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2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

3Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
4Russian Research Center ‘‘Kurchatov Institute,’’ 123182 Moscow, Russia

(Received 20 May 2008; published 27 August 2008)

The strongly correlated regime of the crossover from Bardeen-Cooper-Schrieffer pairing to Bose-

Einstein condensation can be realized by diluting a system of two-component fermions with a short-range

attractive interaction. We investigate this system via a novel continuous-space-time diagrammatic

determinant Monte Carlo method and determine the universal curve Tc="F for the transition temperature

between the normal and the superfluid states as a function of the scattering length with the maximum on

the Bose-Einstein condensation side. At unitarity, we confirm that Tc="F ¼ 0:152ð7Þ.
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In the area of ultracold gases, the problem of the cross-
over between the Bardeen-Cooper-Schrieffer pairing and
the Bose-Einstein condensation (BEC) of composite mole-
cules (the so-called BCS-BEC crossover) has recently
received a lot of theoretical and experimental attention
[1]. A dilute two-component Fermi gas, where the inter-
particle distance is much larger than the interaction range,
features a remarkable universality at low temperatures.
Since the interaction is completely described by the
s-wave scattering length a, the only physically relevant
coupling parameter is � ¼ 1=kFa, where kF is the Fermi
momentum. One thus obtains a unified and universal de-
scription of systems as diverse as ultracold fermionic gases
in magnetic or optical traps [1], fermions in optical lattices,
inner crusts of neutron stars [2,3], and, plausibly, excitonic
condensates [4].

In the limit � ! �1, the Fermi gas is described by the
BCS theory, while for � ! þ1 the fermions pair into
compact bosonic molecules which then form a BEC state
below the critical temperature. Separating these extreme
states is a strongly correlated regime which features the so-
called unitary point � ¼ 0. At unitarity, the scattering
length is infinite and the interaction thus drops out of the
relations between different thermodynamic potentials
making these relations formally identical to those of a
noninteracting Fermi gas [5]. On the experimental side,
using the technique of a (wide) Feshbach resonance in a
system of cold atoms, one can traverse the whole range of
parameter � from the BEC to the BCS limit [1].

Despite considerable recent investigation, the quantita-
tive description of the BEC-BCS crossover is far from
being complete, even for the simplest case of the equal
mixture of two components. Because of the strongly corre-
lated nature of the problem, analytical mean-field-type
calculations (e.g., [6–8]) unavoidably involve approxima-
tions, the accuracy of which is difficult to access unless the
exact result is known. Renormalization group treatments
can be carried out as expansions in either � ¼ 4� d [9] or

1=NF (whereNF is the number of fermion species) [10,11],
but the applicability of these calculations to the physically
relevant case of d ¼ 3 and NF ¼ 2 is not known a priori.
Numerical studies of fermionic systems are computa-

tionally demanding and further complicated by the need to
study the limit of small densities to access the universal
regime. Some numerical techniques avoid the fermionic
sign problem with a help of uncontrollable approxima-
tions. The restricted path-integral Monte Carlo method
[12] relies on a variational ansatz for the nodes of the
density matrix. In the dynamical mean-field theory ap-
proach of Ref. [13] the physics of extended paired states
is reduced to that of a single site coupled to the self-
consistently defined environment. Fortunately, the unpo-
larized Fermi gas with contact attraction is an exceptional
case which can be addressed by sign-problem-free deter-
minant methods without uncontrollable systematic errors
[14–16]. Moreover, the determinant diagrammatic MC
approach (DDMC) for lattice fermions [15] is completely
free of any systematic error. In simulations of the
negative-U Hubbard model [14] with an appropriate ex-
trapolation to zero filling at the unitary point, we previ-
ously obtained accurate results for the critical temperature
of the superfluid transition, Tc="F ¼ 0:152ð7Þ, in the units
of the Fermi energy "F. This result, however, did not agree
with the estimate obtained by Ref. [16] from a visual
inspection of the caloric curve, using the standard auxiliary
field approach [17].
To efficiently study the critical temperature curve away

from the unitarity point and to verify that the final results
are model independent—thereby also resolving the con-
troversy on Tc="F at unitarity—we develop a DDMC
technique for continuous space and time. We can now
efficiently simulate models with a simple parabolic disper-
sion relation and have completely eliminated lattice cor-
rections. In this Letter, we first discuss the new scheme and
how to obtain an independent systematic-error-free value
for Tc="F at unitarity. We are able to reach densities almost

PRL 101, 090402 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

29 AUGUST 2008

0031-9007=08=101(9)=090402(4) 090402-1 � 2008 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/6181041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.101.090402


20 times smaller than those typically accessible with the
auxiliary field determinant method [16], This allows us to
perform a reliable extrapolation to the universal limit
yielding Tc="F ¼ 0:152ð7Þ, in perfect agreement with
our previous value [14]. Next, we explore the critical
temperature at finite values of 1=kFa. Our results, shown
in Fig. 1, fix the general shape of the universal curve Tc="F
versus 1=kFa. The main feature is a substantial maximum
of Tc="F on the BEC side of the crossover.

Our specific model is described by the Hamiltonian

H ¼ X
�¼";#

Z
dx�y

�ðxÞðK̂ ��Þ��ðxÞ

þU
Z

dx�y
" ðxÞ�y

# ðxÞ�#ðxÞ�"ðxÞ; (1)

where��ðxÞ is the fermion field operator (� ¼"; # ), x is a
continuous three-dimensional coordinate, � is the chemi-
cal potential, U < 0 is the contact interaction strength, and

K̂ is the kinetic energy operator, K̂eikx ¼ "ke
ikx, with "k

being the single-particle dispersion.
The scattering length a is given by the sum of the

vacuum ladder diagrams [18] leading to (@ ¼ 1)

m

4�a
¼ U�1 þ

Z dk

ð2�Þ3
1

2"k
; (2)

where m is the fermion mass. For the continuous space
model with "k ¼ k2=2m an ultraviolet regularization of
Eq. (2) is required. Keeping in mind comparison with
Ref. [16], where the parabolic dispersion with an ultravio-
let cutoff was used, we introduce a microscopic length

scale l0 such that

"k ¼
�
k2=2m; k < 2�=l0;
1; k > 2�=l0;

(3)

yielding

m=4�a ¼ U�1 �U�1� ; U� ¼ ��l0=m: (4)

It is straightforward to generalize the DDMCmethod for
resonant fermions [14] to the continuous model (1). One
starts by expanding the partition function Z ¼ Tre��H,
where � ¼ 1=kBT, in powers of U. The resulting
Feynman diagrams consist of four-point interaction verti-

ces connected by free single-particle propagators Gð0Þ
� . A

diagram of a given order p is described by the space-time
configuration of the vertices Sp ¼ fðxj; �jÞ; j ¼ 1; . . . ; pÞg
(� 2 ½0; �� is the imaginary time) and the topology of
propagator lines connecting them without integration
over the vertex positions—the latter is done by the
Monte Carlo sampling process. Next, one observes [19]
that the sum over all topologies is given by detA"ðSpÞ�
detA#ðSpÞ, where A� is the p� p matrix, A�

ijðSpÞ ¼
Gð0Þ

� ðxi � xj; �i � �jÞ. In the case of equal densities of

the spin components, the weight of a configuration Sp is

positive definite:

dP ðp;SpÞ ¼ ð�UÞpj detAðSpÞj2
Yp
j¼1

d�jdxj: (5)

The partition function Z ¼ P1
p¼0

R
Sp

dP is calcu-

lated stochastically according to the standard
Metropolis-Rosenbluth2-Teller2 algorithm ensuring that
configurations Sp are generated with the probability den-

sity given by Eq. (5). The Monte Carlo updates are based
on a worm algorithm for the four-point correlation function
[15] G2ðx; �;x0; �0Þ ¼ hT �Pðx; �ÞPyðx0; �0Þi, where T �

indicates time ordering, Pðx; �Þ ¼ �"ðx; �Þ�#ðx; �Þ is the
pair annihilation operator, and h� � �i is the thermal av-
erage. The asymptotic value of

RR
d�d�0G2ðx;�;x0;�0Þ as

jx� x0j ! 1 is proportional to the condensate density.
Up to statistical errors, the DDMC calculations yield

exact results for a finite system—in our case a cubic box of
a linear size L with periodic boundary conditions. An
efficient way of finding Tc in the thermodynamic limit L !
1 is to employ the technique of Binder crossings [20] for
R ¼ L1þ�

R
dxdx0d�d�0G2ðx; �;x0; �0Þ=ð�L3Þ2 [where

� � 0:038 for the 3DUð1Þ universality class], as discussed
in detail in Ref. [15]. It is expected that at the critical point
R becomes scale invariant. By analyzing the crossings of
the family of RðL;�Þ curves one can obtain Tc with an
accuracy of a fraction of percent with a relatively small
number of particles. The thermodynamic limit of the num-
ber density is obtained from a linear extrapolation of nðLÞ
as a function of 1=L. An example of the finite-size analysis
for a typical set of parameters is given in Fig. 2.

FIG. 1 (color online). The universal results for the critical
temperature in the units of the Fermi energy plotted versus � ¼
1=kFa (circles). The solid lines for negative and positive �
represent the limiting behavior of the BCS theory (with the
Gorkov-Melik-Barkhudarov correction) and the ideal BEC, re-
spectively. For reference, we also plot nonuniversal results for
hard-sphere (triangles) and soft-sphere (squares) bosons
(Ref. [23]).
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In order to obtain the universal answer for Tc="F one

finally has to take the limit of 	 ¼ n1=3l0 ! 0 by extrap-

olating numerical data for Tð	Þ
c ="ð	ÞF to the dilute limit. We

keep l0 constant and take the limit by lowering the chemi-
cal potential � and diluting the system. One can show [15]
that the leading-order corrections should be linear in 	 �
1: Tð	Þ

c ="ð	ÞF ¼ Tc="F þ const� 	 þ oð	Þ. The calculation
strategy is as follows: at unitarity (� � 0), we fix U ¼ U�
according to Eq. (4) and perform a series of simulations for

different values of �, yielding a set of Tð	Þ
c ="ð	ÞF . Then, the

universal value of the critical temperature follows from the

linear extrapolation of Tð	Þ
c ="ð	ÞF to 	 ! 0.

To obtain Tc="F away from the resonance, the procedure
has to be modified. Taking the dilute limit for each value of
� � 0 requires that a ! 1 in such a way that 1=kFa tends
to a fixed finite value �. We note that the universal value of
the chemical potential obeys �ðTcÞ="F � 2mgð�Þ, with
some function gð�Þ, or, equivalently, lim	!0�

ð	ÞðTcÞa2 ¼
gð�Þ=�2 implying that for each � one has to keep �a2 ¼
const. Substituting a2 ¼ �=c into (4) gives

U ¼ U�
�
1	mU�

4�

ffiffiffiffi
�

c

r ��1
; (6)

where the upper (lower) sign corresponds to the BEC side
a > 0 (BCS side a < 0). We thus pick a value of c and
perform a series of simulations for smaller and smaller
values of � with U from Eq. (6). Each simulation yields a

finite-	 estimate for the critical temperature Tð	Þ
c ðcÞ, den-

sity nð	ÞðcÞ, and �ð	ÞðcÞ. After linear extrapolations to 	 !

0 we determine the physical value of Tc="F and the cor-
responding value of �.
In Fig. 3 we show results for the critical temperature as a

function of 	 . For comparison and consistency analysis of
Tc at unitarity, we also plot the data for the Hubbard model
[14] as a function of the filling factor 
, which plays the
same role as 	 in the present model. Note that the non-
universal corrections to Tc="F in 	 turn out to be positive
and much smaller (at unitarity) than for the Hubbard
model. The former fact is important for the simulation
efficiency, since the computational complexity of the
DDMC technique scales as ð�UNÞ3, where N is the num-
ber of fermions, and it is advantageous to simulate at
higher temperatures.

It is important to note that at high densities the Tð	Þ
c ="ð	ÞF

curves are almost constant and the true asymptotic low-	
behavior develops only below 	 � 0:75. For a reliable
extrapolation it is crucial to vary the density by at least
an order of magnitude, and we did so by diluting the system
down to n � 0:04=l30 (	 � 0:35), where wewere limited by

the low values of the absolute critical temperature itself.
Unfortunately, no dilute-limit extrapolation was performed
in Ref. [16] (their value for 	 � 0:93 is shown by the
diamond in Fig. 3). The total simulation time required to
obtain this set of data was approximately 106 CPU hours on
Opteron-class workstations.

FIG. 3 (color online). The extrapolation of the simulation
results to the universal limit 	 ¼ n1=3l0 ! 0. The procedure
yields Tc="F ¼ 0:152ð9Þ, 0.202(9), and 0.252(15) for � ¼
1=kFa ¼ 0 (squares), 0.217(2) (circles), and 0.474(8) (triangles),
correspondingly. For comparison, we also plot our results for the
Hubbard model (open squares) adapted from Ref. [14]. The
estimate of Ref. [16] at � ¼ 0 (obtained for finite 	 � 0:93) is
shown by the diamond. Solid lines are linear fits.

FIG. 2 (color online). Finite-size analysis for c ¼ 0:83, � ¼
0:36, corresponding to U � �7:519 and a � 1:52 (in the units
of m ¼ 1=2, l0 ¼ 1) yielding �c ¼ 1:290ð8Þ. The error bars are
1 standard deviation and were calculated using the blocking
method. Inset: The thermodynamic limit value of the number
density is obtained via a linear fit of nðLÞ vs 1=L. In this case,

nl30 ¼ 0:119ð2Þ, which results in 	 ¼ 0:492ð3Þ, Tð	Þ
c ="ð	ÞF ¼

0:335ð6Þ, and � ¼ 0:432ð3Þ.
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At unitarity, the extrapolated result for Tð	Þ
c ="ð	ÞF yields

an answer which is in perfect agreement with Tc="F ¼
0:152ð7Þ obtained independently from the 
 ! 0 extrapo-
lation of the Hubbard model data [14]. In the latter case, the
universal value is approached from below (see Fig. 3). This
agreement unambiguously demonstrates that our treatment
of nonuniversal corrections is reliable in the simulated
parameter range (linear fits for 	 < 0:75). Away from
unitarity we find Tc="F ¼ 0:202ð9Þ and 0.252(15) for � ¼
0:217ð2Þ and 0.474(8), respectively.

The results for the strongly correlated regime essentially
determine the general shape of the universal curve
½Tc="F�ð�Þ shown in Fig. 1. Deep in the BEC regime
(� 
 1) the critical temperature is that of a weakly inter-
acting Bose gas of strongly bound dimers which is ex-
pected to increase on approach to the resonance. In the
BCS limit (� < 0, j�j 
 1) the Tc curve starts from ex-
ponentially small values for � ! �1, and thus the cross-
over between the two limiting regimes necessarily fea-
tures a maximum in Tc="F. The results in Fig. 1 clearly
show that this maximum must be on the BEC side (� > 0).
The value at the maximum appears to be surprisingly high.
For comparison, we show in Fig. 1 the critical tempera-
tures of a Bose gas with hard- and soft-core sphere poten-
tials with scattering length aB ¼ 0:6a. The tremen-
dous computational cost required to determine each point
in the crossover regime reliably did not allow us to pre-
cisely locate the position of the maximum in the kFa� 1
region.

The behavior of the critical temperature on the BEC side
revealed by our simulations suggests that the short-range
structure of the strongly correlated state is radically differ-
ent from that of the compact-molecule Bose gas (and,
obviously, also from that of the BCS state) in a broad range
of �. In other words, we are dealing with two crossovers—
one is from BCS to the substantial unitarity regime and the
other is from the unitarity regime to BEC.

To summarize, we performed first-principle simulations
of the two-component unpolarized Fermi gas with resonant
interparticle interaction obtaining the universal critical
temperature Tc="F ¼ 0:152ð7Þ at the unitarity point � ¼
1=kFa ¼ 0 thereby resolving the earlier controversy be-
tween the results of Refs. [15] and [16]. We also obtain Tc

away from unitarity on the BEC side allowing one to
sketch the general dependence ½Tc="F�ð�Þ with a maxi-
mum on the BEC side, in a good quantitative agreement
with the mean-field-type prediction by Haussmann et al.
[8]. After our results were announced [21], the Seattle
group reconsidered their previous estimate of the critical
temperature [22]. The new results are in excellent agree-
ment with the values claimed here both at and away from
unitarity.

The simulations were performed on the supercomputers
Hreidar at ETH Zurich, Mammoth at the University of

Sherbrooke, Typhon and Athena at the College of Staten
Island, CUNY. The work was supported by the National
Science Foundation under Grant No. PHY-0653183. E. B.
was partially supported by IFRAF.
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[7] P. Noziéres and S. Schmitt-Rink, J. Low Temp. Phys. 59,
195 (1985); M. Randeria, in Bose-Einstein Condensation,
edited by A. Griffin et al. (Cambridge University Press,
Cambridge, England, 1995).

[8] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger,
Phys. Rev. A 75, 023610 (2007).

[9] Y. Nishida, Phys. Rev. A 75, 063618 (2007).
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