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Abstract- In recent years, blockchain technology, coupled 

with smart contracts, has played a pivotal role in the 

development of distributed applications. Numerous case 

studies have emerged, showcasing the remarkable potential of 

this technology across various applications. Despite its 

widespread adoption in the industry, there exists a significant 

gap between the practical implementation of blockchain and 

the analytical and academic studies dedicated to 

understanding its nuances. 

This paper aims to bridge this divide by presenting an 

empirical case study focused on the e-will contract, with a 

specific emphasis on gas-related challenges. By closely 

examining the e-will contract case study, we seek to provide a 

clearer understanding of the real-world implications of 

blockchain technology, addressing the potential challenges 

related to gas consumption. 

 

Keywords- Blockchain; Empirical Study; Smart Contracts; 

Gas Consuming; E-Will. 

 

I. Introduction 
Smart contracts leveraging blockchain technologies have 

gathered significant attention in both emerging business 

applications and the scientific community.  This is due to 

their special characteristics such as immutability, 

security, integrity, and tractability. The process of 

developing high-performing and secure contracts on 

Ethereum, the leading smart contract platform today, is a 

challenging task as developing smart contracts on the 

Ethereum network requires a different engineering 

approach from that most web and mobile developers are 

familiar with. The decisions made by developers such as 

the types of variables used, the types of data structures 

used, the number of cycles, the kind of instructions, and 

how they are initialized highly affect the gas 

consumption of a smart contract [1].  

Additional challenges arise from Gas consumption, Gas 

is the metric that manages the execution of smart 

contracts on platforms like Ethereum. Many studies 

expressed the importance of closely monitoring gas 

consumption, with primary reasons being that gas 

equates to real money and transactions may fail if there's 

not enough gas. Moreover, accurately estimating the 

required gas for a specific smart contract execution is 

challenging[2].  Any mistake in writing or designing 

smart contracts has significant financial impacts 

compared to bugs in regular applications [3].  

 

A study in [4] discussed 16 different detected exception 

types in the Ethereum network, and further grouped them 

into 6 major categories. the study stated that, out of the 

gas problem (occurs when the actual gas cost is greater 

than the provided gas cost) along with explicit revert 

problem (that causes a rollback of the state to just before 

the transaction), are the most commonly seen types of 

exceptions in the Ethereum network. When the study 

considered all the transactions, out of gas alone accounts 

for more than 90% of all exceptions detected, with 

explicit revert taking another 8%.   

Another study in [5] analyzes the whole Ethereum 

blockchain with 6.3 million contracts deployed on the 

entire blockchain in 2019. They report numerous gas-

focused vulnerability contracts holding a total value 

exceeding $2.8B.    

In [6], the study mentions that if the cost of executing a 

function increases with time. It may cause the program to 

stop working at a certain point. So, computing the gas 

consumption helps identify such programming errors. If 

a smart contract is not optimized, it costs more than the 

required gas, and therefore, the user will be overcharged. 

Hence, optimization techniques are required to apply to 

smart contracts before deploying them onto the main 

network. 

The objective of this work is to address the issue of gas 

consumption by utilizing a solidity scan tool, outlining a 

range of suggested patterns and advice for smart contract 

development to minimize gas usage. 

The case study chosen for this study is E-will. Aa 

according to the rapid advancement of the social 

economy, our society is experiencing a gradual aging 

trend, leading to a rise in family disputes over 

inheritance. Wills play a crucial role in allowing 

individuals to dictate how their assets are distributed after 

their death, mitigating potential conflicts among heirs, 

and averting legal appeals. The research introduces a 

traceable online E-will system based on blockchain and 

smart contract technology as a case study for testing gas 

consumption. 

This paper is structured as follows: Section 2 presents a 

background for Ethereum Virtual Machine (EVM) and 

the Gas concept in Ethereum. Section 3 shows in detail 

the structure of the E-will contract's framework.  Testing 

the contract's gas consumption to identify potential issues 

along with suggested solutions to reduce gas 

consumption is presented in section 4.  Finally, section 5 

concludes the work. 
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II. Background  

 
A.  Smart Contract and Ethereum Virtual Machine 

A smart contract is a self-executing digital contract with 

the terms of the agreement directly encoded into 

computer programs. These contracts run on blockchain 

platforms, and one of the most notable platforms for 

smart contracts is Ethereum. Ethereum Virtual Machine 

(EVM) is the runtime environment in which smart 

contracts on the Ethereum blockchain operate. Figure 1 

illustrates the order of smart contract execution on the 

Ethereum blockchain. First, the agreement is reached, 

and a developer uses Solidity, a programming language 

designed for developing smart contracts on Ethereum, to 

encode it. The code is compiled into bytecode for the 

Ethereum Virtual Machine (EVM). Miners play a role in 

processing the contract onto the blockchain. After 

deployment, the contract undergoes processing on the 

specified event date, activated by the written code. The 

contract's execution results in the release of payment to 

the designated party and this transaction can be 

subsequently verified by anyone [7]. 

Bytecodes, represented by hexadecimal numbers, are 

close to opcodes and are the codes executed by the 

Ethereum Virtual Machine (EVM).  Figure 2 shows an 

example of the byte code generated from the E-will smart 

contract. 

 

B.  Gas Metric in Ethereum 

Gas, in Ethereum, is denominated in gwei, one-billionth 

of one Ether the cryptocurrency in Ethereum network, 

and serves as a computational metric. It represents the 

cost associated with interacting and transacting with 

smart contracts. It is computed using a straightforward 

formula 1 [8]:  

𝐺𝑎𝑠𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝐺𝑎𝑠𝑃𝑟𝑖𝑐𝑒𝑥𝐺𝑎𝑠𝑈𝑠𝑒𝑑    (1) 

 

 
 
Figure 3: Average Gas Price 

 

These gas fees help to keep the Ethereum network secure. 

By requiring a fee for every computation executed on the 

network, it prevents attackers from spamming the 

network and avoids accidental or hostile infinite loops or 

other computational wastage in code [5]. 

 

The Gas price is not constant. Figure 3[9] shows an 

example of the variation of Gas prices over time. The 

quantity of gas used is dictated by the specific operations 

executed within the smart contract. In Solidity, when a 

smart contract undergoes compilation, it transforms into 

a series of "operation codes" or opcodes, denoted by 

abbreviations such as ADD for addition and MUL for 

multiplication. The study in [10], initially outlined this 

system, which contains a comprehensive list of all 

opcodes along with their descriptions. Each opcode is 

assigned a specific amount of gas, serving as a metric for 

the computational effort needed to execute that particular 

operation as illustrated in table 1. 
 

Table 1: Gas Costs in Ethereum 

Operation Gas Description 

ADD/SUB 3 Arithmetic operation 

JUMP  8 Unconditional Jump 

SSTORE 5,000/20,000 Storage operation 

BALANCE 400 Get the balance of an 

account 

CALL  25,000 Create a new account 

CREATE 32,000 Create a new account 

TRANSFERE 21,000 Transfer money 

 

  For example, the execution of the view function in the 

smart contract is cost-free, and there is no charge 

associated with these operations. However, if you intend 

to transfer funds from one wallet to another through the 

smart contract, you are required to cover the minimum 

gas limit as well as the gas cost associated with each 

opcode line.  

 

C. Gas Limit 

Each block has a gas limit, representing the maximum 

gas consumption allowed for all included transactions. 

This limit dictates the maximum number of transactions 

Figure 2:Snippet of E-will Bytecode. 

Figure 1: The Entire Process of Executing Smart Contract over 

Blockchain 
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permitted in a block. In the permissioned Ethereum 

network, the gas limit is set to the maximum limit 

allowed for the block, and if the computations of the 

block exceed this limit the contract will raise 'out of gas 

flag or revert'. In this case, the consumed gas will not be 

returned to the caller. On the other hand, if the 

computations within the contract are lower than the limit 

it will return to the caller. So, optimizing the consumed 

gas within the smart contract by eliminating unbounded 

mass operations e.g. loops, complex logic, inefficient 

data structure and large amounts of data can help in 

mitigating the risk of gas problems [11].  

The current gas limit for each block is 30 million gas per 

block at the time of writing this article 2024, meaning 

around 1400 transfer transactions that each have a 

transaction gas limit of 21000 (simple money transfer) 

can fit in 1 block [12]. 

 

III.  Case Study:  E-Will System 

 
Blockchain technology, being a decentralized ledger 

system, ensures data integrity by employing the Merkle 

tree hash technique [13]. This means that any attempt to 

modify data within the chain renders it invalid. As a 

result, everyone on the network is informed of every 

change that occurs, whether during or after the testator's 

death. Additionally, the automated execution of smart 

contracts can be used for addressing a critical concern 

related to wills, particularly the challenge posed by wallet 

credentials. This issue gained prominence in 2020 when 

Chainalysis, a cryptocurrency research company, 

reported that approximately one-fifth of the bitcoins in 

circulation at that time, valued at over $175 billion, were 

inaccessible due to the death of their owners. In 

blockchain, accessing wallets is only possible with the 

corresponding private key. The strategic implementation 

of E-wills on the blockchain holds substantial promise in 

mitigating such challenges. Finally, the immutability 

characteristic of blockchain offers immutable and 

tamper-resistant ledger. Once a will is recorded on the 

blockchain, it becomes a part of a distributed and 

decentralized network of nodes, immutable 

timestamping provided by blockchain records the exact 

time of will creation or modification, offering a verifiable 

record of events crucial in legal contexts and aiding in the 

resolution of disputes related to the timing of actions 

within the E-will system. 

 
A.  System Architecture 

The proposed system utilizes blockchain technology to 

develop an innovative online will system. By 

establishing a permissioned Ethereum chain and 

implementing smart contracts using Solidity. This study 

then aims to optimize Gas usage and minimize the issues 

raised by the contract calls. Figure 4 shows the 

interaction of the system between the different actors 

through the blockchain. 

 

Notations: 

 ₲: Government Contract, the base contract that is 

deployed once in the network and the address is public 

for all the citizens to deal with. 

 

 

𝓙𝓐: Judicial Authority manager nodes. 

𝓡𝓔: Real estate managers nodes that approve the testator 

ownership of the asset. 

 

The interaction is carried out among 4 main actors:  

1- Judicial Authority 𝓙𝓐: The nodes responsible for 

accepting or rejecting the registration of wills in the 

blockchain.  

2- Real estate Manager 𝓡𝓔:  The nodes that approve the 

ownership of real assets. 

3- Testator: The person who aims to write his will. 

4- Beneficiaries: The owner of the money or assets after 

the testator's death. 

 

B.  Steps for Creating E-will:  

Step 1: The testator, aiming to create an E-will, initiates 

the registration process by applying through the public 

government contract (₲), accessible to all citizens. The 

E-will contract is deployed with a pending status to be 

reviewed by the public judicial manager. 

 

Step 2: The judicial manager receives the request, 

conducts a thorough review, and approves it if the citizen 

has not issued any wills previously. 

Figure 4: Interaction with E-will Contract.  
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Step 3: The contract status is then updated to be approved 

or rejected, and any instances of illegal behavior detected 

by the judicial authority result in the destruction of the 

contract. 

 

Step 4,5: Upon the testator's death, beneficiaries obtain a 

certificate from the insurance organization and submit it 

to the judicial manager. 

 

Step 6: The judicial manager, in turn, activates the 

running method that exists in the contract for the testator 

after death. 

 

Step 7: The rules that exist in the contract will be 

achieved consequently. The E-will contract is 

represented by structures outlined in Algorithm 1 and 

Algorithm 2, while the UML diagram for the deployed E-

will contract is presented in figure 5.  

 

 

 

 

 

  

𝓐𝓵𝓰𝓸𝓻𝓲𝓽𝓱𝓶 1: Creating E-will 

Input ↦ Request submitted to the ₲ contract using 

ID. 

Process ↦ 𝓙𝓐 reviews the request.  

approves the deployment if satisfactory. 

 Otherwise, the self-destruct function is invoked, 

leading to the contract's termination. Upon 

approval, the contract status is updated to 

"approved." The testator can then proceed to add or 

remove any beneficiaries from their will. 

Output ↦ E-will contract with two distinct arrays: 

one for monetary beneficiaries and the other for 

assets beneficiaries ready for addition by the 

testator. 

𝓐𝓵𝓰𝓸𝓻𝓲𝓽𝓱𝓶 2: After Testator death 

Input ↦ ₲ contract initiates the E-will contract by 

invoking the 'mark as dead' function within the E-

will contract. 

Process ↦ The prioritization of money beneficiaries 

is determined according to the specifications 

outlined by the testator, and the approval of assets is 

overseen by the asset manager 𝓡𝓔. The transfer of 

assets to the beneficiaries leads to updates in the 

corresponding fields. 

Output ↦ The asset history is duly updated, and 

funds are seamlessly transferred to the wallets of the 

designated money beneficiaries. 

 

Figure 5: UML Digaram for E-will Contract.  
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IV.   Analysis of E-will Smart Contract 
 

Before deploying any smart contract to the blockchain, it 

is imperative to establish criteria for testing the 

functionality of the smart contract. Various tools are 

available for assessing potential vulnerabilities and 

attacks that could pose obstacles to the seamless 

operation of the smart contract OYENTE, 

SECURIFY[14], MYTHRIL[6], and SOLSCAN. The 

immutability of the blockchain further emphasizes the 

criticality of this testing process. Failing to detect the 

issues during testing could lead to severe consequences. 

Vulnerabilities left unaddressed may persist in the 

system, potentially compromising the security and 

functionality of the smart contract. 

 

A. Detected Gas Vulnerabilities within E-Will using Solidity 

Scan: 

We employed the Solidity scanner to assess gas 

consumption vulnerabilities within the E-will contract. 
The identified vulnerabilities include no critical risk 

functions, and thirteen lines are identified as causing gas 

consumption. The representation of the vulnerabilities 

exists in figure 6. 

 

 

 
      Figure 6: Detected Gas Issues 

 

 

The Gas issues found are 13 lines classified into 7 

categories. Each issue is illustrated and the code snippet 

that causes this issue is represented in table2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Lines Flagged as Gas Consuming 

 
B.  Suggested Solutions:  

 

1- Pattern 1: Payable and Non-Payable Function Impact 

 

 Let S be the set of constructors defined as payable, Δ 

represents the potential opcode reduction, and G denotes 

the saved gas.  

Tests show that developers can achieve Δ≈10 opcodes 

and G units of gas savings by making constructors 

payable. It is crucial to acknowledge that this 

optimization strategy introduces risks, as payable 

constructors can accept ETH during deployment. But in 

our example, the E-will contract is deployed only by the 

government contract, so it is considered a trusted node 

the code is updated to be as presented in Listing 1. 

  constructor(string memory _testator_id, address _testator_address) Payable { 

        government_address = msg.sender; 

        state = ApplicationState.PENDING; 

        testator_address = _testator_address; 

        testator_id = _testator_id; 

    } 

 
 

Listing 1: An Example for a Payable Constructor 

 

Pattern Code/Snippet Occurrence 

1 

 

 

1 

2 

 

1 

3 

 

1 

4 

 

7 

5 

 

1 

6 

 

1 

7 

 

1 
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2- Pattern (2-3-6) Arithmetic Gas Consumption  

 The analysis shows that verifying the variable within a 

loop in Solidity incurs gas consumption. Therefore, any 

checks inside the loop should be conducted prior to its 

execution. Additionally, various arithmetic operations 

may consume differing amounts of gas. In our 

illustration, we modified i++ to ++i. Throughout the test 

cases, it was observed that the last method incurs a 

relatively lower gas consumption compared to the other 

methods of increments. That is because the steps for 

applying it in the same function using ++i and i++ are as 

described in Listing 2.  

I++ ++i 

 j = i; 

       i = i + 1; 

        return j 

 
 

i = i + 1; 

return i; 
 

// transaction cost 338107 gas  
// execution cost   338107 gas  
 

// transaction cost 337675 gas  
// execution cost   337675 gas 

 

 
 

Listing 2: Gas Consumption for Mathematic Operations 

 

 Listing 3 shows an example of updated loops to reduce 

Gas consumption. 

 uint256 i = 0 

        for (; i < willMoneyEntries.length; ++i) { 

            payable(willMoneyEntries[i].to).transfer(willMoneyEntries[i].value); 
 

 
Listing 3:Example for Enhance checker and Arithmetic operations. 

 

 

3- Pattern 4: Public Modifier Gas Consumption 

Let Fpublic denote a function with a public visibility 

modifier identified without internal calls. 

The disparity in gas consumption between public (Gpublic

) and external (Gexternal) functions becomes apparent, 

particularly with extensive data arrays. This divergence 

arises from the fact that, in the case of public functions, 

Solidity duplicates arguments to memory, incurring 

higher gas costs (Gpublic> Gexternal ). Public variables 

implicitly generate a getter function, contributing to both 

the contract's size and overall gas usage.  Conversely, 

external functions read from call data, which is more 

cost-effective compared to memory allocation. 

Additionally, the primary concern lies in the gas 

consumption induced by the public modifier. This 

vulnerability is notable because public variables result in 

an additional 22 gas consumption. Listing 4 shows 

external implementation instead of the public modifier. 

 

function reject() external  governmentRestricted { 

        // Can be executed only by government for ONLY the first time 

        require(state == ApplicationState.PENDING); 

        state = ApplicationState.REJECTED; 

    } 
 

 
Listing 4: Example for External call for Government Restricted 

Function 

 

4- Pattern 5: Maps Vs Arrays Gas Consumption: 

The ratio of mapping to mapping & array is modified this 

pattern is calculated by Nmapping/Nmapping+Narray higher 

value of equation metric is related to a lower gas 

consumption [15]. 

Let L represent the length of the array, and Gread denote 

the gas consumption associated with reading the length 

of the array during each iteration of the loop. In each 

iteration, Gread exceeds the necessary gas usage. Under 

the most favorable circumstance, where the length is read 

from a memory variable and stored in the stack, a savings 

of approximately 3 gas per iteration can be achieved. 

In contrast, the least favorable scenario involves external 

calls during each iteration, resulting in a significant waste 

of gas. The array "willMoneyEntries" has been identified 

for use inside a loop without caching its value in memory. 

In our example, caching the array length (L) is not 

feasible due to the testator's ability to add beneficiaries 

during their lifetime. Therefore, the array can only be 

cached after the testator's death. The "mark as dead" 

function (Fdead) may be implemented to enforce caching 
the array size (S) before initiating the distribution of the 

will. 

 

C.  Contract Analysis After Gas Optimization  

 

The E-will contract is subject to a renewed evaluation 

employing the Solidity scan tool. The findings, 

elucidated in the accompanying figure, reveal a notable 

reduction, specifically from 13 to 2 gas alerts, as resulted 

in figure 7. It is imperative to note that the remaining 

alerts originate from the array code. The arrays in our 

contract, pertaining to the addresses of beneficiaries for 

the testator, are anticipated to maintain a relatively 

limited size. In contrast, the arrays associated with 

citizens have the potential to exceed a multitude of 

millions of entries. Consequently, we have opted for a 

strategic replacement by implementing a mapping 

criterion to optimize performance and mitigate gas 

consumption concerns. 
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Figure 7: Detected Issues after Modifying the Contract 

 

Table 3 shows the findings that can be followed by the 

solidity developers to mitigate the gas issues. 

 
Table 3:Relations of Gas Consumption vs Identified Metrics 

Metric Gas Consumption 

GC 

Description 

Global Variables 

(GV) 
GC∝GV Higher no of Gv related 

to 

higher gas consumption. 

Public Modifiers 

(PM) 
GC∝PM Higher no of Pm related 

to 

higher gas consumption. 

External Variables 

(EV) 
 GC∝1/EV Higher no of EV lower 

gas consumption. 

String Variable (SV) 

and Byte Variable 
(BV) =SV/BV 

Sv/Bv ∝GC The greater no of SV 

related to BV the greater 
the gas consumed 

Loops Occurrence 

LO 
LO∝GC The greater LO the more 

gas consumed  

Mappings and 

Arrays 
N mappings/ 

(N mappings + N 

arrays) 

N mappings/ 

(N mappings + N 

arrays) ∝1/GC 

higher values of this 

metric related to a lower 
gas consumption. 

 

D. Evaluating the money saved in deploying the optimized 

smart contracts. 

 

We deploy both the original and optimized smart contract 

in order to calculate the cost savings associated with 

implementing the optimized smart contracts. We observe 

that 11740 units of gas are saved when we compare the 

gas consumption for deploying the optimized contracts 

with that for deploying the original ones.  As ETH price 

is 3786$ and gas price is 43 Gwei according to the 

records in March 2024. The total saved money for the 

optimized contract is around 40 USD. 

  

 

 

 

Figure 8: Steps for Deploying in Goerli Testnet 
 

E. Real Deployment in Georli testnet 

 
Deploying a smart contract on the Goerli testnet[16] 

allows developers to test their contracts in a simulated 

Ethereum environment before deploying them on the 

mainnet. This process involves several key steps. First, 

developers need to install a compatible wallet like 

metamask [10], [17], and deploying platforms such as 

Remix, Truffle, or Hardhat[18]. Figure 8 shows the steps 

followed to deploy the contract within the real network. 

After deployment, you can verify your smart contract on 

a block explorer like Etherscan. Interact with your 

deployed contract using its address. The Address of our 

deployed contract in Etherscan is in Listing 5.  

 

 

https://goerli.etherscan.io/address/0xf8e8534d67f7b0

1a0241576d4a8b61b838cb0b06 

 
Listing 5: Address of Contract in Goerli Network 

 
Conclusion:  

 

The costs associated with deploying and executing a 

smart contract are influenced by the implementation 

decisions made by developers. Inappropriate design 

choices may lead to higher gas consumption than 

necessary. In this paper, we explore the structure of the 

E-will contract by drawing a detailed UML diagram. The 

code is then compiled, and bytecode is extracted using 

the REMIX IDE. Solidity Scan is employed to evaluate 
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the code quality, specifically focusing on gas 

consumption perspectives. An experiment shows that the 

framework doesn't have any critical issues, but there are 

13 Gas flags distributed across 7 categories. The patterns 

used to address these issues enhance gas consumption by 

84%. The E-will contract is then deployed using the 

MetaMask wallet on the Goerli network, making it 

available for any further tests and studies. 
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