
Journal of Engineering Research Journal of Engineering Research

Volume 8
Issue 1 issue 1 Article 25

2024

In-Depth Examination of Gas Consumption in E-Will Smart In-Depth Examination of Gas Consumption in E-Will Smart

Contract: A Case Study Contract: A Case Study

Manal Mansour
Faculty of Engineering, Shoubra, Benha University, Egypt, manal.abdelmawgood@feng.bu.edu.eg

May Salama
Faculty of Engineering, Shoubra, Benha University, Egypt, may.mohamed@feng.bu.edu.eg

Hala Helmi
Information Technology and Computer Science, ITCS, Nile University, Giza, Egypt,
hala.zayed@feng.bu.edu.eg

Mona F.M Mursi
Faculty of Engineering, Shoubra, Benha University, Egypt, mona.mursi@feng.bu.edu.eg

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/erjeng

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Mansour, Manal; Salama, May; Helmi, Hala; and F.M Mursi, Mona (2024) "In-Depth Examination of Gas
Consumption in E-Will Smart Contract: A Case Study," Journal of Engineering Research: Vol. 8: Iss. 1,
Article 25.
Available at: https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for
inclusion in Journal of Engineering Research by an authorized editor. The journal is hosted on Digital Commons, an
Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo,
u.murad@aaru.edu.jo.

https://digitalcommons.aaru.edu.jo/erjeng
https://digitalcommons.aaru.edu.jo/erjeng/vol8
https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1
https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25
https://digitalcommons.aaru.edu.jo/erjeng?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol8%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol8%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25?utm_source=digitalcommons.aaru.edu.jo%2Ferjeng%2Fvol8%2Fiss1%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo

In-Depth Examination of Gas Consumption in E-

Will Contract: A Case Study

Manal Mansour 1*, May A. Salama1, Hala H. Zayed 2, Mona F.M. Mursi1

 1 Faculty of Engineering, Shoubra, Benha University, Egypt.

 2 Information Technology and Computer Science, ITCS, Nile University, Egypt.

 *Corresponding author(s). E-mail(s): Manal.abdelmawgood@feng.bu.edu.eg.

Contributing authors: may.mohamed@feng.bu.edu.eg; hala.zayed@feng.bu.edu.eg; mona.mursi@feng.bu.edu.eg.

Abstract- In recent years, blockchain technology, coupled

with smart contracts, has played a pivotal role in the

development of distributed applications. Numerous case

studies have emerged, showcasing the remarkable potential of

this technology across various applications. Despite its

widespread adoption in the industry, there exists a significant

gap between the practical implementation of blockchain and

the analytical and academic studies dedicated to

understanding its nuances.

This paper aims to bridge this divide by presenting an

empirical case study focused on the e-will contract, with a

specific emphasis on gas-related challenges. By closely

examining the e-will contract case study, we seek to provide a

clearer understanding of the real-world implications of

blockchain technology, addressing the potential challenges

related to gas consumption.

Keywords- Blockchain; Empirical Study; Smart Contracts;

Gas Consuming; E-Will.

I. Introduction
Smart contracts leveraging blockchain technologies have

gathered significant attention in both emerging business

applications and the scientific community. This is due to

their special characteristics such as immutability,

security, integrity, and tractability. The process of

developing high-performing and secure contracts on

Ethereum, the leading smart contract platform today, is a

challenging task as developing smart contracts on the

Ethereum network requires a different engineering

approach from that most web and mobile developers are

familiar with. The decisions made by developers such as

the types of variables used, the types of data structures

used, the number of cycles, the kind of instructions, and

how they are initialized highly affect the gas

consumption of a smart contract [1].

Additional challenges arise from Gas consumption, Gas

is the metric that manages the execution of smart

contracts on platforms like Ethereum. Many studies

expressed the importance of closely monitoring gas

consumption, with primary reasons being that gas

equates to real money and transactions may fail if there's

not enough gas. Moreover, accurately estimating the

required gas for a specific smart contract execution is

challenging[2]. Any mistake in writing or designing

smart contracts has significant financial impacts

compared to bugs in regular applications [3].

A study in [4] discussed 16 different detected exception

types in the Ethereum network, and further grouped them

into 6 major categories. the study stated that, out of the

gas problem (occurs when the actual gas cost is greater

than the provided gas cost) along with explicit revert

problem (that causes a rollback of the state to just before

the transaction), are the most commonly seen types of

exceptions in the Ethereum network. When the study

considered all the transactions, out of gas alone accounts

for more than 90% of all exceptions detected, with

explicit revert taking another 8%.

Another study in [5] analyzes the whole Ethereum

blockchain with 6.3 million contracts deployed on the

entire blockchain in 2019. They report numerous gas-

focused vulnerability contracts holding a total value

exceeding $2.8B.

In [6], the study mentions that if the cost of executing a

function increases with time. It may cause the program to

stop working at a certain point. So, computing the gas

consumption helps identify such programming errors. If

a smart contract is not optimized, it costs more than the

required gas, and therefore, the user will be overcharged.

Hence, optimization techniques are required to apply to

smart contracts before deploying them onto the main

network.

The objective of this work is to address the issue of gas

consumption by utilizing a solidity scan tool, outlining a

range of suggested patterns and advice for smart contract

development to minimize gas usage.

The case study chosen for this study is E-will. Aa

according to the rapid advancement of the social

economy, our society is experiencing a gradual aging

trend, leading to a rise in family disputes over

inheritance. Wills play a crucial role in allowing

individuals to dictate how their assets are distributed after

their death, mitigating potential conflicts among heirs,

and averting legal appeals. The research introduces a

traceable online E-will system based on blockchain and

smart contract technology as a case study for testing gas

consumption.

This paper is structured as follows: Section 2 presents a

background for Ethereum Virtual Machine (EVM) and

the Gas concept in Ethereum. Section 3 shows in detail

the structure of the E-will contract's framework. Testing

the contract's gas consumption to identify potential issues

along with suggested solutions to reduce gas

consumption is presented in section 4. Finally, section 5

concludes the work.

1

Mansour et al.: Empirical Blockchain Study

Published by Arab Journals Platform, 2024

mailto:may.mohamed@feng.bu.edu.eg
mailto:mona.mursi@feng.bu.edu.eg

II. Background

A. Smart Contract and Ethereum Virtual Machine

A smart contract is a self-executing digital contract with

the terms of the agreement directly encoded into

computer programs. These contracts run on blockchain

platforms, and one of the most notable platforms for

smart contracts is Ethereum. Ethereum Virtual Machine

(EVM) is the runtime environment in which smart

contracts on the Ethereum blockchain operate. Figure 1

illustrates the order of smart contract execution on the

Ethereum blockchain. First, the agreement is reached,

and a developer uses Solidity, a programming language

designed for developing smart contracts on Ethereum, to

encode it. The code is compiled into bytecode for the

Ethereum Virtual Machine (EVM). Miners play a role in

processing the contract onto the blockchain. After

deployment, the contract undergoes processing on the

specified event date, activated by the written code. The

contract's execution results in the release of payment to

the designated party and this transaction can be

subsequently verified by anyone [7].

Bytecodes, represented by hexadecimal numbers, are

close to opcodes and are the codes executed by the

Ethereum Virtual Machine (EVM). Figure 2 shows an

example of the byte code generated from the E-will smart

contract.

B. Gas Metric in Ethereum

Gas, in Ethereum, is denominated in gwei, one-billionth

of one Ether the cryptocurrency in Ethereum network,

and serves as a computational metric. It represents the

cost associated with interacting and transacting with

smart contracts. It is computed using a straightforward

formula 1 [8]:

𝐺𝑎𝑠𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝐺𝑎𝑠𝑃𝑟𝑖𝑐𝑒𝑥𝐺𝑎𝑠𝑈𝑠𝑒𝑑 (1)

Figure 3: Average Gas Price

These gas fees help to keep the Ethereum network secure.

By requiring a fee for every computation executed on the

network, it prevents attackers from spamming the

network and avoids accidental or hostile infinite loops or

other computational wastage in code [5].

The Gas price is not constant. Figure 3[9] shows an

example of the variation of Gas prices over time. The

quantity of gas used is dictated by the specific operations

executed within the smart contract. In Solidity, when a

smart contract undergoes compilation, it transforms into

a series of "operation codes" or opcodes, denoted by

abbreviations such as ADD for addition and MUL for

multiplication. The study in [10], initially outlined this

system, which contains a comprehensive list of all

opcodes along with their descriptions. Each opcode is

assigned a specific amount of gas, serving as a metric for

the computational effort needed to execute that particular

operation as illustrated in table 1.

Table 1: Gas Costs in Ethereum

Operation Gas Description

ADD/SUB 3 Arithmetic operation

JUMP 8 Unconditional Jump

SSTORE 5,000/20,000 Storage operation

BALANCE 400 Get the balance of an

account

CALL 25,000 Create a new account

CREATE 32,000 Create a new account

TRANSFERE 21,000 Transfer money

 For example, the execution of the view function in the

smart contract is cost-free, and there is no charge

associated with these operations. However, if you intend

to transfer funds from one wallet to another through the

smart contract, you are required to cover the minimum

gas limit as well as the gas cost associated with each

opcode line.

C. Gas Limit

Each block has a gas limit, representing the maximum

gas consumption allowed for all included transactions.

This limit dictates the maximum number of transactions

Figure 2:Snippet of E-will Bytecode.

Figure 1: The Entire Process of Executing Smart Contract over

Blockchain

2

Journal of Engineering Research, Vol. 8 [2024], Iss. 1, Art. 25

https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25

permitted in a block. In the permissioned Ethereum

network, the gas limit is set to the maximum limit

allowed for the block, and if the computations of the

block exceed this limit the contract will raise 'out of gas

flag or revert'. In this case, the consumed gas will not be

returned to the caller. On the other hand, if the

computations within the contract are lower than the limit

it will return to the caller. So, optimizing the consumed

gas within the smart contract by eliminating unbounded

mass operations e.g. loops, complex logic, inefficient

data structure and large amounts of data can help in

mitigating the risk of gas problems [11].

The current gas limit for each block is 30 million gas per

block at the time of writing this article 2024, meaning

around 1400 transfer transactions that each have a

transaction gas limit of 21000 (simple money transfer)

can fit in 1 block [12].

III. Case Study: E-Will System

Blockchain technology, being a decentralized ledger

system, ensures data integrity by employing the Merkle

tree hash technique [13]. This means that any attempt to

modify data within the chain renders it invalid. As a

result, everyone on the network is informed of every

change that occurs, whether during or after the testator's

death. Additionally, the automated execution of smart

contracts can be used for addressing a critical concern

related to wills, particularly the challenge posed by wallet

credentials. This issue gained prominence in 2020 when

Chainalysis, a cryptocurrency research company,

reported that approximately one-fifth of the bitcoins in

circulation at that time, valued at over $175 billion, were

inaccessible due to the death of their owners. In

blockchain, accessing wallets is only possible with the

corresponding private key. The strategic implementation

of E-wills on the blockchain holds substantial promise in

mitigating such challenges. Finally, the immutability

characteristic of blockchain offers immutable and

tamper-resistant ledger. Once a will is recorded on the

blockchain, it becomes a part of a distributed and

decentralized network of nodes, immutable

timestamping provided by blockchain records the exact

time of will creation or modification, offering a verifiable

record of events crucial in legal contexts and aiding in the

resolution of disputes related to the timing of actions

within the E-will system.

A. System Architecture

The proposed system utilizes blockchain technology to

develop an innovative online will system. By

establishing a permissioned Ethereum chain and

implementing smart contracts using Solidity. This study

then aims to optimize Gas usage and minimize the issues

raised by the contract calls. Figure 4 shows the

interaction of the system between the different actors

through the blockchain.

Notations:

 ₲: Government Contract, the base contract that is

deployed once in the network and the address is public

for all the citizens to deal with.

𝓙𝓐: Judicial Authority manager nodes.

𝓡𝓔: Real estate managers nodes that approve the testator

ownership of the asset.

The interaction is carried out among 4 main actors:

1- Judicial Authority 𝓙𝓐: The nodes responsible for

accepting or rejecting the registration of wills in the

blockchain.

2- Real estate Manager 𝓡𝓔: The nodes that approve the

ownership of real assets.

3- Testator: The person who aims to write his will.

4- Beneficiaries: The owner of the money or assets after

the testator's death.

B. Steps for Creating E-will:

Step 1: The testator, aiming to create an E-will, initiates

the registration process by applying through the public

government contract (₲), accessible to all citizens. The

E-will contract is deployed with a pending status to be

reviewed by the public judicial manager.

Step 2: The judicial manager receives the request,

conducts a thorough review, and approves it if the citizen

has not issued any wills previously.

Figure 4: Interaction with E-will Contract.

3

Mansour et al.: Empirical Blockchain Study

Published by Arab Journals Platform, 2024

Step 3: The contract status is then updated to be approved

or rejected, and any instances of illegal behavior detected

by the judicial authority result in the destruction of the

contract.

Step 4,5: Upon the testator's death, beneficiaries obtain a

certificate from the insurance organization and submit it

to the judicial manager.

Step 6: The judicial manager, in turn, activates the

running method that exists in the contract for the testator

after death.

Step 7: The rules that exist in the contract will be

achieved consequently. The E-will contract is

represented by structures outlined in Algorithm 1 and

Algorithm 2, while the UML diagram for the deployed E-

will contract is presented in figure 5.

𝓐𝓵𝓰𝓸𝓻𝓲𝓽𝓱𝓶 1: Creating E-will

Input ↦ Request submitted to the ₲ contract using

ID.

Process ↦ 𝓙𝓐 reviews the request.

approves the deployment if satisfactory.

 Otherwise, the self-destruct function is invoked,

leading to the contract's termination. Upon

approval, the contract status is updated to

"approved." The testator can then proceed to add or

remove any beneficiaries from their will.

Output ↦ E-will contract with two distinct arrays:

one for monetary beneficiaries and the other for

assets beneficiaries ready for addition by the

testator.

𝓐𝓵𝓰𝓸𝓻𝓲𝓽𝓱𝓶 2: After Testator death

Input ↦ ₲ contract initiates the E-will contract by

invoking the 'mark as dead' function within the E-

will contract.

Process ↦ The prioritization of money beneficiaries

is determined according to the specifications

outlined by the testator, and the approval of assets is

overseen by the asset manager 𝓡𝓔. The transfer of

assets to the beneficiaries leads to updates in the

corresponding fields.

Output ↦ The asset history is duly updated, and

funds are seamlessly transferred to the wallets of the

designated money beneficiaries.

Figure 5: UML Digaram for E-will Contract.

4

Journal of Engineering Research, Vol. 8 [2024], Iss. 1, Art. 25

https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25

IV. Analysis of E-will Smart Contract

Before deploying any smart contract to the blockchain, it

is imperative to establish criteria for testing the

functionality of the smart contract. Various tools are

available for assessing potential vulnerabilities and

attacks that could pose obstacles to the seamless

operation of the smart contract OYENTE,

SECURIFY[14], MYTHRIL[6], and SOLSCAN. The

immutability of the blockchain further emphasizes the

criticality of this testing process. Failing to detect the

issues during testing could lead to severe consequences.

Vulnerabilities left unaddressed may persist in the

system, potentially compromising the security and

functionality of the smart contract.

A. Detected Gas Vulnerabilities within E-Will using Solidity

Scan:

We employed the Solidity scanner to assess gas

consumption vulnerabilities within the E-will contract.
The identified vulnerabilities include no critical risk

functions, and thirteen lines are identified as causing gas

consumption. The representation of the vulnerabilities

exists in figure 6.

 Figure 6: Detected Gas Issues

The Gas issues found are 13 lines classified into 7

categories. Each issue is illustrated and the code snippet

that causes this issue is represented in table2.

Table 2: Lines Flagged as Gas Consuming

B. Suggested Solutions:

1- Pattern 1: Payable and Non-Payable Function Impact

 Let S be the set of constructors defined as payable, Δ

represents the potential opcode reduction, and G denotes

the saved gas.

Tests show that developers can achieve Δ≈10 opcodes

and G units of gas savings by making constructors

payable. It is crucial to acknowledge that this

optimization strategy introduces risks, as payable

constructors can accept ETH during deployment. But in

our example, the E-will contract is deployed only by the

government contract, so it is considered a trusted node

the code is updated to be as presented in Listing 1.

 constructor(string memory _testator_id, address _testator_address) Payable {

 government_address = msg.sender;

 state = ApplicationState.PENDING;

 testator_address = _testator_address;

 testator_id = _testator_id;

 }

Listing 1: An Example for a Payable Constructor

Pattern Code/Snippet Occurrence

1

1

2

1

3

1

4

7

5

1

6

1

7

1

5

Mansour et al.: Empirical Blockchain Study

Published by Arab Journals Platform, 2024

2- Pattern (2-3-6) Arithmetic Gas Consumption

 The analysis shows that verifying the variable within a

loop in Solidity incurs gas consumption. Therefore, any

checks inside the loop should be conducted prior to its

execution. Additionally, various arithmetic operations

may consume differing amounts of gas. In our

illustration, we modified i++ to ++i. Throughout the test

cases, it was observed that the last method incurs a

relatively lower gas consumption compared to the other

methods of increments. That is because the steps for

applying it in the same function using ++i and i++ are as

described in Listing 2.

I++ ++i

 j = i;

 i = i + 1;

 return j

i = i + 1;

return i;

// transaction cost 338107 gas
// execution cost 338107 gas

// transaction cost 337675 gas
// execution cost 337675 gas

Listing 2: Gas Consumption for Mathematic Operations

 Listing 3 shows an example of updated loops to reduce

Gas consumption.

 uint256 i = 0

 for (; i < willMoneyEntries.length; ++i) {

 payable(willMoneyEntries[i].to).transfer(willMoneyEntries[i].value);

Listing 3:Example for Enhance checker and Arithmetic operations.

3- Pattern 4: Public Modifier Gas Consumption

Let Fpublic denote a function with a public visibility

modifier identified without internal calls.

The disparity in gas consumption between public (Gpublic

) and external (Gexternal) functions becomes apparent,

particularly with extensive data arrays. This divergence

arises from the fact that, in the case of public functions,

Solidity duplicates arguments to memory, incurring

higher gas costs (Gpublic> Gexternal). Public variables

implicitly generate a getter function, contributing to both

the contract's size and overall gas usage. Conversely,

external functions read from call data, which is more

cost-effective compared to memory allocation.

Additionally, the primary concern lies in the gas

consumption induced by the public modifier. This

vulnerability is notable because public variables result in

an additional 22 gas consumption. Listing 4 shows

external implementation instead of the public modifier.

function reject() external governmentRestricted {

 // Can be executed only by government for ONLY the first time

 require(state == ApplicationState.PENDING);

 state = ApplicationState.REJECTED;

 }

Listing 4: Example for External call for Government Restricted

Function

4- Pattern 5: Maps Vs Arrays Gas Consumption:

The ratio of mapping to mapping & array is modified this

pattern is calculated by Nmapping/Nmapping+Narray higher

value of equation metric is related to a lower gas

consumption [15].

Let L represent the length of the array, and Gread denote

the gas consumption associated with reading the length

of the array during each iteration of the loop. In each

iteration, Gread exceeds the necessary gas usage. Under

the most favorable circumstance, where the length is read

from a memory variable and stored in the stack, a savings

of approximately 3 gas per iteration can be achieved.

In contrast, the least favorable scenario involves external

calls during each iteration, resulting in a significant waste

of gas. The array "willMoneyEntries" has been identified

for use inside a loop without caching its value in memory.

In our example, caching the array length (L) is not

feasible due to the testator's ability to add beneficiaries

during their lifetime. Therefore, the array can only be

cached after the testator's death. The "mark as dead"

function (Fdead) may be implemented to enforce caching
the array size (S) before initiating the distribution of the

will.

C. Contract Analysis After Gas Optimization

The E-will contract is subject to a renewed evaluation

employing the Solidity scan tool. The findings,

elucidated in the accompanying figure, reveal a notable

reduction, specifically from 13 to 2 gas alerts, as resulted

in figure 7. It is imperative to note that the remaining

alerts originate from the array code. The arrays in our

contract, pertaining to the addresses of beneficiaries for

the testator, are anticipated to maintain a relatively

limited size. In contrast, the arrays associated with

citizens have the potential to exceed a multitude of

millions of entries. Consequently, we have opted for a

strategic replacement by implementing a mapping

criterion to optimize performance and mitigate gas

consumption concerns.

6

Journal of Engineering Research, Vol. 8 [2024], Iss. 1, Art. 25

https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25

Figure 7: Detected Issues after Modifying the Contract

Table 3 shows the findings that can be followed by the

solidity developers to mitigate the gas issues.

Table 3:Relations of Gas Consumption vs Identified Metrics

Metric Gas Consumption

GC

Description

Global Variables

(GV)
GC∝GV Higher no of Gv related

to

higher gas consumption.

Public Modifiers

(PM)
GC∝PM Higher no of Pm related

to

higher gas consumption.

External Variables

(EV)
 GC∝1/EV Higher no of EV lower

gas consumption.

String Variable (SV)

and Byte Variable
(BV) =SV/BV

Sv/Bv ∝GC The greater no of SV

related to BV the greater
the gas consumed

Loops Occurrence

LO
LO∝GC The greater LO the more

gas consumed

Mappings and

Arrays
N mappings/

(N mappings + N

arrays)

N mappings/

(N mappings + N

arrays) ∝1/GC

higher values of this

metric related to a lower
gas consumption.

D. Evaluating the money saved in deploying the optimized

smart contracts.

We deploy both the original and optimized smart contract

in order to calculate the cost savings associated with

implementing the optimized smart contracts. We observe

that 11740 units of gas are saved when we compare the

gas consumption for deploying the optimized contracts

with that for deploying the original ones. As ETH price

is 3786$ and gas price is 43 Gwei according to the

records in March 2024. The total saved money for the

optimized contract is around 40 USD.

Figure 8: Steps for Deploying in Goerli Testnet

E. Real Deployment in Georli testnet

Deploying a smart contract on the Goerli testnet[16]

allows developers to test their contracts in a simulated

Ethereum environment before deploying them on the

mainnet. This process involves several key steps. First,

developers need to install a compatible wallet like

metamask [10], [17], and deploying platforms such as

Remix, Truffle, or Hardhat[18]. Figure 8 shows the steps

followed to deploy the contract within the real network.

After deployment, you can verify your smart contract on

a block explorer like Etherscan. Interact with your

deployed contract using its address. The Address of our

deployed contract in Etherscan is in Listing 5.

https://goerli.etherscan.io/address/0xf8e8534d67f7b0

1a0241576d4a8b61b838cb0b06

Listing 5: Address of Contract in Goerli Network

Conclusion:

The costs associated with deploying and executing a

smart contract are influenced by the implementation

decisions made by developers. Inappropriate design

choices may lead to higher gas consumption than

necessary. In this paper, we explore the structure of the

E-will contract by drawing a detailed UML diagram. The

code is then compiled, and bytecode is extracted using

the REMIX IDE. Solidity Scan is employed to evaluate

7

Mansour et al.: Empirical Blockchain Study

Published by Arab Journals Platform, 2024

https://etherscan.io/chart/etherprice

the code quality, specifically focusing on gas

consumption perspectives. An experiment shows that the

framework doesn't have any critical issues, but there are

13 Gas flags distributed across 7 categories. The patterns

used to address these issues enhance gas consumption by

84%. The E-will contract is then deployed using the

MetaMask wallet on the Goerli network, making it

available for any further tests and studies.

Acknowledgment

Funding: The authors declare that there is no

funding received.
Conflicts of Interest: The authors declare that there is no

conflict of interest regarding the publication of this paper.

References:

[1] W. Zou et al., “Smart contract development:

Challenges and opportunities Smart contract

development: Challenges and opportunities Pavneet

Singh KOCHHAR Citation Citation Author Author

Smart Contract Development: Challenges and

Opportunities,” 2021. [Online]. Available:

https://ink.library.smu.edu.sg/sis_research

[2] F. Santos, “The DAO: A Million Dollar Lesson

in Blockchain Governance,” 2018.

[3] S. Rouhani and R. Deters, “Security,

performance, and applications of smart contracts: A

systematic survey,” IEEE Access, vol. 7. Institute of

Electrical and Electronics Engineers Inc., pp. 50759–

50779, 2019. doi: 10.1109/ACCESS.2019.2911031.

[7] S. Sayeed, H. Marco-Gisbert, and T. Caira,

“Smart Contract: Attacks and Protections,” IEEE Access,

vol. 8, pp. 24416–24427, 2020, doi:

10.1109/ACCESS.2020.2970495.

[8] L. Marchesi, M. Marchesi, G. Destefanis, G.

Barabino, and D. Tigano, “Design Patterns for Gas

Optimization in Ethereum,” in IWBOSE 2020 -

Proceedings of the 2020 IEEE 3rd International

Workshop on Blockchain Oriented Software

Engineering, Institute of Electrical and Electronics

Engineers Inc., Feb. 2020, pp. 9–15. doi:

10.1109/IWBOSE50093.2020.9050163.

[9] “Etherscan,” https://info.etherscan.com/.

[10] “ETHEREUM: A SECURE

DECENTRALISED GENERALISED TRANSACTION

LEDGER EIP-150 REVISION.”

[11] Fang Y, Zhou Z, Dai S, Yang J, Zhang H and Lu

Y. (2024). PaVM: A Parallel Virtual Machine for Smart

Contract Execution and Validation. IEEE Transactions

on Parallel and Distributed Systems. 35:1. (186-

202). Online publication date: 1-Jan-2024.

[12] https://ethresear.ch/t/on-block-sizes-gas-limits-and-

scalability/18444

[13] Chen, Yi-Cheng & Chou, Yueh-Peng & Chou, Yung-

Chen. (2019). An Image Authentication Scheme Using

Merkle Tree Mechanisms. Future Internet. 11. 149.

10.3390/fi11070149.

[14] P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F.

Buenzli, and M. Vechev, “Securify: Practical Security

Analysis of Smart Contracts,” Jun. 2018, [Online].

Available: http://arxiv.org/abs/1806.01143

[15] A. Di Sorbo, S. Laudanna, A. Vacca, C. A.

Visaggio, and G. Canfora, “Profiling Gas Consumption

in Solidity Smart Contracts,” Aug. 2020, [Online].

Available: http://arxiv.org/abs/2008.05449

[16] “Testnet,” https://goerli.etherscan.io/.

[17] C. Liu and T. Feng, “Blockchain based Multi-

signature Smart Contract Electronic Seal Orienting

Mobile IoT Terminals,” 2023, doi: 10.21203/rs.3.rs-

3419170/v1.

[18] “Evaluating Ethereum Development

Environments.”

8

Journal of Engineering Research, Vol. 8 [2024], Iss. 1, Art. 25

https://digitalcommons.aaru.edu.jo/erjeng/vol8/iss1/25

https://ink.library.smu.edu.sg/sis_research
https://info.etherscan.com/
https://dl.acm.org/author/Fang%2C+Yaozheng
https://dl.acm.org/author/Zhou%2C+Zhiyuan
https://dl.acm.org/author/Dai%2C+Surong
https://dl.acm.org/author/Yang%2C+Jinni
https://dl.acm.org/author/Zhang%2C+Hui
https://dl.acm.org/author/Lu%2C+Ye
https://dl.acm.org/author/Lu%2C+Ye
https://ethresear.ch/t/on-block-sizes-gas-limits-and-scalability/18444
https://ethresear.ch/t/on-block-sizes-gas-limits-and-scalability/18444
http://arxiv.org/abs/1806.01143
http://arxiv.org/abs/2008.05449
https://goerli.etherscan.io/

	In-Depth Examination of Gas Consumption in E-Will Smart Contract: A Case Study
	Recommended Citation

	Manal Mansour 1*, May A. Salama1, Hala H. Zayed 2, Mona F.M. Mursi1
	1 Faculty of Engineering, Shoubra, Benha University, Egypt.
	2 Information Technology and Computer Science, ITCS, Nile University, Egypt.
	*Corresponding author(s). E-mail(s): Manal.abdelmawgood@feng.bu.edu.eg.
	Contributing authors: may.mohamed@feng.bu.edu.eg; hala.zayed@feng.bu.edu.eg; mona.mursi@feng.bu.edu.eg.

