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Abstract

This paper presents an approach for online parameter
estimation within particle filters. Current research has
mainly been focused towards the estimation of static
parameters. However, in scenarios of target maneuver-
ability, it is often necessary to update the parameters
of the model to meet the changing conditions of the
target. The novel aspect of the proposed approach
lies in the estimation of non-static parameters which
change at some unknown point in time. Our parameter
estimation is updated using changepoint analysis,
where a changepoint is identified when a significant
change occurs in the observations of the system, such
as changes in direction or velocity.

Keywords – parameter estimation, Monte Carlo meth-

ods, nonlinear filtering, changepoint detection

1 Introduction

Nonlinear filtering problems can be challenging as
the optimal filter does not admit a closed-form ex-
pression. In target tracking, this is a common
problem when tracking an object using nonlinear
measurements such as range and bearings. Se-
quential Monte Carlo (SMC) methods, also known
as particle filters, approximate the posterior dis-
tribution of the filtered states with a discrete set
of samples/particles. These techniques have been
shown to provide improved estimates over deter-
ministic approximation approaches (e.g. extended
Kalman filter) when the state-space model is non-
linear and/or non-Gaussian.

In standard filtering problems it is often assumed
that the parameters of the model are known. How-
ever, in recent years, developments have been made
to address the issue of parameter estimation within
particle filters (see [1] for a review of parameter es-
timation techniques). The majority of work in this
area has been focused on the estimation of unknown
static parameters with little work relating to the
problem of estimating time-varying parameters. We
consider piecewise time-varying parameters, where

at some unknown time points the parameters switch
to new parameter values. However, between switch-
ing periods the parameters are treated as static and
estimated using methods for the estimation of static
parameters. This problem is of particular interest in
target tracking where a target may switch between
periods of high and low maneuverability.

A popular alternative to estimating piecewise
time-varying parameters is to use filters which com-
bine multiple potential models such as the interact-
ing multiple model (IMM) filter [2]. In this types of
filter, numerous models are proposed (e.g. models
for constant velocity and coordinated turn), each
of which permit different fixed parameters, allow-
ing the filter to switch between models depending
on the motion of the target. The IMM filter has
proven to be very successful for tracking highly ma-
neuverable targets. However, the reliability of the
IMM filter is dependent on the number and choice
of models which must be pre-specified before the
filter is intialised.

In this paper we propose an approach which al-
lows for the online estimation of piecewise time-
varying parameters. This work is based on the re-
cent particle learning approach [3] to parameter es-
timation which relies on low-dimensional sufficient
statistics for the estimation of unknown static pa-
rameters. Our approach extends this technique
to account for the time-varying case by includ-
ing changepoint analysis to identify points in time
where the motion of the target has changed signif-
icantly. By including this changepoint approach to
parameter estimation the filter is able to adapt the
parameters of the model to match the changing con-
ditions of the target.

This paper is structured as follows. Section 2
presents the state-space model and introduces stan-
dard particle filtering. In Section 3 particle filtering
is extended to include our approach and alternative
approaches which allow for online estimation of pa-
rameters, in conjunction with state estimation. Sec-
tion 4 compares the performance of the algorithms
in Section 3 using a target tracking example. Fi-
nally, conclusions are given in Section 5.
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2 State-Space Models and
Particle Filtering

The target tracking problem can be formulated
within the framework of a state-space model. Let
Xt and Zt be two stochastic processes that are de-
pendent on parameters θ (n.b. θ relates to static
parameters and θt relates to piecewise time-varying
parameters). The process Xt represents the hidden
state of a target at time t and Zt is the observa-
tion process where the observations are assumed to
be conditionally independent given Xt, with initial
density p(x1|θ). The state and observation pro-
cesses are given according to probability densities

Xt|Xt−1 = xt−1 ∼ p(xt|xt−1,θ)

Zt|Xt = xt ∼ p(zt|xt,θ)

where the state model is Markov, conditional on the
previous state and parameters θ with the observa-
tions at time t conditional on the state at time t.

Determining the underlying state at any given
time requires the filtered posterior distribution
p(xt|z1:t,θ) to be estimated recursively in time.
The posterior distribution summarises the informa-
tion about the state of the target xt from the ob-
servations z1:t, where z1:t = {z1, z2, . . . , zt}. The
posterior distribution of the filtered states can be
derived recursively using Bayes rule

p(xt,θ|z1:t) =
p(zt|xt,θ)p(xt,θ|z1:t−1)

p(zt|z1:t−1,θ)
(1)

where,

p(xt,θ|z1:t−1)=

∫
p(xt|xt−1,θ)p(xt−1,θ|z1:t−1)dxt−1

and

p(zt|z1:t−1,θ) =

∫
p(zt|xt,θ)p(xt,θ|z1:t−1)dxt.

Evaluating the posterior distribution (1) analyt-
ically is only possible when either the state-space is
finite or linear-Gaussian. In scenarios where this is
not the case it is possible to approximate the pos-
terior distribution using a discrete set of random

samples/particles {x(i)
t }Ni=1 with associated weights

{w(i)
t }Ni=1. An approximation of the posterior dis-

tribution is then characterised as

p(xt,θ|z1:t) ≈
N∑
i=1

w
(i)
t δ

x
(i)
t

(xt)

where δ(·) is the Dirac delta function and each par-

ticle x
(i)
t has weight w

(i)
t and N is the number of

particles.

The particle approximation of the posterior dis-
tribution is updated recursively by propagating and
updating the particles according to the system dy-
namics. Usually a resampling step is included,
where the particles are resampled so as to dupli-
cate particles with high weights and remove parti-
cles which carry low weights. This step acts to re-
duce the degeneracy of the particle approximation,
which after a few iterations, can lead to a point-
mass representation of the posterior, as all but one
particle will carry a non-negligible weight.

3 Parameter Estimation

The problem of parameter estimation within par-
ticle filters has long been considered within two
frameworks, online and offline. Here we will focus
solely on parameter estimation in an online setting
where the aim is to estimate unknown parameters
in conjunction with estimating the state. Early
approaches to this problem involved treating the
parameters as an extension of the state and then
solving the problem with standard particle filter
methods. However, as the parameters are static,
resampling θ over time will lead to a point-mass
approximation of the marginal posterior distribu-
tion for the parameters [4]. Gordon et al. [5] sug-
gest adding artificial noise to the parameters to re-
duce the problem of particle depletion. However,
this approach leads to a distortion of the param-
eters’ distribution as adding artificial noise to the
parameters will lead to diffuse marginal posterior
distributions for the parameters. Popular recent al-
ternatives have included Markov chain Monte Carlo
(MCMC) steps within particle filters to estimate the
unknown parameter [6]. However, such approaches
tend to reduce the speed on the filter and can make
the approach impractical within an online setting.

3.1 Particle Learning

Carvalho et al. [3] have recently presented an ap-
proach to online parameter estimation which com-
bines the auxiliary particle filter [7] and the Storvik
filter [8] for parameter estimation. The auxiliary
particle filter weights particles according to the pre-
dictive likelihood p(zt|xt−1,θ), this has been found
to provide better estimates as the propagation of
particles takes account of the newest observation
zt. However, it is generally not possible to evaluate
p(zt|xt−1,θ), instead, an estimate µt of the transi-
tion density p(xt|xt−1,θ) is used to give p(zt|µt,θ).
This estimate is usually the mean, mode or median
of the transition density. Here we will use

µ
(i)
t = E(xt|x(i)

t−1,θ
(i)) (2)

as a prior point mass estimate of (xt−1,θ), where
E(·) is the mathematical expectation operator.
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Particle learning has been found to outperform
the Storvik filter and perform comparably against
MCMC samplers [3], particularly over long periods
of time. One of the unique features of this filter is
the use of sufficient statistics for state and param-
eter estimation. Simulation from p(θ|x1:t, z1:t) can
become computationally complex and reduce the
speed of the filter. A solution to this problem is to
use low dimensional sufficient statistics (see [9], [8])
where the parameters depend on (x1:t, z1:t) via a
set of conditionally sufficient statistics st which can
be calculated recursively. This implies that there
exists a function St such that st = St(st−1,xt, zt)
and is initialised as s1 = S1(x1, z1).

Algorithm 1: Particle Learning Filter

Resample {x(i)
t−1,θ

(i)}Ni=1

with weights w
(i)
t ∝ p(zt|µ

(i)
t ,θ(i))

where µ
(i)
t is given in (2)

FOR i = 1, . . . , N

Propagate states x
(i)
t ∼ p(xt|x

(i)
t−1,θ

(i), zt)
Update sufficient statistics

s
(i)
t = St(s(i)t−1,x

(i)
t , zt)

Sample parameters θ(i) ∼ p(θ|s(i)t )
END

One of the drawbacks of the particle learning ap-
proach is that it requires the posterior for the pa-
rameters θ to fit a conditional sufficient statistic
structure (i.e. p(θ|x1:t, z1:t) = p(θ|st)). In situa-
tions where this does not hold it is possible to use
the Liu and West filter [10] for online parameter
estimation.

3.2 Liu and West Filter

For certain complex models there does not exist
a closed form conjugate prior for the parameters
which prevents the use of the particle learning fil-
ter. In such situations where there is not a conju-
gate prior it is possible to perform parameter learn-
ing using the Liu and West filter [10]. This filter
combines the auxiliary particle filter with a kernel
smoothing approximation to estimate the posterior
distribution of the parameters using a mixture of
multivariate Gaussian densities.

Simple kernel smoothing approximations tend to
create an over-dispersed representation of the pos-
terior. This led Liu and West (2001) to include a
kernel shrinkage step into the filter which counters
the increase in the variance created by the mixture
of Gaussian densities. The kernel density form of
the smoothed marginal posterior of the parameters
is given as

p(θ|z1:t) ≈
N∑
i=1

w
(i)
t N (θ|m(i)

t , h2Vt)

where,

m
(i)
t = aθ(i) + (1− a)θ (3)

Vt =

N∑
i=1

(θ(i) − θ)(θ(i) − θ)T /N (4)

with θ =
∑N
i=1 θ

(i)/N and a =
√

1− h2 where h >
0 is the smoothing parameter.

Algorithm 2: Liu and West Filter

Resample {x(i)
t−1,θ

(i)}Ni=1

with weights wt ∝ w(i)
t−1p(zt|µ

(i)
t ,m

(i)
t−1)

where µt is given in (2) and m
(i)
t−1 is given in (3)

FOR i = 1, . . . , N

Update parameters θ(i) ∼ N (θ|m(i)
t−1, h

2Vt−1)
where Vt−1 is given in (4)

Propagate states x
(i)
t ∝ p(xt|x

(i)
t−1,θ

(i))

Assign weights w
(i)
t ∝

p(zt|x(i)
t ,θ(i))

p(zt|µ(i)
t ,m

(i)
t−1)

END

3.3 Particle Learning with Change-
points

Parameter estimation filters such as the particle
learning filter and Liu and West filter are con-
strained to parameter learning for static parame-
ters. In target tracking, there exist scenarios where
changes in the motion of the target require the pa-
rameters of the model to evolve in conjunction with
the target’s motion. Previous approaches to this
problem have involved modelling the target with
multiple models as in the IMM filter. However,
these techniques do not learn about the parameters
of interest but compensate by switching between
various models with different parameter values.

This filter extends upon the approaches to on-
line estimation for static parameters to allow for
piecewise time-varying parameters. We assume that
there exist m changepoints at unknown time points
τ1:m = {τ1, τ2, . . . , τm} in the observations such that
p(z1:τi ,θ1:τi) 6= p(zτi+1:t,θτi+1:t), which segments
the observations at times τi. The probability of a
changepoint at τi is given as β, which we assume
is fixed throughout time. Using this changepoint
method, it is now possible to assume that the pa-
rameters θt within a segment are static and can
be estimated using filters such as those discussed.
However, once the observations of the target indi-
cate that the target has performed a maneuver, the
filter will identify the maneuver as a changepoint
and will update the parameters by drawing new pa-
rameter values from the initial prior distribution of
the parameters to begin learning the new parameter
values.

This approach also follows from the auxiliary
particle filter, in the sense that the first step is
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Algorithm 3: Particle Learning with
Changepoints

FOR i = 1, . . . , N

Sample θ
(i)∗

t ∼ p(θ1)

Calculate w
(i)
t,1 ∝ (1− β)p(zt|µ(i)

t ,θ
(i)
t−1)

and w
(i)
t,2 ∝ βp(zt|µ

(i)
t ,θ

(i)∗

t )

where µ
(i)
t is given in (2)

END
FOR i = 1, . . . , N

Sample ki from {1, . . . , N} with

probability w
(i)
t,1 + w

(i)
t,2

END
FOR i = 1, . . . , N

IF w
(ki)
t,1 /(w

(ki)
t,1 + w

(ki)
t,2 ) > u, where u ∼ U(0, 1)

then set x
(i)
t ∼ p(xt|x

(ki)
t−1 ,θ

(ki)
t−1 , zt)

and set s
(i)
t = St(s(i)t−1,x

(i)
t , zt)

ELSE set x
(i)
t ∼ p(xt|x

(ki)
t−1 ,θ

(ki)
∗

t−1 , zt)

with s
(i)
t = S1(x

(i)
t , zt)

Sample parameters θ
(i)
t ∼ p(θt|s

(i)
t )

END

to resample the particles with weights proportional
to the predictive likelihood. This approach differs
from the previous methods in that the predictive
likelihood is calculated given the learnt parame-

ters w
(i)
t,1 ∝ p(zt|µ(i)

t ,θ
(i)
t−1) and the fresh param-

eters w
(i)
t,2 ∝ p(zt|µ(i)

t ,θ
(i)∗

t ), which are parame-
ters drawn from the initial prior. All particles are
then resampled given a resampling scheme such as
multinomial or stratified sampling. The resampling

weights are given as w
(i)
t,1 ∝ (1 − β)p(zt|µ(i)

t ,θ
(i)
t−1)

and w
(i)
t,2 ∝ βp(zt|µ(i)

t ,θ
(i)∗

t ), where β is the prob-
ability of a changepoint. This approach can be
utilised as an extension to both the particle learning
filter (Algorithm 3) and Liu and West filter (Algo-
rithm 4) depending on whether there exist closed
form conjugate priors for the parameters.

4 Simulation Study

In this scenario the target moves within the xy
plane, where the target’s state vector is xt =
(xt, ẋt, yt, ẏt)

′. The motion of the target is modelled
using a coordinated-turn model [11] of the form

xt = Fxt−1 + νt

where,

F =


1 sinωtT

ωt
0 − 1−cosωtT

ωt

0 cosωtT 0 − sinωtT
0 1−cosωtT

ωt
1 sinωtT

ωt

0 sinωtT 0 cosωtT


and ωt ∈ (−π rads/s, π rads/s) is the rate of turn
and T = 1s is the sampling time given in seconds.

Algorithm 4: Liu and West Filter with
Changepoints

FOR i = 1, . . . , N

Sample θ
(i)∗

t ∼ p(θ1)

Calculate w
(i)
t,1 ∝ (1− β)w

(i)
t−1p(zt|µ

(i)
t ,m

(i)
t−1)

and w
(i)
t,2 ∝ βw

(i)
t−1p(zt|µ

(i)
t ,θ

(i)∗

t )

where µ
(i)
t is given in (2)

END
FOR i = 1, . . . , N

Sample ki from {1, . . . , N} with

probability w
(i)
t,1 + w

(i)
t,2

END
FOR i = 1, . . . , N

IF w
(ki)
t,1 /(w

(ki)
t,1 + w

(ki)
t,2 ) > u, where u ∼ U(0, 1)

Update parameters θ
(i)
t ∼ N (θt|m(ki)

t−1 , h
2Vt−1)

Propagate states x
(i)
t ∝ p(xt|x

(ki)
t−1 ,θ

(i)
t )

Assign weights w
(i)
t ∝

p(zt|x(i)
t ,θ

(i)
t )

p(zt|µ
(ki)
t ,m

(ki)

t−1 )

ELSE θ
(i)
t = θ

(ki)
∗

t

Propagate states x
(i)
t ∝ p(xt|x

(ki)
t−1 ,θ

(i)
t )

Assign weights w
(i)
t ∝

p(zt|x(i)
t ,θ

(i)
t )

p(zt|µ
(ki)
t ,θ

(ki)
∗

t )

END

The system noise νt is given as a zero mean Gaus-
sian white noise processes with known covariance
Q = diag(2m, 1m/s, 2m, 1m/s). In the limiting
case of the rate of turn parameter ωt → 0 the co-
ordinated turn model simplifies to the constant ve-
locity model [12] or the form

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


which shall be used in the scenario to model nearly
constant target velocity.

Noisy observations of the target are taken by a
fixed observer positioned at (sx, sy), with the range
and bearing of the target are given as

zt =

[ √
(xt − sx)2 + (yt − sy)2

arctan((yt − sy)/(xt − sx))

]
+ εt

where the observation noise εt is a zero mean Gaus-
sian white noise process with known covariance
R = diag(10m, 0.001rads). The initial state of the
target is x1 = (0m, 10m/s, 0m, 10m/s)′ and the ob-
server is positioned at (150,−50).

In this scenario the aim is to apply the new fil-
ter, the Liu and West changepoint filter, against
the IMM filter and original Liu and West filter,
where it is assumed that the turn rate parameter
ωt is unknown and changes at some unknown point
in time. The simulated target track has been cre-
ated from the coordinated turn model over 80 time
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steps, where the turn rate parameter ωt takes values
(0,−π/20, 0, π/20, 0) at times (1− 19, 20− 39, 40−
59, 60− 80), respectively. See Figure 1 for the sim-
ulated scenario.
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Figure 1: Simulated target path

The Liu and West changepoint filter is imple-
mented with 10,000 particles and smoothing param-
eter h2 = 0.1 as recommended by Liu and West [10],
where the probability of a changepoint at any point
in time is β = 0.05. The prior distribution for the
turn rate parameter ωt follows a uniform distribu-
tion over the range [−π/8, π/8]. The IMM filter
is a robust alternative to filters which estimate the
parameters of interest in real-time. Rather than at-
tempting to estimate the parameter the IMM is im-
plemented with multiple models, where at each time
step an estimate of the target’s position is given by
weighting and merging the estimates of the indi-
vidual models. In this scenario the IMM filter will
be implemented using 20 coordinated turn models.
The models will differ only in the choice of the pa-
rameter ωt, where 20 equally spaced values of ωt
are sampled over the range [−π/8, π/8]. The transi-
tion probabilities between models of the IMM filter
are balanced equally between all alternative mod-
els and sum to 0.05 with a 0.95 probability of no
model transition. As the observation model is non-
linear the IMM filter is to be implemented with an
unscented Kalman filter.

From Figure 1 it can be seen that both the Liu
and West changepoint filter and the IMM filter are
able to track the target with reasonable accuracy.
However, the original Liu and West filter without
a changepoint step, which performs parameter esti-
mation of static parameters, struggles to track the
target. Initially, this filter appears to estimate the
target’s position well and quickly learns that the
unknown parameter ωt is zero. However, once the
target performs the first maneuver the error in the
estimate of the target’s position given by the Liu
and West filter increases. The increase in error is

caused by the learnt parameter, which no longer
matches the parameter describing the target’s mo-
tion. The error in the estimate given by the filter
increases as the filter attempts to track the target
with a mis-specified parameter, after the second ma-
neuver the filter loses track of the target completely.
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Figure 2: Root mean squared position error of tar-
get estimate
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Figure 3: Root mean squared velocity error of tar-
get estimate in y axis

The performance of the Liu and West change-
point filter and the IMM filter is measured using
the root mean squared error (RMSE) of the target’s
true position against its estimated position (Fig. 2)
over 2000 Monte Carlo runs. From the RMSE it
can be seen that for the IMM filter and Liu and
West changepoint filter show similar levels accuracy.
However, over the 80 time steps the Liu and West
changepoint filter has a lower RMSE than the IMM
filter. A similar result follows for the velocity of the
target (Fig. 3) which is nearly constant during the
non-maneuvering phases. Changes in the velocity
occur when the target turns (time steps 20, 40 and
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60), there is also a corresponding small increase in
the RMSE for the velocity during these periods.

5 Conclusions

The Liu and West changepoint filter performs well
against the traditional IMM filter in the case of
tracking a target with nonlinear observations. Stan-
dard parameter estimation filters such as the Liu
and West filter work well in estimating the values
of the parameters of interest, but do not permit
changes in parameter values. The flexibility of the
IMM filter allows targets which can be highly ma-
neuverable to be tracked, but as the parameters
of the various models are fixed the IMM filter can
struggle to track a target if the models implemented
within the filter are not correctly specified. Alter-
natively, if there are multiple unknown parameters
then the IMM filter would need to be implemented
with a greater combination of models in order to
account for the various changes in the target’s be-
haviour. Overall, the Liu and West changepoint
model appears to perform equally well to the IMM
filter when the parameters are static, but has an
advantage over the IMM filter during in periods of
parameter uncertainty.
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