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Abstract: Recently, premixed combustion has dominated the 
field of combustion research worldwide. The current work is a 
review that addresses the effects of design and operating 
regimes on the combustion and emission characteristics of 
premixed turbulent flames. The study accounts for recent 
developments aimed at overcoming combustor operability 
issues that influence emissions and flame stability. Various 
experimental setups have been utilized in investigations, with 
results pertaining to performance and emissions concerning 
premixed turbulent flames. Thus, the objective of this paper is 
to provide a comprehensive review of the effects of swirl vane 
angles and equivalence fuel-air ratios for tests conducted both 
with and without secondary air, aiming to improve combustion 
performance and reduce emissions. This review extensively 
analyzes published studies to provide and discuss different 
strategies for controlling premixed turbulent combustion 
techniques within a wide range of swirl vane angles and 
equivalence air-fuel ratios. 
 

Keywords: Premixed Turbulent Flame; Swirl vane angle; 

Equivalence fuel-air ratio; Design and Operating Regimes on 

Combustion; Burner emissions; Turbulence Models 

I. INTRODUCTION 

  Industrial furnaces serve as external combustion 

system utilized for power generation and aircraft 

propulsion. Numerous research efforts have been 

undertaken to fulfill the design criteria of combustors, 

encompassing flame stability, high combustion efficiency, 

and low emissions [1-6]. Flame stability is locally 

considered when the flame speed equals the local mean 

velocity, preventing flame stagnation and flashback [7-

12]. Control over flame stability and combustion intensity 

can be achieved through the implementation of swirl 

mechanisms. Swirl generation necessitates the use of vane 

swirlers, either mechanically through rotation or 

aerodynamically via tangential injection into a flow stream 

[13-18]. The swirl flow is characterized by the swirl 

number (SN), denoting the ratio of the axial flux of 

angular momentum to the axial flux of axial momentum 

[19-24]. The flow field of a confined high-swirl burner 

comprises six primary fluid mechanic features as 

identified by Chterev et al.[25]. Typically, the SN of low-

swirl burners (LSBs) can be determined based on three 

main geometrical parameters as studied by Therkelsen, P. 

L. et al. [26]. D.T. Yegian and R.K. Cheng [27] 

demonstrated the development of a simple vane-swirler 

capable of replacing the air-swirler employed in prior 

versions of the Weak-Swirl Burner, facilitating the 

production of a diverging flow field essential for 

stabilizing a lean premixed flame above the burner tube 

exit. Colorado, A. [28] conducted an experimental and 

numerical investigation into pollutant emissions and 

stability of gaseous-fueled reactions stabilized with two 

premixed-fuel-flexible and ultra-low NOx burner 

technologies. Therkelsen, P. [29], conducted a comparison 

of the aerodynamics between confined high-swirl burners 

(HSBs) and LSBs. Johnson et al. [30] compared a high-

swirl burner (HSB) (SN=0.73) with the same burner 

modified for operation as a low-swirl burner (LSB) (SN = 

0.5). Flow field measurements were conducted under both 

atmospheric conditions and gas turbine-relevant conditions 

of elevated temperature and pressure using particle image 

velocimetry (PIV). Littlejohn et al. [31] conducted 

laboratory experiments to examine the effects of fuel on 

turbulent premixed flames produced by a gas turbine LSB. 

Analysis of normalized velocity statistics revealed similar 

features in both non-reacting and reacting flow fields of 

the LSB. Legrand et al. [32] conducted stereoscopic PIV 

measurements for both conventional HSBs and LSBs.  

II.  GEOMETRY OF LOW SWIRL BURNER 

 The following section outlines some of the design 

constraints of Low Swirl Burners (LSBs) as observed in 

previous studies, accompanied by a concise overview of 

their configurations [33-37]. Therkelsen et al. [26] 

conducted a parametric study on various geometrical 

configurations of LSBs for methane combustion in open 

atmospheric conditions to ascertain design constraints. The 

results indicated that the swirl number (SN) should fall 
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within the range of 0.4 to 0.55. The swirler can feature 

straight or curved vanes with angles (α) ranging from 37° 

to 45°. Optimal center channel to burner radius ratios (R) 

were observed to range from 0.5 to 0.8. Additionally, the 

exit length (L) can vary from 2 to 3 times the burner 

radius. Table 1 summarizes the design parameters of LSBs 

utilized in previous studies cited in the literature. 

 

Table 1: Review on the values of the swirler design variables 

Ref 
Number 

of vanes 

Vane angle 

α 
𝐑 =

𝐃𝐡𝐮𝐛
𝐃𝐒𝐖

 
Blockage 

ratio 
Swirl number Results 

Therkelsen et al. 

[26] 
16 32, 37 and 42 

0.52, 0.67 

and 0.8 
- 

From 0.4 to 

0.55 

1- Reduce pressure drop across the LSI. 

2- Ten LSI share a common feature in that 70% to 

80% of the premixture flows through the vane 

annulus. 

Johnson et al.  [30] 16 45 0.63 58% 0.5 

Flow fields of the lower swirl injector  are devoid of 

a large dominant recirculation  

zone. 

Cheng et al. [38] 16 40 0.63 58% 0.51 

1- Outer recirculation zone generated at the corner of 

the dump plane promotes the formation of attached 

flames. 

2- Enclosure effects on the LSI are strongly coupled 

to the fuel type and dump plane geometry but are 

less dependent on the enclosure size 

Littlejohn et al. 

[39] 
8 37 0.776 71% 0.4 

1- PRNG improves flame stability at ϕ = 0.7 and 

FGR > 0.2.  

2- PRNG was found to have no effect on NOx but 

CO was reduced significantly at ϕ = 0.8.  

3-LSB was satisfactory for predicting prompt NOx 

at lean and highly dilutes conditions.  

Cheng et al. [40] 16 40 0.66 - 9.5 
LSI exhibits the same overall behaviors at STP and 

at gas turbine conditions. 

Day et al. [41] 8 37 0.76 78% 9.55 

Lean CH4 and C3H8 flames exhibited local heat 

release characteristics that were similar to those of 

the corresponding steady unstrained 1D idealized 

flames. 

 

          Cheng et al.  [38] conducted a study investigating 

the impact of combustor geometry on flame and flow field 

properties of a Low Swirl Burner (LSB) configured for 

burning hydrocarbon and hydrogen fuels in gas turbines. 

They varied the diameter of the confined tube attached at 

the burner's exit plane [42-46]. Flow recirculation was 

induced by low static pressure in the central core of the 

combustor downstream of the swirler. Swirl burners where 

distinct recirculation zones are formed are termed high 

swirl burners (HSB), characterized by intense swirl flow 

and the presence of a central cylindrical solid body, along 

with the corresponding swirl number [39]. 

 

A review of the literature indicates a limited number of 

studies investigating emissions using LSBs. Among the 

available research, Johnson et al. [30] conducted a 

comparison of emissions generated by HSBs (SN=0.73) 

and LSBs (SN=0.5).  

 

III. LOW SWIRLBURNER EMISSION 

       The pursuit of premixed combustion technologies 

has emerged as an effective approach to mitigate 

undesirable emissions in industrial burners. Najib Aminu 

Ismail et al. [47] presented a critical review focusing on an 

asymmetric swirling combustor capable of operating in a 

flameless mode, offering excellent uniform temperature 

fields and lower pollutant emissions, both crucial aspects 

in combustion processes [48-53]. The uniform temperature 

field is attributed to the absence of a flame signature, 

enabling a broader combustion zone. 

 

   MD Azazul Haque et al.[54] delved into various 

combustion concepts, including lean premixed air-

combustion and oxy-combustion, discussing various gas 

turbine burner technologies extensively. These include dry 

low NOx, enhanced-vortex, perforated-plate, and 

micromixer burners, exploring their operating principles, 
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fuel flexibility, and potential for superior performance 

under oxy-combustion conditions [53, 55]. 

 

Sujeet Yadav et al. [56] offered a comprehensive 

understanding of coal combustion to mitigate emissions 

from coal-fired furnaces. The authors delved into 

thermodynamic aspects of the combustion process, while 

also investigating the effects of various submodels such as 

devolatilization, char combustion, radiation, and turbulent 

models on the process of pulverized coal combustion [57-

59]. V N Shtern  [60] reviewed counter flows, double 

counter flows, and circulation cells in swirling flows, 

arguing that these phenomena can be attributed to a 

common swirl decay mechanism (SDM). 

 

Sherif S. Rashwan et al. [61] addressed the stability, 

approaches, and emission control of premixed flames in 

various applications, investigating the effects of oxidizer 

and fuel flexibility using oxy-fuel combustion and 

hydrogen enrichment on combustion efficiency and flame 

stability. They also discussed the impacts of operating and 

combustor design conditions on flame characteristics. 

 

M.M. Noor et al. [62] provided a review and discussion 

of recent research and developments in Moderate or 

Intense Low-oxygen Dilution (MILD) combustion, 

examining its successful application in closed furnaces and 

the potential for open furnace MILD combustion. 

Sébastien Candel et al. [63] reviewed aeroengine 

combustors and gas turbines where aerodynamic injectors 

create a rotating component to the flow, forming a central 

recirculation zone that anchors the flame. They discussed 

how the swirl response to acoustic perturbations generates 

vorticity waves, influencing flame behavior. 

 

Elkelawy et al. [64-71] highlighted the potential 

improvement in combustion and emissions behaviors 

when using alternative fuels such as biodiesel in 

conventional diesel engines. Additionally, they proposed 

co-firing solid fuel as a new method to address industrial 

burner combustion challenges [64, 72-74]. 

 

Marco Osvaldo Vigueras-Zúñiga et al. [75] conducted a 

study on flame behavior, finding that employing a high 

swirl number swirler in premixed flames burners promoted 

biogas fuel combustion in combustion chambers, resulting 

in reduced pollutant emissions and prevention of non-

combustion zones. 

 

Elkelawy et al. [76-79] experimentally investigated the 

effect of different biogas components mixed with 

commercial diesel fuel on combustion and emissions 

behaviors. Their findings indicated changes in NOx and 

CO emissions and flame temperature with varying biogas 

proportions in the combustion process [80-84]. 

 

Ziyu Wang [85] performed an experimental 

investigation evaluating combustion performance and 

flame behavior using various fuels. The study concluded 

that flame instability is influenced by factors such as 

equivalence ratio, flame radius, temperature, pressure, and 

diluent type and mole fraction. 

 

X. Zhao, W. Peng, et al. [86] experimentally 

investigated swirl and counter-swirl configurations, 

finding that the counter-swirl outperformed the co-swirler 

in terms of producing higher flame temperatures and lower 

emissions concentrations. Expanding the internal point of 

the swirling stream contributed to the improvement of the 

combustion system[87, 88]. 

IV.  MAIN ZONES IN COMBUSTOR  

     The basic design of combustor is generally comprises 

three zones, primary, secondary and dilution [89-91]. The 

secondary air holes are of smaller diameters and their 

number is large, while the swirl in the primary zone is 

weaker. The combustion efficiency at the end of the 

primary zone is always less than that at the end of the 

combustion processes 

 

A.  COMBUSTION IN THE PRIMARY ZONE 

        Within In the primary zone of real combustors, 

conditions are exceedingly complex, with multiple 

processes occurring simultaneously, including droplet 

evaporation, gaseous diffusion, and chemical reactions. 

Zakaria Mansouri et al. [92] conducted a numerical 

investigation of an atmospheric lean-premixed swirl-

stabilized burner. The results revealed the presence of an 

outer recirculation zone (ORZ) in the inlet burner corner, 

regardless of the swirl number. Upon reaching a critical 

value (SN = 0.75), an inner recirculation zone (IRZ) 

emerged at the center of the burner inlet due to vortex-

breakdown. Further increasing the swirl number to an 

excessive value resulted in the upstream propagation of the 

IRZ into the combustion chamber, leading to flame 

flashback. 

 

D. Butz et al. [93-95] conducted an experimental 

investigation focusing on the overall flame structure by 

examining radial profiles of temperature and mixture 

fraction, along with scatter plots of temperature, CH4, and 

CO versus mixture fraction. They extended the gradient-

free regime identification (GFRI) approach to automate 

the classification of local reaction zone structures. 

Classification criteria were established based on the ratio 

of local heat release rate peaks associated with premixed 

and non-premixed reaction zones located in close spatial 

proximity. An automated process was implemented to 

classify 1D Raman/Rayleigh sample lines into premixed, 

dominantly premixed, multi-regime, dominantly non-

premixed, or non-premixed flame zones [96-101]. 
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Suresh Nambully et al.[93] introduced a method 

utilizing flamelet tabulated detailed chemistry, initially 

applied to simulate laminar flames (1D and 2D) across 

various grids for validation. Subsequently, the method was 

employed to simulate a turbulent burner studied 

experimentally by Suresh Nambully et al. [102]. 

 

B.  DROPLET EVAPORATION  

         Several studies have investigated various factors 

influencing droplet evaporation. Gulcan Ozel‑Erol et al. 

[103] conducted an analysis on the impact of water droplet 

injection on the propagation rate of statistically planar 

stoichiometric n-heptane-air flames using three-

dimensional carrier phase Direct Numerical Simulations 

(DNS). Their findings revealed that most water droplets do 

not fully evaporate within the flame due to their high latent 

heat of evaporation under the considered conditions. 

Consequently, the cooling effect resulting from latent heat 

extraction during droplet evaporation predominates over 

reactant concentration dilution, leading to a reduced 

reaction rate of the progress variable and thicker flame 

front compared to premixed turbulent flames without 

droplets. 

 

Riccardo Concetti et al. [104] investigated the effects of 

water droplets on combustion mode, noting a dependency 

on their relative position within the spray flame. This 

resulted in a partial shift from non-premixed to premixed 

mode. Additionally, spray combustion occurred under 

relatively fuel-richer conditions with water injection, 

consistent across laminar and turbulent flows. Evaporation 

was assumed to occur at the stoichiometric flame 

temperature found in the wake flame. It's worth noting that 

larger droplets may evaporate quickly due to their size and 

experience secondary atomization at critical Weber 

numbers[105, 106]. 

 

C.  RATE OF CHEMICAL REACTION 

    Flame stabilization occurs through the continuous 

mixing of fresh mixture and recirculating combustion 

products, facilitated by recirculation in turbulent systems. 

Directional flame propagation is absent, with each element 

of fresh mixture undergoing three-dimensional processes 

of ignition and continuous reaction [107-109]. Flame 

speed becomes insignificant, serving only as an index of 

reaction rate when linked to a specific reaction zone 

volume and temperature level. Large-scale turbulence 

distorts the flame front, increasing surface area and 

consequently, burning velocity. 

 

Convection turbulence and mixing patterns within 

combustors play independent roles, with changes in 

convection pattern, such as altering swirl angle, 

influencing turbulence intensity. At high swirl, convection 

mixing dominates, whereas at zero swirl, turbulent mixing 

prevails. Convection recirculation aids in controlling the 

composition of adjacent regions, reducing gradients by 

molecular diffusion, known as "micro-mixing," on a short 

timescale. 

 

     V. Pirouzpanah et al. [110] developed a mathematical 

model to investigate combustion characteristics in a dual-

fuel (diesel-gas) engine at part loads, employing a quasi-

dimensional multi-zone combustion model for diesel fuel 

combustion and a detailed chemical kinetics model for 

natural gas combustion. Rahmat Waluyo et al. [111] 

conducted large eddy simulations (LES) coupled with 

detailed chemical kinetic mechanisms to accurately predict 

temperature and species mass fraction in turbulent 

diffusion flames. Kapuruge Don Kunkuma Amila 

SOMARATHNE et al. [112] studied NH3/air swirl flames 

using large eddy simulation with detailed chemistry, 

revealing stabilized flames under stoichiometric and rich 

conditions. Di He et al.[113] performed accurate 

numerical simulations of methane-air combustion using 

the eddy dissipation concept for turbulence-chemistry 

interaction. Guessab Ahmed et al. [114] formulated a 

chemical kinetics mechanism using the Eddy-Dissipation 

Concept for RANS simulations of turbulent jet diffusion 

flames, applied to a natural gas/air flame. 

 

D.  COMBUSTION IN THE SECONDARY ZONE   

           All the theories outlined above can be applied to 

the secondary zone with varying flow characteristics. 

Combustion in the secondary zone holds significance for 

both combustion efficiency and pollutant reduction, 

particularly under conditions that may compromise 

primary zone efficiency. Practical units have measured 

primary zone combustion efficiencies as low as 40%. 

Approximately 30% of this inefficiency stems from 

unburned hydrocarbons, while the remainder is attributed 

to other gas compounds such as CO and H2. Therefore, 

optimizing combustion in the secondary zone is crucial for 

improving overall efficiency and reducing emissions in 

combustion systems. 

V.  AERODYNAMIC OF SWIRLING 

FLAMES IN COMBUSTION  

          Achieving high combustion efficiency and 

minimizing pollution formation are primary objectives for 

many designers. Both experimental and theoretical studies 

play complementary roles in enhancing the understanding 

of flow and mixing in furnaces and combustion chambers, 

thereby yielding improved results. Swirl burners are 

extensively employed in various industrial processes, 

including small package boilers, large power stations, and 

industrial furnaces [115-118]. 

 

N.V. Pilipenko [119] conducted numerical experiments 

on flame combustion of pulverized-coal fuel using three-

dimensional modeling. The study focused on flow 

aerodynamics, temperature, and carbon oxides, exploring 
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various pulverized-angle flame dispersities. Numerical 

simulation of heat and mass transfer processes is crucial 

for addressing modern scientific and technological 

challenges. 

 

Sebastien Candel et al. [120] investigated the dynamics 

of swirling flames, highlighting the significance of the 

swirl number in defining flow structure and response to 

disturbances. Interaction between swirler response and 

incoming acoustic perturbations generates vorticity waves, 

influencing flame response through heat-release rate 

fluctuations. 

 

M.T. Parra-Santos et al. [121] analyzed the interaction 

of confined non-reacting coaxial swirling jets using Large 

Eddy Simulation (LES). The study focused on low flow 

Reynolds numbers and transitional turbulent regimes, with 

swirl number around unity on the annular jet. 

 

E. Gorelikov et al. [122] presented an experimental 

study on the aerodynamics and scalar characteristics of a 

premixed swirl-stabilized propane-butane/air flame. 

Optimal operating regimes of swirl-stabilized combustion 

were determined based on temperature distributions, 

velocity profiles, and visualization data. 

 

Hesham Baej et al. [123] conducted numerical 

investigations using Computational Fluid Dynamics 

(CFD) to simulate a swirl premixed combustion system. 

Their study focused on flame stability, determining the 

critical recirculation zone size close to blow-off 

phenomenon, and correlating stability limits with total 

mass flow rate and equivalence ratios. They compared 

combustion of methane and carbon dioxide fuel blends 

with pure methane combustion. 

VI. METHODS OF SWIRL GENERATION   

          The generation of swirl has been achieved 

through various techniques. K. Khalil, F. El-Mahallawy 

[124]  provided an overview of flow patterns such as swirl, 

tumble, and squish in internal combustion engines, 

highlighting their impacts on turbulence enhancement, 

combustion efficiency, and emission reduction. Different 

design approaches to generate these flows, including 

directed ports, helical ports, valve shrouding and masking, 

modifying piston surfaces, flow blockages, and vanes, 

were summarized. The review discussed how turbulence 

produced by swirl, tumble, and squish flows affects 

combustion parameters and exhaust emissions, 

emphasizing the importance of improving in-cylinder 

turbulence through recent investigations on these flows. 

Further experimental and numerical studies are needed to 

understand the impacts of organized flows on turbulence 

production, combustion behavior, and pollutant formation 

inside the cylinder. 

 

The International Flame Research Foundation (IFRF) 

utilized tangential pipes and recently introduced movable 

radial blocks for swirl generation. Also, employed two co-

axial jets to create swirl, while swirl vanes have been 

widely used in industrial furnaces. An axial tangential 

vane type burner has been designed, claiming to offer the 

most versatile performance in terms of swirl generation 

and combustion control. 

VII.  SWIRL MEASUREMENTS  

         Swirl measurements have been conducted by 

various researchers due to its significant impact. Among 

those who have investigated swirl. Ruoyang Yuan et al. 

[125] conducted measurements in swirling spray flames at 

blow-off, studying four different fuels with varying 

volatilities (ethanol, heptane, decane, and dodecane). Their 

work aimed to explore the influence of fuel properties on 

the behavior of swirling spray flames under stable and 

blow-off conditions, understand the role of local flame 

extinctions in global extinction of recirculating spray 

flames, and provide metrics for validating combustion 

models. 

 

T. Plessing et al. [126] determined the turbulent burning 

velocity in planar turbulent premixed flames stabilized by 

low swirl. They investigated six lean methane/air flames, 

covering both flamelet and thin reaction zones regimes. 

Their methodology involved measuring the probability of 

finding the instantaneous flame front simultaneously with 

the velocity field, utilizing techniques such as OH-laser-

induced predissociative fluorescence combined with 

Rayleigh thermometry or particle image velocimetry 

(PIV). 

VIII.  COMBUSTION MODELING AND 

SIMILARITY  

          Modeling and simulation heavily rely on 

ensuring similarity between the processes studied in the 

model and the prototype. Johnstone and Thring [127] 

distinguished five types of similarity for flow systems, 

including geometric similarity, dynamic similarity, and 

chemical similarity. These similarity criteria lead to 

dimensionless groups, typically established through 

dimensional analysis or from equations relating to the 

processes under study. It is essential that these groups are 

equal in both the model and the prototype. 

 

Several efforts have been made to develop suitable 

treatments for modeling enclosed turbulent jet systems. 

Johnstone and Thring [127] suggested modeling for 

mixing, while Launder and Spalding [128] calculated eddy 

viscosity as a function of turbulence energy and its 

dissipation rate. The theoretical analysis by Manheimer, 

Segal, and Wolfshtein was based on the pun and Spalding 

method, incorporating the turbulence model of Launder. 

Experimental findings indicated that flammability limits 
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increase with swirl, while they decrease with increasing air 

flow rate. Moreover, an increase in swirl degree reduces 

the stabilization flame distance by approximately one-

third, leading to higher temperatures and improved 

combustion efficiency. 

 

IX. EFFECT OF THE SECONDARY AIR 

INJECTION 

         Gad, H. M. et al. [129] conducted theoretical 

investigations on the arrangement of secondary air ports 

and their impact on the combustion characteristics of 

natural gas (NG) flames. Secondary air was introduced 

into the combustion chamber through its first half length, 

with nine different port arrangements discussed. These 

arrangements were categorized into three groups based on 

vertical heights. 

 

Kapuruge Don Kunkuma Amila Somarathne et al. [130] 

aimed to understand the emission characteristics of 

turbulent premixed ammonia/air swirl flames in a gas 

turbine-like combustor under high pressure, with and 

without secondary air injection. The study observed a 

decrease in NO emissions with an increase in pressure, 

while unburnt NH3 emissions in rich flame conditions also 

decreased with pressure increase. At an equivalence ratio 

of 1.2, NO and unburnt NH3 emissions were minimized to 

around 200 ppm of mole fraction, with 6% volumetric 

exhaust flow of unburnt H2 at an operating pressure of 0.5 

MPa. Introducing a secondary air injection system resulted 

in significantly reduced emissions, achieving NO levels of 

around 100 ppm of mole fraction at 16% O2 

concentration, with zero NH3 and H2 emissions at a 

primary zone equivalence ratio of 1.2. Song Li et al.[131] 

conducted experiments and industrial-scale tests on a 300-

MW low-volatile coal-fired boiler under deep air staging. 

They measured aerodynamic characteristics, gas 

temperatures and concentrations, furnace temperatures, 

and boiler efficiency for various secondary air mass flow 

rates. Under deep air staging, a steady central recirculation 

zone formed near the burner nozzle. Decreasing the flow 

rate led to reductions in swirl intensity and maximum 

axial, radial, and tangential velocities. Additionally, 

decreasing the secondary air-box damper opening resulted 

in lower gas temperatures and decreased rates of 

temperature increase, leading to ignition occurring farther 

from the burner.  

X.  FINAL REMARKS 

         Turbulent combustion remains a dynamic field 

of research vital for the evolution of next-generation for  

combustion chambers. In conclusion, the following points 

are highlighted: 

 

• Employment of New Combustion Technology: 

Innovative combustion technology offers solutions to 

address issues of incomplete combustion and short 

residence time. 

 

• Importance of Combustor Optimization: Continual 

optimization of combustors remains crucial for 

enhancing flame stability and combustion efficiency. 

Novel materials with suitable thermal properties and 

innovative chamber designs, such as multi-inlets and 

combined burners, are proposed. 

 

• Significance of Swirl Number: The swirl number 

serves as a key characteristic of swirling flows, with its 

determination best achieved through measurements of 

axial and tangential velocity profiles. 

 

• Considerations for Experimental Trials: Previous trials 

conducted under high-temperature conditions 

predominantly utilized gaseous fuel to prevent probe 

clogging, while some using oil fuel faced challenges 

with geometry and failed to study the root section of 

the flame crucial for understanding flame 

aerodynamics. 

 

• Caution Regarding Geometric Complexity: 

Experimental results from combustors or models with 

intricate geometries may lack generality, as geometric 

boundary conditions significantly influence flame 

dynamics. 

 

• Challenges with Experimental Accuracy: Inaccuracies 

in experimental results can arise from the use of bare 

thermocouples, improper tapping point selection, and a 

lack of quantitative analysis between hot and cold tests, 

particularly under swirl conditions. 

 

• Need for Further Investigation: More experiments are 

needed to explore flame behavior under high degrees 

of swirl, especially with oil-fired combustors. 

 

• Limitations in Similarity Criteria: Distortions in model 

burner size and challenges in calculating average flame 

density limit the application of similarity criteria in 

modeling swirling flames. 

 

• Understanding Combustion-Flow Interaction: The 

impact of combustion on turbulent flame flow patterns, 

particularly when swirl is introduced, remains a 

significant research challenge. 

 

• Exploration of Equivalence Ratio and Reynolds 

Number Effects: Experimental and theoretical studies 

are required to investigate the effects of equivalence 

ratio and Reynolds number on combustion 

mechanisms, especially for commercial fuels. 
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• Secondary Air Injection Angle: The influence of 

secondary air injection angle magnitude and model on 

combustor performance warrants further exploration. 

 

• Addressing these points through rigorous research and 

experimentation will contribute to advancements in 

turbulent combustion understanding and technology. 

 

XI.  FUTURE WORKS 

       These proposed future works aim to deepen our 

understanding of swirling premixed turbulent flames 

through experimental and theoretical investigations. Here's 

a summary of the key points: 

 

• Experimental Setup: Conduct experiments on an 

instrumented combustor with axial vane swirls of 

varying angles (20°, 30°, 45°, and 60°) to study the 

aerodynamic flow patterns of swirling premixed 

turbulent flames. 

 

• Parameter Variation: Explore the influence of 

operating parameters such as equivalence fuel-air ratio 

(ϕ) and swirl vane angle (S) on temperature, emissions 

species concentrations, and velocity vectors under 

different conditions. 

 

• Dual Air Systems: Investigate the effect of secondary 

air on premixed flame characteristics by employing a 

combustor with two air systems for primary and 

secondary air. 

 

• Additional Parameters: Consider the impact of 

secondary air ratio (SAR) and the magnitude of 

secondary air injection angle on temperature, velocity, 

and species concentrations. 

 

• Combustion Characteristics of Diesel Fuel: Analyze 

the combustion characteristics of diesel fuel (C12H26) 

under varying equivalence fuel-air ratios and swirl 

vane angles, both experimentally and theoretically. 

 

• Validation and Theoretical Modeling: Validate 

experimental results with combustion simulations and 

develop theoretical methodologies to predict flame 

temperature distribution, emission characteristics, and 

velocity distributions along the flame length. 

 

• Investigation of Flame Dynamics: Further investigate 

swirling flame dynamics, particularly in single- and 

multiple-injector configurations, considering 

interactions between swirling flames and potential 

coupling by azimuthal acoustic modes. 

 

• Transient Regimes: Study transient regimes such as 

ignition and extinction in multiple-injector 

configurations, paying attention to interactions with 

swirling flows and observing phenomena like flapping 

modes near blow-off. 

 

• Effect of Different Parameters on Flame Height: 

Investigate the impact of parameters like fuel-air ratio, 

equivalent burner diameter, and Reynolds number on 

flame height, highlighting their proportional 

relationships and significance. 

 

These proposed future works represent a comprehensive 

approach to advancing our understanding of swirling 

premixed turbulent flames and addressing key challenges 

in combustion research. 
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