan plot of SSC5 for multivariate trait combinations a RBC|HMG: HMT:MCV:MCH in Landrace with CCA, b HMG|MCHC:IL10 

in Landrace with CCA, and c WBC|RBC:HAP:IL1b in Large White with mvBIMBAM 

RBC=red blood cells, HMG=hemoglobin, HMT=hematocrit, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean 

corpuscular hemoglobin concentration, IL=interleukin, WBC=white blood cells, HAP=haptoglobin, SNPs of interest are highlighted with green color 

(a DRGA0005609, ASGA0025326, ALGA0031690, MARC0021861, DRGA0005776, b ALGA0031924, MARC0001027, ALGA0032074, and c 

MARC0013873). Protein coding genes within annotated QTLs between 23.93 and 97.48 Mbp are stated in the box
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In addition, mv results were compared across the investigated breeds. In total, 469 markers 

were identified for LR, whereas 180 were detected for LW applying mv GWAS. Two SNPs, 

ALGA0073579 (rs81442304) and H3GA0016899 (rs80959576), were repeatedly observed in 

both breeds (Table 6). These markers were identified by applying mv methods (CCA, TATES, 

mvBIMBAM) as well as with uv methods.  

4.3.6. Comparison between uv and mv GWAS results 

In addition, a comparison of the uv and mv results revealed that 204 markers overlap across the 

methods (Figure 4). All in all, these 204 markers are located near 125 protein coding genes. 

Filtering the overlapping SNPs for the investigated breeds revealed four interesting genetic 

variants (ALGA0073579 (rs81442304), H3GA0016899 (rs80959576), DRGA0006061 

(rs81303269, SSC 5: 79.02 Mbp), ALGA0113815 (rs81342648)) that overlap between uv and 

mv methods (Figure 13).  

CCA revealed, that ALGA0073579 (rs81442304) was significantly associated with 

[BAS|MON] in LR, whereas, applying mvBIMBAM, this SNPs was observed for cytokines 

[IL-4|IL-10:IL-1b:IL-6] in LW. Additionally, this SNP was also identified for the trait basophils 

in LR within uv GWAS using PLINK.  

H3GA0016899 (rs80959576) was significantly associated with PC4 Cell in LR. According to 

the loading value, PLT and HAP mostly contributed to PC4 Cell. Applying CCA allowed to 

detect this SNP for [PLT|RBC:WBC] in LW. Furthermore, H3GA0016899 was also 

significantly associated with RBC in LW using an uv GWAS.  

The genetic variant DRGA0006061 (rs81303269, SSC 5: 79.02 Mbp) was identified for 

[IL4|EOS:IL10:IL1b:TNF] with CCA in LR, whereas PLINK detected this association for RBC 

in LW. Currently, the SNP H3GA0016899 is unmapped for Sscrofa 11.1, but was previously 

mapped on SSC 5.  

On SSC 12, within and intron region of the Regulator of G-protein signalling 9 (RSG9) gene 

(12.0 Mbp), the SNP ALGA0113815 (rs81342648) was significantly associated with a PC2 

Cyto (consisting of cytokines IFN-γ, IL-12, IL-8 specified by the loading value) by applying 

the PCA approach in LR, whereas PLINK identified this association for IL-4 in LW (Tables S9 

and S10).  
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Figure 13: Genetic markers identified with GWAS approaches: Comparison of different 

association methods for both investigated breeds 

Multiple identical significant SNPs for different immune traits within a method are counted a 

single time. mv=multivariate, uv=univariate, LR=Landrace, LW=Large White  
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4.4. Discussion 

The aim of this study was the detection of genetic markers associated with immune traits 

applying different approaches of uv and mv GWAS. In total 401 and 647 significant 

associations were identified with uv GWAS and mv GWAS, respectively. Of particular interest 

are the created immune networks using BN and PC analyses. 

4.4.1. Conditional dependencies of immune networks 

For mv analysis 22 available immune phenotypes would result in multiple possible mv 

combinations, which would require high computational effort. The application of a BN 

approach allowed to identify conditional dependencies among immune traits and to focus on 

relevant trait combinations. Usually, BNs do not reflect biological patterns when causal 

statistical relationships between variables have been detected. However, identified 

combinations can be classified into biological functional subsets of immune traits. For both pig 

lines, conditional relationships were identified within RBC-related traits, WBC subtypes, and 

cytokines. These networks correspond to previous estimated rg results (Roth et al., 2022). RBC 

were highly correlated with RBC characteristics, like HMT (LR: 0.82±0.05, LW: 0.90±0.09) 

and HMG (LR: 0.81±0.06, LW: 0.77±0.10). As expected, among further RBC characteristics, 

a high positive correlation was found between HMT and HMG (LR: 0.99±0.00, LW: 

0.97±0.04), MCH, and MCV (LR: 0.99±0.02, LW: 0.94±0.03). Between cytokines such as IFN-

γ, IL-10, IL-1β, IL-4, and IL-6 high positive rg were estimated in both investigated pig lines. 

Immune cells such as MON and EOS were positively correlated to cytokines like TNF-α in LR 

but showed a high negative correlation in LW. Ballester et al. (2020) constructed a network 

based on phenotypic correlations for immune traits in Duroc piglets. Although only 13 immune 

parameters overlap between Ballester et al. (2020) and our study, similar clusters that relied on 

RBC and WBC subtypes were identified. The detected close relationships in the previous and 

current studies (Ballester et al., 2020; Bovo et al., 2020; Dauben et al., 2021; Roth et al., 2022) 

indicate the complexity of piglet’s immunity. 

As discussed by Roth et al. (2022) the PCA aims for a more powerful analysis of the immune 

traits by reducing the dimension of information, and therefore allowing the detection of key 

players in immunocompetence. In that study, PCA was shown to be an effective tool for 

condensing information based on a phenotypic covariance matrix. Using such a technique can 

reduce the number of dependent variables without compromising important information 

(Weller et al., 1996). Furthermore, PCAs provide an appropriate weighting of individual traits. 

In general, all observed phenotypic and genetic correlations as well as conditional dependencies 
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among immune parameters, might be helpful to create well-balanced breeding selection 

strategies to improve the immunocompetence of pigs.  

4.4.2. Comparison between uv and mv GWAS results and method performance 

Beside one uv frequentist and one uv Bayesian approach, four mv approaches (PCA, CCA, 

meta-analysis, mv Bayesian linear regression) were applied on two maternal pig lines. Results 

were empirically compared within and across the methods.  

Comparing the uv approaches, identical significant associations were detected. The investigated 

data sets were also studied by Dauben et al. (2021) using the GenABEL-package in R 

(Aulchenko et al., 2007) and ASReml Software (Gilmour, 2015). In total, Dauben et al. (2021) 

identified 25 genome-wide and 452 chromosome-wide significant SNPs (LR: 280, LW: 197) 

associated with 17 immune relevant traits in both pig lines. Applying PLINK and uvBIMBAM 

it was possible to identify 433 (LR: 351, LW: 82) significant associations. Comparing the 

results of both studies, 159 and 15 associations were commonly detected for LR and LW, 

respectively. 

One reason for the different number of significant SNP markers among the studies are caused 

by the requirement for the multivariate analyses. The number of phenotypes per animals have 

to be complete. Furthermore, the applied methods to correct for false positives and the 

determined threshold for genome-wide and chromosome-wide significance differ depending on 

the applied methodology. 

Among the common associations in LR, 49 SNPs were also identified with mv methods in this 

study. Common results were mostly associated with immune traits related to RBC, cytokines, 

and HAP e. g. ASGA0070620 (rs80883544, SSC 15: 120.35 Mbp). The SNP ASGA0070620 

is located near protein-coding genes such as TMBIM1 (transmembrane BAX inhibitor motif 

containing 1).  

Generally, previous GWAS studies for immune traits focused mostly on uv statistical 

approaches. The application of mv methods is recommended to increase the statistical power to 

detect associations (Bovo et al., 2019; Galesloot et al., 2014; Porter & O'Reilly, 2017; Wang et 

al., 2013) even if the rg between the traits is expected to be weak (close to 0) [25, 26]. 

Consideration of previously published high rg (≥±0.4) results between multiple immune traits 

[27] was used to increase GWAS power to identify pleiotropic SNPs. In this study, mv methods 

revealed a higher number of significant associations compared to uv methods. Moreover, there 

was a substantial overlap of associations found by several mv methods which have different 

underlying statistical backgrounds. These results could be used as heuristic arguments, that mv-

methods have a higher detection power. However, it should be considered that the number of 
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approaches differs between the applied methods. For uv analysis, two different approaches were 

compared, whereas for mv analysis four different mv methods were utilized.  

204 SNPs were identified with uv and mv methods. When SNPs are detected with multiple 

approaches, they provide more certainty for the GWAS results and contribute potential 

candidate genes. However, 443 associations were exclusively identified with mv approaches. 

This underlines the importance of considering the correlation among immune traits with mv 

methods. Common markers for comparable trait complexes were also identified between 

different mv approaches. Nevertheless, markers match incompletely and only to a small extent.  

Application and comparison between multiple uv and mv approaches were addressed mostly 

on simulated data (Galesloot et al., 2014; Porter & O'Reilly, 2017), rather than on immune 

phenotypes. Recently, Bovo et al. (2020; 2019) reported uv and mv GWAS results for 

hematological and blood clinical-biochemical traits in LW pigs after slaughtering. Similarly, to 

our study, one frequentist and one Bayesian approach were applied. In general, the performance 

of different mv approaches is scenario-specific and sensitive to specific effects like allele 

frequency, the number of investigated traits, and underlying correlation structures among the 

traits (Galesloot et al., 2014; Porter & O'Reilly, 2017). Galesloot et al. (2014) concluded that 

mv methods implemented in software like PLINK, SNPTEST, MultiPhen, and mvBIMBAM 

performed best in terms of detection power for the majority of scenarios, which is partly 

consistent with our results. 

Furthermore, it has to be mention, that the possibility of chromosome-wide correction for 

multiple testing was not applied in every approach and was limited to methodology 

implemented in PLINK and R. For CCA, the highest number of associated SNPs was reported 

in our analysis. Similar to our results, Galesloot et al. (2014) studied high power for almost all 

scenarios for the same approach. These authors explain higher power was observed with 

increasing residual correlation in case of a single QTL trait and when two or all three traits were 

associated with the QTL with a negative genetic correlation for methods including CCA. Due 

to trait correlations, test statistic distributions are likely to have longer tails, and therefore a 

more conservative threshold is recommended to maintain the type I error at 5% (Galesloot et 

al., 2014). As recommended by Galesloot et al. (2014), we lowered the threshold within the 

CCA approach (5 % default value to 1 % lowered threshold) and compared the association 

results empirically once again (results not shown). The number of detected SNPs with CCA 

lowered to 184 (LR: 144, LW: 40). However, the common three SNPs, which were detected 

with all four mv approaches, remained in the results for CCA after lowering the threshold. 
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Zhou et al. (2014b) developed an efficient linear mixed model algorithm for GWAS which is 

implemented in the software GEMMA and compared this algorithm to those implemented in 

WOMBAT (Meyer, 2007) and GCTA (J. Yang et al., 2011). Algorithms were applied to 

different numbers of phenotypes in simulated data as well as human and mouse data sets. Even 

though the authors reported exceeded improvements in computational time and power, they 

recommended considering the methods as complementary rather than competing. One single 

test is not able to detect all the many different types of genetic effects in the most powerful 

manner. Salinas et al. (2018) described many of the mv methods aimed to detect genetic 

pleiotropy in an epidemiological context. In their study, specific method selection considering 

phenotype distribution type and data availability was developed. Therefore, our results 

contribute to a deeper understanding of the performance power and selection of suitable mv 

methods. 

4.4.3. Comparison of genetic markers between LR and LW 

A comparison of results regarding breed differences was realized since GWAS methods were 

applied to the investigated breeds separately. With uv methods, no overlapping markers were 

observed, whereas mv methods were able to identify two SNPs shared between LR and LW. 

These two significant SNPs were currently unmapped. Using the older assembly 10.2 

H3GA0016899 (rs80959576) was located on SSC5 (80.17 Mbp) as an intergenic variant and 

ALGA0073579 (rs81442304) on SSC13 (203.44 Mbp) within the GRIK1 gene, which the 

function has not been described so far. Thirty-eight SNP listed in table 2 could not be allocated 

by current assembly SScrofa 11.1 but were mapped under SScrofa 10.2. Therefore, these results 

should be considered with caution.  

Several GWAS and QTL studies for immune competence traits investigated cross-bred (White 

Duroc x Erthulin F2, LR x Duroc x Yorkshire, LW x Minzhu F2) and pure-bred (Chinese Sutai, 

LR, LW, Songliao Black, Yorkshire) pigs (Bovo et al., 2019; Cho et al., 2011; Dauben et al., 

2021; Edfors-Lilja et al., 1998; Gong et al., 2010; Lu et al., 2013; Luo et al., 2012; Ponsuksili 

et al., 2016; Reiner et al., 2007, 2008; Uddin et al., 2011; Wang et al., 2013; S. Yang et al., 

2009; F. Zhang et al., 2014; Z. Zhang et al., 2013; Zou et al., 2008). Even though the results of 

these studies reported a few overlapping QTL regions, most of the markers were not shared 

between the studies. Genetic heterogeneity of the investigated pig populations, differences in 

the analyzed immune traits, variety of the experimental designs, and therefore, different 

environmental effects considered in the statistical models during the analysis, might explain the 

discrepancies among the studies and between the breeds. In the current study, further options 
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for pre-selection of the breed-specific mv trait combinations can be applied to enable 

appropriate comparison between the breeds within mv methods.  

4.4.4. Identification of pleiotropic genetic variants 

When a locus influences several traits at the same time, pleiotropy is responsible for genetic 

and phenotypic correlations (Pavlicev et al., 2008). Human complex traits have been 

extensively reviewed and discussed under different definitions of cross-phenotype association 

(biological, mediated, spurious) (e.g. (Solovieff et al., 2013; van Rheenen et al., 2019)). 

However, in a joint analysis of complex traits, autocorrelations suggest pleiotropic effects. 

The mv GWAS provides a higher level of precision and detection power in mapping pleiotropic 

QTL than uv analyses (Bolormaa et al., 2014; Jiang & Zeng, 1995; Knott & Haley, 2000; 

Korsgaard et al., 2003). In particular, this applies when studying traits that are highly correlated 

or when heritability is low for the trait affected by the QTL (Korsgaard et al., 2003). 

Nevertheless, correlated traits may lead to correlated sampling errors (Bolormaa et al., 2010). 

A PC method has been described as a more powerful alternative to a single trait analysis (Gilbert 

& Le Roy, 2003; Klei et al., 2008). This approach condenses traits of interest into a number of 

uncorrelated PCs that reflect the underlying (co)variance matrix. According to Mähler et al. 

(Mähler et al., 2002), it has been suggested to analyze only the first PC since it explains the 

majority of the variation. It has been demonstrated that the second PC and subsequent PCs can 

identify the highest phenotypic proportion that can be explained by genetic markers (Aschard 

et al., 2014). According to the authors, the second and following PCs may contain a substantial 

proportion of total genetic variation, which normally accounts for a small amount of variance 

in phenotypic traits. If the QTL effects oppose positively correlated traits, these PCs appear 

very powerful.  

Using the first three PCs, this study determined that a significant portion of the total genetic 

association could be attributed to these PCs. However, genetic interpretation of the identified 

association is impossible with this approach, despite higher statistical power. Due to unclear 

pleiotropy or high linkage between two regions, there is not yet a clear indication of true 

pleiotropy [40]. This analysis is generally considered a first step in identifying pleiotropic 

regions, which would require further investigation with more precise models, fine-mapping or 

molecular experiments to confidently distinguish between the different scenarios. 

4.4.5. Functional annotation and identification of potential candidate genes 

Using different uv and mv GWAS approaches in this study it was possible to detect a plethora 

of genetic markers. SNPs were summarized into QTLs, based on their genetic distance of 1 

Mbp downstream and upstream, to condense functional information. Annotation was performed 
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within the characterized QTLs in Sscrofa 11.1 from the Ensembl database (Hunt et al., 2018). 

QTLs were located within numerous protein-coding genes (uv: 354, mv: 453). 125 protein-

coding genes were identified with both methods (uv and mv) and selected immune relevant 

genes are presented in Table 2 and Table S1 and S2. The SNP ASGA0070586 (rs80818610, 

SSC 15: 120.11 Mbp), located on SSC 15, was detected applying all four multivariate 

approaches. In the following, three out of eight candidate genes are discussed. AAMP (angio 

associated migratory cell protein) plays a positive role in angiogenesis, a physiological process 

through which new blood vessels are formed from pre-existing vessels (Beckner et al., 2002). 

PNDK (paroxysmal nonkinesiogenic dyskinesia domain containing) protein is involved in the 

regulation of neurotransmitter secretion and is associated with pancreatic, ovarian, and breast 

cancer in humans (Gong et al., 2014; Zhao et al., 2013). In swine, a disruption of expression 

and pathway of PDNK in response to infection with Actinobacillus pleuropneumoniae bacteria 

was observed (Reiner et al., 2014). TMBIM1 (transmembrane BAX inhibitor motif containing 

1) protein binds to a TNF receptor and thus regulates the degranulation of neutrophils and the 

reorganization of blood vessels (Deng et al., 2018). Five additional gene were located close to 

ASGA0070586 (rs80818610, SSC 15: 120.11 Mbp), but a functional immune relevant 

relationship have not been described yet.  

On SSC 14 the marker MARC0013023 (rs80797218) was significantly associated for HMG 

and HMT using uv PLINK and BIMBAM. In addition, this SNP was also detected applying 

CCA for the traits HMT, HMG and MCHC applying CCA. Within this region the protein-

coding gene AGT (angiotensinogen) is located, that regulates the systemic arterial blood 

pressure by renin-angiotensin (Schuijt et al., 1999). According to their direct influence on 

immune traits these protein-coding genes represent potential candidate genes. 

Some of the genetic markers detected in this study have been identified in previous association 

studies for hematological traits. Wang et al. (2013) detected SNPs ALGA0123028 

(rs81318039, SSC 3: 71.12 Mbp) and MARC0001946 (rs81288717, SSC 3: 72.97 Mbp) located 

on SSC 3 for mean thrombocyte volume. These SNPs were identified for immune trait 

combination [WBC|HMT:EOS:HAP:IL8] in LR. In the study of Lu et al. (2013) 

MARC0039159 (rs81232385, SSC 5: 44.44 Mbp), located on SSC 5, was significantly 

associated with IL-10 , which was identified in our study with CCA and PCA for 

[NEU|RBC:WBC:MON:BAS] and PC3 Cell (LYM, MON, BAS contribute to this PC 

according to the loading value), respectively. Luo et al. (2012) identified ALGA0047813 

(rs81400288, SSC 8: 43.03 Mbp) and MARC0039159 (rs81232385, SSC 5: 44.44 Mbp) on 

SSC 8 for MCV and MCH, which was observed in our study for the mv trait combination 
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[RBC|HMG:HMT:MCV:MCH:MCHC] in LW with CCA. ALGA0047813 (rs81400288, SSC 

8: 43.03 Mbp), is located within the intron region of the protein-coding gene TLL1 (tolloid like 

1). Studies in mice suggest that TLL1 plays multiple roles in the development of the mammalian 

heart, and is essential for the formation of the interventricular septum. Allelic variants of this 

gene are associated with atrial septal defect type 6 (Sieroń & Stańczak, 2006). Further 

investigations of this protein function in pigs are needed, to determine the potential as a 

candidate gene. Dauben et al. (2021) detected associations for immune traits in the same pig 

population with a different uv GWAS approach. Identical markers have been identified between 

this and the current study (LR: 159, LW:15). Noteworthy, 49 SNPs identified in LR were 

observed with uv and mv methods. Therefore, in this study we were able to confirm associations 

with our previous results. 

 

4.5. Conclusion 

This study evaluated the joint genetic background of immune traits in LR and LW piglets 

through the application of various uv and mv GWAS approaches. In general, mv GWAS 

approaches outperformed uv methods and detected genome-wide associations for immune 

traits. It should be considered that the number of significant associations differs between the 

applied methods and the possibility of chromosome-wide correction for multiple testing was 

only feasible in two approaches. When associations were compared across the investigated 

breeds, no overlapping markers were observed with uv methods, indicating genetic breed 

differences. It was possible to detect two SNPs in both breeds applying mv GWAS. However, 

further options for pre-selection of the breed-specific mv trait combinations and cross-

validation should be considered to enable appropriate breed comparison. Our results support 

the observation that one single test is not able to detect all the many different types of genetic 

effects in the most powerful manner. These analyses are initial steps to detect pleiotropic 

regions in general. Beside the validation of our results with other data sets, it is necessary 

investigate the identified associations further applying fine-mapping approaches and the 

analyses of candidate genes. 

4.6. Methods 

4.6.1. Statistical analysis of immune traits 

Data sets of purebred LR and LW populations were recorded from 2010 to 2017 and were 

provided by the German breeding organization BHZP GmbH. Animal care, phenotypic 

measurements, and consideration of environmental effects were described in Roth et al. (2022). 
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In brief, a total of 611 piglets (♂152/♀307) of LR and 533 piglets (♂134/♀257) of LW were 

analysed. Animals were a subset of two nucleus populations. From each litter, one male and 

one female piglet, were chosen for phenotype collection. Blood samples of piglets were 

collected on average around 45 days (32– 60) after birth by puncturing the Vena jugularis and 

were collected in three 7.5 ml monovette containing ethylenediaminetetraacetic acid. Complete 

blood count was performed with an ADVIA® 2120 Hematology system, a flow cytometry- 

based system, and a pig- specific setting. Besides, serum haptoglobin was measured in 0.5 ml 

serum. Peroxidase activity of the haptoglobin– haemoglobin complex was carried out by a 

spectrophotometric method. Cytokine levels (interferon- γ, interleukin- 10, interleukin- 12, 

interleukin- 1β, interleukin- 4, interleukin- 6, interleukin- 8 and tumour necrosis factor- α) in 

serum samples were analysed with a Porcine Cytokine/Chemokine Multiplex Magnetic Bead 

Panel (Merck KGaA) enabling the simultaneous measurement of multiple cytokines. 

Immunoassay of serum samples was performed using 22 plates according to the manufacturer´s 

protocol. 

GWAS was performed for complete blood count (RBC, haemoglobin, haematocrit, MCV, 

MCH, MCHC, platelets, WBC, neutrophils, lymphocytes, monocytes, eosinophils, basophils, 

band and other remaining cells), HAP, and cytokines (interferon-γ, interleukin-10, interleukin-

12, interleukin-1β, interleukin-4, interleukin-6, interleukin-8 and tumour necrosis factor-α) as 

immune traits of 1144 LR and LW piglets, corrected for environmental impacts within the 

breeds. A detailed description of all investigated immune traits, their summary statistics, and 

processing of the data set can be found in Roth et al. (2022). 

4.6.2. Genotyping and quality control of genomic markers 

To study genetic associations between measured phenotypes animals were genotyped with a 

tissue sample via an Ilumina Porcine SNP60 v2 BeadChip (Illumina, San Diego, CA, USA) in 

an external laboratory (GeneControl GmbH, Poing). Only autosomal markers were used in the 

different GWAS approaches. Regardless of the selected association method, quality control of 

genotype data was performed with PLINK (Shaun Purcell, 2010). Genetic markers and animals 

were excluded when they did not meet the following criteria: Call Rate ≥0.95, Minor allele 

frequency (MAF) ≤0.01, deviation from Hardy-Weinberg equilibrium (HWE) p-value =0.0001, 

acceptable Identity-by-state (IBS) threshold ≤0.95. After quality control 47’292 and 43’730 

markers, as well as 522 and 461 animals, remained for GWAS for LR and LW, respectively. 

The position in the genome and the base pair location of each SNP is based on SScrofa 11.1. In 

total, 38 markers show currently no location under this assembly. Using the assembly SScrofa 

10.2 it was possible to report a chromosome number and a base pair position for 15 markers. 
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The remaining 22 markers revealed high linkage disequilibrium to other significantly associated 

SNP (results not shown). The observed regions correspond to the positional information given 

in the manifest file of the manufacturer.  

4.6.3. Correction for environmental effects 

The correction for environmental effects was performed within a breed and included all relevant 

fixed effects: the class effects parity (1–4) and herd-year-season-sex (1–12). Moreover, age and 

weight and interaction between age and weight at the time of sample collection were included 

in the model as covariates. Cytokine detection method requires the quantification of samples 

distributed among 22 analytical plates. Therefore, plate was included as a random term for 

cytokine immune traits. The effects of breed (LR or LW) or sex (boar or sow) were not included 

as main factors in the model because of the hierarchical classification of these effects within 

herd-year-season-sex classes.  

4.6.4. Univariate GWAS 

After quality control, one frequentist and one Bayesian method were used to analyze immune 

traits for uv associations with the genotype in a GWAS within each breed data set  

The starting point for both approaches is a mixed linear model: 

𝑦 = µ + 𝑍𝛼 + 𝑒 

where 𝑦 is a vector of phenotype measurement of animals, µ is a vector of the phenotype means 

of animals carrying the reference genotype, Z is a matrix of genotype covariates (coded as 0, 1, 

or 2) for SNP markers, 𝛼 is a vector of random regression coefficients of the SNPs (marker 

effects), and 𝑒 is a vector of residuals.  

The frequentist association approach in PLINK (Shaun Purcell, 2010) tests each marker for 

association with the trait of interest since it performs a linear regression analysis with each SNP 

as a predictor. For Bayesian regression, prior distributions are specified for 𝛼 and𝑒. For vector 

of residuals 𝑒, a prior conditional on the residual variance, 𝜎)&, a normal distribution with null 

mean and covariance matrix 𝑅𝜎)&, is used. In this case, 𝑅 is a diagonal matrix and 𝜎)& is treated 

as an unknown with a scaled inverse 𝜒& prior (Gondro et al., 2013). Assuming that a SNP 𝑗 is 

a Quantitative Trait Locus, then its effect is dependent on two parameters: 𝑎" and 𝑑" = 𝑎"𝑘": 

the additive and dominance effect, respectively. An additive effect is given by 𝑘" = 0, while 

𝑘" = 1 and 𝑘" = −1 represents a dominant effect. Bayesian linear regression carried out with 

BIMBAM uses two priors D1 and D2 to model this effects (Servin & Stephens, 2007). Bayesian 

Factors for observed associations were computed as posterior distributions for SNP effects 

using the prior D2 averaging 𝑎" = 0.05,0.1,0.2,0.4 and 𝑑" = 𝑎" 4⁄ . Further detailed information 

(1) 
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about the utilized uv GWAS approaches can be found in the original literature (Gondro et al., 

2013; Servin & Stephens, 2007; Shaun Purcell, 2010).  

4.6.5. Principal component analysis 

To condensate the estimated highly correlated immune network PCA was applied to immune 

observation residuals. PCA proceedings steps and results are already published and described 

in detail in Roth et al. (2022). Before the application of the PCA technique for each breed data 

set, we split the immune traits of our survey into three biological functional networks as a) 

Cells, b) RBC (including HAP) and c) Cytokines. This classification was motivated by the 

strategy to maintain the greatest possible explained variance from the original variables in the 

constructed PCs.  The number of PCs used to characterize immune traits was based on the 

eigenvalues of their correlation matrix. In order to limit the number of PCs, PCs with 

eigenvalues lower than 1.0 were excluded (Braeken & van Assen, 2017). As far as possible, 

loading values of PCs were used to label them roughly and to interpret PCs according to their 

summarizing biological composition. BFN-specific PCs were then used as new traits during a 

uv GWAS which was carried out with PLINK (Shaun Purcell, 2010). The output of the 

association analysis generates an asymptotic significance value (p-value). Received p-values 

were adjusted for population stratification and multiple testing on genome and chromosome 

levels. 

4.6.6. Learning structures using Bayesian network 

The realization of all possible mv combinations for all available immune phenotypes is 

computationally extensive. Networks, paths, and graphs can model interactivity between 

variables. BN describe conditional in- and dependence relationships among variables (Scutari, 

2010). Therefore, in this study, a BN approach was performed for each breed data set to reveal 

conditional dependencies among immune traits. Applying this approach, it was possible to set 

various combinations of immune traits for LR and LW regardless of the applied mv GWAS 

method. 

Briefly, the BN is a graphical representation of a probability distribution over a set of variables 

(Arbib, 1998; Nagarajan et al., 2013; Scutari, 2010). The conditional independence (of the 

random variables) and graphical separation (of the corresponding nodes of the graph) have been 

stretched out to disjoint node subsets by Pearl (1988). Therefore, in the BN approach model 

selection algorithms were used to learn the graphical structure of the network and then estimate 

the parameters of the local distribution functions conditional on the learned structure. A hill-

climbing algorithm (Scutari et al., 2019) was applied to the immune data set in this study. This 

Score-based structure learning algorithm is a general heuristic optimization technique to the 
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problem of learning the structure of a BN. This algorithm attempts to maximize a score that 

measures how well that BN describes its goodness of fit to the data set, returning a graphical 

structure as output (Nagarajan et al., 2013). R package bnlearn (Scutari, 2010) was used to 

obtain BNs for LR and LW immune trait residuals. Residuals of originally measured 

phenotypes were used to avoid a large number of solutions that need to be computed because 

of existing cross-classified effects. Resulting conditional dependencies illustrated as parents of 

the nodes in the network structure were used as trait combinations for mv GWAS approaches.  

4.6.7. Multivariate GWAS 

GWAS is generally performed on a uv (trait-by-trait) basis by testing each variant at a time. 

Association analyses that include multiple phenotypes may be more powerful to identify QTL 

for complex traits, particularly in the case of causal variants that affect multiple correlated traits 

(Zhou & Stephens, 2014a). In the following, principles and optional parameters of four selected 

mv GWAS approaches applied in this study within each breed data set are described 

brieflyGWAS is generally performed on a uv (trait-by-trait) basis by testing each variant at a 

time. Association analyses that include multiple phenotypes may be more powerful to identify 

QTL for complex traits, particularly in the case of causal variants that affect multiple correlated 

traits (Zhou & Stephens, 2014a). In the following, principles and optional parameters of four 

selected mv GWAS approaches applied in this study within each breed data set are described 

briefly. 

4.6.8. Canonical Correlation Analysis 

In the same way that PCA is applied to one set of possibly correlated traits to extract a number of 

independent variables (PCs) that explain as much variance in the original data set, CCA is applied to 

two sets of variables to extract a number of independent pairs of variables that explain as much 

covariance between the two original sets (2009). Thus, CCA represents a mv generalization of the 

Pearson product-moment correlation (Hotelling, 1992). CCA extracts the linear combination of traits 

that explain the largest possible amount of the covariation between the marker and all traits. This 

approach is applied to analyze the association between one SNP and multiple traits, as implemented in 

--mqfam --mult-pheno procedure for MV-PLINK (Ferreira & Purcell, 2009). The test implies Wilk’s 

lambda (λ) and the corresponding F-approximation. Specifically, 𝜆 = 1 − 𝜌!, where 𝜌 is the canonical 

correlation between the marker and the traits, calculated as the square root of the eigenvalue of the 

product of the marker variance (𝑆""), trait covariance matrix (𝑆!!), and covariance matrices between the 

marker and the traits (𝑆"!, 𝑆!"); expressed as notation: 𝑆""
#" !⁄ × 𝑆"! × 𝑆!!#" × 𝑆""

#" !⁄  (Ferreira & Purcell, 

2009). Similar to PCA, an asymptotic significance mv p-value is generated in the CCA output. This p-

value was subsequently adjusted for population stratification and multiple testing on the genome and 

chromosome levels. 
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In the same way that PCA is applied to one set of possibly correlated traits to extract a number 

of independent variables (PCs) that explain as much variance in the original data set, CCA is 

applied to two sets of variables to extract a number of independent pairs of variables that explain 

as much covariance between the two original sets (2009). Thus, CCA represents a mv 

generalization of the Pearson product-moment correlation (Hotelling, 1992). CCA extracts the 

linear combination of traits that explain the largest possible amount of the covariation between 

the marker and all traits. This approach is applied to analyze the association between one SNP 

and multiple traits, as implemented in --mqfam --mult-pheno procedure for MV-PLINK 

(Ferreira & Purcell, 2009). The test implies Wilk’s lambda (λ) and the corresponding F-

approximation. Specifically, 𝜆 = 1 − 𝜌&, where 𝜌 is the canonical correlation between the 

marker and the traits, calculated as the square root of the eigenvalue of the product of the marker 

variance (𝑆**), trait covariance matrix (𝑆&&), and covariance matrices between the marker and 

the traits (𝑆*&, 𝑆&*); expressed as notation: 𝑆**
+* &⁄ × 𝑆*& × 𝑆&&+* × 𝑆**

+* &⁄  (Ferreira & Purcell, 

2009). Similar to PCA, an asymptotic significance mv p-value is generated in the CCA output. 

This p-value was subsequently adjusted for population stratification and multiple testing on the 

genome and chromosome levels. 

4.6.9. Meta-analysis 

Methodology development to increase the statistical power of GWAS is extremely important 

for study designs with heterogeneous traits and small sample sizes. Meta-analysis was carried 

out with the software TATES (Trait-based Association Test that uses Extended Simes 

procedure) (van der Sluis et al., 2013). TATES requires a phenotype correlation matrix of 

immune traits and a list of p-values in an ascending order of the phenotypes for a given SNP 

obtained in a corresponding uv linear regression analysis. During a meta-analysis uv GWAS 

was performed for each phenotype with PLINK (Shaun Purcell, 2010). Obtained p-values were 

adjusted to account for multiple testing and relationships between immune traits within the 

meta-analysis on the genome level. TATES combines the phenotype-specific p-values to obtain 

one overall trait-based p-value (𝑃-) as 𝑃- = 𝑀𝑖𝑛.!'"
.!"

, where 𝑚) indicates the effective number 

of independent p-values of all phenotypes, and 𝑚)" is the effective number of p-values among 

the top p-values, and 𝑝" is the jth p-value (van der Sluis et al., 2013). Based on the procedure 

developed by Li et al (Li et al., 2011), the effective number of p-values (𝑚)"is estimated through 

a correction based on eigenvalue decomposition of the correlation matrix between the p-values 

associated with the phenotypes. Briefly, TATES transforms the trait correlation matrix into a 

corresponding SNP-p-value correlation matrix. The eigen-decomposition of this p-value 
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correlation matrix is used to weight uv p-values. Finally, the minimum of these weighted p-

values is chosen as the corrected p-value for the joint association. 

4.6.10. Bayesian multivariate regression 

With the software mvBIMBAM (Stephens, 2013) a Bayesian mv regression test for association 

was conducted. Simultaneously the traits were subdivided according to their SNP effect and 

Bayes factors were used to access the association between the groups of phenotypes and a 

genetic variant. The analysis is based on the mv regression model like model (1), but with a 𝑌(n 

x d) matrix of d phenotypes measured on each of n individuals. The mvBIMBAM approach 

attempts to partition the response variables Y into three groups according to their statistical 

association with a genetic variant: undirect (U), direct (D), and indirect (I). A set of models γ = 

(U, D, I) runs through partitions of the coordinates {1; …, d}. Under model γ an assumption is 

made that YU is independent of Z, and YI is conditionally independent of Z given YD. This gives  

𝑃/ = 𝑃/(𝑌0)𝑃/(𝑌1 ∨ 𝑌0 , 𝑍)𝑃/(𝑌2 ∨ 𝑌0 , 𝑌1) 

These scenarios were accessed with the option mph 2 within the mvBIMBAM software. The 

priors for the genetic effect were set at 0.1 and 0.2 according to the author's recommendation 

(Stephens, 2013). Bayes factor is computed as the support for partition γ compared with the 

global null hypothesis that all the phenotypes are unassociated with Z. It then summarizes the 

overall evidence against the null, as well as the posterior probability that each coordinate of Y 

is associated with Z: 

𝐵𝐹/ =
𝑃/(𝑌 ∨ 𝑍)
𝑃3(𝑌)

 

Obtained log10 Bayes Factors for each genetic variant evaluated the association between the 

SNP and the traits averaging over all possible partitions. Log10 Bayes Factors value ≥3 was 

characterized as a spurious association while values ≥6 as a solid association between a marker 

and a trait on genome level.  

4.6.11. Controlling population stratification and false-positive results 

Genomic control (Devlin et al., 2001) was realized to correct for existing population 

stratification through adjustment of the significance of the test statistic in R (R Core Team, 

2019). From GWAS obtained p-value was subsequently adjusted in the PCA and CCA. The 

inflation factor lambda was low to moderate in the LR (0.80-1.26) and LW (0.86-1.23) data 

sets. After stratification correction, the lambda values were acceptable in a range of < 1.05.  

To control the number of false-positive results false discovery rate (FDR) was applied 

(Benjamini & Hochberg, 1995) on genome and chromosome level for uv linear regression 

method, PCA, and CCA. The significance level q (p-values adjusted with FDR) for FDR was 
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0.05 to detect associations between marker and trait on genome and chromosome level in R (R 

Core Team, 2019). Bayesian approaches express significance with a log10 Bayes factor 

threshold. Absolute values of three and six are considered as spurious and solid significance for 

an association (Scutari, 2010). 

For uv and mv GWAS, QTL regions were defined considering significant SNPs that mapped at 

least ± 1 Mbp from another significant SNP and functional annotation was performed retrieving 

all annotated genes within a QTL region in Sus scrofa11.1 from Ensembl database (Hunt et al., 

2018).  
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5.1. Multivariate association testing 

One aim of this thesis was to study the genetic background among immune traits. Therefore, to 

investigate joint genetic foundation mv approaches were applied to immune traits in chapters 3 

and 4. By theory, mv approaches should increase the power in QTL detection, but this 

superiority is markedly different across multiple effects. Multiple factors determine the true 

genotype-phenotype model, including the strength and sign of the correlation between the traits, 

the sign and generality of the SNP effect, and the presence of unaffected traits (Vroom et al., 

2019a). The complexity of these factors makes it difficult to formulate globally applicable 

recommendations.  

At first, detected SNPs and their implications were compared between different approaches and 

investigated pig breeds, LR and LW. As a first result, we found that all established SNPs with 

uvBIMBAM were completely overlapping the uvPLINK results. Hence, although very different 

in the underlying statistical background, SNP detection in our dataset is to a large extent 

independent of the uv method of choice.  

Initially, a PCA was chosen to reduce the dimensions of information on phenotypic immune 

measurement levels. The majority of variation can be explained by analyzing only the first PC 

(Mähler et al., 2002). It has been shown by Aschard et al. (2014) that the second and following 

PCs may contain a considerable proportion of total genetic variation, which normally accounts 

for a tiny proportion of variance in phenotypic traits. Interestingly, when QTL effects oppose 

positively correlated traits, these PCs appear to be very powerful. When the correlation between 

the traits was taken into account, genetic variants with genotypic effects on phenotypes were 

more likely to be detected than those with negative pleiotropic genetic effects (Korte et al., 

2012). In our study, the application of a PCA has led to a successful condensation of immune 

trait measurements. The first three PCs were significantly associated with 124 SNPs, which 

SNPs cover presumably a large proportion of the total genetic variation of the immune system. 

In addition, genetic analysis based on PCs instead of immune traits would consider the 

underlying strong biological trait relationships within the immune system. However, from a 

statistical point of view, the derivation of PC is solely based on the variance-covariance 

structure of the underlying data. Hence, despite higher statistical QTL detection power, the PC 

approach does not allow a clear genetic interpretation of the identified association. Even though 

PC loadings are sometimes useful for revealing the natural variables underlying biological 

processes, the loadings should be interpreted with greater caution (Crawley, 2007). 

Besides the PC approach, various other mv methods are used to analyze complex data with a 

distinct correlation structure. Until now, no generally acceptable rule has been described in the 
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literature which of these methods is most effective regarding QTL detection. In our study 

(chapter 4), we utilized various mv (and uv) GWAS approaches and presented the theoretical 

background of these methods. We inspected Venn diagrams, which visualize overlapping SNP 

results of the different approaches. This comparison is not able to quantify the reliability, but a 

SNP which will be detected by the majority of the applied methods would have a higher 

expressiveness than those which has been found solely by one approach. This is in agreement 

with Aschard et al. (2014), who postulated that the application of various complementary 

methods allows for considering all the many different types of genetic effects in the most 

powerful manner.  

A comparison of the uv and mv results revealed that a majority of markers (204) overlap across 

the methods, but only three common markers were identified with all applied mv approaches. 

On the other hand, taking into account an overlap of at least two or three methods (e.g. TATES, 

mvBIMBAM & CCA, or PCA & CCA) common QTL can be found, which can be linked to 

four interesting genetic variants as potential candidate genes (see chapter 4 for further details).  

Intuitively, when SNPs are detected with multiple approaches, they (should) provide more 

certainty for the GWAS results and contribute potential protein-coding candidate genes. 

However, a large amount of non-overlapping results shows, that QTL detection in our complex 

data depends on the statistical method of choice to a large extent.  

Regarding this question, an inspection of the significance levels might be a useful complement 

to the assessment criteria “QTL overlap”. However, significance levels can only be estimated 

in an approximative manner. In addition, the possibility of chromosome-wide correction for 

multiple testing was not achievable for every mv approach.  

Based on our result we conclude that the performance of different mv approaches is scenario-

specific. This assessment complies with Galesloot et al. (2014) and Porter and O'Reilly (2017). 

Their simulation studies demonstrate the dependency of QTL detection power of different mv 

approaches and specific effects like allele frequency, number of investigated traits, and 

underlying correlation structures among the traits.  

Until now, there is no single test that can detect all the variations of genetic effects that might 

occur within a GWAS setting (Zhou & Stephens, 2014b). Any given test can be manufactured 

to be as powerful as possible by manufacturing simulations. It is therefore important to view 

mv and uv tests as complementary instead of competing. Thus, it is necessary to identify the 

circumstances under which specific mv approaches perform well or poorly, as well as which 

(classes of) methods are most effective. Overall, mv approaches (mvPLINK, mvSNPTEST, 

MultiPhen, mvBIMBAM, PCHAT, TATES) outperform uv analyses in simulation scenarios 



General discussion 

87 

represented in simulations studies (Galesloot et al., 2014; Porter & O'Reilly, 2017; Vroom et 

al., 2019a). However, uv analysis performed well when all traits were associated with the 

genetic variant and the genetic correlation was positive. Even when the genetic correlation 

between traits is expected to be weak, mv GWAS can be recommended (Galesloot et al., 2014). 

Usually, the reviews (given in chapter 4) focus only on frequentist-based mv approaches that 

do not rely on permutation or bootstrapping. Methods based on mv Bayesian modeling e. g. 

SNPtest (Marchini et al., 2007) and mvBIMBAM (Stephens, 2013) or bootstrapping e. g. 

PCHAT (Klei et al., 2008) can be applied to detect pleiotropic SNPs as in the studies by 

Galesloot et al. (2014) and Porter and O'Reilly (2017).  

The power in QTL detection of different mv methods depends on the size and sign of genetic 

and residual correlations of the traits (Galesloot et al. 2014). In their simulation study, the 

authors constructed 30 different scenarios for the number of traits associated with the QTL (one, 

two, or three out of three) and a combination of different parameter values like heritability, 

minor allele frequency, sign and size of residual and genetic correlation. They observed a higher 

power for mv methods than uv methods. Methods like CCA, MultiPhen, mvSNPTEST, and 

mvBIMBAM showed the best and similar performance with higher power with increasing 

residual correlation. This was most noticeable when the correlation induced by the QTL was 

negative for the scenarios when two out of three or all three traits were associated with the QTL. 

This superiority of mentioned four mv methods remained under simulation scenarios with 

negative genetic correlation. In this case, their power increased with increasing residual 

correlation. This effect has been also described in the literature (Ferreira & Purcell, 2009; J.-F. 

Liu et al., 2009; O'Reilly et al., 2012).  

Usually, methods are compared based on empirically derived significance levels, adjusting each 

method to an exact 5% type I error rate. Simulations illustrated that for mvPLINK, 

mvSNPTEST, MultiPhen, mvBIMBAM, TATES, and PCA these empirical significance levels 

were all close to the nominal level of 0.05 for p-values or ³ 3 for substantial Bayesian Factor 

values (Galesloot et al., 2014; Porter & O'Reilly, 2017). 

In addition to power (and type I errors), other characteristics are considered when choosing the 

appropriate mv GWAS. The output from mv association results from mvPLINK contain trait 

loadings, which indicate how much each trait contributed (Ferreira & Purcell, 2009). Based on 

an overall association with at least one trait, mvBIMBAM calculates marginal posterior 

probabilities for each trait to be unaffected, directly affected, or indirectly affected by the QTL 

(Stephens, 2013). In addition to providing insight into the underlying biology, this additional 
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information can also facilitate the differentiation between pleiotropic and independent QTL 

effects. 

Additionally, mvPLINK, MultiPhen, and TATES can be used to assess both quantitative and 

binary traits (case-control) (Ferreira & Purcell, 2009; O'Reilly et al., 2012; van der Sluis et al., 

2013). It is possible to apply mvBIMBAM and TATES to GWAS result data without access to 

raw phenotype and genotype data which might be useful for meta-analyses (Stephens, 2013). 

The mvSNPTEST, MultiPhen, TATES, and PCA methods can also handle genotype 

probabilities that are obtained by imputation (Marchini et al., 2007; O'Reilly et al., 2012; van 

der Sluis et al., 2013). As a final point, simulation studies revealed that the methods take 

significantly different amounts of CPU time to run.  

The study by Bray et al. (1995) showed that the power of MV approaches (e.g. MANOVA) can 

be improved by incorporating traits that are unaffected by the SNP if these traits are correlated 

with the affected traits. This knowledge can be applied to experimental studies if we possess 

prior or theoretical knowledge of which traits a given manipulation is expected to affect. 

GWAS, however, does not usually use such a theory to determine which traits to include or 

exclude. 

Following Bray et al. (1995), adding further traits to the mv analysis is always beneficial: 

- if the newly added indicators are not related to the SNP, then the power of mv methods 

generally increases because adding unrelated traits increases the power of mv methods  

- if the newly added indicators are related to the SNP but in an opposite way to the 

relations that the already included indicators have to the SNP (opposite effects), then 

the power of mv methods to detect the SNP increases  

- if the newly added indicators are also related to the SNP and in the same way (same 

direction of effect), then the power of mv methods will decrease, but generally no more 

than max. 15%. 

It is often necessary to perform follow-up analyses after mv analyses to answer whether all or 

many traits are associated with the SNP. In preparation for the mv GWAS in chapter 4 we faced 

the same decision processes for the in- or exclusion of immune traits. Applying the Bayesian 

network approach, it was possible to set various combinations of immune traits for LR and LW 

regardless of the applied mv GWAS method.  

In simulations, only additive codominant SNPs and normally distributed continuous traits are 

considered (Galesloot et al., 2014; Porter & O'Reilly, 2017; Vroom et al., 2019a). These choices 

fit the (distributional) assumptions underlying most mv analyses. It is important to note, that 

Type I error rates of various techniques (e.g., MANOVA, uv regression) may not be correct 
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when standard assumptions are violated in case of severely non-normal or non-continuous data 

(O'Reilly et al., 2012). However, Porter and O'Reilly (2017) have shown that for two of the 

most commonly used mv methods that may accommodate dichotomous data, the pattern of 

results is similar to that of continuous data. 

Recently, multiple methods were developed that allow estimation of the genetic covariance 

between traits using GWAS e. g. GCTA (J. Yang et al., 2011), BOLT-REML (Loh et al., 2015), 

LD Score Regression (Bulik-Sullivan et al., 2015), MTAG (Turley et al., 2018) and genomic 

SEM (Grotzinger et al., 2019), which use this genetic covariance among traits to boost the 

statistical power to detect SNPs for sets of target traits. Applying these techniques was beyond 

the scope of our study and therefore, they were not included in the analyses described in chapter 

4. 

Mv methods can all be used to detect associations that may be due to pleiotropy. However, they 

do not answer the question of whether the detected association is truly pleiotropy, that is, 

whether the marker locus directly affects all mv components. A detectable association can affect 

some phenotypes and/or mediate the effects of these phenotypes on other phenotypes (C. Yang 

et al., 2015). It can be expected that underlying genes for immunocompetence may have 

pleiotropic effects which result in a close genetic correlation between several immune traits. 

Against this background, the utilization of mv methods is recommended to increase the 

statistical power to detect associations even if the rg between the traits is expected to be weak 

(Wimmers et al. 2009). Mv methods are often used to discover pleiotropic genetic variants, that 

is, SNPs that are statistically associated with more than one trait, possibly pointing toward a 

shared biological substrate (Solovieff et al., 2013). Simulations studies show that as the degree 

of the phenotypic correlation between traits increases, the power to detect global variants 

decreases (Minica et al., 2010; Neale et al., 2010; Vroom et al., 2019a); as one would expect 

with an increase in genetic relatedness; thus, mv approaches aren't optimized for identifying 

true pleiotropic genetic variants at the moment (Porter & O'Reilly, 2017). In our study in chapter 

4, we focused on an empiric overlap between methods to identify pleiotropic QTL. However, 

it is only a rough method for the characterization of pleiotropy. Other methods, like Bayesian 

colocalization methods, are more suitable to detect pleiotropic SNPs and distinguish between 

different pleiotropic types as described by (Solovieff et al., 2013). 

5.2. Genetic foundation of immune traits 

In this thesis, the genetic foundation of porcine immune traits was studied with uv and mv 

approaches through immune profiling. The genetic potential for immunocompetence of the 

piglet and the dam was elaborated for two German maternal pig lines, LR and LW, in chapter 
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3. As a result, breed differences for immune traits phenotypic values, and genetic parameters 

were reported. Breed differences described also in previous studies are presumed to be related 

to various disease resistance traits (Henryon et al., 2001; Joling et al., 1993). Antibody response, 

lymphocyte proliferation, and delayed-type hypersensitivity (DTH) responsiveness were 

compared among purebred Dutch Landrace, Norwegian Landrace, Finnish Landrace, and 

Yorkshire (Joling et al., 1993). In this study, immunocompetence showed genetic involvement 

with h2 from 0.13 to 0.33 for antibody response and a h2 from 0.41 to 0.44 for lymphocyte 

proliferation. The factors of breed, boar, and litter contributed significantly to the variation in 

immunocompetence. The Yorkshire breed showed a low-level response to all three immune 

parameters. The authors explain that within the genetic system the major histocompatibility 

complex (MHC), also called swine leucocytes antigen (SLA), genes are particularly important 

in terms of immune reactivity. The phenotype of the products of that gene complex has a 

considerable effect on the magnitude of the immunocompetence in the form of antibody 

response (Mallard et al., 1989). The distribution of SLA haplotypes is different between the 

breeds, which has been also investigated in specific pathogen-free Canadian Yorkshire and 

Landrace pigs (Gao et al., 2017). Furthermore, pigs from Duroc, LR, Hampshire, and Yorkshire 

breeds were shown to be genetically different in resistance to clinical and subclinical diseases 

(Henryon et al., 2001). However, other environmental and genetic factors may also influence 

the outcome of an immune response (Clapperton et al., 2009; Farmer, 2015). At the current 

state, a beneficial, stable, or advantageous immune system for different pig life stages and 

breeds is not characterized. Generally, the inclusion of immune traits in a selection program 

requires sufficient h2 across generations. Results in chapter 3 suggest adequate genetic influence 

and therefore possible selective breeding for immune traits. 

Besides additive genetic effects, maternal genes are presumed to influence the immunity of the 

piglet (Roehe et al., 2010). Previous studies on genetic indicators had not considered the dam 

as a source of variation for genetic variance component estimation. In the study from Rohrer et 

al. (2014) moderate m2 in genetic analysis of colostrum intake measured as γ-immunoglobulins 

complexes bound to ammonium sulfate (immunocrit) was estimated. Due to the epitheliochorial 

placentation of the sow, the passive transfer of antibodies from dams to piglets occurs during 

colostrum intake (Farmer, 2015). Therefore, several studies describe the importance of 

colostrum for the development of the piglet and a maternal impact on piglet’s immunity in the 

form of antibody transfer, maturation of mucosal immunity, and colostrum intake (Bandrick et 

al., 2008; Hermesch et al., 2017; Rooke & Bland, 2002; Salmon et al., 2009). Considering the 

direct-maternal correlations between traits, the results of Knol et al. (2002) showed a positive 
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correlation between the direct component of piglet birth weight and the maternal component of 

stillbirth, indicating a negative influence on stillbirth if selection on the direct component of the 

individual birth weight occurs. In addition, Knol et al. (2001) reported decreased litter birth 

weight if selected directly for individual piglet survival. These findings show that direct-

maternal correlations can be indicative when it comes to designing a model to breed for 

improved piglet survival. According to Bijma (2006), an estimation of (co)variances between 

direct and maternal effects is not feasible in populations with multiple litters and multiple 

offspring per litter. Heuß (2019), showed that direct-maternal correlations cause convergence 

problems, are not significant, and range massively between testing the models for traits like 

stillbirth, pre-weaning loss, and birth weight.  

The impacts of maternal genetic and transferred immune factors on piglet’s immunity are not 

completely clarified, yet. Consideration of maternal environmental effects and litter effects on 

piglet’s immune traits in chapter 3 led to a decrease in h2 while at the same time causing an 

increase in m2 and rg indicating that it is possible to adjust piglet’s immune measurements for 

maternal-derived immunity. Therefore, selection for immune traits in piglets can be accessed 

through the biological dam, which creates further opportunities to develop breeding strategies 

for immune-competent piglets. 

Immune traits can send signals from one cell to another and communicate through direct cell-

to-cell contacts (Zimmerman et al., 2012). In chapter 3 the relationships between immune cells, 

haptoglobin, and cytokines were investigated by estimation of rp and rg parameters. Moreover, 

a shared genetic foundation as common genetic markers between hematological immune traits 

were revealed in Chinese Sutai pigs (F. Zhang et al., 2014). Flori, Gao, Laloë, et al. (2011) 

estimated rg for components of innate and adaptive immunity and showed that components of 

the immune system are complementary. Detected correlations between immunocompetence 

parameters (IgG antibody response, lymphocyte proliferation, DTH) were moderate to highly 

positive (0.33-0.99) indicating strong connections within the immune system (Joling et al., 

1993). This demonstrates associated relationships and highlights a strong network within the 

immune system where selection for specific immune traits would affect other immune 

components. Therefore, relationships between immune traits and other performance phenotypes 

should be examined in detail before including specific traits in any selection strategy. 

 

5.3. Towards a breeding-based improvement of health traits 

Currently, many animal breeding research institutions as well as commercial pig breeding are 

focused on the improving of health and robustness traits. In our and related studies (see chapter 
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3) moderate to high h2 for most of the immune traits were found. This implies that the 

incorporation of these traits into selection indexes, along with another economically relevant 

trait, is feasible.  

Even though immune traits are heritable across generations and are promising to cover global 

immunocompetence in animals, amplification of breeding goals for such traits has not been 

done, yet. Possible reasons for retained schemes in breeding companies can be very diverse. It 

is difficult to determine correlative and causal relationships between immunity and other 

performance and animal welfare-related traits. Therefore, modification of the immune system 

could lead to unintentional or unfavorable relationships between performance and animal 

welfare. Directed modification to optimize immune traits is not possible due to missing 

reference values that would classify beneficial immunity for different animal life stages and 

environments. Nevertheless, the improvement of the animal immune system through breeding 

is influential to animal welfare and the economy. Evaluation of the economic value of different 

immune traits at the current stage is rather imprudent. Regardless of open research questions 

results within this thesis provide knowledge about immune traits as corresponding factors for 

immunocompetence. Underlying studies contribute to the development of breeding strategies 

for health-related traits. 

Besides index selection novel biotechnological tools might help to improve health and 

robustness traits efficiently. As an example, in 2017 it was possible to generate pigs in which 

the porcine reproductive and respiratory syndrome virus (PRRSV) protein receptor on 

macrophages was modified with Clustered Regularly Interspaced Short Palindromic 

Repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing. These pigs showed a full 

resistance to infection with the PRRSV strain which can result in a general health benefit and a 

decreased need for antimicrobial use (Burkard et al., 2017). However, direct biotechnological 

or selection strategies that target specific pathogen resistance may result in increased 

susceptibility to other diseases which was already shown by Mallard et al. (1992) and Wilkie 

and Mallard (1999). Mallard et al. (1992) challenged pigs with Hen Egg White Lysozyme 

(HEWL), synthetic peptide TGAL, and sheep erythrocytes, and selected according to the 

antibody and cell-mediated response (adaptive immunity), and monocyte function (innate 

immunity) of Yorkshire pigs. The h2 of these immunological traits ranged from 0 for monocyte 

function to 0.25 for secondary antibody response (HEWL). After eight years of selection, two 

distinct lines were formed: a high immune response (HIR) and a low immune response (LIR). 

HIR line had a higher incidence of arthritis after the Mycoplasma hyorhinis challenge (Wilkie 

& Mallard, 1999). This selection experiment demonstrates that selection for response against a 
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specific pathogen may have unpredictable consequences for other traits and unfavorable effects 

on the response against other pathogens. So far, most extensively studied immune response 

traits in pigs are those reflecting the antibody cell-mediated immunity such as antibody response 

to various antigens (Edfors-Lilja et al., 1994; Groves et al., 1993; Kadowaki et al., 2012; 

Mallard et al., 1992; Nguyen et al., 1998; Wilkie & Mallard, 1999).  

In their review, Pluske et al. (2018) suggested that there are negative outcomes for animal health 

and productivity through both under- and over-responsiveness of the immune system. Pigs 

reared in conventional housing systems with high microbial loads grow 10-20% more slowly 

than pigs kept in ‘clean’ environments or pigs reared in isolation or pigs receiving antibiotics. 

An animal should have the capacity to mount a substantial immune response against invading 

pathogenic organisms, but the negative effects of pro-inflammatory cytokines should be 

minimized. Selecting pigs, particularly in a non-challenging environment, without including 

immune traits in the index is likely to lead to progeny that is less capable of dealing with 

demanding environments. Best results are likely to occur when pigs are selected in the same 

environment where the progeny will be reared and immune traits are included in the selection 

index. For this purpose, previous research has focused on breeding pigs for high robustness for 

a various range of environments (Hermesch et al., 2015; Knap, 2005; Pluske et al., 2018).  

An indirect breeding approach focuses on immune traits providing a measure of 

immunocompetence and can predict the responses to pathogens in general (Flori, Gao, Oswald, 

et al., 2011). Genetic differences in the total and differential number of circulating leukocytes 

and the ability of mononuclear cells to produce IL-2 have earlier been indicated in swine 

(Edfors-Lilja et al., 1994). In addition, QTL for a cellular and humoral immune response 

(leucocyte counts, phagocytosis, mitogen-induced proliferation, IL-2 production, interferon-

alpha production antibody response) were identified by Edfors-Lilja et al. (1998) and Wimmers 

et al. (2009). An indirect indicator for disease incidence or animal health status of immune 

responsiveness. Moreover, immunological traits are associated with performance (Clapperton 

et al., 2009; Clapperton et al., 2008). These traits have also been found to display genetic 

variation within, and between breeds (Clapperton et al., 2009; Flori, Gao, Oswald, et al., 2011; 

Henryon et al., 2001), demonstrating the possibility of breeding for resistance, tolerance, or 

both, through selection for breed-specific immunocompetence. Currently, the implementation 

of the relationships among immune traits, as it has been detected here (chapter 4), cannot be 

realized. Besides missing biological causes for these relationships among the immune traits, it 

is necessary to determine the optimal range of these traits before breeding progress can be 

achieved. 
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Examined immune traits demonstrate genetic potential for immunocompetence of LR and LW 

piglets and their corresponding dams. Examined immune traits show moderate to high, breed-

specific genetic parameters including h2, m2, and rg. With the help of mv approaches 

condensed immune phenotypes for example PCs can be considered to establish breeding 

strategies that take into account highly correlated relationships among different traits. In further, 

the joint genetic background of immune traits in LR and LW piglets through the application of 

various uv and mv GWAS approaches was determined. GWAS uv and mv methodology 

revealed several overlapping associations and immune-relevant potential candidate genes. The 

possibility of chromosome- or a genome-wide correction for multiple testing was only 

conducted in two approaches. In this thesis, the observation that one single test is not able to 

detect all the many different types of genetic effects in the most powerful manner was 

confirmed. 

Modification of the immune system could lead to unintentional or unfavorable relationships to 

performance and animal welfare. Reference values are needed to evaluate and characterize the 

immune status. Currently, directed adjustment to optimize immune traits is not possible due to 

missing reference values that would classify beneficial immunity for different animal life stages 

and environments. A physiological reference value update is necessary due to accelerated 

genetic progress and changes in breeding objectives over the past few years. 

Yet, it is unclear how the biological dam fully influences piglets' immune system. The results 

indicate consequences for immune traits in piglets depending on their biological dam's immune 

trait status. Nevertheless, a more defined correction for the dam's effect as a random parameter 

is needed.  

According to our results, there is a clear difference between breeds. Furthermore, our results 

confirm that immunologically relevant traits and health indicators have a complex genetic 

background. Pleiotropic backgrounds are suggested by several genomic regions. There needs 

to be further investigation of the relationships between the immune system, survivability, 

performance characteristics, and other economically critical traits. Our results provide 

important insights into regions whose immune system is particularly crucial for piglets, as 

health and immune traits are expected to become more and more important in balanced pig 

breeding. 

The improvement of the animal immune system through breeding is profitable and beneficial 

to consumers' concerns about animal welfare. Immune traits can be used to gain breeding-based 

health improvement. The analysis of immune traits has to be extended to characterize 

relationships between immunity and performance to gain an improved immune system without 
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accidental losses in productivity. In further research steps, the economic value of different 

immune traits should be classified. 
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In pig breeding immune traits are considered to serve as potential biomarkers for pig’s health-

competence. A limited number of published studies indicate medium to high heritabilities (h2) 

for several immune traits. Genetic variance and covariance components of immune traits were 

estimated in chapter 3 to examine the quantitative genetic background of these traits. For this 

purpose, blood samples were collected for Landrace (LR) (n=611) and Large White (LW) 

(n=544) piglets and their biological dams (n=298, 272, respectively) in a short period around 

birth. Immune profile was covered by 22 traits including immune cells, red blood cell 

characteristics, and cytokines. Maternal impacts on piglet’s immune profile were investigated 

as well as close phenotypic and genetic-based relationships in a multivariate approach. Immune 

traits showed low to high breed-specific h2. Strong positive genetic correlations (rg) were 

estimated among red blood cell characteristics (0.77 to 0.99) as well as among cytokines (0.48 

to 0.99). The litter impact on piglet’s immunity was examined and strengthened already 

observed breed differences. In LR h2 (0.22 to 0.15) and litter effect (c2) (0.52 to 0.44) for IFN-

γ decreased after statistical consideration of maternal impact. In LW a decrease in h2 (0.32 to 

0.18) for IFN-γ and an increase in c2 (0.54 to 0.56) was observed.  

The development of selection strategies requires deep investigations with appropriate statistical 

genome-wide association study approaches to explore the joint genetic foundation for health 

biomarkers. Consideration of previously established rg between immune traits were used to 

identify pleiotropic genetic markers. For this reason, several univariate (uv) and multivariate 

(mv) genetic association testing methods were applied on immune traits in chapter 4. Mv 

GWAS approaches detected 647 associations for different mv immune trait combinations that 

were summarized to 133 quantitative trait loci (QTL). SNPs for different trait combinations 

(n=66) were detected with more than one mv method. Most of these SNPs are associated with 

red blood cell related immune trait combinations. With uv methods shared markers were not 

observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs 

for LR and LW. 

Most immune traits are heritable and are promising to cover global breed-specific 

immunocompetence in animals. With uv and mv approaches, the joint genetic background of 

immune traits was demonstrated by revealing immune relevant potential candidate genes. 

Investigated traits can be used to gain a breeding-based health improvement in piglets whereby 

special attention has to be laid on the relationship between immunocompetence and further 

performance characteristics. 
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Table S 1: ANOVA p-values for fixed effects in piglet data set 

Trait 
Landrace Large White Landrace and Large White 

HYSS Parity Age Weight Age x weight HYSS Parity Age Weight Age x weight HYSS Parity (Age x 
breed)* 

(Weight x  
breed)* 

((Breed 
x age) x weight)* 

RBC 0.000 0.277 0.204 0.047 0.196 0.000 0.900 0.190 0.467 0.004 0.000 0.695 0.237 0.098 0.005 
Hemoglobin 0.000 0.727 0.675 0.000 0.102 0.000 0.748 0.005 0.126 0.004 0.000 0.808 0.014 0.000 0.003 
Hematocrit 0.000 0.729 0.939 0.001 0.265 0.000 0.783 0.048 0.065 0.001 0.000 0.723 0.143 0.001 0.002 

MCV 0.000 0.074 0.017 0.004 0.658 0.000 0.322 0.088 0.010 0.179 0.000 0.143 0.022 0.001 0.361 
MCH 0.015 0.032 0.007 0.000 0.732 0.285 0.375 0.002 0.064 0.934 0.057 0.088 0.000 0.000 0.954 

MCHC 0.000 0.477 0.351 0.014 0.432 0.000 0.534 0.011 0.338 0.044 0.000 0.275 0.062 0.012 0.177 
Platelets 0.000 0.492 0.006 0.267 0.982 0.001 0.224 0.446 0.776 0.737 0.000 0.549 0.049 0.383 0.895 

WBC 0.000 0.418 0.000 0.101 0.194 0.000 0.104 0.956 0.774 0.199 0.000 0.302 0.007 0.224 0.178 
Neutrophils 0.001 0.537 0.971 0.001 0.350 0.002 0.848 0.797 0.000 0.364 0.000 0.575 0.930 0.000 0.449 

Lymphocytes 0.000 0.459 0.898 0.022 0.410 0.000 0.640 0.906 0.000 0.510 0.000 0.306 0.959 0.000 0.591 
Monocytes 0.000 0.018 0.090 0.000 0.304 0.000 0.465 0.599 0.001 0.536 0.000 0.031 0.201 0.000 0.534 
Eosinophils 0.021 0.108 0.601 0.016 0.514 0.002 0.018 0.560 0.463 0.058 0.012 0.181 0.785 0.009 0.225 
Basophils 0.027 0.475 0.076 0.838 0.197 0.011 0.006 0.303 0.985 0.673 0.024 0.421 0.040 0.743 0.354 

Haptoglobin 0.000 0.795 0.000 0.941 0.000 0.000 0.747 0.061 0.177 0.765 0.000 0.723 0.000 0.355 0.000 
IFN-γ 0.000 0.000 0.668 0.101 0.106 0.000 0.367 0.143 0.730 0.757 0.000 0.000 0.186 0.164 0.187 
IL-10 0.000 0.001 0.385 0.150 0.143 0.000 0.000 0.653 0.294 0.267 0.000 0.000 0.754 0.158 0.147 
IL-12 0.000 0.025 0.648 0.430 0.423 0.001 0.195 0.781 0.749 0.700 0.000 0.065 0.904 0.897 0.874 
IL-1β 0.000 0.063 0.055 0.010 0.009 0.000 0.001 0.449 0.718 0.634 0.000 0.000 0.298 0.050 0.043 
IL-4 0.000 0.002 0.163 0.046 0.045 0.000 0.000 0.401 0.675 0.544 0.000 0.000 0.426 0.151 0.131 
IL-6 0.000 0.016 0.289 0.139 0.138 0.000 0.000 0.300 0.693 0.666 0.000 0.000 0.428 0.285 0.281 
IL-8 0.057 0.103 0.801 0.288 0.232 0.046 0.178 0.529 0.084 0.101 0.005 0.075 0.939 0.237 0.239 

TNF-α 0.000 0.036 0.896 0.171 0.184 0.000 0.046 0.581 0.768 0.688 0.000 0.023 0.828 0.316 0.326 
HYSS=herd-year-season-sex, RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin concentration, 
WBC= white blood cells, IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, x=interaction, *=nested effect, cytokines and haptoglobin were log-transformed  
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Table S 2: Immune variables and their correspondent summary statistics for Landrace and Large White piglets and dams. 

Trait Unit 
Piglet data set Dam data set 

Landrace Large White Landrace Large White 
N Mean±SD Min-Max N Mean±SD Min-Max N Mean±SD Min-Max N Mean±SD Min-Max 

Flow cytometry                           
RBC T/l 611 6.35±0.66a 3.50-8.51 533 6.07±0.75b 2.30-8.10 298 5.65±0.6 2.14-8.29 272 5.67±0.80 1.71-7.67 
Hemoglobin g/l 611 119.2±13.26a 67.00-158.00 533 108.86±14.31b 41.00-150.00 298 115.47±10.68 44.00-165.00 272 115.39±15.27 34.00-152.00 
Hematocrit l/l 611 0.40±0.04a 0.21-0.54 533 0.36±0.05b 0.13-0.47 298 0.36±0.03 0.12-0.52 272 0.36±0.05 0.10-0.48 
MCV fl 611 62.16±3.12a 53.60-71.00 533 58.56±3.13b 50.00-68.20 298 63.68±3.18 56.30-75.50 272 62.79±3.54 54.00-76.60 
MCH pg 611 18.8±1.16a 11.30-30.20 533 17.94±0.98b 15.20-22.80 298 20.51±1.05 18.00-23.90 272 20.40±1.08 17.20-23.60 
MCHC g/dl 611 30.26±1.6a 17.80-48.60 533 30.67±1.11b 27.10-36.00 298 32.22±0.94 28.70-35.40 272 32.51±0.85 30.00-35.30 
Platelets G/l 611 338.67±134.55a 24.00-783.00 533 346.88±146.18a 14.00-830.00 298 273.92±92.55 17.00-543.00 272 270.75±91.64 6.00-580.00 
WBC G/l 611 19.74±4.98a 5.70-49.00 533 19.13±5.78a 4.50-45.70 298 14.31±3.2 3.40-30.50 272 12.92±3.30 3.90-25.80 
Neutrophils % 611 47.64±9.98a 18.00-87.00 533 41.48±10.67b 3.00-74.00 298 58.58±8.06 33.00-86.00 272 53.85±10.15 8.00-86.00 
Lymphocytes % 611 45.84±9.98a 10.00-74.00 533 52.89±10.51b 22.00-93.00 298 31.43±6.96 10.00-55.00 272 37.46±8.72 12.00-67.00 
Monocytes % 611 3.53±1.65a 0.00-10.00 533 3.57±1.86a 0.00-14.00 298 3.64±1.44 1.00-9.00 272 3.98±3.17 0.00-50.00 
Eosinophils % 611 2.78±1.57a 0.00-13.00 533 1.88±1.12a 0.00-8.00 298 6.01±2.91 1.00-21.00 272 4.43±2.09 0.00-18.00 
Basophils % 611 0.15±0.37a 0.00-2.00 533 0.07±0.26b 0.00-2.00 298 0.21±0.43 0.00-2.00 272 0.11±0.31 0.00-1.00 
Band cells % 611 0.00±0.04a 0.00-1.00 533 0.01±0.17b 0.00-4.00 298 0.00±0.00 0.00-0.00 272 0.00±0.06 0.00-1.00 
Other cells % 611 0.01±0.12a 0.00-1.00 533 0.01±0.11a 0.00-1.00 298 0.02±0.16 0.00-1.00 272 0.00±0.06 0.00-1.00 
Spectrophotometry                         
Haptoglobin mg/ml 610 0.62±0.52a 0.30-2.50 531 0.72±0.64a 0.30-7.20 298 1.81±0.5 0.31-2.50 272 1.92±0.53 0.30-2.50 
Multiplex Magnetic Bead                         
IFN-γ ng/ml 522 10.89±20.12a 0.06-109.65 456 8.88±18.86a 0.06-129.14 261 31.8±36.72 0.06-182.76 231 22.94±26.64 0.06-111.07 
IL-10 ng/ml 534 1.66±3.09a 0.01-15.61 461 1.32±2.73b 0.01-25.66 257 10.57±31.68 0.06-388.22 232 5.50±5.30 0.01-38.23 
IL-12 ng/ml 534 0.66±0.47a 0.08-2.82 461 0.84±0.42b 0.13-3.13 259 1.32±1.45 0.08-14.07 234 1.06±0.74 0.10-3.97 
IL-1β ng/ml 534 1.04±1.6a 0.06-9.04 461 0.83±1.41b 0.06-9.56 256 4.15±5.21 0.06-55.87 231 2.93±2.30 0.06-10.28 
IL-4 ng/ml 534 3.21±7.43a 0.03-39.94 461 2.46±6.6a 0.03-63.22 260 19.81±32.18 0.03-250.00 232 11.61±13.14 0.03-63.33 
IL-6 ng/ml 534 0.56±1.14a 0.01-6.94 461 0.46±1.15b 0.01-11.94 261 4.98±13.67 0.02-103.66 235 2.02±2.38 0.01-16.39 
IL-8 ng/ml 534 0.71±0.75a 0.01-8.28 461 0.60±0.71b 0.02-7.70 265 0.54±0.94 0.01-10.61 235 0.22±0.28 0.01-2.15 
TNF-α ng/ml 534 0.35±0.88a 0.01-5.40 461 0.20±0.58a 0.01-5.40 264 1.36±2.58 0.01-20.69 235 0.54±0.88 0.01-4.68 

RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin concentration, WBC= white 
blood cells, IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, Means with different letters (a, b) differ significantly at the 5% level.  
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Table S 3: Pairwise genetic correlations for immune variables in Landrace piglets 

 RBC Hemo- 
globin 

Hema- 
tocrit MCV MCH MCHC Platelets WBC Neutro- 

phils 
Lympho- 

cytes 
Mono- 
cytes 

Eosino- 
phils 

Baso- 
phils 

Hapto- 
globin IFN-γ IL-10 IL-12 IL-1β IL-4 IL-6 IL-8 TNF-α 

RBC 0.41 
±0.10 

0.81 
±0.06 

0.82 
±0.05 

-0.21 
±0.19 

-0.38 
±0.20 

-0.87 
±0.43 

-0.18 
±0.30 

0.51 
±0.28 

-0.29 
±0.12 

0.26 
±0.12 

0.34 
±0.2 

0.14 
±0.41 

-0.16 
±0.54 

-0.47 
±0.37 

0.49 
±0.29 

0.43 
±0.31 

0.01 
±0.29 

0.40 
±0.43 

0.36 
±0.36 

0.21 
±0.33 

0.36 
±0.35 

0.61 
±0.17 

Hemo- 
globin 0.83 0.41 

±0.11 
0.99 

±0.00 
0.39 

±0.15 
0.24 

±0.07 
-0.86 
±0.46 

-0.34 
±0.33 

0.27 
±0.16 

-0.15 
±0.17 

0.08 
±0.16 

0.50 
±0.21 

0.13 
±0.27 

0.04 
±0.30 

-0.12 
±0.26 

0.71 
±0.23 

0.71 
±0.25 

0.09 
±0.28 

0.73 
±0.44 

0.69 
±0.28 

0.56 
±0.27 

0.32 
±0.37 

0.65 
±0.16 

Hema- 
tocrit 1.00 1.00 0.43 

±0.11 
0.37 

±0.14 
0.24 

±0.14 
-0.8 

4±0.44 
-0.39 
±0.35 

0.26 
±0.14 

-0.17 
±0.16 

0.11 
±0.15 

0.46 
±0.2 

0.12 
±0.27 

-0.09 
±0.22 

-0.04 
±0.26 

0.68 
±0.22 

0.69 
±0.25 

0.07 
±0.27 

0.66 
±0.32 

0.69 
±0.23 

0.52 
±0.23 

0.37 
±0.29 

0.61 
±0.17 

MCV -0.16 0.24 0.35 0.53 
±0.1 

0.99 
±0.02 

0.02 
±0.72 

-0.30 
±0.21 

-0.30 
±0.16 

0.18 
±0.19 

-0.21 
±0.22 

0.14 
±0.18 

0.06 
±0.18 

0.12 
±0.17 

0.16 
±0.18 

0.47 
±0.24 

0.55 
±0.27 

0.14 
±0.21 

0.42 
±0.32 

0.66 
±0.21 

0.62 
±0.18 

0.03 
±0.24 

0.12 
±0.19 

MCH -0.29 0.29 0.06 0.67 0.41 
±0.08 

0.09 
±0.57 

-0.24 
±0.16 

-0.26 
±0.20 

0.29 
±0.20 

-0.30 
±0.15 

0.24 
±0.13 

0.08 
±0.17 

0.26 
±0.17 

0.13 
±0.23 

0.40 
±0.14 

0.49 
±0.22 

0.13 
±0.21 

0.52 
±0.36 

0.71 
±0.27 

0.54 
±0.21 

-0.07 
±0.26 

0.12 
±0.2 

MCHC -0.15 0.12 -0.33 -0.26 0.57 0.02 
±0.02 

0.35 
±0.40 

0.61 
±0.38 

0.41 
±0.54 

-0.44 
±0.22 

0.64 
±0.43 

0.09 
±0.25 

0.97 
±0.08 

-0.11 
±0.31 

0.31 
±0.32 

0.21 
±0.27 

0.17 
±0.42 

0.43 
±1.12 

0.20 
±1.04 

-0.16 
±1.12 

-0.54 
±0.4 

0.10 
±0.28 

Plate- 
lets 0.03 -0.04 -0.01 -0.05 -0.12 -0.1 0.24 

±0.08 
-0.19 
±0.28 

-0.40 
±0.27 

0.35 
±0.18 

-0.12 
±0.22 

-0.26 
±0.19 

0.05 
±0.19 

-0.32 
±0.28 

0.30 
±0.28 

0.21 
±0.25 

0.18 
±0.32 

0.33 
±0.34 

0.20 
±0.40 

0.42 
±0.25 

0.48 
±0.33 

0.14 
±0.25 

WBC 0.18 0.13 0.19 0.00 -0.06 -0.09 0.13 0.18 
±0.06 

0.62 
±0.23 

-0.71 
±0.25 

-0.27 
±0.14 

0.42 
±0.25 

-0.25 
±0.17 

0.14 
±0.22 

0.43 
±0.26 

-0.11 
±0.22 

0.00 
±0.22 

0.23 
±0.25 

0.13 
±0.31 

-0.11 
±0.23 

0.18 
±0.28 

-0.04 
±0.2 

Neutro- 
phils -0.14 -0.11 -0.14 0.03 0.06 0.05 -0.09 0.28 0.25 

±0.08 
-0.98 
±0.01 

-0.28 
±0.20 

0.64 
±0.16 

-0.48 
±0.17 

-0.03 
±0.20 

-0.03 
±0.25 

-0.01 
±0.43 

-0.10 
±0.36 

0.10 
±0.60 

0.00 
±0.52 

-0.26 
±0.26 

-0.57 
±0.27 

-0.43 
±0.19 

Lympho- 
cytes 0.14 0.10 0.13 -0.05 -0.08 -0.05 0.12 -0.23 -0.97 0.30 

±0.08 
0.12 

±0.18 
-0.82 
±0.17 

0.36 
±0.17 

0.18 
±0.29 

-0.18 
±0.25 

-0.05 
±0.31 

0.20 
±0.20 

-0.03 
±0.35 

-0.08 
±0.32 

0.10 
±0.16 

0.28 
±0.25 

0.18 
±0.17 

Mono- 
cytes 0.00 0.03 0.04 0.04 0.06 0.01 0.02 -0.09 -0.17 0.01 0.32 

±0.09 
-0.16 
±0.2 

0.23 
±0.21 

0.02 
±0.22 

0.65 
±0.22 

0.26 
±0.28 

-0.28 
±0.19 

0.42 
±0.30 

0.56 
±0.25 

0.44 
±0.24 

0.83 
±0.17 

0.53 
±0.15 

Eosino- 
phils 0.00 0.02 0.00 0.02 0.01 0.01 -0.24 -0.22 0.05 -0.22 0.01 0.22 

±0.08 
0.37 

±0.23 
-0.5 

6±0.25 
0.47 

±0.27 
0.29 

±0.29 
-0.21 
±0.18 

-0.08 
±0.32 

0.04 
±0.31 

0.19 
±0.24 

0.05 
±0.30 

0.40 
±0.20 

Baso- 
phils 0.03 0.07 0.09 0.04 0.06 0.00 0.03 -0.02 -0.17 0.10 0.18 0.06 0.22 

±0.08 
-0.14 
±0.21 

0.7 
3±0.18 

0.48 
±0.28 

0.47 
±0.26 

0.49 
±0.40 

0.63 
±0.36 

0.53 
±0.29 

0.71 
±0.29 

0.30 
±0.23 

Hapto- 
globin 0.00 -0.08 -0.12 -0.11 -0.12 -0.03 0.01 0.21 0.14 -0.14 0.06 0.00 0.01 0.18 

±0.07 
-0.13 
±0.36 

-0.86 
±0.16 

-0.62 
±0.29 

-0.89 
±0.13 

-0.96 
±0.10 

-0.73 
±0.18 

0.12 
±0.33 

-0.48 
±0.19 

IFN-γ 0.09 0.12 0.13 0.08 0.04 -0.04 0.02 -0.01 -0.10 0.08 -0.03 0.05 0.11 -0.05 0.22 
±0.08 

0.73 
±0.13 

-0.37 
±0.22 

0.61 
±0.65 

0.63 
±0.42 

0.88 
±0.16 

0.87 
±0.23 

0.78 
±0.11 

IL-10 0.11 0.15 0.16 0.12 0.08 -0.03 0.03 0.00 -0.14 0.12 0.00 0.03 0.15 -0.08 0.64 0.24 
±0.10 

0.23 
±0.34 

0.95 
±0.06 

1.00 
±0.01 

0.99 
±0.02 

0.72 
±0.17 

0.91 
±0.07 

IL-12 0.02 0.04 0.02 0.02 0.04 0.04 0.00 0.04 -0.03 0.03 -0.04 0.01 0.06 0.00 -0.17 0.18 0.34 
±0.13 

0.35 
±0.37 

0.38 
±0.32 

0.34 
±0.28 

-0.43 
±0.28 

0.12 
±0.28 

IL-1β 0.12 0.16 0.14 0.05 0.05 0.02 0.00 0.07 -0.04 0.02 -0.01 0.06 0.10 0.00 0.53 0.85 0.25 0.17 
±0.09 

0.97 
±0.04 

0.93 
±0.06 

0.64 
±0.38 

0.96 
±0.06 

IL-4 0.07 0.11 0.11 0.09 0.06 -0.02 0.01 -0.02 -0.12 0.10 0.04 0.07 0.13 -0.13 0.59 0.89 0.23 0.82 0.19 
±0.09 

0.98 
±0.03 

0.70 
±0.28 

0.89 
±0.09 
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IL-6 0.09 0.14 0.13 0.10 0.07 -0.02 0.03 0.03 -0.14 0.12 0.00 0.05 0.14 -0.08 0.62 0.92 0.16 0.81 0.84 0.35 
±0.09 

0.73 
±0.22 

0.80 
±0.09 

IL-8 0.10 0.12 0.10 -0.01 0.02 0.05 -0.05 -0.18 -0.16 0.13 0.02 0.08 0.09 -0.12 0.15 0.12 0.02 0.14 0.11 0.10 0.15 
±0.08 

0.65 
±0.23 

TNF-α 0.10 0.12 0.12 0.05 0.03 -0.02 0.00 0.02 -0.08 0.06 0.07 0.02 0.04 -0.08 0.56 0.58 0.11 0.55 0.57 0.58 0.14 0.61 
±0.09 

Bold font indicates heritabilities (h2±SE) on the diagonal. Phenotypic correlations (rp) under the diagonal and genetic correlations (rg±SE) above the 

diagonal RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin 

concentration, WBC= white blood cells, IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, NA=not available. 

  



Appendix 

120 

Table S 4: Pairwise genetic correlations for immune variables in Large White piglets 

 RBC Hemo- 
globin 

Hema- 
tocrit MCV MCH MCHC Platelets WBC Neutro- 

phils 
Lympho- 

cytes 
Mono- 
cytes 

Eosino- 
phils 

Baso- 
phils 

Hapto- 
globin IFN-γ IL-10 IL-12 IL-1β IL-4 IL-6 IL-8 TNF-α 

RBC 
0.36 

±0.08 
0.77 

±0.10 
0.90 

±0.09 
-0.99 
±0.00 

-0.64 
±0.24 

0.43 
±0.26 

0.23 
±0.88 

0.33 
±0.36 

-0.16 
±0.14 

0.29 
±0.14 

-0.35 
±0.17 

-0.70 
±0.20 

-0.24 
±0.74 

0.17 
±0.59 

0.56 
±0.24 

0.46 
±0.35 

0.77 
±0.33 

0.75 
±0.36 

0.50 
±0.38 

0.74 
±0.28 

0.00 
±0.17 

0.96 
±0.10 

Hemo- 
globin 

0.88 0.18 
±0.08 

0.97 
±0.04 

-0.30 
±0.24 

0.02 
±0.35 

0.91 
±0.12 

0.79 
±0.55 

-0.11 
±0.36 

0.07 
±0.13 

-0.02 
±0.27 

-0.04 
±0.30 

-0.78 
±0.32 

0.28 
±0.67 

-0.09 
±0.62 

0.43 
±0.32 

-0.09 
±0.38 

0.82 
±0.28 

0.07 
±0.43 

0.24 
±0.48 

0.37 
±0.39 

0.19 
±0.17 

0.79 
±0.20 

Hema- 
tocrit 

1.00 1.00 0.09 
±0.06 

-0.55 
±0.30 

-0.34 
±0.35 

0.87 
±0.21 

0.65 
±0.70 

0.04 
±0.42 

-0.04 
±0.27 

0.07 
±0.3 

-0.25 
±0.35 

-0.82 
±0.37 

0.17 
±0.71 

0.01 
±0.60 

0.40 
±0.34 

-0.02 
±0.47 

0.78 
±0.32 

0.10 
±0.42 

0.03 
±0.32 

0.69 
±0.81 

0.22 
±0.25 

0.88 
±0.16 

MCV 
-0.23 0.16 0.25 0.61 

±0.1 
0.94 

±0.03 
0.18 

±0.23 
0.67 

±0.88 
-0.46 
±0.36 

0.19 
±0.26 

-0.34 
±0.21 

0.49 
±0.23 

0.65 
±0.38 

0.19 
±0.47 

-0.27 
±0.4 

-0.58 
±0.19 

-0.69 
±0.21 

-0.44 
±0.25 

-0.90 
±0.16 

-0. 
79 
±0.15 

-0.80 
±0.13 

0.16 
±0.15 

-0.87 
±0.17 

MCH 
-0.26 0.23 0.09 0.79 0.66 

±0.12 
0.49 

±0.20 
0.79 

±0.50 
-0.60 
±0.30 

0.20 
±0.22 

-0.45 
±0.20 

0.62 
±0.21 

0.45 
±0.24 

0.45 
±0.44 

-0.38 
±0.42 

-0.47 
±0.20 

-0.71 
±0.24 

-0.12 
±0.25 

-0.84 
±0.17 

-0.66 
±0.17 

-0.73 
±0.20 

0.19 
±0.17 

-0.58 
±0.17 

MCHC 
-0.16 0.12 -0.20 -0.24 0.40 0.15 

±0.07 
0.57 

±0.91 
-0.28 
±0.43 

-0.03 
±0.43 

-0.11 
±0.30 

0.93 
±0.24 

-0.24 
±0.34 

0.94 
±0.26 

-0.31 
±0.63 

0.17 
±0.32 

0.07 
±0.41 

0.72 
±0.27 

-0.07 
±0.33 

0.25 
±0.21 

0.14 
±0.21 

0.08 
±0.26 

0.48 
±0.22 

Plate- 
lets 

0.19 0.14 0.17 -0.05 -0.12 -0.14 0.01 
±0.02 

-0.54 
±0.65 

0.18 
±1.03 

-0.11 
±0.65 

-0.10 
±0.54 

0.97 
±0.18 

-0.30 
±0.64 

0.01 
±1.13 

-0.81 
±0.43 

-0.64 
±0.86 

0.50 
±1.04 

-0.54 
±0.97 

-0.26 
±1.41 

-0.58 
±0.63 

0.64 
±0.43 

0.16 
±0.76 

WBC 
0.25 0.21 0.26 -0.03 -0.10 -0.11 0.26 0.08 

±0.07 
0.72 

±0.29 
-0.58 
±0.38 

-0.76 
±0.30 

0.19 
±0.42 

-0.93 
±0.18 

-0.36 
±0.70 

0.54 
±0.44 

0.41 
±0.48 

-0.68 
±0.37 

0.63 
±0.66 

0.58 
±0.67 

0.43 
±0.59 

-0.14 
±0.58 

0.07 
±0.69 

Neutro- 
phils 

-0.11 -0.11 -0.15 -0.05 0.01 0.08 0.04 0.24 0.12 
±0.08 

-0.96 
±0.03 

0.15 
±0.29 

-0.08 
±0.45 

-0.61 
±0.48 

-0.85 
±0.32 

0.43 
±0.41 

0.67 
±0.33 

-0.14 
±0.32 

0.84 
±0.16 

0.67 
±0.24 

0.71 
±0.29 

-0.65 
±0.25 

0.31 
±0.36 

Lympho- 
cytes 

0.13 0.11 0.15 0.01 -0.04 -0.07 -0.02 -0.21 -0.98 0.14 
±0.08 

-0.46 
±0.28 

0.15 
±0.48 

0.00 
±0.78 

0.88 
±0.29 

-0.22 
±0.41 

-0.62 
±0.32 

0.03 
±0.41 

-0.83 
±0.26 

-0.70 
±0.31 

-0.78 
±0.20 

0.86 
±0.10 

0.10 
±0.32 

Mono- 
cytes 

-0.02 0.01 0.04 0.14 0.08 -0.10 0.08 -0.10 -0.22 0.05 0.17 
±0.07 

0.40 
±0.44 

0.78 
±0.38 

-0.51 
±0.39 

-0.21 
±0.34 

0.12 
±0.35 

0.33 
±0.35 

0.18 
±0.43 

0.16 
±0.37 

0.24 
±0.28 

-0.30 
±0.19 

-0.82 
±0.17 

Eosino- 
phils 

-0.13 -0.07 -0.09 0.12 0.14 0.04 -0.27 -0.17 0.07 -0.17 -0.06 0.06 
±0.05 

0.08 
±0.63 

-0.44 
±0.52 

-0.92 
±0.16 

-0.57 
±0.44 

0.41 
±0.37 

-0.57 
±0.39 

-0.50 
±0.52 

-0.54 
±0.51 

0.15 
±0.43 

-0.85 
±0.26 

Baso- 
phils 

0.06 0.07 0.05 -0.01 0.00 0.03 0.01 0.12 -0.15 0.12 0.10 -0.04 0.03 
±0.04 

0.62 
±0.52 

-0.24 
±0.60 

-0.18 
±0.53 

0.81 
±0.26 

0.13 
±0.59 

0.43 
±0.48 

-0.16 
±0.64 

0.64 
±0.30 

-0.12 
±0.72 

Hapto- 
globin 

-0.01 -0.10 -0.08 -0.11 -0.09 -0.10 0.16 0.18 0.10 -0.10 -0.02 0.06 0.00 0.03 
±0.03 

-0.15 
±0.70 

-0.66 
±0.50 

-0.48 
±0.56 

-0.71 
±0.37 

-0.47 
±0.44 

-0.84 
±0.26 

0.64 
±0.47 

-0.65 
±0.54 

IFN-γ 
0.11 0.04 0.04 -0.16 -0.13 0.03 0.00 0.09 0.11 -0.09 -0.06 -0.13 -0.05 0.00 0.32 

±0.10 
0.89 

±0.11 
-0.27 
±0.30 

0.92 
±0.11 

0.73 
±0.17 

0.99 
±0.08 

-0.44 
±0.28 

0.35 
±0.32 

IL-10 
0.04 0.01 -0.04 -0.14 -0.07 0.11 -0.01 0.11 0.05 -0.05 0.00 -0.12 0.02 0.06 0.60 0.25 

±0.10 
0.22 

±0.31 
0.97 

±0.06 
0.95 

±0.05 
0.98 

±0.04 
-0.62 
±0.48 

0.38 
±0.40 

IL-12 
0.02 0.06 0.02 0.06 0.06 0.00 -0.01 -0.03 -0.10 0.10 0.02 -0.03 0.03 -0.19 -0.14 0.14 0.18 

±0.09 
0.28 

±0.35 
0.52 

±0.28 
0.10 

±0.44 
-0.12 
±0.39 

0.51 
±0.44 

IL-1β 
0.06 0.04 0.00 -0.12 -0.06 0.08 0.02 0.14 0.03 -0.03 0.05 -0.16 0.06 0.03 0.52 0.88 0.18 0.16 

±0.09 
0.95 

±0.06 
0.96 

±0.06 
-0.67 
±0.33 

0.48 
±0.34 

IL-4 
0.07 0.04 -0.01 -0.16 -0.10 0.10 0.05 0.10 0.00 0.00 0.02 -0.10 0.00 0.04 0.53 0.85 0.18 0.82 0.27 

±0.13 
0.85 

±0.08 
-0.45 
±0.30 

0.58 
±0.38 
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IL-6 
0.12 0.09 0.05 -0.18 -0.08 0.16 0.05 0.12 0.02 -0.01 0.01 -0.16 -0.02 0.05 0.59 0.90 0.12 0.85 0.86 0.31 

±0.10 
-0.49 
±0.28 

0.54 
±0.26 

IL-8 
0.12 0.18 0.25 0.14 0.14 0.00 -0.14 -0.31 -0.33 0.33 0.02 -0.04 0.00 -0.09 0.01 -0.04 0.10 -0.05 -0.03 -0.05 0.36 

±0.11 
-0.06 
±0.33 

TNF-α 
0.11 0.08 0.12 -0.04 -0.06 -0.04 0.09 0.09 0.06 -0.06 0.02 -0.13 -0.01 0.06 0.56 0.52 0.11 0.52 0.51 0.53 0.05 0.13 

±0.08 

Bold font indicates heritabilities (h2±SE) on the diagonal. Phenotypic correlations (rp) under the diagonal and genetic correlations (rg±SE) above the 

diagonal. RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin 

concentration, WBC= white blood cells, IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, NA=not available.
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Table S 5: Principal components and their composition based on loading values of Landrace 

and Large White dams. 

  

Landrace Large White 

PC1  PC2 PC1  PC2 

Biological functional network: RBC 

RBC 31.48 0.03 31.50 1.24 

Hemoglobin 23.32 9.99 29.61 1.85 

Hematocrit 25.93 9.85 30.58 2.96 

MCV 4.51 38.59 0.30 48.29 

MCH 9.55 31.41 1.79 40.94 

MCHC 3.82 0.49 2.53 4.07 

Platelets 1.25 9.16 3.26 0.64 

Haptoglobin 0.16 0.47 0.43 0.02 

% of variance 38.83 23.95 37.81 25.25 

Biological functional network: Cells 

WBC 14.10 12.47 14.48 3.55 

Neutrophils 36.72 3.31 37.82 2.75 

Lymphocytes 27.45 0.04 29.54 0.26 

Monocytes 13.18 0.93 7.41 42.00 

Eosinophils 6.17 37.05 6.34 35.30 

Basophils 2.39 46.21 4.42 16.15 

% of variance 41.43 18.72 40.37 17.48 

Biological functional network: Cytokines 

IFN-γ 9.86   10.12 2.42 

IL-10 14.90   15.35 4.17 

IL-12 14.66   14.93 2.17 

IL-1β 14.69   15.03 4.64 

IL-4 14.97   15.53 3.77 

IL-6 14.85   15.54 3.82 

IL-8 5.88   5.89 43.89 

TNF-α 10.20   7.62 35.12 

% of variance 79.28   75.27 12.97 
PC=Principal component, % of variance= percentage of explained variance by a PC, 
RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular 
hemoglobin, MCHC=mean corpuscular hemoglobin concentration, WBC= white blood cells, 
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IFN-γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α. PCs are estimated within 
three distinguished biological functional frameworks like cells (Cell), RBC and additional 
RBC characteristics including haptoglobin (RBC), and Cytokines. 
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Table S 6: Genetic effects for Landrace and Large White piglets after consideration for maternal environmental effects 

Trait 
Landrace Large White 

σ2p h2±SE c2±SE σ2p h2±SE c2±SE 
RBC 0.10 0.36±0.12 0.06±0.04 0.06 0.35±0.08 0.02±0.01 
Hemoglobin 13462.96 0.41±0.12 0.08±0.05 17200.32 0.28±0.08 0.04±0.03 
Hematocrit 0.001 0.44±0.12 0.05±0.04 0.001 0.14±0.06 0.06±0.04 
MCV 0.001 0.41±0.09 0.10±0.05 67.73 0.59±0.09 0.10±0.04 
MCH 0.83 0.29±0.07 0.03±0.03 0.71 0.66±0.09 0.05±0.03 
MCHC 2.25 0.02±0.03 0.03±0.02 1.06 0.16±0.08 0.14±0.06 
Platelets 263542756.00 0.22±0.08 0.21±0.05 419554927.64 0.01±0.02 0.27±0.05 
WBC 567.87 0.17±0.06 0.08±0.04 929.03 0.09±0.07 0.16±0.06 
Neutrophils 7508.22 0.22±0.08 0.11±0.04 10348.99 0.13±0.07 0.17±0.05 
Lymphocytes 7873.01 0.30±0.08 0.11±0.05 9990.00 0.13±0.07 0.17±0.05 
Monocytes 4.67 0.31±0.08 0.03±0.04 8.58 0.17±0.07 0.29±0.06 
Eosinophils 5.29 0.21±0.07 0.08±0.04 1.28 0.05±0.05 0.04±0.03 
Basophils 0.02 0.24±0.08 0.04±0.03 0.001 0.04±0.04 0.14±0.05 
Haptoglobin 0.001 0.18±0.07 0.06±0.04 0.01 0.03±0.04 0.04±0.03 
IFN-γ 0.18 0.15±0.08 0.44±0.06 0.29 0.18±0.09 0.56±0.06 
IL-10 0.04 0.16±0.10 0.53±0.06 0.08 0.23±0.12 0.44±0.07 
IL-12 0.001 0.31±0.12 0.36±0.07 0.001 0.20±0.10 0.35±0.07 
IL-1β 0.03 0.09±0.08 0.49±0.06 0.05 0.10±0.07 0.40±0.06 
IL-4 0.12 0.14±0.08 0.47±0.06 0.24 0.16±0.09 0.42±0.07 
IL-6 0.05 0.19±0.09 0.52±0.06 0.11 0.28±0.11 0.45±0.07 
IL-8 0.01 0.12±0.07 0.24±0.06 0.02 0.38±0.11 0.16±0.06 
TNF-α 0.06 0.41±0.11 0.31±0.07 0.06 0.08±0.06 0.42±0.06 

RBC=red blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular hemoglobin concentration, WBC= white blood cells, IFN-γ=interferon-γ, 

IL=interleukin, TNF-α=tumor necrosis factor-α, h2=heritability, c2=litter effect, σ2p=phenotypic variance, cytokines are log-transformed, bold font indicates high h2 or c2 above 0.4
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Table S 7: Principal components and their composition based on loading values of Landrace 

and Large White piglets 

  

Landrace Large White 

PC1  PC2 PC3 PC1  PC2 PC3 PC4 

Biological functional network: RBC 

RBC 22.88 14.35 3.26 24.94 12.80 0.50 0.91 

Hemoglobin 31.55 0.004 3.59 32.39 0.72 0.99 0.12 

Hematocrit 31.20 2.86 1.02 31.65 1.34 1.35 0.60 

MCV 6.76 14.78 33.89 4.67 32.13 20.36 0.12 

MCH 5.24 44.79 0.37 5.99 39.14 0.74 9.30 

MCHC 0.001 16.77 50.04 0.22 1.24 61.08 16.12 

Platelets 2.36 3.28 0.06 0.02 7.96 6.60 29.27 

Haptoglobin 0.02 3.17 7.76 0.11 4.68 8.37 43.56 

% of variance 37.23 22.43 16.98 37.49 22.84 16.57 12.47 

Biological functional network: Cells 

WBC 8.03 17.35 23.47 2.60 45.02 0.47   

Neutrophils 44.04 0.54 0.10 45.08 0.47 0.03   

Lymphocytes 41.17 6.50 0.87 43.32 0.30 0.50   

Monocytes 2.43 13.91 34.34 5.20 5.58 1.07   

Eosinophils 0.35 46.82 13.09 3.08 38.32 18.61   

Basophils 3.97 14.88 28.12 0.74 10.32 79.31   

% of variance 35.96 20.95 18.94 35.49 21.89 16.42   

Biological functional network: Cytokines 

IFN-γ 12.53     13.09 0.65     

IL-10 17.17     18.79 0.37     

IL-12 6.67     2.30 33.72     

IL-1β 15.68     17.58 0.33     

IL-4 16.58     17.48 0.28     

IL-6 16.50     18.40 0.85     

IL-8 1.97     0.31 63.75     

TNF-α 12.90     12.05 0.06     

% of variance 68.13     60.13 13.45     
PC=Principal component, % of variance= percentage of explained variance by a PC, RBC=red 

blood cells, MCV=mean corpuscular volume, MCH=mean corpuscular hemoglobin, 



Appendix 

126 

MCHC=mean corpuscular hemoglobin concentration, WBC= white blood cells, IFN-

γ=interferon-γ, IL=interleukin, TNF-α=tumor necrosis factor-α, bold font indicates 

contributing immune traits within the PC. PCs are estimated within three distinguished 

biological functional frameworks like cells (Cell), RBC and additional RBC characteristics 

including haptoglobin (RBC), and Cytokines.
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Table S 8: Genetic parameters of principal components as new dependent immune variables for Landrace and Large White piglets 

BFN PC 
Cell RBC Cyto  

PC1 PC2 PC3 PC1 PC2 PC3 PC4 PC1 PC2 Breed 

Cell 

PC1 0.31±0.08 
0.12±0.07 

  0.16±0.16 
0.00±0.39 

-0.24±0.16 
0.06±0.25 

0.07±0.30 
-0.02±0.29 

NA 
-0.84±0.30 

0.17±0.20 
0.52±0.41 

NA 
0.78±0.26 

LR 
LW 

PC2  0.20±0.08 
0.05±0.04 

 0.06±0.19 
-0.27±0.63 

0.54±0.20 
0.19±0.39 

-0.31±0.28 
-0.64±0.28 

NA 
0.89±0.26 

0.51±0.27 
-0.93±0.19 

NA 
-0.71±0.27 

LR 
LW 

PC3   0.18±0.07 
0.04±0.04 

0.46±0.20 
0.38±0.79 

0.00±0.25 
-0.89±0.29 

0.34±0.25 
0.15±0.47 

NA 
-0.84±0.45 

0.68±0.25 
0.36±0.44 

NA 
0.77±0.42 

LR 
LW 

RBC 

PC1 0.07 
-0.10 

-0.02 
-0.15 

0.10 
-0.02 

0.50±0.10 
0.08±0.08 

   0.68±0.16 
0.24±0.54 

NA 
-0.70±0.34 

LR 
LW 

PC2 -0.06 
0.01 

0.15 
0.24 

-0.06 
-0.09 

 0.35±0.08 
0.58±0.11 

  0.34±0.25 
-0.70±0.20 

NA 
-0.02±0.15 

LR 
LW 

PC3 -0.02 
0.03 

0.00 
0.14 

0.03 
-0.04 

  0.13±0.06 
0.17±0.06 

 -0.30±0.26 
0.86±0.19 

NA 
-0.16±0.21 

LR 
LW 

PC4 NA 
0.13 

NA 
-0.14 

NA 
0.03 

   NA 
0.10±0.06 

NA 
-0.05±0.15 

NA 
-0.54±0.25 

LR 
LW 

Cyto 
PC1 0.11 

0.03 
0.04 
-0.17 

0.05 
0.07 

0.17 
0.02 

0.01 
-0.13 

-0.06 
0.09 

NA 
0.06 

0.32±0.10 
0.27±0.09 

 LR 
LW 

PC2 NA 
0.35 

NA 
-0.21 

NA 
0.43 

NA 
-0.21 

NA 
-0.14 

NA 
-0.02 

NA 
0.14 

 NA 
0.14±0.06 

LR 
LW 

BFN=biological functional network, PC=principal component, PCs are estimated within three distinguished BFN like cells (Cell), RBC and 
additional RBC characteristics including haptoglobin (RBC), cytokines (Cyto), heritabilities (h2±SE) are indicated in bold font on the diagonal, 
phenotypic correlations (rp) under the diagonal and genetic correlations (rg±SE) above the diagonal, LR=Landrace, LW=Large White, NA=not 
available 
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Figure S 1: Comparison of different methods used to detect significant univariate associations 

for Landrace and Large White 

Multiple identical significant SNPs for different immune traits within a method are counted a 

single time. uv=univariate, LR=Landrace, LW=Large White 
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Table S 9: Significant associated genetic markers identified with univariate methods (continued) 

Breed Trait SSC SNP Position m/M 
allele MAF P-

value/BF 
Type of 

significance Method QTL Nearest gene within QTL 

LW MCH 1 ALGA0000795 8724875 A/G 74,10 0,03 CHR PLINK 1 TULP4, GTF2H5, SERAC1, SYNJ2, SNX9, 
ZDHHC14, TMEM242 

LW MCH 1 ASGA0000892 8739103 T/C 25,90 0,03 CHR PLINK 1   
LW MCH 1 ALGA0000837 8810463 T/G 25,80 0,03 CHR PLINK 1   
LW MCH 1 ASGA0000925 8896901 T/C 25,90 0,03 CHR PLINK 1   
LW MCH 1 ALGA0106880 9725288 A/G 26,00 0,03 CHR PLINK 1   
LW MCH 1 ASGA0000922 10777632 C/T 74,00 0,04 CHR PLINK 2   
LW MCH 1 H3GA0000711 10830305 A/G 25,90 0,03 CHR PLINK 2   
LW HMG 2 DRGA0002793 21669969 A/G 87,10 0,03 CHR PLINK 3   
LW HMG 2 ASGA0101016 21751485 C/T 86,90 0,03 CHR PLINK 3   
LW HMG 2 ALGA0012559 22792581 G/A 86,40 0,03 CHR PLINK 4   
LW HMG 2 ALGA0012570 22989364 T/G 90,00 0,03 CHR PLINK 4   
LR HAP 2 MARC0055904 37117707 A/G 91,50 0,02 CHR PLINK 5 SLC17A6, ANO5, U6, NELL1 

LR HAP 2 ALGA0013060 37186143 C/T 4,10 0.001/3.5
1 CHR PLINK, 

BIMBAM 5   

LR HAP 2 ALGA0013078 37762734 A/G 4,10 0.001/3.5
1 CHR PLINK, 

BIMBAM 5   

LR HAP 2 MARC0064216 37514046 A/G 90,00 0,04 CHR PLINK 5   
LR HAP 2 MARC0018628 37632205 T/C 89,60 0,04 CHR PLINK 5   

LR HAP 2 ALGA0013104 37945462 G/T 4,10 0.001/3.5
9 CHR PLINK, 

BIMBAM 5   

LR HAP 2 DRGA0002935 37202269 C/T 95,90 0.001/3.5
1 CHR PLINK, 

BIMBAM 5   

LR HAP 2 ALGA0013106 38128487 T/C 90,70 0,01 CHR PLINK 6 NELL1 
LR BAS 3 MARC0006534 112713663 T/G 78,90 0,04 GEN PLINK 7 HADHB 
LW MCH 4 MARC0084905 4298000 G/A 4,60 0,05 CHR PLINK 8 COL22A1 
LW MCH 4 ASGA0017522 5419206 C/T 4,80 0,05 CHR PLINK 9   
LR MCV 4 ALGA0026246 82530260 T/G 48,80 0,02 CHR PLINK 10   
LR MCHC 5 ALGA0106408 17162699 C/T 68,80 0,00 CHR PLINK 11 SCN8A 
LR MCHC 5 H3GA0016097 23400843 A/C 37,10 0,03 CHR PLINK 12 LRIG3 
LR HMT 5 ASGA0025128 23778757 A/G 46,70 0,05 CHR PLINK 12   
LR HMT 5 ASGA0025132 23816873 G/A 42,50 0,05 CHR PLINK 12   
LR HMT 5 ASGA0025137 23933098 T/C 79,00 0,01 CHR PLINK 12   
LR HMT 5 ALGA0031314 24000573 G/T 21,00 0,01 CHR PLINK 12   
LR HMT 5 ASGA0025140 24069910 T/G 79,10 0,01 CHR PLINK 12   
LR HMT 5 ALGA0031321 24135911 A/C 79,30 0,01 CHR PLINK 12   
LR MCHC 5 DRGA0005609 29991703 T/G 84,10 0,02 CHR PLINK 13   
LR MCHC 5 DRGA0005613 30469491 T/G 84,10 0,02 CHR PLINK 13 HMGA2 
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Breed Trait SSC SNP Position m/M 
allele MAF P-

value/BF 
Type of 

significance Method QTL Nearest gene within QTL 

LR MCHC 5 ASGA0025326 31271737 A/C 22,10 0,02 CHR PLINK 14 U6, ssc-mir-9808, CAND1 
LR MCHC 5 ALGA0034323 31867380 A/G 88,60 0,02 CHR PLINK 14   
LR MCHC 5 MARC0114715 32497165 A/C 0,00 0,04 CHR PLINK 15 IL26, IL22 
LR MCHC 5 ALGA0031657 32603961 C/T 19,30 0,04 CHR PLINK 15   

LR MCHC 5 ALGA0031690 33946621 A/G 27,10 0,02 CHR PLINK 16 CCT2, RAB3A, BEST3, MYRFL, CNOT2, 
KCNMB4, PTPRB 

LR HMT 5 H3GA0016244 34769398 A/G 70,20 0.01/3.17 CHR PLINK, 
BIMBAM 16   

LR MCHC 5 ALGA0031731 36197319 A/C 25,50 0,02 CHR PLINK 17 TRHDE, U4 
LR HMT 5 ALGA0031736 36314172 A/C 27,90 0,05 CHR PLINK 17   
LR HMT 5 ASGA0025454 36903934 C/T 35,90 0,03 CHR PLINK 17   
LR HMT 5 ALGA0031749 37261727 T/C 32,50 0,02 CHR PLINK 18   
LR MCHC 5 INRA0019263 38864890 T/C 69,80 0,02 CHR PLINK 19   
LR MCHC 5 MARC0037200 38880761 T/C 69,80 0,02 CHR PLINK 19   

LR MCHC 5 rs334622443 42436328 A/T NA 0,02 CHR PLINK 20 AMN1, ETFBKMT, DENND5B, SINHCAF, 
CAPRIN2, IPO8 

LR MCHC 5 DRGA0005776 43220509 C/T 30,50 0,02 CHR PLINK 20   
LR MCHC 5 DRGA0005773 43252599 A/G 75,30 0,02 CHR PLINK 20   
LR MCHC 5 MARC0113545 43293810 A/G 0,00 0,02 CHR PLINK 20   
LR MCHC 5 ALGA0031826 43320525 C/A 30,50 0,02 CHR PLINK 20   
LR MCHC 5 ASGA0025493 43385239 G/A 30,50 0,02 CHR PLINK 20   
LR MCHC 5 H3GA0016271 43428743 C/A 30,50 0,02 CHR PLINK 20   
LR MCHC 5 ASGA0025490 43480338 T/C 71,40 0,02 CHR PLINK 21 U6, TMTC1 
LR MCHC 5 DRGA0005767 43556787 C/T 30,50 0,02 CHR PLINK 21   
LR MCHC 5 MARC0003440 43664480 T/C 69,50 0,02 CHR PLINK 21   
LR MCHC 5 INRA0019288 43688401 T/C 73,50 0,02 CHR PLINK 21   
LR MCHC 5 MARC0030421 43750584 C/T 28,60 0,02 CHR PLINK 21   
LR MCHC 5 ALGA0031834 43879295 G/A 30,60 0,02 CHR PLINK 21   
LR MCHC 5 ALGA0031838 43979571 T/G 30,50 0,02 CHR PLINK 21   
LR MCHC 5 H3GA0016294 47424047 A/G 38,30 0,02 CHR PLINK 22 ITPR2 
LR MCHC 5 ALGA0031924 48896828 T/G 57,00 0,01 GEN PLINK 23 BCAT1 
LR MCHC 5 MARC0001027 50094492 G/A 23,70 0,01 CHR PLINK 24 SOX5 
LR MCHC 5 DRGA0005841 50243918 A/G 76,30 0,01 CHR PLINK 24   
LR MCHC 5 ALGA0032074 58601394 A/G 76,00 0,01 GEN PLINK 25 GRIN2B, EMP1 
LR MCHC 5 H3GA0016359 58625915 C/T 25,10 0,00 CHR PLINK 25   
LR MCHC 5 H3GA0016379 58840179 G/A 23,90 0,00 CHR PLINK 25   
LR MCHC 5 ALGA0032146 59340760 A/C 82,80 0,01 GEN PLINK 25   
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LR MCV 5 ASGA0025778 61783155 A/G 23,10 0,02 CHR PLINK 26 

TMEM52B, OLR1, CLEC7A, CLEC1A, 
CLEC12B, CLEC1B, CLEC12A, CLEC12B, 
CLEC2B, CD69, LOC100520491, CLEC2D, 
KLRB1, LOC100524679, PZP, A2M, KLRG1, 
M6PR, PHC1, A2ML1, RIMKLB 

LR MCV 5 ASGA0025791 61931507 A/G 76,80 0,02 CHR PLINK 26   
LR MCV 5 DRGA0005951 61966384 G/A 76,80 0,02 CHR PLINK 26   
LR MCV 5 ASGA0025794 62115185 T/G 23,40 0,02 CHR PLINK 26   
LR MCV 5 DRGA0005956 62134657 T/G 80,00 0,02 CHR PLINK 26   
LR MCHC 5 MARC0100616 62372560 C/T 0,00 0,00 CHR PLINK 26   
LR MCV 5 ALGA0032322 62455175 G/A 65,60 0,02 CHR PLINK 26   
LR MCV 5 DIAS0000002 62481418 A/G 34,90 0,02 CHR PLINK 26   
LR MCV 5 ASGA0025802 62601778 T/C 77,10 0,02 CHR PLINK 26   
LR MCV 5 ALGA0032345 62737145 T/C/G 39,00 0,02 CHR PLINK 26   
LR MCHC 5 ASGA0025827 63827447 G/A 84,70 0,03 CHR PLINK 27 ENO2 
LW RBC 5 ALGA0033064 77286779 T/C 98,20 0,02 CHR PLINK 28 SLC38A4, AMIGO2, PCED1B, RPAP3 
LW RBC 5 ASGA0093314 77402409 A/G 8,50 0,02 CHR PLINK 28   
LW RBC 5 ALGA0104452 77541676 A/G 7,50 0,02 CHR PLINK 28   
LW RBC 5 MARC0090729 77680830 C/T 0,00 0,02 CHR PLINK 28   
LW RBC 5 MARC0098250 77948633 G/A 0,00 0,02 CHR PLINK 28   
LW RBC 5 ALGA0109048 77962305 T/C 6,20 0,02 CHR PLINK 28   
LW RBC 5 ALGA0101247 77990021 A/G 2,90 0,02 CHR PLINK 28   
LW RBC 5 ALGA0104065 77997876 C/T 97,10 0,02 CHR PLINK 28   
LW RBC 5 MARC0009241 78029583 G/A 97,10 0,02 CHR PLINK 28   
LW RBC 5 ALGA0104516 78032160 G/T 97,10 0,02 CHR PLINK 28   

LW RBC 5 ALGA0033127 79513170 A/G 87,80 0,02 CHR PLINK 29 ALDH1L2, C12orf45, SLC41A2, U6, CHST11, 
TXNRD1 

LW RBC 5 H3GA0016899 80171271 C/T 90,30 0,02 CHR PLINK 29   
LW RBC 5 ALGA0115368 80487779 T/C 6,20 0,02 CHR PLINK 29   
LW RBC 5 ALGA0103880 80562374 T/C 94,10 0,02 CHR PLINK 30   
LW RBC 5 DRGA0006061 82345818 A/G 1,60 0,02 CHR PLINK 31   
LR IFN 5 MARC0080493 90118573 A/G 79,20 0,03 CHR PLINK 32   
LR MCHC 5 ASGA0101924 97259676 T/C 98,90 0,00 CHR PLINK 33   
LR MCHC 5 DRGA0006295 97412529 A/C 98,70 0,00 CHR PLINK 33   
LR MCHC 5 H3GA0017216 97477241 C/T 1,10 0,00 CHR PLINK 33   
LR MCHC 5 DRGA0006288 102305039 A/G 1,10 0,00 CHR PLINK 34   
LR MCHC 5 INRA0020540 102513112 A/G 98,90 0,00 CHR PLINK 34   
LR IL-6 6 MARC0041561 16171435 C/T 80,90 0,05 CHR PLINK 35   
LR IL-6 6 MARC0075761 16188799 G/A 80,90 0,05 CHR PLINK 35   
LR IL-4 6 H3GA0055874 47536918 C/T 16,30 0,04 CHR PLINK 36 ACTN4, HNRNPL 
LR MCV 6 ASGA0094719 70404572 A/G 34,60 0,04 CHR PLINK 37 UBE4B 
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LR MCV 6 ALGA0111762 70460911 C/T 67,30 0,04 CHR PLINK 37   
LR MCV 6 ALGA0105286 74623829 C/A 31,30 0,01 CHR PLINK 38 FHAD1 
LR MCV 6 ALGA0105225 75820891 C/T 36,60 0,04 CHR PLINK 39 PADI1-6, RCC2, ARHGEF10L 
LR MCV 6 MARC0076222 75960523 C/T 34,50 0,04 CHR PLINK 39   
LR MCV 6 ALGA0115349 75971546 C/T 32,60 0,04 CHR PLINK 39   
LR MCV 6 MARC0098064 76038583 C/T 0,00 0,05 CHR PLINK 39   
LR MCV 6 MARC0004865 76063337 G/A 34,60 0,04 CHR PLINK 39   
LR MCV 6 ASGA0090874 76089914 G/A 53,00 0,04 CHR PLINK 39   
LR MCV 6 ALGA0116768 76114734 A/G 65,40 0,04 CHR PLINK 39   
LR MCV 6 ASGA0101002 76151935 A/G 64,60 0,05 CHR PLINK 39   
LR MCV 6 MARC0098251 76210521 T/C 0,00 0,04 CHR PLINK 39   
LR MCV 6 ALGA0035695 80258992 G/A 62,40 0,04 CHR PLINK 40 ZBTB40, EPHA8, C1QA, C1QC, C1QB 
LR MCV 6 MARC0026937 80582130 G/A 42,60 0,01 CHR PLINK 40   
LR MCV 6 DBWU0000032 80596783 T/C 31,30 0,01 CHR PLINK 40   
LR MCV 6 ALGA0114670 80603591 C/A 31,30 0,01 CHR PLINK 40   
LR MCV 6 H3GA0055046 80642168 C/T 31,30 0,01 CHR PLINK 40   
LR MCV 6 ASGA0099954 80643934 T/C 57,30 0,01 CHR PLINK 40   

LR MCV 6 ASGA0098887 84046293 A/G 31,80 0,01 CHR PLINK 41 

ARID1A, PIGV, ZDHHC18, GPATCH3, NR0B2, 
NUDC, KDF1, TRNP1, 
 TENT5B, SLC9A1, WDTC1, TMEM222, 
SYTL1, MAP3K6, CD164L2, GPR3, WASF2, 
FGR, IFI6, FAM76A, STX12 

LR MCV 6 ALGA0105183 84069079 A/G 31,80 0,01 CHR PLINK 41   
LR MCV 6 ASGA0028717 84522894 G/A 47,30 0,04 CHR PLINK 41   
LR MCV 6 ASGA0028724 84705728 A/G 52,90 0,01 CHR PLINK 41   
LR MCV 6 ASGA0099240 84961781 C/T 65,90 0,02 CHR PLINK 41   

LR MCV 6 ALGA0121599 85086986 A/G 37,50 0,04 CHR PLINK 42 

XKR8, EYA3, PTAFR, U1, DNAJC8, ATP5IF1, 
SESN2, MED18, 
 PHACTR4, SNORA73, RCC1, TRNAU1AP, 
SNORD99, SNORA61, SNORA44, SNORA16B, 
RAB42, TAF12, GMEB1, YTHDF2, OPRD1, 
EPB41, SRSF4 

LR MCV 6 MARC0018089 85997279 C/T 49,40 0,05 CHR PLINK 42   
LR MCV 6 ALGA0103867 86036915 T/C 45,40 0,04 CHR PLINK 42   
LR MCV 6 ALGA0035788 86282384 A/G 47,00 0,04 CHR PLINK 43   
LR MCV 6 ASGA0028727 86333941 A/G 41,00 0,04 CHR PLINK 43   
LR MCV 6 ALGA0114520 86401903 A/G 40,10 0,04 CHR PLINK 43   
LR IL-10, IL-4 6 ASGA0083561 87364936 T/C 67,90 0,04 CHR PLINK 44 LAPTM5 
LR MCV 6 ASGA0028790 88118337 C/A 39,10 0,04 CHR PLINK 45 HCRTR1, PEF1, COL16A1, ADGRB2 

LR IL-10, IL-
6, IL-4 6 ASGA0028956 88264983 T/C 59,30 0,04 CHR PLINK 45   
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LR IL-10, IL-6 6 H3GA0053380 93420594 G/T 47,80 0,02 CHR PLINK 46 

ZC3H12A, MEAF6, SNIP1, DNALI1, GNL2, 
RSPO1, C1orf109, CDCA8, EPHA10, MANEAL, 
YRDC, C1orf122, MTF1, INPP5B, SF3A3, FHL3, 
UTP11, POU3F1 

LR IL-10, IL-6 6 MARC0082470 93442952 T/C 47,90 0,04 CHR PLINK 46   

LR IL-10, IL-
4, IL-6 6 ALGA0117017 93498560 A/G 92,70 0,02 CHR PLINK 46   

LR IL-10, IL-6 6 ASGA0028870 93958186 A/G 55,50 0,03 CHR PLINK 46   

LR IL-10, IL-
4, IL-6 6 DIAS0000434 93982653 G/A 22,70 0,02 CHR PLINK 46   

LR IL-10, IL-6 6 ALGA0035971 94051380 C/T 62,30 0,03 CHR PLINK 46   

LR IL-10, IL-
4, IL-6 6 MARC0019060 94096694 T/C 72,40 0,01 CHR PLINK 46   

LR IL-10, IL-6 6 MARC0114889 94223271 C/T 0,00 0,04 CHR PLINK 46   
LR IL-10 6 ASGA0028900 94309034 A/G 91,50 0,04 CHR PLINK 46   

LR IL-10, IL-
4, IL-6 6 M1GA0008815 94712287 C/T 33,60 0,01 CHR PLINK 47 

RRAGC, RRAGC, GJA9, RHBDL2, AKIRIN1, 
NDUFS5, U6, MACF1, 
 KIAA0754, BMP8A, PABPC4, SNORA55, 
HEYL, NT5C1A, HPCAL4, PPIE, BMP8B, 
TRIT1 

LR IL-10 6 ASGA0028941 94769975 C/T 29,90 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 DIAS0002803 94919296 A/G 59,30 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 SIRI0000176 95054229 C/T 0,00 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 ALGA0036052 95081294 G/T 59,30 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 ALGA0036056 95114962 T/C 40,70 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 MARC0008963 95161607 T/C 59,30 0,04 CHR PLINK 47   

LR IL-10, IL-
6, IL-4 6 ASGA0028958 95203496 T/G 40,70 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 ALGA0036062 95230387 T/C 59,30 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 ALGA0036064 95251820 T/C 59,30 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 MARC0076965 95275331 A/G 59,40 0,04 CHR PLINK 47   

LR IL-10, IL-
6, IL-4 6 ASGA0028971 95359973 G/T 40,70 0,04 CHR PLINK 47   
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LR IL-10, IL-
4, IL-6 6 ALGA0036086 95397864 A/G 40,70 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 H3GA0018528 95498545 A/G 59,20 0,02 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 ALGA0036101 95512565 A/C/G 59,20 0,02 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 ALGA0036104 95528500 A/G 59,20 0,02 CHR PLINK 47   

LR IL-4, IL-6 6 ALGA0036113 95648826 C/T 58,50 0,04 CHR PLINK 47   

LR IL-10, IL-
4, IL-6 6 MARC0033580 95566980 G/A 45,50 0.001/3.5

8 CHR PLINK, 
BIMBAM 47   

LR IL-10, IL-
6, IL-4 6 ASGA0029025 95751711 C/T 40,80 0,02 CHR PLINK 48 

MFSD2A, CAP1, PPT1, RLF, TMCO2, 
MPSTE24, COL9A2, MC5R,  
RNMT, LDLRAD4, CEP192 

LR IL-4, IL-6 6 MARC0097281 95772705 G/A 0,00 0,03 CHR PLINK 48   
LR IL-6 6 MARC0074457 96121023 T/C 41,10 0,03 CHR PLINK 48   
LR IL-6 6 MARC0054619 96196142 G/A 41,20 0,03 CHR PLINK 48   
LR IL-6 6 MARC0015713 96240060 T/C 58,80 0,03 CHR PLINK 48   
LR IL-6 6 ASGA0097503 96306952 C/T 41,10 0,03 CHR PLINK 48   
LR IL-6 6 ASGA0106427 96344704 A/G 58,90 0,03 CHR PLINK 48   
LR IL-6 6 DIAS0001681 96352093 G/A 41,20 0,03 CHR PLINK 48   

LR IL-10, IL-
4, IL-6 6 MARC0022542 96650040 T/G 59,80 0,02 CHR PLINK 48   

LR IL-6 6 MARC0074986 96678769 A/G 31,90 0,03 CHR PLINK 48   

LR 
IL-10, IL-
1b, IL-4, 
IL-6 

6 ALGA0036131 97620286 T/C 32,20 0.001/3.3
7 CHR PLINK, 

BIMBAM 49   

LR IL-10, IL-
4, IL-6 6 M1GA0026030 96767590 A/G 59,80 0,02 CHR PLINK 49 

PTPN2, PSMG2, CEP76, SPIRE1, PRELID3A, 
AFG3L2, TUBB6, CIDEC, IMPA2,  
MPPE1, GNAL 

LR IL-6 6 DIAS0004325 96880806 C/T 30,40 0,03 CHR PLINK 49   

LR IL-10, IL-
4, IL-6 6 CASI0006620 96926928 G/A 31,00 0,03 CHR PLINK 49   

LR IL-10, IL-
4, IL-6 6 ASGA0091444 97104675 T/G 8,80 0,01 CHR PLINK 49   

LR IL-10, IL-
4, IL-6 6 MARC0032131 97343439 T/C 23,50 0,01 CHR PLINK 49   

LR IL-10, IL-
4, IL-6 6 ALGA0036189 99931515 G/A 72,60 0,01 CHR PLINK 50 PTPRM 

LR IL-10, IL-
4, IL-6 6 ALGA0036191 99956687 T/C 94,30 0,02 CHR PLINK 50   
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LR IL-10, IL-
4, IL-6 6 CASI0005798 100018316 T/C 94,30 0,02 CHR PLINK 51 PTPRM, LRRC30, LAMA1, ARHGAP28 

LR IL-10, IL-
4, IL-6 6 MARC0003203 100175109 G/A 27,90 0,01 CHR PLINK 51   

LR IL-10, IL-
4, IL-6 6 ALGA0115176 100207770 C/T 1,40 0,02 CHR PLINK 51   

LR IL-10, IL-
4, IL-6 6 MARC0021350 100311040 C/T 5,70 0,02 CHR PLINK 51   

LR IL-10, IL-
4, IL-6 6 H3GA0054139 100709160 T/C 87,00 0,01 CHR PLINK 51   

LR IL-10, IL-
6, IL-4 6 ASGA0029105 102340927 G/A 9,80 0,01 CHR PLINK 52 DLGAP1 

LR IL-10, IL-
4, IL-6 6 ALGA0036219 102362625 G/A 9,40 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 ALGA0036233 102464736 T/C 98,60 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 ALGA0036235 102495561 A/G 98,40 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 H3GA0018606 102641493 C/T 10,10 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 DRGA0006658 102664930 T/G 89,90 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 H3GA0018609 102696604 G/A 10,10 0,01 CHR PLINK 52   

LR IL-10, IL-
6, IL-4 6 ASGA0029117 102709352 T/G 89,90 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 ALGA0036251 102732393 A/G 10,10 0,01 CHR PLINK 52   

LR IL-10, IL-
4, IL-6 6 ASGA0097110 108033469 C/T 5,90 0,01 CHR PLINK 53   

LR MCV 6 ALGA0107074 119087839 C/T 62,60 0,04 CHR PLINK 54 

ZSCAN30, ZNF397, ZNF24, ZNF396, INO80C, 
GALNT1, C18orf21, 
 RPRD1A, U6, SLC39A6, ELP2, MOCOS, 
FHOD3 

LR MCV 6 MARC0042822 120066519 A/G 60,10 0,05 CHR PLINK 54   
LR MCV 6 ALGA0036538 120233587 C/T 18,90 0,04 CHR PLINK 55 FHOD3 
LR MCV 6 MARC0087327 120497118 G/A 39,50 0,04 CHR PLINK 55   
LR MCV 6 ASGA0104109 152485189 C/T 19,60 0,01 CHR PLINK 56 CYP2J34 
LR MCV 6 H3GA0019217 164044870 A/C/G 44,90 0,04 CHR PLINK 57 FOXD2, FOXE3, CMPK1, STIL 
LR MCV 6 DIAS0002089 164172188 G/A 58,70 0,04 CHR PLINK 57   
LR MCV 6 ALGA0037661 164267809 A/G 41,30 0,04 CHR PLINK 57   
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LR MCV 6 DIAS0000412 165061162 A/G 52,60 0,04 CHR PLINK 58 
FAAH, NSUN4, LOC100524873, LRRC41, 
RAD54L, LURAP1, POMGNT1, TSPAN1, 
P3R3URF, LOC100511937, MAST2 

LR MCV 6 ALGA0037681 165115253 A/C 41,70 0,01 CHR PLINK 58   
LR MCV 6 ALGA0037677 165136688 G/A 47,50 0,01 CHR PLINK 58   
LR MCV 6 CASI0007691 165252413 G/A 73,90 0,01 CHR PLINK 58   
LR MCV 6 ASGA0030214 165295895 A/G 23,80 0,04 CHR PLINK 58   
LR MCV 6 ALGA0037700 165361501 C/T 73,90 0,01 CHR PLINK 58   
LR MCV 6 ASGA0030228 165464833 T/C 73,50 0,01 CHR PLINK 58   
LR MCV 6 ALGA0037714 165590160 A/G 80,10 0,01 CHR PLINK 58   
LR MCV 6 ASGA0030235 165616490 C/T 61,20 0,01 CHR PLINK 58   
LR MCV 6 ALGA0037706 165657661 G/A 70,30 0,01 CHR PLINK 58   
LR IL-10 6 CASI0008589 169767808 C/T 60,10 0,03 CHR PLINK 59   
LW BAS 7 H3GA0019427 2568232 C/T 3,40 0,04 CHR PLINK 60   
LR IFN 7 H3GA0019660 5050865 C/T 67,60 0,04 CHR PLINK 61  BMP6 
LR IFN 7 H3GA0019664 5067246 T/C 42,00 0,04 CHR PLINK 61   
LW IL-6 7 ALGA0038559 10527098 C/T 15,10 0,03 CHR PLINK 62   
LR MCH 7 ALGA0039086 17730613 T/C 78,50 0,03 CHR PLINK 63   
LR IFN 7 DRGA0007705 61127162 G/A 17,50 0,05 CHR PLINK 64 SEC23A 
LR IFN 7 MARC0055700 64966359 G/A 69,00 0,01 CHR PLINK 65 BAZ1A 
LR IFN 7 DRGA0007743 66272613 C/T 72,00 0,05 CHR PLINK 66 NPAS3 
LR IFN 7 ALGA0042479 67635211 C/T 21,00 0,01 CHR PLINK 67 NUBPL, GPR33, DTD2, HECTD1 
LR IFN 7 ALGA0042490 67678462 T/C 58,80 0,02 CHR PLINK 67   
LR IFN 7 ASGA0034445 68130280 G/A 23,50 0,01 CHR PLINK 67   
LR IFN 7 ASGA0034452 68167119 A/G 76,50 0,01 CHR PLINK 67   
LR IFN 7 H3GA0022038 68213063 T/C 23,50 0,01 CHR PLINK 67   
LR IFN 7 ASGA0034456 68344394 G/A 72,70 0,01 CHR PLINK 67   
LR IFN 7 ASGA0034457 68408727 A/G 76,50 0,01 CHR PLINK 67   
LR IFN 7 INRA0026398 72991035 A/G 76,50 0,01 CHR PLINK 68   
LR IFN 7 ALGA0042582 74264086 C/T 28,30 0,02 CHR PLINK 69 STXBP6 
LR IFN 7 ALGA0042584 74302403 A/G 72,90 0,02 CHR PLINK 69   
LR IFN 7 ALGA0042597 74546893 T/C 43,60 0,02 CHR PLINK 69   
LR IFN 7 ALGA0042601 74580371 A/G 43,60 0,02 CHR PLINK 69   
LW IL-8 7 M1GA0010866 115793412 C/T 15,50 0,02 CHR PLINK 70   
LW IL-8 7 rs338367467 122915952 G/A NA 0,02 CHR PLINK 71   
LW IL-4 8 MARC0111479 4598871 T/G 0,00 0,03 CHR PLINK 72 JAKMIP1, C8H4orf50  
LW IL-4 8 ALGA0107038 4605432 T/C 36,80 0,02 CHR PLINK 72   
LW IL-4 8 ASGA0092577 4674424 G/A 76,30 0,02 CHR PLINK 72   

LR TNF 8 ALGA0046861 20647847 C/T 1,30 0.02/3.23 GEN PLINK, 
BIMBAM 73   
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LR IL-1b, IL-6 8 ALGA0046899 20831553 G/A 26,30 0.03/3.16 CHR PLINK, 
BIMBAM 73   

LR MCH 8 ASGA0038765 39341631 T/C 84,40 0.02/3.09 CHR PLINK, 
BIMBAM 74   

LW TNF 9 ALGA0056053 138782132 T/C 36,50 0.001/3.4
3 CHR PLINK, 

BIMBAM 75   

LW TNF 9 ASGA0097568 138517855 T/C 79,30 0.001/4.1
4 CHR PLINK, 

BIMBAM 75   

LW BAS 10 ALGA0057018 10046457 A/C 79,60 0,05 CHR PLINK 76 MARK1, C1orf115, MARC2, HLX 
LW BAS 10 ASGA0046469 10399957 A/C 6,60 0,05 CHR PLINK 76   
LR PLT 10 ALGA0057208 13092434 C/G 32,40 0,03 CHR PLINK 77   
LW IFN 10 ALGA0057334 14504374 G/A 52,90 0,03 CHR PLINK 78   

LW IL-10, IL-
1b 10 ASGA0085873 14348970 T/C 34,20 0.02/3.02 CHR PLINK, 

BIMBAM 78   

LW PLT 10 MARC0008318 16846881 C/T 46,30 0,04 CHR PLINK 79 
ZBTB18, ADSS, CATSPERE, DESI2, COX20, 
HNRNPU, EFCAB2,  
KIF26B 

LW IFN 10 ALGA0057529 17731595 T/C 40,50 0,04 CHR PLINK 79   

LR BAS 10 ASGA0046986 19572163 C/A 22,70 0,03 GEN PLINK 80 
CCDC185, CAPN8, CAPN2, TP53BP2, FBXO28, 
ASPM, ZBTB41,  
CRB1, DENND1B 

LR BAS 10 ALGA0057739 20062069 G/A 16,30 0,03 GEN PLINK 80   
LR BAS 10 ASGA0047018 20134916 G/A 63,30 0,01 CHR PLINK 80   
LR BAS 10 MARC0058358 20157046 C/T 13,70 0,01 CHR PLINK 80   
LR BAS 10 MARC0050841 20188434 G/A 63,40 0,01 CHR PLINK 80   
LR BAS 10 ALGA0106008 20444762 A/C 75,40 0,01 CHR PLINK 80   
LR BAS 10 H3GA0053667 20584936 C/T 73,00 0,04 GEN PLINK 81 DENND1B, C1orf53, LHX9, NEK7 
LR BAS 10 H3GA0052936 20795956 T/C 69,90 0,02 GEN PLINK 81   
LR BAS 10 ASGA0098001 20805520 C/T 30,10 0,02 GEN PLINK 81   
LR BAS 10 MARC0108793 21031390 T/C 0,00 0,04 GEN PLINK 81   
LR BAS 10 MARC0018828 21054756 G/A 6,20 0,04 GEN PLINK 81   
LR BAS 10 DRGA0010387 21726062 T/G 63,40 0,01 CHR PLINK 82 PTPRC 
LR BAS 10 ALGA0057837 22018259 T/C 98,60 0,01 CHR PLINK 82   
LR BAS 10 ASGA0047084 22210885 G/A 1,40 0,01 CHR PLINK 82   
LR PLT 10 H3GA0029613 22302588 G/T 45,80 0,03 CHR PLINK 82   
LR BAS 10 ASGA0083356 22817715 A/C 91,70 0,02 GEN PLINK 83 NR5A2 
LR IFN 10 ALGA0059049 47339095 G/A 13,80 0,02 CHR PLINK 84 FRMD4A, PRPF18 
LR WBC 10 H3GA0030245 47362497 C/A 67,40 0,03 CHR PLINK 84   
LR IFN 10 ALGA0059118 47607670 C/T 36,00 0,02 CHR PLINK 84   
LR IFN 10 H3GA0030271 47676308 G/T 36,00 0,02 CHR PLINK 84   
LR IFN 10 ALGA0103761 47805800 G/A 40,50 0,02 CHR PLINK 84   
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Breed Trait SSC SNP Position m/M 
allele MAF P-

value/BF 
Type of 

significance Method QTL Nearest gene within QTL 

LR IFN 10 MARC0063711 47808917 G/A 77,50 0,02 CHR PLINK 84   
LR IFN 10 MARC0018399 47902144 T/C 63,70 0,02 CHR PLINK 84   
LR IFN 10 ALGA0106385 48144674 A/G 69,80 0,05 CHR PLINK 84   
LR PLT 11 DRGA0011044 29520725 G/A 24,60 0,04 CHR PLINK 85   
LR PLT 11 ALGA0061774 31018065 A/G 24,60 0,04 CHR PLINK 86   
LR PLT 11 ALGA0061941 37838969 C/A 56,20 0,03 CHR PLINK 87   
LR PLT 11 MARC0063044 38170099 G/A 57,60 0,03 CHR PLINK 87   
LW IL-4, IL-6 12 MARC0051288 11986602 T/C 19,40 0,05 CHR PLINK 88 RGS9 
LW IL-4, IL-6 12 ALGA0113815 12017916 G/A 11,60 0,05 CHR PLINK 88   
LW PLT 12 ASGA0105124 43334485 A/G 48,70 0,05 CHR PLINK 89   
LW RBC 12 ALGA0066876 50111768 T/C 79,00 0,05 CHR PLINK 90  ZZEF1 
LW RBC 12 ALGA0066881 50146135 A/G 79,00 0,05 CHR PLINK 90   
LR MCH 12 H3GA0035045 59136124 T/G 63,20 0,04 CHR PLINK 91 TRPV2 
LR PLT 13 CASI0007872 80594858 G/A 13,20 0,04 CHR PLINK 92   
LR IL-4 13 MARC0096953 159404532 C/T 0,00 0,06 CHR PLINK 92   
LR BAS 13 ALGA0073579 192910051 T/C 10,50 0,02 GEN PLINK 93 GRIK1 
LW IL-6 13 MARC0058120 199890469 T/C 92,10 0,04 CHR PLINK 94 DOP1B 
LR HMT 14 ASGA0063672 57514155 T/C 89,30 0,04 CHR PLINK 95   

LR HMG, 
HMT 14 H3GA0040407 57739629 C/T 26,80 0,02 CHR PLINK 96   

LR HMG, 
HMT 14 ALGA0077929 57765084 A/G 26,60 0,02 CHR PLINK 96   

LR HMT 14 ALGA0078039 59298541 C/T 51,40 0,05 CHR PLINK 97   

LR HMG, 
HMT 14 ALGA0078088 59646142 C/T 30,80 0,01 CHR PLINK 97   

LR HMG, 
HMT 14 ALGA0078075 59656180 A/C 30,90 0,01 CHR PLINK 97   

LR HMG, 
HMT 14 ALGA0106769 59712299 A/G 11,30 0,04 CHR PLINK 97   

LR HMG, 
HMT 14 MARC0004519 59803997 G/A 65,30 0,01 CHR PLINK 97   

LR HMG, 
HMT 14 ALGA0078091 59831072 T/C 71,40 0,01 CHR PLINK 97   

LR HMG, 
HMT 14 ASGA0063815 59277912 C/T 30,40 0.01/3.07 CHR PLINK, 

BIMBAM 97   

LR HMG, 
HMT 14 MARC0013023 59263540 C/T 12,60 0.01/3.07 CHR PLINK, 

BIMBAM 97 TRIM67, FAM89A, ARV1, TTC13, C1orf198, 
CAPN9, AGT, COG2 

LR IL-4, IL-10 14 ASGA0066844 126901849 T/C 35,70 0.04/3.49 CHR PLINK, 
BIMBAM 98 HSPA12A 

LR IL-4 14 M1GA0019225 126921868 C/T 33,70 0.04/3.09 CHR PLINK, 
BIMBAM 98   
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Breed Trait SSC SNP Position m/M 
allele MAF P-

value/BF 
Type of 

significance Method QTL Nearest gene within QTL 

LW RBC 15 ALGA0085557 55981133 G/A 94,30 0,03 CHR PLINK 99   
LR IL-8 15 INRA0049820 84421614 T/C 95,80 0,02 CHR PLINK 100   
LR IL-8 15 INRA0049822 93936954 A/G 4,30 0,02 CHR PLINK 101 COL5A2 
LR IL-8 15 DRGA0017581 102403412 T/C 63,20 0,03 CHR PLINK 102 U6 
LR IL-8 15 INRA0049968 102936048 G/A 12,70 0,03 CHR PLINK 102   
LR IL-8 15 ALGA0086618 107604568 T/C 14,50 0,01 CHR PLINK 103 PARD3B 
LR IL-8 15 DRGA0015341 107753847 G/A 83,50 0,02 CHR PLINK 103   
LR IL-8 15 MARC0089453 107887493 C/A 34,30 0,02 CHR PLINK 103   

LR IL-8 15 ALGA0086631 108024616 T/C 46,70 0.001/3.1
3 CHR PLINK, 

BIMBAM 104 PARD3B, U6  

LR IL-8 15 ALGA0108737 108335353 G/A 48,80 0.01/3.39 CHR PLINK, 
BIMBAM 104   

LR IL-8 15 ALGA0086637 108446984 G/A 57,80 0,04 CHR PLINK 104   
LR IL-8 15 DRGA0015357 108505209 A/G 53,00 0,02 CHR PLINK 104   
LR IL-8 15 MARC0089139 108677884 A/C 65,30 0,01 CHR PLINK 104   
LR IL-8 15 ASGA0070317 108794926 A/G 32,30 0,01 CHR PLINK 104   
LR IL-8 15 H3GA0044820 108848114 G/C 39,60 0,02 CHR PLINK 104   

LR IL-8 15 ASGA0102483 108311749 C/T 48,80 0.001/3.3
9 CHR PLINK, 

BIMBAM 104   

LR IL-8 15 ALGA0086678 109394965 G/A 50,70 0.001/3.2
8 CHR PLINK, 

BIMBAM 105   

LR IL-8 15 ALGA0086703 109971469 G/A 60,00 0.001/3.0
9 CHR PLINK, 

BIMBAM 105   

LR IL-8 15 ASGA0093834 109215027 G/A 14,30 0,02 CHR PLINK 105 
INO80D, NDUFS1, EEF1B2, SNORD51, 
SNORA41, GPR1, ZDBF2, 
 ADAM23, FAM237A, DYTN 

LR IL-8 15 INRA0050045 112324352 C/A 45,60 0,04 CHR PLINK 106 MAP2, UNC80 
LR MON 15 ALGA0086800 112624977 G/A 90,10 0,02 CHR PLINK 106   

LR IL-8 15 ALGA0086892 116134508 A/C 68,80 0.001/3.8
5 CHR PLINK, 

BIMBAM 107   

LR IL-8 15 ASGA0097364 115687234 T/C 78,60 0,02 CHR PLINK 107 SPAG16 
LR IL-8 15 ASGA0070437 115906733 C/T 28,50 0,02 CHR PLINK 107   
LR IL-8 15 ASGA0070443 115987500 T/C 33,40 0,03 CHR PLINK 107   
LR IL-8 15 MARC0034868 116018447 T/C 66,60 0,03 CHR PLINK 107   
LR IL-8 15 ALGA0086890 116078414 T/C 78,60 0,02 CHR PLINK 107   
LR IL-8 15 H3GA0044887 116385362 T/C 23,90 0,02 CHR PLINK 107   
LR IL-8 15 MARC0109222 116779658 C/A 0,00 0,02 CHR PLINK 108 VWC2L 
LR IL-8 15 ASGA0100540 116787417 T/C 22,00 0,02 CHR PLINK 108   
LR IL-8 15 ALGA0086910 116823946 G/A 78,00 0,02 CHR PLINK 108   

LR IL-8 15 ALGA0087116 120286163 A/G 31,90 0.001/4.4
7 CHR PLINK, 

BIMBAM 109   
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LR IL-8 15 ASGA0070586 120106066 T/C 68,20 0.001/5.8
4 CHR PLINK, 

BIMBAM 109   

LR IL-8 15 ASGA0070620 120351434 T/C 41,60 0.001/4.2
2 CHR PLINK, 

BIMBAM 109   

LR IL-8 15 H3GA0044814 119982356 A/G 53,70 0,02 CHR PLINK 109 TNS1, RUFY4, CXCR2, ARPC2, GPBAR1, 
AAMP, PNKD, TMBIM1 

LR IL-8 15 H3GA0044951 119984036 T/C 59,10 0,02 CHR PLINK 109   
LR IL-8 15 ASGA0070560 119995203 T/C 40,00 0,02 CHR PLINK 109   
LR IL-8 15 ASGA0070582 120083397 G/A 59,80 0,02 CHR PLINK 109   
LR IL-8 15 ALGA0087090 120139024 T/C 87,80 0,01 CHR PLINK 109   

LR IL-8 15 M1GA0020457 121398466 C/A 30,00 0,02 CHR PLINK 110 
DNPEP, ssc-mir-4334, DES, SPEGNB, GMPPA, 
ASIC4, CHPF,  
TMEM198, OBSL1 

LR IL-8 15 ASGA0083683 121570012 G/A 56,30 0,02 CHR PLINK 110   
LR IL-8 15 ALGA0110389 121570230 A/G 43,60 0,02 CHR PLINK 110   
LR IL-8 15 ASGA0070855 122524508 T/C 57,50 0,03 CHR PLINK 111 EPHA4 
LR IL-8 15 ALGA0087356 122895848 C/A 43,80 0,01 CHR PLINK 111   
LR IL-8 15 ALGA0087350 122979514 C/T 15,40 0,04 CHR PLINK 111   
LR IL-8 15 MARC0114457 123052286 T/C 0,00 0,02 CHR PLINK 111   
LR IL-8 15 DRGA0015530 123132577 T/C 60,00 0,03 CHR PLINK 111   
LR IL-8 15 ALGA0087340 123144118 C/T 23,10 0,03 CHR PLINK 111   
LR IL-8 15 ASGA0070822 123171616 C/T 10,90 0,02 CHR PLINK 111   
LR IL-8 15 ALGA0087328 123241971 A/G 68,10 0,02 CHR PLINK 111   
LR IL-8 15 MARC0070811 123293141 T/C 68,10 0,02 CHR PLINK 111   
LR IL-8 15 MARC0028230 123311817 C/T 10,80 0,02 CHR PLINK 111   
LR IL-8 15 ALGA0087324 123363010 G/A 21,40 0,02 CHR PLINK 111   
LR IL-8 15 ALGA0087321 123392506 T/C 59,10 0,02 CHR PLINK 111   
LR IL-8 15 ALGA0100462 123671193 C/T 32,30 0,02 CHR PLINK 112 PAX3, SGPP2 
LR IL-8 15 ALGA0087297 123851318 T/G 40,20 0,02 CHR PLINK 112   
LR IL-8 15 ASGA0070779 124103554 C/T 55,70 0,03 CHR PLINK 112   
LR IL-8 15 ASGA0070769 124118055 C/T 40,80 0,04 CHR PLINK 112   
LR IL-8 15 M1GA0020474 124151048 T/C 59,30 0,04 CHR PLINK 112   
LR IL-8 15 H3GA0045081 124207280 G/A 40,80 0,04 CHR PLINK 112   
LR IL-8 15 ALGA0087267 124331577 T/C 63,10 0,02 CHR PLINK 112   
LR IL-8 15 H3GA0045073 124347713 G/T 35,60 0,02 CHR PLINK 112   

LR IL-8 15 ASGA0071003 126072246 T/C 37,00 0.001/3.5
7 CHR PLINK, 

BIMBAM 113   

LR IL-8 15 H3GA0045046 124686575 A/G 61,30 0,03 CHR PLINK 113 ACSL3, KCNE4, SCG2, AP1S3, WDFY1, 
MRPL44, SERPINE2 

LR IL-8 15 ASGA0101298 126013489 C/T 55,60 0,02 CHR PLINK 113   
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LW RBC 16 ALGA0089752 23580846 T/G 74,10 0,01 CHR PLINK 114 EGFLAM, LIFR, OSMR, RICTOR, U6, U4, 
FYB1 

LW RBC 16 DRGA0015975 24344082 T/C 53,10 0,00 CHR PLINK 114   
LW RBC 16 ALGA0089777 24362179 T/C 39,40 0,01 CHR PLINK 114   
LW RBC 16 ASGA0072751 25032947 C/T 82,10 0,00 CHR PLINK 115   
LW MCH 16 ALGA0090595 45164366 C/A 22,60 0,04 CHR PLINK 116 MAST4 
LW MCH 16 ALGA0090596 45178452 T/C 55,30 0,04 CHR PLINK 116   
LW MCH 16 DRGA0016198 45430274 T/C 30,30 0,04 CHR PLINK 116   
LW MCH 16 ALGA0090558 48020257 T/G 43,30 0,04 CHR PLINK 117   

LW MCH 16 ALGA0091962 73764474 A/C 42,10 0.001/3.0
8 CHR PLINK, 

BIMBAM 118   

LW MCH 16 MARC0075417 73485704 A/C 44,40 0,04 CHR PLINK 118 U6 
LW MCH 16 ALGA0091954 73703925 G/A 61,40 0,04 CHR PLINK 118   

LW 
RBC, 
HMG, 
HMT 

16 ASGA0074790 78019054 C/T 99,10 0,03 GEN PLINK 119   

LW 
RBC, 
HMG, 
HMT 

16 M1GA0021462 78037702 T/C 7,90 0,00 CHR PLINK 119   

LW BAS 17 ALGA0112929 106110 G/A 55,50 0,01 GEN PLINK 120   
LW IL-10, TNF 17 DRGA0016627 20677871 T/G 8,40 0,03 CHR PLINK 121   
LW IL-10, TNF 17 MARC0055684 20763022 A/C 89,70 0,03 CHR PLINK 121   
LW IL-10 17 ASGA0075780 22286059 C/T 37,00 0,01 CHR PLINK 122 TASP1 

LW IL-10, IL-
1b, TNF 17 ASGA0075903 26077336 C/T 81,10 0.01/3.23 CHR PLINK, 

BIMBAM 123   

LW IL-10 17 MARC0069703 25378015 C/T 74,30 0,01 CHR PLINK 123 PCSK2, BFSP1, DSTN, RRBP1 
LW IL-10 17 ASGA0075884 25454088 C/A 4,40 0,04 CHR PLINK 123   
LW IL-10 17 ASGA0075887 25830486 A/G 69,60 0,03 CHR PLINK 123   

LR PLT 17 ASGA0076045 28192131 C/T 8,80 0.001/3.1
1 CHR PLINK, 

BIMBAM 124 CFAP61 

LR PLT 17 MARC0093077 28351838 G/A 0,00 0.001/3.1
6 CHR PLINK, 

BIMBAM 124   

LR PLT 17 ASGA0076328 30803219 A/C 78,90 0,04 CHR PLINK 125 ACSS1 

LR PLT 17 ASGA0076514 33282761 C/T 95,70 0.001/3.3
2 CHR PLINK, 

BIMBAM 126   

LW TNF 17 M1GA0021900 32932811 A/G 51,60 0,03 CHR PLINK 126 
EBF4, IDH3B, NOP56, SNORD57, SNORD56, 
SNORD86, SNORD110,  
TMC2, SNRPB, TGM6, STK35, PDYN 

LW TNF 17 H3GA0048609 33080621 T/C 43,70 0,03 CHR PLINK 126   
LW TNF 17 MARC0018597 33099516 A/G 54,90 0,03 CHR PLINK 126   
LR PLT 17 M1GA0021930 33651909 A/C 72,60 0,01 CHR PLINK 126   
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LW BAS 18 DRGA0016945 25162286 G/A 16,60 0,02 CHR PLINK 127 PTPRZ1 
LW BAS 18 ALGA0097582 25200554 C/T 83,40 0,02 CHR PLINK 127   
LW BAS 18 ASGA0079343 25373224 C/T 17,00 0,02 CHR PLINK 127   
LR IL-8 18 H3GA0051155 50710948 T/C 7,20 0,01 CHR PLINK 128 DDX56, NPC1L1, NUDCD3, GCK, CAMK2B 
LR IL-8 18 M1GA0023403 50826524 G/A 95,50 0,06 CHR PLINK 128   
LR IL-8 18 ALGA0098768 50874905 A/C 16,00 0,06 CHR PLINK 128   

SSC=Sus scrofa chromosome, SNP=single nucleotide polymorphism, m/M allele=minor/major allele, MAF=minor allele frequency, QTL 
nr.=quantitative trait loci progressive number based on ±1Mbp distance from a significant SNP, LR=Landrace, LW=Large White, RBC=red blood 
cells, HMG=hemoglobin, HMT=hematocrit, MCV= mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular 
hemoglobin concentration, PLT=platelets, WBC=white blood cells, NEU=neutrophils, LYM=lymphocytes, MON=monocytes, EOS=eosinophils, 
BAS=basophils, HAP=haptoglobin, IFN-γ= interferon-γ, IL=interleukin, TNF-α= tumor necrosis factor-α. 



Appendix 

143 

Table S 10: Significant associated genetic markers identified with multivariate methods (continued) 

Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW IL4 IL10 IL1b IL6, L6 IFN IL10 IL1b 1 MARC0070292 2139822 C/A 43,70 3,17 GEN mvBIMBA
M 1  

LR HMT HMG MCHC 1 MARC0008402 3478464 G/T 17,00 0,01 CHR CCA 2  

LR HMT HMG MCHC 1 ALGA0000682 7402285 A/G 87,30 0,01 CHR CCA 3 

IGF2R, MAS1, 

PNLDC, MRPL18, 

TCP1, SNORA29, 

ACAT2, 

SNORA20, SOD2, 

FNDC1, TAGAP, 

RSPH3 

LW RBC HMG HMT MCV MCH MCHC 1 ALGA0000778 8362294 G/A 23,10 0,05 CHR CCA 3  

LW RBC HMG HMT MCV MCH MCHC 1 ALGA0000795 8724875 A/G 74,10 0,05 CHR CCA 4 TULP4  

LW RBC HMG HMT MCV MCH MCHC 1 ASGA0000892 8739103 T/C 25,90 0,05 CHR CCA 4  

LW RBC HMG HMT MCV MCH MCHC 1 ALGA0000837 8810463 T/G 25,80 0,05 CHR CCA 5 

TULP4 , SERAC1, 

SYNJ2, SNX9, 

ZDHHC14, 

TMEM242 

LW RBC HMG HMT MCV MCH MCHC 1 ASGA0000925 8896901 T/C 25,90 0,05 CHR CCA 5  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMG MCHC 
1 ALGA0106880 9725288 A/G 26,00 

0.023/3.

27 
GEN 

CCA, 

mvBIMBA

M 

5  

LW IFN IL12 IL8 TNF 1 ASGA0001122 12337822 A/G 46,30 0,01 CHR PCA 6 CNKSR3 

LW IL4 IL10 IL1b IL6 1 H3GA0002135 78746469 G/A 12,30 3,16 GEN 
mvBIMBA

M 
7  
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m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR WBC NEU LYM MON 1 ASGA0004864 
14801378

8 
G/A 70,70 0,05 CHR PCA 8 ZNF516 

LR WBC NEU LYM MON 1 H3GA0003011 
14845220

3 
A/G 87,30 0,05 CHR PCA 8  

LR WBC NEU LYM MON 1 ALGA0006425 
14926164

6 
A/G 90,20 0,05 CHR PCA 9 

ZNF407, CNDP1, 

CNDP2 

LR WBC NEU LYM MON 1 ALGA0006427 
14928624

8 
A/G 90,20 0,05 CHR PCA 9  

LR WBC NEU LYM MON 1 ASGA0004896 
14957391

6 
T/C 90,20 0,05 CHR PCA 9  

LR WBC NEU LYM MON 1 ALGA0006599 
15966030

3 
G/A 45,70 0,05 CHR PCA 10 CDH20 

LR WBC NEU LYM MON 1 ALGA0006623 
16034718

8 
T/C 37,60 0,05 CHR PCA 10  

LW RBC HMG HMT MCV MCH MCHC 1 ASGA0006456 
24318293

5 
T/C 6,60 0,01 GEN CCA 11 TMEM246 

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC,  

PLT RBC WBC 

1 ASGA0006490 
24518694

4 
G/A 71,20 0,05 CHR CCA 12 

SMC2, OR13C8, 

NIPSNAP3A, 

ABCA1 

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC, 

 PLT RBC WBC 

1 DRGA0002258 
24524335

0 
T/C 28,80 0,05 CHR CCA 12  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC,  

PLT RBC WBC 

1 ASGA0006492 
24533272

4 
G/A 71,20 0,05 CHR CCA 12  

LW HMT HMG MCHC 1 DIAS0000064 
24556498

8 
T/C 26,20 0,02 CHR CCA 12  
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BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW RBC HMG HMT MCV MCH MCHC 1 DIAS0000004 
24618546

1 
T/C 8,40 0,03 GEN CCA 12  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC,  

PLT RBC WBC 

1 ALGA0008960 
24705172

5 
T/C 27,20 0,03 GEN CCA 13  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC, 

 PLT RBC WBC 

1 MARC0053473 
24763079

8 
G/A 20,30 0,05 CHR CCA 14  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC,  

PLT RBC WBC 

1 ALGA0008971 
24768813

9 
G/A 14,40 0,05 CHR CCA 14  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC,  

PLT RBC WBC 

1 ALGA0008972 
24772138

2 
T/C 84,40 0,05 CHR CCA 14  

LW RBC HMG HMT 1 ASGA0008077 
27096882

5 
G/A 1,20 0,05 CHR PCA 15 

 LAMC3, AIF1L, 

NUP214, PLPP7, 

FAM78A 

LW RBC HMG HMT 1 H3GA0056709 
27123966

5 
T/C 95,30 0,05 CHR PCA 15  

LW RBC HMG HMT 1 MARC0039390 
27125144

0 
G/A 13,30 0,05 CHR PCA 15  

LW RBC HMG HMT MCV MCH MCHC 2 H3GA0053137 9252507 C/T 39,70 0,02 CHR CCA 16  

LW IL4 IL10 IL1b IL6 2 H3GA0006173 17462745 T/C 98,00 4,06 GEN 
mvBIMBA

M 
17 TP53I11, TSPAN18 

LR HMT HMG MCHC 2 ALGA0122588 17672685 G/A 11,70 0,00 GEN CCA 17  

LR HMT HMG MCHC 2 H3GA0006190 17683291 A/G 88,20 0,00 GEN CCA 17  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
2 DRGA0002793 21669969 A/G 87,10 0,04 GEN CCA 18  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
2 ASGA0101016 21751485 C/T 86,90 0,01 CHR CCA 18  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMG MCH 
2 ALGA0012559 22792581 G/A 86,40 0,01 CHR CCA 19  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0012570 22989364 T/G 90,00 0,01 CHR CCA 19  

LW RBC HMG HMT MCV MCH MCHC 2 H3GA0006308 23073900 G/A 7,40 0,02 CHR CCA 19  

LR WBC HMT EOS HAP IL8 2 ALGA0013060 37186143 C/T 4,10 0,03 CHR 
CCA, 

TATES 
20 ANO5, U6, NELL1 

LR WBC HMT EOS HAP IL8 2 DRGA0002935 37202269 A/G 95,90 0,03 CHR 
CCA, 

TATES 
20  

LR WBC HMT EOS HAP IL8 2 ALGA0013078 37762734 G/T 4,10 0,03 CHR 
CCA, 

TATES 
20  

LR WBC HMT EOS HAP IL8 2 ALGA0013104 37945462 C/T 4,10 0,03 CHR 
CCA, 

TATES 
20  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0025931 82861588 G/A 28,50 0,02 CHR CCA 21 ARHGEF28 

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010629 84881427 T/C 64,10 0,02 CHR CCA 22 

SV2C, IQGAP2, 

F2RL2, F2R, 

F2RL1, S100Z 

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010636 84975794 G/A 47,30 0,05 CHR CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 H3GA0006974 85003252 T/G 68,20 0,05 CHR CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014115 85026066 T/C 52,70 0,05 CHR CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010644 85053423 G/A 32,30 0,04 GEN CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014120 85137614 G/A 33,40 
0.001/3.

24 
GEN 

CCA, 

mvBIMBA

M 

22  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW RBC HMG HMT MCV MCH MCHC 2 H3GA0006975 85151135 T/C 57,70 0,01 GEN CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0064603 85463127 C/T 39,90 0,03 GEN CCA 22  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
2 ASGA0105637 85559227 A/G 66,20 0,00 GEN CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010665 85664532 A/G 52,00 0,03 GEN CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 H3GA0006999 85759107 A/G 44,30 0,03 CHR CCA 22  

LW RBC HMG HMT MCV MCH MCHC 2 DRGA0003080 85772887 C/T 41,30 
0.001/3.

16 
GEN 

CCA, 

mvBIMBA

M 

22  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0104997 86320678 T/C 54,80 0,03 GEN CCA 23 

WDR41, OTP, 

TBCA, AP3B1, 

SCAMP1, LHFPL2,  

ssc-mir-10384-2 

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014192 86505377 T/C 41,90 0,03 CHR CCA 23  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014189 86542827 A/G 42,70 0,03 CHR CCA 23  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010704 86556317 C/T 48,40 0,03 GEN CCA 23  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
2 ASGA0101845 86593472 G/A 38,20 

0.001/3.

27 
GEN 

CCA, 

mvBIMBA

M 

23  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010722 86799398 G/A 32,30 0,05 GEN CCA 23  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014199 86842615 A/C 56,20 0,03 GEN CCA 23  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014200 86869012 T/C 55,80 0,03 GEN CCA 23  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
2 ALGA0014210 86926962 C/T 24,80 

0.001/3.

39 
GEN 

CCA, 

mvBIMBA

M 

23  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014211 86998119 G/T 56,00 0,03 GEN CCA 23  
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m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014214 87021610 G/A 40,40 
0.001/3.

16 
GEN 

CCA, 

mvBIMBA

M 

23  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010734 87247735 T/C 54,70 0,05 GEN CCA 23  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014235 87337977 A/G 65,10 0,02 GEN CCA 23  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014249 87434796 T/C 59,90 0,01 CHR CCA 23  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
2 ASGA0010750 87530974 C/T 24,90 

0.001/3.

39 
GEN 

CCA, 

mvBIMBA

M 

24 
ARSB, DMGDH, 

BHMT 

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010766 87596607 T/C 51,80 0,05 CHR CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010767 87610569 G/A 48,10 0,05 CHR CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014269 87662401 C/T 41,70 0,05 GEN CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0085122 87708844 A/G 62,90 0,03 GEN CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010772 87745745 T/C 50,50 0,02 GEN CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0055537 87768647 C/T 47,60 0,02 GEN CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0010776 87798540 G/T 39,90 0,01 CHR CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0014272 87888457 A/G 44,10 0,05 GEN CCA 24  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0097255 
11909879

8 
G/A 48,60 0,05 CHR CCA 25  

LR BAS MON 2 ALGA0102645 
12072860

2 
G/T 38,40 0,03 GEN CCA 26  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0085402 
12968498

2 
G/A 9,40 0,03 CHR CCA 27 

ALDH7A1, PHAX, 

TEX43, LMNB1, 

MARCH3, PRRC1 

LR 
HMG MCHC IL10, HMT HMG 

MCHC 
2 DIAS0002725 

12969547

6 
G/A 80,50 0,04 GEN CCA 27  
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m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 
HMG MCHC IL10, HMT HMG 

MCHC 
2 DIAS0003483 

12972351

6 
T/C 10,30 0,02 GEN CCA 27  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0015941 
13046091

5 
T/C 25,80 0,01 CHR CCA 27  

LW IFN IL8 TNF 2 ALGA0016514 
13858983

1 
A/G 5,80 0,02 CHR PCA 28  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0002516 
14835795

9 
A/G 70,50 0,05 CHR CCA 29 

PPP2R2B, 

STK32A, DPYSL3, 

JAKMIP2 

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0106143 
14844741

2 
G/A 51,30 0,05 CHR CCA 29  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0106373 
14849992

4 
G/A 48,70 0,05 CHR CCA 29  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0115025 
14853688

2 
T/C 48,60 0,05 CHR CCA 29  

LW RBC HMG HMT MCV MCH MCHC 2 H3GA0052415 
14855061

3 
T/C 51,30 0,05 CHR CCA 29  

LW RBC HMG HMT MCV MCH MCHC 2 ALGA0116650 
14861604

4 
A/G 20,80 0,05 CHR CCA 29  

LW RBC HMG HMT MCV MCH MCHC 2 ASGA0104922 
14863140

5 
C/T 49,60 0,05 CHR CCA 29  

LW RBC HMG HMT MCV MCH MCHC 2 MARC0011897 
14890519

8 
T/C 59,00 0,03 CHR CCA 29  

LR WBC NEU MON EOS BAS TNF 3 ASGA0093070 18058797 C/T 29,00 0,05 CHR CCA 30 MVP 

LR WBC NEU MON EOS BAS TNF 3 ASGA0084261 18059444 G/A 29,00 0,05 CHR CCA 30  
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m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR WBC NEU MON EOS BAS TNF 3 MARC0081878 22791691 A/G 43,10 0,05 GEN CCA 31 

COG7, SCNN1B, 

SCNN1G, USP31, 

HS3ST2, OTOA,  

METTL9, IGSF6 

LR WBC NEU MON EOS BAS TNF 3 ASGA0099130 23688143 A/G 33,90 0,03 CHR CCA 31  

LR WBC NEU MON EOS BAS TNF 3 ASGA0094403 23968274 T/C 88,00 0,05 CHR CCA 32 

SDR42E2, 

VWA3A, MOSMO, 

PDZD9, UQCRC2, 

CRYM, 

 ANKS4B, ZP2, 

TMEM159 

LR WBC NEU MON EOS BAS TNF 3 ASGA0013894 24070234 C/A 51,10 0,05 CHR CCA 32  

LR WBC NEU MON EOS BAS TNF 3 M1GA0004187 24176936 T/G 87,30 0,04 CHR CCA 32  

LR WBC NEU MON EOS BAS TNF 3 ALGA0123859 24582079 C/T 14,50 0,05 CHR CCA 32  

LR 
WBC NEU MON EOS BAS TNF, 

NEU RBC WBC MON BAS 
3 ASGA0094325 24963920 C/T 16,40 0,03 GEN CCA 32  

LR WBC NEU MON EOS BAS TNF 3 ASGA0013904 25072734 A/G 70,60 0,05 CHR CCA 33 

LYRM1, 

DCUN1D3, 

REXO5, ERI2, 

ACSM3, 

THUMPD1, 

 ACSM4, ACSM5, 

PDILT, UMOD, 

GP2, GPR139 

            

            

            



Appendix 

151 
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m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 
WBC NEU MON EOS BAS TNF, 

NEU RBC WBC MON BAS 
3 ASGA0013908 25111534 C/A 20,00 

0.001/3.

1 
GEN 

CCA, 

mvBIMBA

M 

33  

LR WBC NEU MON EOS BAS TNF 3 ALGA0102450 25723257 C/A 62,30 0,04 GEN CCA 33  

LW 
BAS WBC NEU, LYM NEU MON 

EOS BAS  
3 ASGA0014250 35404289 G/T 76,50 4,51 GEN 

mvBIMBA

M 
34 RBFOX1 

LR WBC HMT EOS HAP IL8 3 ALGA0019692 70967762 G/A 4,90 0,03 CHR CCA 35  

LR WBC HMT EOS HAP IL8 3 ALGA0123028 71124411 C/T 4,90 0,03 CHR CCA 35  

LR WBC HMT EOS HAP IL8 3 MARC0055616 71462992 G/A 4,90 0,03 CHR CCA 35  

LR WBC HMT EOS HAP IL8 3 ASGA0015118 72651493 C/T 90,60 0,02 CHR CCA 36 

ANXA4, AAK1, 

NFU1, GFPT1, U6, 

ANTXR1 

LR WBC HMT EOS HAP IL8 3 MARC0001946 72973452 A/G 95,30 0,02 CHR CCA 36  

LR WBC HMT EOS HAP IL8 3 MARC0021343 73260048 T/C 95,20 0,02 CHR CCA 36  

LR BAS MON 3 MARC0006534 
11271366

3 
T/G 78,90 0,05 CHR CCA 37 HADHB 

LR 
EOS PLT, WBC HMT EOS HAP IL8, 

WBC NEU MON EOS BAS TNF 
3 ASGA0016494 

12113918

1 
G/A 30,70 4,63 GEN 

mvBIMBA

M 
38  

LR RBC HMG HMT MCV MCH 4 ALGA0023253 12432764 G/A 91,60 0,04 CHR CCA 39  

LR IFN IL12 IL8 4 ALGA0023430 14382005 A/G 65,60 0,06 CHR PCA 40 
NSMCE2, 

WASHC5 

LR IFN IL12 IL8 4 ASGA0018536 14601654 G/A 64,20 0,03 CHR PCA 40  

LW NEU LYM 4 DBWU0000703 36228000 C/T 55,70 0,02 CHR PCA 41  

LR IL6 IL10 IL1b 4 H3GA0012747 56888492 C/T 23,50 0,05 CHR CCA 42  

LR IL6 IL10 IL1b 4 MARC0096487 60396561 G/A 0,00 0,01 CHR CCA 43  

LR IL6 IL10 IL1b 4 ALGA0025441 63422287 G/T 38,60 0,01 CHR CCA 44 TRPA1 

LR IL6 IL10 IL1b 4 H3GA0012835 63533485 G/A/T 36,10 0,01 CHR CCA 44  
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m/M 
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MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL6 IL10 IL1b 4 MARC0063844 63563088 G/T 36,30 0,01 CHR CCA 44  

LR RBC HMG HMT MCV MCH 4 INRA0015168 79694780 T/C 8,60 0,06 GEN CCA 45 PRKDC 

LR RBC HMG HMT MCV MCH 4 H3GA0013209 81279399 A/G 67,90 0,01 CHR CCA 46 SELL 

LR RBC HMG HMT MCV MCH 4 ASGA0020483 81301454 A/C 62,90 0,01 CHR CCA 46  

LR RBC HMG HMT MCV MCH 4 ASGA0020484 81321340 T/C 62,90 0,01 CHR CCA 46  

LR RBC HMG HMT MCV MCH 4 ALGA0026246 82530260 T/G 48,80 0,01 CHR CCA 47  

LR RBC HMG HMT MCV MCH 4 ALGA0026434 86347263 G/A 97,10 0,06 GEN CCA 48  

LR RBC HMG HMT MCV MCH 4 ALGA0026437 86379017 G/A 1,60 0,06 GEN CCA 48  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
4 ALGA0026453 87048942 A/C 71,00 0,00 GEN CCA 48  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
4 ALGA0027586 

10387635

3 
A/G 72,50 0,05 CHR CCA 49 

CD2, IGSF3, CD58, 

ATP1A1 

LW 

RBC HMG HMT MCV MCH MCHC, 

HMG MCHC, WBC RBC HAP IL1b, 

PLT RBC WBC 

4 ASGA0021646 
10437311

5 
C/T 79,20 3,38 GEN 

mvBIMBA

M 
49  

LR NEU RBC WBC MON BAS 4 H3GA0014300 
11253490

3 
G/A 35,50 0,04 CHR CCA 50 NTNG1, PRMT6 

LR NEU RBC WBC MON BAS 4 ASGA0022296 
11263543

0 
C/T 40,40 0,04 CHR CCA 50  

LR NEU RBC WBC MON BAS 4 ASGA0022298 
11266712

1 
C/T 25,80 0,04 CHR CCA 50  

LR NEU RBC WBC MON BAS 4 DRGA0005123 
11268624

5 
G/A 20,90 0,05 GEN CCA 50  

LR NEU RBC WBC MON BAS 4 DRGA0005125 
11270819

1 
C/T 43,60 0,04 CHR CCA 50  

LR 
WBC NEU MON EOS BAS TNF, 

NEU RBC WBC MON BAS 
4 H3GA0014305 

11285011

7 
A/G 34,30 0,05 GEN CCA 50  
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MAF 
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BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR NEU RBC WBC MON BAS 4 ASGA0022330 
11300608

0 
C/T 51,30 0,04 CHR CCA 50  

LR NEU RBC WBC MON BAS 4 ALGA0028362 
11302462

0 
T/C 48,70 0,04 CHR CCA 50  

LR NEU RBC WBC MON BAS 4 DRGA0005145 
11305235

9 
G/A 48,60 0,04 CHR CCA 50  

LR NEU RBC WBC MON BAS 4 ASGA0087092 
11307123

6 
A/G 52,00 0,04 CHR CCA 50  

LR RBC HMG HMT MCV MCH 4 ALGA0028434 
11401661

3 
T/C 40,80 0,03 CHR CCA 51  

LR HMT HMG MCHC 4 M1GA0006536 
12203714

1 
A/C 38,90 0,02 CHR CCA 52  

LR HMT HMG MCHC 4 ASGA0090553 
12282899

7 
T/G 17,00 0,04 CHR CCA 53  F3 

LR RBC HMG HMT MCV MCH 5 H3GA0015293 6978152 C/T 1,50 0,04 CHR CCA 54 CSDC2 

LW HMG MCH 5 ALGA0030157 8854690 A/G 74,90 0,04 CHR CCA 55  

LR RBC HMG HMT MCV MCH 5 ASGA0024572 13266811 T/C 45,90 0,04 CHR CCA 56 

CRY1, MTERF2, 

TMEM263, RIC8B, 

POLR3B, POLR3B 

LR RBC HMG HMT MCV MCH 5 H3GA0015743 13586949 T/C 77,50 0,04 CHR CCA 56  

LR RBC HMG HMT MCV MCH 5 MARC0091257 13633289 T/C 0,00 0,04 CHR CCA 56  

LR RBC HMG HMT MCV MCH 5 ASGA0024585 13654097 C/T 45,70 0,04 CHR CCA 56  

LR RBC HMG HMT MCV MCH 5 ALGA0030680 13697150 C/T 48,30 0,06 CHR CCA 56  

LR RBC HMG HMT MCV MCH 5 ALGA0030691 13798075 T/C 48,30 0,06 CHR CCA 56  

LR HMT HMG MCHC 5 ALGA0030761 14608518 T/G 35,10 0,04 CHR CCA 57 
CCNT1, 

C5H12orf75  

LR HMT HMG MCHC 5 ALGA0030794 14788695 C/A 31,10 0,03 CHR CCA 57  
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BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 ALGA0106408 17162699 C/T 68,80 0,04 CHR 
CCA, 

TATES 
58 

SCN8A, ACVRL1, 

ACVR1B, GRASP, 

NR4A1, ATG101, 

 KRT80, KRT7 

LR HMT HMG MCHC 5 MARC0095571 17585540 G/A 0,00 0,06 CHR CCA 58  

LR HMT HMG MCHC 5 H3GA0016097 23400843 A/C 37,10 0,02 CHR CCA 59 LRIG3 

LR HMT HMG MCHC 5 ASGA0025128 23778757 A/G 46,70 0,02 CHR CCA 59  

LR HMT HMG MCHC 5 ASGA0025132 23816873 G/A 42,50 0,02 CHR CCA 59  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ASGA0025137 23933098 T/C 79,00 0,03 CHR CCA 59  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031314 24000573 G/T 21,00 0,03 CHR CCA 59  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ASGA0025140 24069910 T/G 79,10 0,03 CHR CCA 59  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031321 24135911 A/C 79,30 0,02 CHR CCA 59  

LR HMT HMG MCHC 5 INRA0018998 24393356 A/G 55,80 0,02 CHR CCA 59  

LR HMT HMG MCHC 5 INRA0019001 24702306 T/C 55,00 0,01 CHR CCA 60  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 DRGA0005609 29991703 T/G 84,10 0,06 CHR CCA 61 HMGA2 

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 DRGA0005613 30469491 T/G 84,10 0,06 CHR CCA 61  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ASGA0025326 31271737 A/C 22,10 0,06 CHR CCA 62 

U6, ssc-mir-9808, 

CAND1 

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0034323 31867380 A/G 88,60 0,06 CHR CCA 62  

LR HMT HMG MCHC 5 MARC0114715 32497165 A/C 0,00 0,01 CHR CCA 63 IL26, IL22 
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BF 
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significance 
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Nearest Gene 

within QTL 

LR HMT HMG MCHC 5 ALGA0031657 32603961 C/T 19,30 0,01 CHR CCA 63  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031690 33946621 A/G 27,10 0,04 CHR CCA 64 

CCT2, BEST3, 

MYRFL, CNOT2, 

KCNMB4, PTPRB 

LR HMT HMG MCHC 5 ASGA0025416 34747588 T/C 80,60 0,04 CHR CCA 64  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC, NEU RBC WBC 

MON BAS 

5 H3GA0016244 34769398 A/G 70,20 0,01 CHR CCA 64  

LR LYM MON BAS 5 ALGA0031717 35361757 C/T 3,20 0,05 CHR PCA 64  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 MARC0021861 35776165 T/C 37,10 0,04 CHR CCA 65 

TMEM19, 

TBC1D15, TPH2, 

TRHDE 

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031731 36197319 A/C 25,50 0,04 CHR CCA 65  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031736 36314172 A/C 27,90 0,05 CHR CCA 65  

LR HMT HMG MCHC 5 CASI0009605 36346640 A/G 27,40 0,03 CHR CCA 65  

LR NEU RBC WBC MON BAS 5 ALGA0031740 36426114 C/A 15,70 0,06 CHR CCA 65  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ASGA0025454 36903934 C/T 35,90 0,02 CHR CCA 66  

LR RBC HMG HMT MCV MCH 5 DRGA0005711 37397149 T/C 29,80 0,04 CHR CCA 66  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 INRA0019263 38864890 T/C 69,80 0,04 CHR CCA 67  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 rs334622443 38872955 A/T NA 0,04 CHR CCA 67  
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Nearest Gene 

within QTL 

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 MARC0037200 38880761 T/C 69,80 0,04 CHR CCA 67  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 DRGA0005776 43220509 C/T 30,50 0,04 CHR CCA 68 U6 

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 DRGA0005773 43252599 A/G 75,30 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 MARC0113545 43293810 A/G 0,00 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031826 43320525 C/A 30,50 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ASGA0025493 43385239 G/A 30,50 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 H3GA0016271 43428743 C/A 30,50 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ASGA0025490 43480338 T/C 71,40 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 DRGA0005767 43556787 C/T 30,50 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 MARC0003440 43664480 T/C 69,50 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 INRA0019288 43688401 T/C 73,50 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 MARC0030421 43750584 C/T 28,60 0,04 CHR CCA 68  

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 ALGA0031834 43879295 G/A 30,60 0,04 CHR CCA 68  

LR HMT HMG MCHC 5 INRA0019312 47324666 T/C 71,80 0,06 CHR CCA 69 ITPR2 
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LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
5 H3GA0016294 47424047 A/G 38,30 0,04 CHR CCA 69  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 ALGA0031924 48896828 T/G 57,00 0,02 CHR 
CCA, 

TATES 
70 BCAT1 

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 MARC0001027 50094492 G/A 23,70 0,02 CHR 
CCA, 

TATES 
71 SOX5 

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 DRGA0005841 50243918 A/G 76,30 0,02 CHR 
CCA, 

TATES 
71  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 ALGA0032074 58601394 A/G 76,00 0,03 CHR 
CCA, 

TATES 
72 GRIN2B, EMP1 

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 H3GA0016359 58625915 C/T 25,10 0,03 CHR 
CCA, 

TATES 
72  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 H3GA0016379 58840179 G/A 23,90 0,03 CHR 
CCA, 

TATES 
72  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 ALGA0032146 59340760 A/C 82,80 0,03 CHR 
CCA, 

TATES 
72  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR RBC HMG HMT MCV MCH 5 ASGA0025778 61783155 A/G 23,10 0,04 CHR CCA 73 

TMEM52B, OLR1, 

CLEC7A, 

CLEC1A, 

CLEC12B, 

CLEC1B,  

CLEC12A, 

CLEC2B, CD69, 

KLRB1, A2M, 

KLRG1, M6PR, 

PHC1, A2ML1, 

RIMKLB 

LR RBC HMG HMT MCV MCH 5 ASGA0025791 61931507 A/G 76,80 0,04 CHR CCA 73  

LR RBC HMG HMT MCV MCH 5 DRGA0005951 61966384 G/A 76,80 0,04 CHR CCA 73  

LR RBC HMG HMT MCV MCH 5 ASGA0025794 62115185 T/G 23,40 0,04 CHR CCA 73  

LR RBC HMG HMT MCV MCH 5 DRGA0005956 62134657 T/G 80,00 0,04 CHR CCA 73  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 MARC0100616 62372560 C/T 0,00 0,04 CHR 
CCA, 

TATES 
73  

LR RBC HMG HMT MCV MCH 5 ALGA0032322 62455175 G/A 65,60 0,04 CHR CCA 73  

LR RBC HMG HMT MCV MCH 5 DIAS0000002 62481418 A/G 34,90 0,04 CHR CCA 73  

LR RBC HMG HMT MCV MCH 5 ASGA0025802 62601778 T/C 77,10 0,04 CHR CCA 73  

LR RBC HMG HMT MCV MCH 5 ALGA0032345 62737145 T/C/G 39,00 0,03 CHR CCA 73  

LR HMT HMG MCHC 5 ASGA0025827 63827447 G/A 84,70 0,02 CHR CCA 74 ENO2 

LR HMT HMG MCHC 5 ASGA0100486 66362258 T/G 71,70 0,05 CHR CCA 75  

LR NEU RBC WBC MON BAS 5 H3GA0055380 75848496 A/G 94,10 0,03 CHR CCA 76 
NELL2, DBX2, 

ANO6 

LR LYM MON BAS 5 M1GA0008026 76155408 C/T 85,20 0,02 CHR PCA 76  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 
NEU RBC WBC MON BAS, LYM 

MON BAS 
5 MARC0004505 76180231 G/A 94,30 0,05 CHR CCA, PCA 76  

LR NEU RBC WBC MON BAS 5 H3GA0016883 76215960 G/A 94,90 0,05 GEN CCA 76  

LR NEU RBC WBC MON BAS 5 MARC0002321 76276553 G/A 4,90 0,05 GEN CCA 76  

LW HMG MCH, PLT RBC WBC 5 ALGA0033064 77286779 T/C 98,20 0,04 CHR CCA 77 

SLC38A4, 

AMIGO2, 

PCED1B, RPAP3 

LW HMG MCH, PLT RBC WBC 5 ASGA0093314 77402409 A/G 8,50 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 ALGA0104452 77541676 A/G 7,50 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 MARC0090729 77680830 C/T 0,00 0,04 CHR CCA 77  

LR HMT HMG MCHC 5 MARC0012702 77884515 C/A 35,90 0,01 CHR CCA 77  

LR IL4 EOS IL10 IL1b TNF 5 ALGA0105937 77892336 A/G 89,40 0,01 GEN CCA 77  

LW HMG MCH, PLT RBC WBC 5 MARC0098250 77948633 G/A 0,00 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 ALGA0109048 77962305 T/C 6,20 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 ALGA0101247 77990021 A/G 2,90 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 ALGA0104065 77997876 C/T 97,10 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 MARC0009241 78029583 G/A 97,10 0,04 CHR CCA 77  

LW HMG MCH, PLT RBC WBC 5 ALGA0104516 78032160 G/T 97,10 0,04 CHR CCA 77  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMG MCHC, WBC RBC HAP IL1b, 

PLT RBC WBC 

5 MARC0013873 79815601 T/C 79,10 3,47 GEN 
mvBIMBA

M 
78 CHST11 

LR NEU RBC WBC MON BAS 5 ALGA0033413 88424483 T/C 91,90 0,02 CHR CCA 79  

LR IL12 IL8 5 MARC0080493 90118573 A/G 79,20 0,04 CHR PCA 80  

LW HMG MCH 5 ALGA0105659 92864624 T/C 40,70 0,05 CHR CCA 81  

LR RBC HMG HMT MCV MCH 5 ASGA0100714 94149478 C/T 17,40 0,04 CHR CCA 82 
TMTC3, CEP290, 

C12orf29, C12orf50 

LR RBC HMG HMT MCV MCH 5 ASGA0026904 94238901 A/C 82,60 0,04 CHR CCA 82  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR RBC HMG HMT MCV MCH 5 ALGA0033767 94367121 C/T 8,50 0,05 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 ALGA0033764 94457579 T/C 83,20 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 M1GA0008129 94490945 A/G 91,40 0,03 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 ALGA0033759 94518601 T/G 91,40 0,03 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 ALGA0033757 94541296 T/C 62,60 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 H3GA0017183 94558952 C/T 51,30 0,05 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 ALGA0033735 94705788 G/A 36,90 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 ASGA0026872 94785843 G/T 41,10 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 INRA0020482 94801310 C/T 41,70 0,05 CHR CCA 82  

LR WBC BAS 5 MARC0101043 94860354 A/G 0,00 0,05 GEN PCA 82  

LR RBC HMG HMT MCV MCH 5 ASGA0091315 95014018 A/C 81,70 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 ASGA0026863 95042109 T/C 81,00 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 DRGA0006240 95278246 A/G 81,00 0,04 CHR CCA 82  

LR RBC HMG HMT MCV MCH 5 H3GA0017164 95377091 G/A 20,10 0,04 CHR CCA 83  

LR RBC HMG HMT MCV MCH 5 ALGA0033673 95558910 A/C 54,40 0,04 CHR CCA 83  

LR RBC HMG HMT MCV MCH 5 ALGA0033670 95591504 T/G 54,30 0,04 CHR CCA 83  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 ASGA0101924 97259676 T/C 98,90 0,00 GEN 
CCA, 

TATES 
84  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10, 

 HMT HMG MCHC 

5 DRGA0006295 97412529 A/C 98,70 0,00 GEN 
CCA, 

TATES 
84  

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

5 H3GA0017216 97477241 C/T 1,10 0,00 GEN 
CCA, 

TATES 
84  

LR RBC HMG HMT MCV MCH 5 MARC0030237 99102014 T/G 23,10 0,06 CHR CCA 85 TMTC2 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR HMT HMG MCHC 5 ALGA0034135 
10184641

2 
A/G 15,00 0,05 CHR CCA 86  

LR IL6 IL10 IL1b 6 MARC0041561 16171435 C/T 80,90 0,03 CHR CCA 87  

LR IL6 IL10 IL1b 6 MARC0075761 16188799 G/A 80,90 0,03 CHR CCA 87  

LR IL4 EOS IL10 IL1b TNF 6 ASGA0104222 39838897 C/A 26,10 0,05 CHR CCA 88 URI1, ZNF536 

LR IL4 EOS IL10 IL1b TNF 6 MARC0005196 39859759 C/T 39,30 0,05 CHR CCA 88  

LR IL4 EOS IL10 IL1b TNF 6 MARC0113191 39937433 T/C 0,00 0,05 CHR CCA 88  

LR IL4 EOS IL10 IL1b TNF 6 ASGA0028105 40240336 C/A 43,50 0,05 CHR CCA 88  

LR IL4 EOS IL10 IL1b TNF 6 ASGA0097134 41279833 T/C 37,50 0,06 CHR CCA 88  

LR IL1b WBC EOS IL10 IL12 6 ALGA0100920 50604798 G/A 54,00 0,04 CHR CCA 89 

LYPD5, ZNF283, 

ZNF404, ZNF45, 

LOC110260999 

LR IL1b WBC EOS IL10 IL12 6 MARC0033200 50804198 C/T 61,90 0,04 CHR CCA 89  

LR IL6 IL10 IL1b 6 ASGA0085935 74701117 C/T 14,70 0,03 CHR CCA 90 CTRC, CELA2A 

LR IL6 IL10 IL1b 6 ASGA0100599 74701809 C/T 14,70 0,03 CHR CCA 90  

LR IL6 IL10 IL1b 6 M1GA0025029 78113081 T/C 11,40 0,03 CHR CCA 91 TMCO4 

LR IL6 IL10 IL1b 6 H3GA0053380 93420594 G/T 47,80 0,03 CHR CCA 92 

ZC3H12A, 

MEAF6, SNIP1, 

DNALI1, GNL2, 

RSPO1,  

C1orf109, CDCA8, 

EPHA10, 

MANEAL, YRDC, 

C1orf122, MTF1, 

INPP5B, SF3A3, 

FHL3, UTP11, 

POU3F1 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL6 IL10 IL1b 6 MARC0082470 93442952 T/C 47,90 0,06 CHR CCA 92  

LR IL6 IL10 IL1b 6 ASGA0028870 93958186 A/G 55,50 0,06 CHR CCA 92  

LR IL6 IL10 IL1b 6 ALGA0035971 94051380 C/T 62,30 0,06 CHR CCA 92  

LR IL6 IL10 IL1b 6 MARC0019060 94096694 T/C 72,40 0,03 CHR CCA 92  

LR IL6 IL10 IL1b 6 M1GA0008815 94712287 C/T 33,60 0,03 CHR CCA 93 

RRAGC, GJA9, 

RHBDL2, 

AKIRIN1, 

NDUFS5, U6, 

MACF1, 

 PABPC4, 

SNORA55, HEYL, 

NT5C1A, HPCAL4 

LR 

HMG MCHC IL10, IL1b WBC EOS 

IL10 IL12,  

IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b 

6 MARC0033580 95566980 C/T 45,50 0,02 GEN CCA 93  

LR IL6 IL10 IL1b 6 MARC0022542 96650040 T/G 59,80 0,03 CHR CCA 94 

CEP192, PTPN2, 

PSMG2, CEP76, 

SPIRE1, 

PRELID3A,  

AFG3L2, TUBB6, 

CIDEA, IMPA2, 

MPPE1, GNAL 

LR IL6 IL10 IL1b 6 M1GA0026030 96767590 T/C 59,80 0,03 CHR CCA 94  

LR IL6 IL10 IL1b 6 CASI0006620 96926928 C/T 31,00 0,06 CHR CCA 94  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 

IL1b WBC EOS IL10 IL12, IL4 EOS 

IL10 IL1b TNF,  

IL6 IL10 IL1b 

6 ASGA0091444 97104675 G/A 8,80 0,03 CHR CCA 94  

LR 

IL1b WBC EOS IL10 IL12, IL4 EOS 

IL10 IL1b TNF,  

IL6 IL10 IL1b 

6 MARC0032131 97343439 T/G 23,50 0,03 CHR CCA 94  

LR 

HMG MCHC IL10, IL1b WBC EOS 

IL10 IL12,  

IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b 

6 ALGA0036131 97620286 T/C 32,20 0,02 GEN CCA 94  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 ALGA0036189 99931515 G/A 72,60 0,03 CHR CCA 95 

PTPRM, U6, 

LRRC30, LAMA1, 

ARHGAP28 

LR IL1b WBC EOS IL10 IL12 6 ALGA0036191 99956687 T/C 94,30 0,02 CHR CCA 95  

LR IL1b WBC EOS IL10 IL12 6 CASI0005798 
10001831

6 
T/C 94,30 0,02 CHR CCA 95  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b,  
6 MARC0003203 

10017510

9 
G/A 27,90 0,03 CHR CCA 95  

LR IL1b WBC EOS IL10 IL12 6 ALGA0115176 
10020777

0 
C/T 1,40 0,02 CHR CCA 95  

LR IL1b WBC EOS IL10 IL12 6 ALGA0117017 
10029206

0 
A/G 92,70 0,02 CHR CCA 95  

LR IL1b WBC EOS IL10 IL12 6 MARC0021350 
10031104

0 
C/T 5,70 0,02 CHR CCA 95  

LR 
HMG MCHC IL10, IL1b WBC EOS 

IL10 IL12, IL6 IL10 IL1b 
6 H3GA0054139 

10070916

0 
T/C 87,00 0,05 GEN CCA 95  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 ASGA0029105 

10234092

7 
G/A 9,80 0,03 CHR CCA 96 DLGAP1, TGIF1 

LR 
IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b 
6 ALGA0036219 

10236262

5 
G/A 9,40 0,05 CHR CCA 96  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 ALGA0036233 

10246473

6 
T/C 98,60 0,03 CHR CCA 96  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 ALGA0036235 

10249556

1 
A/G 98,40 0,03 CHR CCA 96  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 H3GA0018606 

10264149

3 
C/T 10,10 0,03 CHR CCA 96  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 DRGA0006658 

10266493

0 
T/G 89,90 0,03 CHR CCA 96  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 ASGA0029117 

10270935

2 
T/G 89,90 0,03 CHR CCA 96  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
6 ALGA0036251 

10273239

3 
A/G 10,10 0,03 CHR CCA 96  

LR WBC BAS 6 ALGA0115459 
10333918

4 
A/G 99,00 0,00 GEN PCA 96  

LR 
IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b 
6 ASGA0097110 

10803346

9 
C/T 5,90 0,05 CHR CCA 97  

LR IL1b WBC EOS IL10 IL12 6 H3GA0018950 
14720592

1 
G/A 25,10 0,04 CHR CCA 98 AK4 

LR IL1b WBC EOS IL10 IL12 6 MARC0091155 
14988917

1 
C/T 0,00 0,03 CHR CCA 99 DOCK7 

            

            

            



Appendix 

165 

Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL4 EOS IL10 IL1b TNF 6 ALGA0115609 
15284667

7 
T/C 38,20 0,05 CHR CCA 100 FGGY 

LR 
IL1b WBC EOS IL10 IL12, IL4 EOS 

IL10 IL1b TNF 
6 ALGA0114316 

15294454

9 
C/T 41,10 0,04 CHR CCA 100  

LR HMT HMG MCHC 7 H3GA0020313 21444076 C/T 35,30 0,03 CHR CCA 101 

ssc-mir-7857, 

LOC110261671, 

LOC110261673,  

LOC100154071, 

LOC100621915 

LR HMT HMG MCHC 7 MARC0114063 21610238 G/A 0,00 0,03 CHR CCA 101  

LR HMT HMG MCHC 7 MARC0055565 22727959 G/A 41,40 0,05 CHR CCA 102 TRIM10 

LR IL1b WBC EOS IL10 IL12 7 DRGA0008079 
10534121

3 
T/C 15,30 0,06 CHR CCA 103  

LR IL1b WBC EOS IL10 IL12 7 ASGA0035841 
10539350

4 
C/T 15,70 0,06 CHR CCA 103  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
7 MARC0001297 

10899630

2 
T/C 76,60 0,06 CHR CCA 104  

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
7 MARC0057446 

10904737

4 
A/C 76,00 0,06 CHR CCA 104  

LR IL6 IL10 IL1b 7 ALGA0044543 
10906792

1 
T/C 70,40 0,01 CHR CCA 104  

LR IL6 IL10 IL1b 7 CASI0006750 
10910110

8 
T/C 82,20 0,01 CHR CCA 104  

LR IL6 IL10 IL1b 7 ALGA0044610 
10973390

1 
C/T 9,30 0,03 CHR CCA 105 GALC 

LR 
IL1b WBC EOS IL10 IL12, IL6 IL10 

IL1b 
7 MARC0067107 

11005772

7 
A/G 75,80 0,06 CHR CCA 105  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL6 IL10 IL1b 7 ALGA0044644 
11011387

6 
C/T 9,70 0,01 CHR CCA 105  

LR HMT HMG MCHC 7 rs706107533 
11517920

7 
C/T NA 0,03 CHR CCA 106  

LR IL4 EOS IL10 IL1b TNF 8 ALGA0046044 1186987 C/T 5,70 0,05 CHR CCA 107 POLN, HAUS3 

LW IL4 IL10 IL1b IL6 8 MARC0111479 4598871 T/G 0,00 0,03 CHR CCA 108 JAKMIP1 

LW IL4 IL10 IL1b IL6 8 ALGA0107038 4605432 T/C 36,80 0,02 CHR CCA 108  

LW IL4 IL10 IL1b IL6 8 ASGA0092577 4674424 G/A 76,30 0,02 CHR CCA 108  

LR  TNF IFN IL10 8 M1GA0011804 11782932 A/G 55,00 0,03 CHR CCA 109 LDB2 

LR IL4 EOS IL10 IL1b TNF 8 CASI0003674 13589586 C/A 7,00 0,02 CHR CCA 110  

LR IL4 EOS IL10 IL1b TNF 8 MARC0036889 13972046 A/G 75,50 0,02 CHR CCA 110  

LR IL4 EOS IL10 IL1b TNF 8 MARC0054361 14596289 T/C 74,10 0,02 CHR CCA 110  

LR 

IL4 EOS IL10 IL1b TNF, IL8 TNF,  

WBC NEU MON EOS BAS TNF, 

TNF IFN IL10 

8 ALGA0046861 20647847 C/T 1,30 0,01 GEN CCA 111  

LW LYM NEU MON EOS BAS 8 ALGA0046885 20770188 G/T 59,00 0,03 GEN CCA 111  

LR 

IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b, IL8 TNF,  

WBC NEU MON EOS BAS TNF, 

TNF IFN IL10  

8 ALGA0046899 20831553 G/A 26,30 0,02 CHR 
CCA, 

TATES 
111  

LR WBC NEU MON EOS BAS TNF 8 ASGA0101895 30740074 T/C 94,50 0,05 CHR CCA 112 UGDH 

LW RBC HMG HMT MCV MCH MCHC 8 ASGA0088957 35953783 A/G 17,70 0,03 CHR CCA 113  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW RBC HMG HMT MCV MCH MCHC 8 ALGA0105374 37495537 G/A 16,50 0,03 CHR CCA 114 

ATP10D, CORIN, 

U6, NFXL1, 

CNGA1, NIPAL1, 

TXK, TEC, 

SLAIN2, 

SLC10A4, ZAR1, 

FRYL 

LW RBC HMG HMT MCV MCH MCHC 8 MARC0045311 37967413 T/C 15,70 0,03 CHR CCA 114  

LW RBC HMG HMT MCV MCH MCHC 8 M1GA0011926 38425208 T/G 74,30 0,03 CHR CCA 114  

LW RBC HMG HMT MCV MCH MCHC 8 MARC0056555 39391675 C/T 5,00 0,03 CHR CCA 115  

LW RBC HMG HMT MCV MCH MCHC 8 ALGA0047813 43027473 A/C 99,20 0,03 CHR CCA 116 TLL1 

LW RBC HMG HMT MCV MCH MCHC 8 MARC0039159 44439766 C/T 79,00 0,03 CHR CCA 117  

LW LYM NEU MON EOS BAS 8 ASGA0040364 
13491192

5 
C/T 17,70 0,02 CHR CCA 118 

GPAT3, 

ABRAXAS1, 

MRPS18C, HELQ, 

HPSE, COQ2,  

LOC100524999, 

PLAC8, COPS4, 

LIN54, THAP9, 

SEC31A, SCD5, 

ssc-mir-9846, 

TMEM150C 

LW LYM NEU MON EOS BAS 8 ASGA0040417 
13524221

5 
G/A 23,10 0,04 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 ASGA0040427 
13527476

0 
C/T 20,60 0,02 CHR CCA 118  
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m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW LYM NEU MON EOS BAS 8 ALGA0050145 
13528553

2 
G/A 17,80 0,02 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 ALGA0115578 
13555052

3 
A/C 79,40 0,02 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 H3GA0054370 
13560496

3 
T/C 77,60 0,02 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 DRGA0017418 
13560734

8 
G/A 22,40 0,02 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 ALGA0109193 
13562939

9 
A/G 75,00 0,03 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 ASGA0082238 
13566598

1 
A/C 79,30 0,02 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 ASGA0105760 
13566871

2 
C/T 26,10 0,02 CHR CCA 118  

LW LYM NEU MON EOS BAS 8 MARC0065298 
13568915

2 
A/G 72,20 0,02 CHR CCA 118  

LW RBC HMG HMT MCV MCH MCHC 9 MARC0008298 71070843 G/A 14,10 0,05 GEN CCA 119 CDK14 

LW MON BAS 9 H3GA0027937 
10093959

2 
C/T 81,70 0,03 CHR PCA 120 MAGI2 

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF,  

NEU RBC WBC MON BAS 

10 ASGA0046986 19572163 G/A 22,70 0,01 GEN CCA 126  

LR IL8 TNF 15 ALGA0087090 
12013902

4 
T/C 87,80 0,05 CHR CCA 120  

LR IL8 TNF, WBC HMT EOS HAP IL8 15 ALGA0087116 
12028616

3 
T/C 31,90 0,01 GEN 

CCA, 

TATES 
120  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF,  

NEU RBC WBC MON BAS 

10 ALGA0057739 20062069 A/C 16,30 0,01 GEN CCA 127  

LW MON BAS 9 DRGA0009651 
10287822

7 
A/C 15,90 0,03 CHR PCA 121 CCDC146 

LR IL8 TNF 15 ALGA0087356 
12289584

8 
C/A 43,80 0,05 CHR CCA 121  

LR IL8 TNF 15 MARC0114457 
12305228

6 
G/A 0,00 0,06 CHR CCA 121  

LR IL8 TNF 15 ALGA0087328 
12324197

1 
T/C 68,10 0,06 CHR CCA 121  

LR IL8 TNF 15 MARC0070811 
12329314

1 
T/C 68,10 0,06 CHR CCA 121  

LW TNF MON IFN IL12 IL6 9 ASGA0097568 
13851785

5 
C/A 79,30 0,01 GEN TATES 122  

LR IL12 IL8 15 ASGA0070763 
12427618

7 
G/A 67,70 0,04 CHR PCA 122  

LW BAS WBC NEU 10 M1GA0013576 3267437 G/A 78,00 0,05 CHR CCA 123 BRINP3 

LR 
WBC NEU MON EOS BAS TNF,  

NEU RBC WBC MON BAS 
10 ASGA0047018 20134916 C/T 63,30 0,02 GEN CCA 127 

ZBTB41, CRB1, 

DENND1B, 

C1orf53, LHX9, 

NEK7 

LW BAS WBC NEU 10 ALGA0057018 10046457 G/A 79,60 0,05 CHR CCA 124 
MARK1, C1orf115, 

MARC2, HLX  

LW BAS WBC NEU 10 ASGA0046469 10399957 A/C 6,60 0,05 CHR CCA 124  

LW BAS WBC NEU 10 H3GA0029248 10680375 C/T 15,40 0,05 CHR CCA 124  

LW BAS WBC NEU 10 ALGA0057079 10721280 T/C 15,60 0,05 CHR CCA 124  
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LW BAS WBC NEU 10 MARC0010213 10784930 C/T 94,60 0,05 CHR CCA 124  

LR IL8 TNF 15 ALGA0088017 
13132555

7 
T/C 81,50 0,06 CHR CCA 124  

LW BAS WBC NEU 10 MARC0055782 13280955 G/A 94,50 0,05 CHR CCA 125  

LR HMT HMG MCHC 15 ASGA0084070 
13722113

6 
T/G 23,80 0,06 CHR CCA 125  

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF,  

NEU RBC WBC MON BAS 

10 MARC0058358 20157046 T/C 13,70 0,00 CHR CCA 127  

LW HMG MCH 16 ALGA0089752 23580846 G/A 74,10 0,04 CHR CCA 126 

EGFLAM, LIFR, 

OSMR, RICTOR, 

U6, U4, FYB1 

LR 
WBC NEU MON EOS BAS TNF,  

NEU RBC WBC MON BAS 
10 MARC0050841 20188434 A/C 63,40 0,02 GEN CCA 127  

LW HMG MCH, PLT RBC WBC 16 ALGA0089777 24362179 T/C 39,40 0,04 CHR CCA 126  

LR 
WBC NEU MON EOS BAS TNF,  

NEU RBC WBC MON BAS 
10 ALGA0106008 20444762 A/C 75,40 0,03 GEN CCA 127  

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF, 

 NEU RBC WBC MON BAS 

10 H3GA0053667 20584936 C/A 73,00 0,03 GEN CCA 127  

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF,  

NEU RBC WBC MON BAS 

10 H3GA0052936 20795956 A/G 69,90 0,01 GEN 
CCA, 

TATES 
127  

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF, 

 NEU RBC WBC MON BAS 

10 ASGA0098001 20805520 A/G 30,10 0,01 GEN 
CCA, 

TATES 
127  

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF, 

 NEU RBC WBC MON BAS 

10 MARC0108793 21031390 C/T 0,00 0,05 GEN CCA 127  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF, 

 NEU RBC WBC MON BAS 

10 MARC0018828 21054756 A/G 6,20 0,05 GEN CCA 127  

LR 

BAS MON, WBC NEU MON EOS 

BAS TNF,  

NEU RBC WBC MON BAS 

10 ASGA0083356 22817715 G/A 91,70 0,01 GEN 
CCA, 

TATES 
129 NR5A2 

LW IL4 IL10 IL1b IL6, IL6 IFN IL10 IL1b 11 ALGA0062985 63626204 C/T 95,70 4,07 GEN 
mvBIMBA

M 
143 DCT 

LW 
EOS MCV PLT WBC IL8, LYM NEU 

MON EOS BAS  
11 ALGA0108815 70247157 T/C 7,30 4,35 GEN 

mvBIMBA

M 
146 

ITGBL1, FGF14, 

TPP2, METTL21C, 

TEX30, POGLUT2 

LR 
IL4 EOS IL10 IL1b TNF, IFN IL12 

IL8 
12 ALGA0113815 12017916 T/C 11,60 0,01 CHR CCA, PCA 152 RGS9 

LR 
IL4 EOS IL10 IL1b TNF, IFN IL12 

IL8 
12 H3GA0033531 12973397 C/T 96,60 0,01 CHR CCA, PCA 153 

PRKCA, CACNG5, 

CACNG4, 

CACNG1, HELZ, 

U6,  

PSMD12, NOL11 

LR WBC NEU MON EOS BAS TNF 10 DRGA0010387 21726062 A/G 63,40 0,02 CHR CCA 128 PTPRC 

LR WBC NEU MON EOS BAS TNF 10 ALGA0057837 22018259 G/A 98,60 0,02 CHR CCA 128  

LR WBC NEU MON EOS BAS TNF 10 ASGA0047084 22210885 T/C 1,40 0,02 CHR CCA 128  

LR IL4 EOS IL10 IL1b TNF 16 ASGA0073693 60020102 T/G 2,40 0,01 GEN CCA 128  

LR 
IL4 EOS IL10 IL1b TNF, IFN IL12 

IL8 
12 H3GA0055422 13531783 G/T 4,10 0,01 CHR CCA, PCA 153  

LR IL4 EOS IL10 IL1b TNF 16 ALGA0091375 66889281 C/T 24,20 0,01 GEN CCA 129  

LR WBC BAS 10 ASGA0095530 33811026 G/A 79,50 0,05 GEN PCA 130 NDUFB6 

LR IL4 EOS IL10 IL1b TNF 16 MARC0081095 68806638 G/A 2,60 0,01 GEN CCA 130  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR WBC BAS 10 MARC0001381 36349905 A/G 68,50 0,05 GEN PCA 131  

LR IL4 EOS IL10 IL1b TNF, PC3Cyto 12 MARC0113018 13642774 T/C 0,00 0,01 CHR CCA 153  

LW RBC HMG HMT MCV MCH MCHC 16 ALGA0091954 73703925 A/C 61,40 0,04 CHR CCA 131  

LR 
IL4 EOS IL10 IL1b TNF, IFN IL12 

IL8 
12 ALGA0105006 13982775 C/T 3,20 0,01 CHR CCA, PCA 153  

LR NEU RBC WBC MON BAS 10 H3GA0030245 47362497 C/T 67,40 0,04 CHR CCA 132  

LR 
IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b, IL8 TNF 
12 ALGA0066702 45863925 A/G 94,90 0,04 CHR CCA 163 

EFCAB5, NSRP1, 

ssc-mir-423, 

SLC6A4, BLMH, 

TMIGD1, 

 CPD, GOSR1 

LR 
IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b, IL8 TNF 
12 DRGA0011783 45955884 T/C 5,10 0,04 CHR CCA 163  

LR IL6 IL10 IL1b 11 MARC0043055 2474595 A/G 90,80 0,02 CHR CCA 133  

LR 
IL4 EOS IL10 IL1b TNF, IL6 IL10 

IL1b, IL8 TNF 
12 ALGA0114806 46640334 T/G 9,50 0,04 CHR CCA 163  

LR IL6 IL10 IL1b 11 ALGA0060404 4665665 G/A 6,90 0,03 CHR CCA 134 USP12 

LR EOS PLT 17 ASGA0076045 28192131 A/G 8,80 0,02 CHR CCA 134 CFAP61 

LR EOS PLT 17 MARC0093077 28351838 G/A 0,00 0,02 CHR CCA 134  

LR IL6 IL10 IL1b 11 ALGA0060455 5431878 A/G 11,50 0,02 CHR CCA 135 FLT3, PAN3, FLT1 

LR IL6 IL10 IL1b 11 ASGA0049456 5563855 C/T 88,50 0,02 CHR CCA 135  

LR IL6 IL10 IL1b 11 ALGA0060475 5591824 A/G 8,10 0,02 CHR CCA 135  

LR IL6 IL10 IL1b 11 ALGA0060479 5673798 C/T 8,10 0,02 CHR CCA 135  

LR 
EOS PLT, WBC HMT EOS HAP IL8, 

WBC NEU MON EOS BAS TNF 
13 ALGA0072231 

14124784

2 
A/G 29,90 4,32 GEN 

mvBIMBA

M 
166 IGSF11 

LR IL6 IL10 IL1b 11 ALGA0060600 7781214 T/C 62,90 0,02 CHR CCA 136 
B3GLCT, RXFP2, 

FRY 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL6 IL10 IL1b 11 DRGA0010773 7803554 G/A 62,90 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 DRGA0017521 7841215 T/C 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 ALGA0060603 7917555 A/G 62,90 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 DRGA0010774 7946341 G/A 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 H3GA0031207 7959313 A/G 71,90 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 INRA0034855 7970578 G/A 71,90 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 H3GA0031210 8015295 C/T 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 ALGA0060606 8067254 A/G 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 ALGA0060607 8101824 G/A 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 ALGA0060610 8130087 A/C 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 MARC0033486 8150468 T/C 62,90 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 H3GA0031211 8164005 G/A 67,50 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 DRGA0010776 8254699 G/A 71,90 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 MARC0032659 8298480 A/C 28,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 MARC0058476 8322594 T/C 37,10 0,02 CHR CCA 136  

LR IL6 IL10 IL1b 11 ASGA0049620 8612176 G/A 26,70 0,02 CHR CCA 136  

LR EOS PLT 17 ASGA0076514 33282761 G/A 95,70 0,02 CHR CCA 136 STK35, PDYN 

LR EOS PLT 17 M1GA0021930 33651909 A/C 72,60 0,04 CHR CCA 136  

LR IL6 IL10 IL1b 11 H3GA0031293 10367680 T/C 69,80 0,02 CHR CCA 137 RFC3 

LR IL6 IL10 IL1b 11 MARC0011099 10387046 A/G 32,30 0,02 CHR CCA 137  

LR IL6 IL10 IL1b 11 ASGA0049736 10399072 G/A 73,70 0,02 CHR CCA 137  

LR IL6 IL10 IL1b 11 MARC0089033 10420321 C/A 87,90 0,02 CHR CCA 137  

LR IL6 IL10 IL1b 11 MARC0007430 10615611 T/A 19,20 0,02 CHR CCA 137  

LR 
HMG MCHC IL10, HMT HMG 

MCHC 
14 ALGA0075572 13776542 C/T 42,10 3,69 GEN 

mvBIMBA

M 
171 PRSS55 

LR IL6 IL10 IL1b 11 INRA0035360 13579315 G/A 26,30 0,02 CHR CCA 138  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 
EOS PLT, WBC HMT EOS HAP IL8,  

WBC NEU MON EOS BAS TNF 
15 ASGA0070226 

10059073

3 
T/C 30,80 5,87 GEN 

mvBIMBA

M 
183 CCDC150 

LR IL8 TNF, IL12 IL8 15 MARC0089139 
10867788

4 
T/A 65,30 0,05 CHR CCA, PCA 185 

PARD3B, NRP2, 

INO80D 

LR 
IL8 TNF, WBC HMT EOS HAP IL8, 

IL12 IL8 
15 ALGA0086892 

11613450

8 
C/T 68,80 

0.04/3.5

3 
GEN 

CCA, 

TATES, 

mvBIMBA

M, PCA 

188 SPAG16 

LR IL6 IL10 IL1b 11 ALGA0061341 21733098 G/A 42,60 0,05 CHR CCA 139  

LR IL6 IL10 IL1b 11 ALGA0061477 23986814 A/C 16,30 0,02 CHR CCA 140  

LR 
IL8 TNF, WBC HMT EOS HAP IL8, 

IL12 IL8 
15 ASGA0070586 

12010606

6 
G/A 68,20 

0.001/4.

77 
GEN 

CCA, 

TATES, 

mvBIMBA

M, PCA 

120 

TNS1, RUFY4, 

CXCR2, ARPC2, 

GPBAR1, AAMP, 

PNKD, 

 TMBIM6 

LW IFN IL10 IL12 IL1b IL4 IL6 11 DRGA0011317 52909023 A/G 63,20 0,00 CHR PCA 141  

LW IFN IL10 IL12 IL1b IL4 IL6 11 INRA0036664 53861212 C/A 2,00 0,02 GEN PCA 141  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR MCV MCHC HAP 18 MARC0016014 6814899 G/A 50,80 0,03 CHR PCA 141 

EPHA1, ZYX, 

FAM131B, 

CLCN1, 

TMEM139, 

GSTK1,  

TAS2R40, KEL, 

TRPV5, TRPV5, 

TAS2R39, PIP, 

OR6V1, LLCFC1, 

EPHB6, PRSS2, 

TRBV27, U6, 

TRBV25-1, 

TRBV19, 

LOC106508706, 

LOC100302368, 

TRBV3-1, PRSS58, 

LOC100511166, 

MGAM2 

LR 
IL8 TNF, WBC HMT EOS HAP IL8, 

IL12 IL8 
15 ASGA0070620 

12035143

4 
C/T 41,60 

0.03/4.0

4 
GEN 

CCA, 

TATES, 

mvBIMBA

M, PCA 

120  

LR MCV MCHC HAP 18 ASGA0097545 7361550 T/C 24,30 0,05 CHR PCA 141  

LR IL8 TNF, WBC HMT EOS HAP IL8 15 ASGA0071003 
12607224

6 
C/T 37,00 0,06 GEN 

CCA, 

TATES 
123  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW 

RBC HMG HMT MCV MCH MCHC, 

HMG MCH,  

PLT RBC WBC 

16 DRGA0015975 24344082 C/T 53,10 0,03 GEN CCA 126  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMG MCH,  

PLT RBC WBC 

16 ASGA0072751 25032947 C/T 82,10 0,03 GEN CCA 127  

LW 
HMG MCHC, WBC RBC HAP IL1b, 

PLT RBC WBC 
16 MARC0030066 72841711 C/T 38,20 3,35 GEN 

mvBIMBA

M 
131 SEMA5A, U6 

LW 
RBC HMG HMT MCV MCH MCHC, 

HMG MCH, HMG MCHC 
16 ALGA0091962 73764474 G/A 42,10 

0.05/3.0

5 
GEN 

CCA, 

mvBIMBA

M 

131  

LR MCV MCHC HAP 18 ASGA0105592 7734440 C/A 24,30 0,06 CHR PCA 141  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMG MCH,  

IL8 HMT WBC, WBC RBC HAP 

IL1b, PLT RBC WBC 

16 ASGA0074790 78019054 G/A 99,10 0,01 GEN 
CCA, 

TATES 
132  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMG MCH,  

HMT HMG MCHC, IL8 HMT WBC, 

WBC RBC HAP IL1b, PLT RBC 

WBC 

16 M1GA0021462 78037702 A/G 7,90 0,04 GEN CCA 132  

LW IFN IL10 IL12 IL1b IL4 IL6 11 ALGA0062457 53977790 A/G 98,00 0,02 GEN PCA 142  

LW IFN IL10 IL12 IL1b IL4 IL6 11 SIRI0000315 54315287 G/T 0,00 0,02 GEN PCA 142  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR MCV MCHC HAP 18 MARC0112998 8006092 T/C 0,00 0,06 CHR PCA 142 

CLEC5A, PRSS37, 

TAS2R4, TAS2R3, 

SSBP1, WEE2,  

DENND11, AGK, 

MEM178B 

LW 
BAS WBC NEU, LYM NEU EOS 

BAS 
17 ALGA0112929 106110 A/G 55,50 0,04 GEN 

CCA, 

TATES 
133  

LR 
WBC NEU MON EOS BAS TNF, 

WBC BAS 
17 ALGA0094419 31515709 T/C 4,80 0,01 GEN CCA, PCA 135  

LR MCV MCHC HAP 18 ASGA0078747 8204406 C/T 24,10 0,06 CHR PCA 142  

LW 
IL1b IL10 IL12, IL4 IL10 IL1b IL6, 

IL6 IFN IL10 IL1b 
17 MARC0045544 38811036 A/C 19,30 4,48 GEN 

mvBIMBA

M 
137 CEP250 

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
17 ASGA0077178 45775572 G/A 59,50 0,05 CHR CCA 138 PTPRT, U6 

LR MCV MCHC HAP 18 ALGA0096880 8321190 T/G 72,50 0,02 CHR PCA 142  

LR MCV MCHC HAP 18 ASGA0078758 8380065 G/A 24,10 0,06 CHR PCA 142  

LR MCV MCHC HAP 18 ASGA0078760 8442517 T/C 75,90 0,06 CHR PCA 142  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
17 ALGA0123186 45833341 A/C 44,70 0,05 CHR CCA 138  

LW 
RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC 
17 ALGA0109744 45890603 C/A 53,70 0,05 GEN CCA 138  

LW 

RBC HMG HMT MCV MCH MCHC, 

HMT HMG MCHC, MCV MCHC 

HAP 

18 H3GA0050210 2540065 G/A 76,30 
0.02/9.4

4 
GEN 

CCA, 

mvBIMBA

M, PCA 

140  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR MCV MCHC HAP 18 H3GA0050329 9041613 G/A 76,90 0,06 CHR PCA 143 

BRAF, NDUFB2, 

ADCK2, U6, 

DENND2A, 

MKRN1, RAB19, 

 SLC37A3, 

KDM7A, PARP12, 

TBXAS1, HIPK2 

LR MCV MCHC HAP 18 ALGA0096968 9386834 C/T 61,30 0,02 CHR PCA 143  

LR MCV MCHC HAP 18 H3GA0056352 9871442 A/C 54,30 0,01 CHR PCA 143  

LW EOS BAS 11 ASGA0051613 67683899 G/A 88,40 0,02 CHR PCA 144 SLC15A1 

LW EOS BAS 11 rs342919012 67687842 G/A NA 0,02 CHR PCA 144  

LW EOS BAS 11 rs326593788 67687850 T/C NA 0,02 CHR PCA 144  

LW EOS BAS 11 ALGA0063379 67697289 G/A 11,60 0,02 CHR PCA 144  

LW EOS BAS 11 ASGA0051621 67714628 T/C 11,60 0,02 CHR PCA 144  

LR MCV MCHC HAP 18 ASGA0078874 10641854 T/C 60,00 0,01 CHR PCA 144 

ZC3HAV1L, 

KIAA1549, 

TMEM213, 

ATP6V0A4, U6,  

Y RNA, SVOPL, 

TRIM24 

LR MCV MCHC HAP 18 ALGA0097012 11264864 C/T 89,10 0,02 CHR PCA 144  

LW EOS BAS 11 ASGA0051648 68510765 C/T 19,90 0,02 CHR PCA 145 

CLYBL, ZIC5, 

ZIC2, PCCA, U6, 

GGACT 

LR IL6 IL10 IL1b 11 ALGA0063462 69323838 G/A 98,10 0,02 CHR CCA 145  

LR MCV MCHC HAP 18 INRA0055202 12429018 C/T 82,60 0,04 CHR PCA 145 
CHRM2, ssc-mir-

490-1 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR MCV MCHC HAP 18 MARC0030508 13279854 T/G 67,70 0,02 CHR PCA 145  

LR 
RBC HMG HMT MCV MCH, 

PC3RBCs 
18 MARC0072034 6968918 A/G 41,00 0,04 CHR CCA 141  

LR IL6 IL10 IL1b 11 M1GA0015299 70370312 C/T 98,50 0,06 CHR CCA 146  

LR IL6 IL10 IL1b 11 ALGA0063574 70392258 A/G 97,20 0,06 CHR CCA 146  

LR IL6 IL10 IL1b 11 ALGA0063603 70518157 C/T 3,20 0,06 CHR CCA 146  

LR IL6 IL10 IL1b 11 H3GA0032472 70572911 G/A 3,70 0,02 CHR CCA 146  

LR IL6 IL10 IL1b 11 MARC0051848 71048614 C/T 92,30 0,02 CHR CCA 146  

LR IL6 IL10 IL1b 11 MARC0085875 71100401 A/G 92,30 0,02 CHR CCA 146  

LR IL6 IL10 IL1b 11 DIAS0003373 71110085 C/T 6,20 0,02 CHR CCA 146  

LR MCV MCHC HAP 18 H3GA0050418 14855749 C/T 18,60 0,05 CHR PCA 146  

LR MCV MCHC HAP 18 INRA0055273 15706111 A/G 18,00 0,03 CHR PCA 146  

LR IL6 IL10 IL1b 11 ALGA0102712 71257051 G/A 3,80 0,02 CHR CCA 147  

LR IL6 IL10 IL1b 11 ALGA0102815 71280437 T/C 92,20 0,02 CHR CCA 147  

LR RBC HMG HMT MCV MCH 18 MARC0063061 24962723 C/T 37,60 0,03 CHR CCA 147 AASS, PTPRZ1 

LR RBC HMG HMT MCV MCH 18 ASGA0092854 24990743 C/T 26,80 0,03 CHR CCA 147  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 MARC0068323 7391549 G/A 69,20 0,03 CHR CCA, PCA 141  

LW 
BAS WBC NEU, LYM NEU MON 

EOS BAS 
18 ALGA0097582 25200554 C/T 83,40 0,03 CHR CCA 147  

LW 
BAS WBC NEU, LYM NEU MON 

EOS BAS 
18 ASGA0079343 25373224 C/T 17,00 0,05 CHR CCA 147  

LR IL6 IL10 IL1b 11 ASGA0051917 73150897 G/A/T 93,70 0,06 CHR CCA 148  

LR MCV MCHC HAP 18 H3GA0051025 46713612 A/G 22,00 0,06 CHR PCA 148  

LR IL6 IL10 IL1b 11 INRA0037562 76483089 A/G 98,10 0,02 CHR CCA 149  

LR RBC HMG HMT MCV MCH 18 MARC0025541 50663391 A/G 44,90 0,03 CHR CCA 149 POLM 

LR WBC HMT EOS HAP IL8 18 H3GA0051155 50710948 T/C 7,20 0,02 GEN CCA 149  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR NEU RBC WBC MON BAS 18 ASGA0080341 51353492 G/A 9,50 0,04 CHR CCA 149  

LW LYM NEU MON EOS BAS 12 M1GA0026919 7396035 C/A 18,80 4,80 GEN 
mvBIMBA

M 
150  

LR IFN IL12 IL8 12 ALGA0064792 9141861 T/C 8,60 0,05 CHR PCA 151  

LW IL4 IL10 IL1b IL6 12 ASGA0105686 9540202 G/A 39,30 3,07 GEN 
mvBIMBA

M 
151  

LR IL4 EOS IL10 IL1b TNF 12 M1GA0027137 11878926 A/G 4,70 0,04 CHR CCA 152  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ASGA0092914 7397094 A/C 30,80 0,03 CHR CCA, PCA 141  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ASGA0078726 7404576 A/G 69,20 0,03 CHR CCA, PCA 141  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ALGA0096832 7541311 G/C 26,40 0,03 CHR CCA, PCA 141  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ALGA0105511 7717391 C/T 55,70 0,06 GEN CCA, PCA 141  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ALGA0121880 7775625 G/A 73,20 0,04 CHR CCA, PCA 141  

LR IL4 EOS IL10 IL1b TNF, PC3Cyto 12 MARC0070276 14204868 G/A 92,10 0,01 CHR CCA 154 BPTF 

LR IL4 EOS IL10 IL1b TNF 12 ALGA0065378 17196251 G/A 2,60 0,01 CHR CCA 155 MAPT 

LR NEU RBC WBC MON BAS 12 DIAS0003753 21492055 G/A 77,80 0,06 CHR CCA 156  

LW IL4 IL10 IL1b IL6 12 ALGA0065672 24650734 T/C 0,60 4,71 GEN 
mvBIMBA

M 
157 SKAP1 

LW IFN IL10 IL12 IL1b IL4 IL6 12 ASGA0082570 38304022 G/T 3,00 0,01 CHR PCA 158  

LW IFN IL10 IL12 IL1b IL4 IL6 12 MARC0092718 40705609 T/C 0,00 0,06 CHR PCA 159  

LW IFN IL8 TNF 12 MARC0087562 42225466 T/C 80,60 0,02 CHR PCA 160 MYO1D 

LW IFN IL10 IL12 IL1b IL4 IL6 12 ALGA0108238 42366158 T/C 13,30 0,01 CHR PCA 161 MYO1D 

LW IFN IL8 TNF 12 ALGA0066551 42419728 T/C 30,60 0,02 CHR PCA 161  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW IFN IL8 TNF 12 MARC0072172 43987384 G/A 80,60 0,02 CHR PCA 162 

KSR1, NOS2, 

NLK, TMEM97, 

IFT20, TNFAIP1, 

VTN,  

POLDIP2, 

TMEM199, 

SEBOX, SARM1, 

SLC46A1, 

SLC13A2, FOXN1, 

UNC119, PIGS, 

ALDOC, SPAG5, 

KIAA0100, 

KIAA0100, SDF2, 

SUPT6H, 

PROCA1, RAB34, 

RPL23A, 

SNORD42, 

TLCD1, 

SNORD4A, 

SNORD4B, NEK8, 

TRAF4, U6, 

FAM222B, ERAL1, 

ssc-mir-451, ssc-

mir-144, FLOT2, 

DHRS13, PHF12, 

SEZ6, PIPOX, 

CRYBA1 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL6 IL10 IL1b 12 ALGA0066685 45415984 T/C 77,80 0,06 CHR CCA 162  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ALGA0118449 7777685 C/A 35,50 0,04 CHR CCA, PCA 141  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 DIAS0001617 8165185 T/C 57,50 0,03 CHR CCA, PCA 142  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ALGA0096869 8190336 A/G 57,50 0,03 CHR CCA, PCA 142  

LR NEU RBC WBC MON BAS 12 ASGA0101646 60019204 T/C 46,00 0,06 CHR CCA 164  

LR NEU RBC WBC MON BAS 12 ALGA0107813 62837875 A/G/T 66,50 0,03 CHR CCA 165  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 M1GA0023025 8250254 C/T 73,90 0,03 CHR CCA, PCA 142  

LR HMT HMG MCHC 13 MARC0065723 
16709645

9 
T/C 19,80 0,05 CHR CCA 167  

LR HMT HMG MCHC 13 ALGA0072888 
17463699

6 
C/T 6,40 0,05 CHR CCA 168  

LR HMT HMG MCHC 13 DRGA0013179 
17743920

7 
T/G 1,70 0,05 CHR CCA 169 ROBO2 

LR WBC NEU MON EOS BAS TNF 13 ASGA0059913 
19839422

0 
T/C 91,00 0,04 GEN CCA 170 RUNX1 

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 rs339209283 8264050 T/C NA 0,03 CHR CCA, PCA 142  

LR LYM MON BAS 14 ASGA0063055 42631536 C/T 39,70 0,03 CHR PCA 172 

SGSM1, PIWIL3, 

TMEM211, 

KIAA1671,  

CRYBB3, 

CRYBB2, GRK3, 

U6 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR LYM MON BAS 14 DIAS0001091 42951477 C/T 72,10 0,03 CHR PCA 172  

LR LYM MON BAS 14 H3GA0040005 43387115 G/A 72,30 0,03 CHR PCA 172  

LR LYM MON BAS 14 ALGA0077324 44752740 C/T 75,00 0,05 CHR PCA 173 
MN1, PITPNB, 

TTC28 

LR LYM MON BAS 14 ALGA0077342 45036066 T/C 75,60 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063176 45080096 A/C 76,10 0,03 CHR PCA 173  

LR LYM MON BAS 14 MARC0061666 45126379 G/A 22,30 0,03 CHR PCA 173  

LR LYM MON BAS 14 ALGA0077352 45167309 C/T 22,30 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063186 45182965 T/C 77,70 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063188 45211762 A/C 77,80 0,03 CHR PCA 173  

LR LYM MON BAS 14 ALGA0077360 45237972 C/T 77,70 0,03 CHR PCA 173  

LR LYM MON BAS 14 MARC0021603 45277886 G/A 22,30 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063192 45329416 T/C 22,30 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063198 45347247 A/G 76,70 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063199 45359541 A/C 23,90 0,03 CHR PCA 173  

LR LYM MON BAS 14 MARC0006658 45412495 G/T 76,70 0,03 CHR PCA 173  

LR LYM MON BAS 14 MARC0081626 45577136 T/G 18,60 0,03 CHR PCA 173  

LR LYM MON BAS 14 ASGA0063205 45602780 C/T 75,40 0,03 CHR PCA 173  

LR LYM MON BAS 14 ALGA0077379 45795115 G/A 23,30 0,03 CHR PCA 174 TTC28 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR LYM MON BAS 14 MARC0047822 45827810 T/C 23,30 0,03 CHR PCA 175 

TTC28, U1, 

CHEK2, HSCB, 

CCDC117, XBP1, 

ZNRF3,  

C22orf31, 

KREMEN1, 

EMID1, RHBDD3, 

EWSR1, GAS2L1, 

RASL10A, AP1B1, 

SNORD125 

LR LYM MON BAS 14 ALGA0077382 46031357 A/C 76,70 0,03 CHR PCA 175  

LR LYM MON BAS 14 INRA0043964 46418356 G/A 23,30 0,03 CHR PCA 175  

LR LYM MON BAS 14 DBNP0002145 46436960 C/T 76,70 0,03 CHR PCA 175  

LR LYM MON BAS 14 ALGA0077394 46473900 G/A 76,70 0,03 CHR PCA 175  

LR LYM MON BAS 14 MARC0048650 46520497 A/G 40,40 0,03 CHR PCA 175  

LR LYM MON BAS 14 ASGA0063175 47751439 G/A 24,90 0,04 CHR PCA 176  

LR HMT HMG MCHC 14 H3GA0040407 57739629 C/T 26,80 0,02 CHR CCA 177  

LR HMT HMG MCHC 14 ALGA0077929 57765084 C/T 26,60 0,02 CHR CCA 177  

LR HMT HMG MCHC 14 MARC0013023 59263540 C/A 12,60 0,01 GEN CCA 178 

TRIM67, FAM89A, 

ARV1, TTC13, 

C1orf198, CAPN9, 

 AGT, COG2 

LR HMT HMG MCHC 14 ASGA0063815 59277912 T/C 30,40 0,01 GEN CCA 178  

LR HMT HMG MCHC 14 ALGA0078088 59646142 C/T 30,80 0,00 CHR CCA 178  

LR HMT HMG MCHC 14 ALGA0078075 59656180 T/C 30,90 0,00 CHR CCA 178  

LR HMT HMG MCHC 14 ALGA0106769 59712299 T/C 11,30 0,02 CHR CCA 178  

LR HMT HMG MCHC 14 MARC0004519 59803997 A/C 65,30 0,00 CHR CCA 179  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR HMT HMG MCHC 14 ALGA0078091 59831072 G/A 71,40 0,00 CHR CCA 179  

LR HMT HMG MCHC 14 ALGA0079175 79949671 G/A/T 9,50 0,03 CHR CCA 180 KCNMA1 

LR HMT HMG MCHC 14 ALGA0079177 79982953 C/T 9,50 0,03 CHR CCA 180  

LR LYM MON BAS 14 ALGA0083196 
13765463

2 
C/T 89,30 0,04 CHR PCA 181  

LR HMT HMG MCHC 15 MARC0113166 22554502 G/T 0,00 0,06 CHR CCA 182  

LR HMT HMG MCHC 15 ASGA0068971 22571234 A/C 30,00 0,06 CHR CCA 182  

LR HMT HMG MCHC 15 ALGA0102752 23400874 G/A 75,60 0,06 CHR CCA 182  

LR 
RBC HMG HMT MCV MCH, 

PC3RBCs 
18 MARC0007516 8567714 A/G 34,40 0,04 CHR CCA 142  

LR IL8 TNF 15 ALGA0086618 
10760456

8 
A/G 14,50 0,05 CHR CCA 184 PARD3B, U6 

LR IL8 TNF 15 DRGA0015341 
10775384

7 
C/A 83,50 0,05 CHR CCA 184  

LR IL8 TNF 15 MARC0089453 
10788749

3 
T/G 34,30 0,06 CHR CCA 184  

LR IL8 TNF 15 ALGA0086631 
10802461

6 
T/G 46,70 0,01 CHR CCA 184  

LR IL8 TNF 15 ALGA0108737 
10833535

3 
G/A 48,80 0,04 GEN CCA 184  

LR IL12 IL8 15 H3GA0044814 
10847242

7 
A/G 53,70 0,04 CHR PCA 184  

LR IL12 IL8 15 DRGA0015357 
10850520

9 
C/A 53,00 0,04 CHR PCA 184  

LR 
RBC HMG HMT MCV MCH, MCV 

MCHC HAP 
18 ALGA0096931 8587608 T/G 23,60 0,03 CHR CCA, PCA 142  
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR IL8 TNF, PC2Cyto 15 ASGA0070317 
10879492

6 
G/C 32,30 0,05 CHR CCA 185  

LR IL8 TNF 15 H3GA0044820 
10884811

4 
C/T 39,60 0,04 CHR CCA 185  

LR IL8 TNF 15 ASGA0093834 
10921502

7 
T/C 14,30 0,05 CHR CCA 185  

LR IL8 TNF 15 ALGA0086678 
10939496

5 
G/A 50,70 0,05 GEN CCA 185  

LR IL8 TNF 15 ALGA0086703 
10997146

9 
C/T 60,00 0,01 CHR CCA 186 DYTN 

LR BAS MON 15 ALGA0086800 
11262497

7 
C/T 90,10 0,01 GEN CCA 187 UNC80 

LW 
BAS WBC NEU, LYM NEU MON 

EOS BAS 
18 DRGA0016945 25162286 C/T 16,60 0,03 CHR CCA 147  

LW LYM NEU MON EOS BAS 15 ALGA0086932 
11719653

5 
G/A 47,70 0,01 CHR CCA 189  

LR IL8 TNF 15 H3GA0044951 
11998403

6 
T/C 59,10 0,06 CHR CCA 190 TNS1 

LR IL8 TNF 15 ASGA0070560 
11999520

3 
A/G 40,00 0,06 CHR CCA 190  

LW RBC HMG HMT MCV MCH MCHC NA ALGA0014284 NA T/C 57,50 0,03 CHR CCA   

LR, LW 
BAS MON, IL4 IL10 IL1b IL6, NEU 

RBC WBC MON BAS 
NA ALGA0073579 NA C/T 10,50 

0.01/3.2

2 
GEN 

CCA, 

TATES, 

mvBIMBA

M 
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

NA DRGA0006288 NA NA 1,10 0,00 GEN 
CCA, 

TATES 
  

LR IL4 EOS IL10 IL1b TNF NA ALGA0046492 NA C/T 84,90 0,02 CHR CCA   

LR HMT HMG MCHC NA ALGA0072783 NA G/A 19,80 0,05 CHR CCA   

LR 

RBC HMG HMT MCV MCH, HMG 

MCHC IL10,  

HMT HMG MCHC 

NA INRA0020540 NA NA 98,90 0,00 GEN 
CCA, 

TATES 
  

LW RBC HMG HMT MCV MCH MCHC NA ALGA0102592 NA G/A 33,00 0,05 CHR CCA   

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
NA ALGA0031749 NA C/T 32,50 0,03 CHR CCA   

LW LYM NEU MON EOS BAS NA ALGA0105830 NA G/A 59,40 0,02 CHR CCA   

LR 
RBC HMG HMT MCV MCH, HMT 

HMG MCHC 
NA ALGA0031838 NA G/T 30,50 0,04 CHR CCA   

LW RBC HMG HMT MCV MCH MCHC NA ALGA0120738 NA G/A 92,80 0,02 CHR CCA   

LR WBC BAS NA ALGA0122704 NA A/G 1,40 0,01 GEN PCA   

LR BAS MON NA ASGA0011563 NA C/T 31,40 0,05 GEN CCA   

LR WBC NEU MON EOS BAS TNF NA ASGA0046381 NA T/G 14,20 0,03 CHR CCA   

LR WBC NEU MON EOS BAS TNF NA ASGA0096826 NA T/C 79,80 0,05 GEN CCA   

LR IL8 TNF NA ASGA0102483 NA C/T 48,80 0,04 GEN CCA   

LW RBC HMG HMT MCV MCH MCHC NA ASGA0102908 NA T/C 44,10 0,05 CHR CCA   

LW IFN IL8 TNF NA CASI0003808 NA NA 1,00 0,03 GEN PCA   

LR RBC HMG HMT MCV MCH NA DBWU0000913 NA G/A 49,70 0,01 CHR CCA   

LR IL6 IL10 IL1b NA DIAS0000434 NA G/A 22,70 0,03 CHR CCA   

LR RBC HMG HMT MCV MCH NA DIAS0000994 NA NA 98,00 0,04 CHR CCA   

LR IL4 EOS IL10 IL1b TNF NA DRGA0006061 NA NA 1,60 0,01 GEN CCA   
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Breed Trait SSC SNP Position 
m/M 

allele 
MAF 

P-value/ 

BF 

Type of 

significance 
Method QTL 

Nearest Gene 

within QTL 

LW, LR 
HMG MCH, WBC BAS, PLT RBC 

WBC 
NA H3GA0016899 NA T/C 90,30 0,04 CHR CCA, PCA   

LR NEU RBC WBC MON BAS NA FBF0127SLC47A1 NA NA NA 0,06 CHR CCA   

LW RBC HMG HMT MCV MCH MCHC NA H3GA0000686 NA G/A 24,20 0,05 CHR CCA   

LW RBC HMG HMT MCV MCH MCHC NA H3GA0000711 NA G/A 25,90 0,05 CHR CCA   

LR WBC HMT EOS HAP IL8 NA H3GA0009907 NA A/G 9,40 0,02 CHR CCA   

LW HMG MCH, PLT RBC WBC NA ALGA0103880 NA T/C 94,10 0,04 CHR CCA   

LR HMT HMG MCHC NA INRA0019232 NA T/C 28,30 0,03 CHR CCA   

LR RBC HMG HMT MCV MCH NA INRA0020434 NA T/C 50,90 0,06 CHR CCA   

LW HMG MCH, PLT RBC WBC NA ALGA0115368 NA T/C 6,20 0,04 CHR CCA   

LR MCV MCHC HAP NA M1GA0023051 NA T/C 39,40 0,01 CHR PCA   

LR IL4 EOS IL10 IL1b TNF NA MARC0001707 NA T/C 25,90 0,02 CHR CCA   

LR WBC NEU MON EOS BAS TNF NA MARC0010639 NA C/T 79,80 0,05 GEN CCA   

LR WBC HMT EOS HAP IL8 NA MARC0013233 NA C/T 90,70 0,02 CHR CCA   

LR LYM MON BAS NA MARC0030251 NA T/C 76,70 0,03 CHR PCA   

LW RBC HMG HMT MCV MCH MCHC 8 rs323551662 41838395 C/G NA 0,03 CHR CCA   

LR IFN IL12 IL8 NA SIRI0000276 NA NA 0,00 0,03 CHR PCA   

LW IFN IL8 TNF NA SIRI0001107 NA NA 0,00 0,03 GEN PCA   

 

SSC=Sus scrofa chromosome, SNP=single nucleotide polymorphism, m/M allele=minor/major allele, MAF=minor allele frequency, QTL 
nr.=Quantitative trait loci progressive number based on ±1Mbp distance from a significant SNP, LR=Landrace, LW=Large White, RBC=red blood 
cells, HMG=hemoglobin, HMT=hematocrit, MCV= mean corpuscular volume, MCH=mean corpuscular hemoglobin, MCHC=mean corpuscular 
hemoglobin concentration, PLT=platelets, WBC=white blood cells, NEU=neutrophils, LYM=lymphocytes, MON=monocytes, EOS=eosinophils, 
BAS=basophils, HAP=haptoglobin, IFN-γ= interferon-γ, IL=interleukin, TNF-α= tumor necrosis factor- α , PC=principal component, CCA=canonical 
correlation analysis, PCA=principal component analysis. 
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