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Resumo 

Este relatório é uma revisão do aditivo e técnicas de fabricação de 

subtração. Abordagem tenha residido em grande parte no reino de 

prototipagem, onde os métodos de produção de objetos sólidos de 

forma livre complexas diretamente de um modelo de computador 

específico sem-parte ferramentas ou conhecimento iniciado. Mas 

essas tecnologias estão a evoluir de forma constante e estão 

começando a abranger os sistemas relacionados de adição de material, 

subtração, montagem e inserção de componentes feitos por outros 

processos. Além disso, esses vários processos de subtração aditivos 

estão começando a evoluir em técnicas de fabricação rápidos para 

produtos customizados em massa, longe de prototipagem rápida 

estreitamente definida. Tomando esta idéia longe o suficiente para 

baixo da linha, e vários anos, portanto, uma reestruturação radical da 

fabricação poderia ter lugar. Não só o time to market ser reduzidos, 

de fabricação própria passaria de uma base de recursos para uma base 

de conhecimento e de produção em massa de produtos de uso único 

para customizados em massa, de alto valor, produtos de ciclo de vida. 

No momento da visita do painel, a maioria das pesquisas e 

desenvolvimento foi focado no desenvolvimento avançado de 

tecnologias existentes, melhorando o desempenho de processamento, 

materiais, ferramentas de modelagem e simulação, e ferramentas de 

design para permitir a transição a partir de protótipos para produção 

de uso final partes. 
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Abstract 

This report is a review of additive and subtractive manufacturing 

techniques. This approach (additive manufacturing) has resided 

largely in the prototyping realm, where the methods of producing 

complex freeform solid objects directly from a computer model 

without part-specific tooling or knowledge. But these technologies are 

evolving steadily and are beginning to encompass related systems of 

material addition, subtraction, assembly, and insertion of components 

made by other processes. Furthermore, these various additive 

processes are starting to evolve into rapid manufacturing techniques 

for mass-customized products, away from narrowly defined rapid 

prototyping. Taking this idea far enough down the line, and several 

years hence, a radical restructuring of manufacturing could take place. 

Manufacturing itself would move from a resource base to a 

knowledge base and from mass production of single use products to 

mass customized, high value, life cycle products, majority of research 

and development was focused on advanced development of existing 

technologies by improving processing performance, materials, 

modelling and simulation tools, and design tools to enable the 

transition from prototyping to manufacturing of end use parts.  
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1. Introduction 
This document is a study about mould in plastic injection Moulding 

and additive manufacturing technique used in moulding industry. I 

would also like to make a brief presentation of the company DRT, 

where I performed an internship as a Product Design Engineer for a 

duration of nine months. I have been in the moulding industry for 

some time now and have got practical aspect of the work process. 

Therefore, along with Engineer Mario (supervisor in company) and 

Professor Carlos Capela and Henrique Amorim Almedia (academic 

supervisor), it was decided to make a report on internship relating to 

the mould making industry. Along with the internship report, 

developments in additive manufacturing pose to the moulding 

industry was to be developed.  

In the internship program, I had worked in the production area around 

8 months because it was important to have an understanding about 

what moulds are and how they are made. During the process, I gained 

knowledge about different components of mould, machining 

processes, adjustment of moving components, parameters influencing 

plastic injection molding and problem solving methods. I was also 

provided training in CREO software for mould designing during this 

time. It was interesting to understand how the design has to comply 

the Mould. Later, during the last few weeks of internship, I came back 

to production area in order to understand and reason each and every 

step of mould making process. This helped me to relate the process of 

designing and mould production in a better way. This report has a 

brief description of what I learnt during the course of internship.  
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2. Company Overview 

2.1 Company History 

DRT was founded in May 1994 and follows the slogan since that time: 

"It's not just change, it is growth. Not only moulds but also moulds 

and arts." 

         

 

Figure 1 - Old Building DRT (DRT Moldes, 2012) 

On June 27, 2013 the new factory was inaugurated in the Industrial 

Area of Cova das faias. This new factory was a huge step for the 

ESRD group, as it was much better in every way in their old it was a 

little further from the Industrial Zone in Regueira de Pontes. 

 

Figure 2 - New Building DRT (DRT Moldes, 2012) 

This opening allowed DRT to employ more workers and vary its 

range of types of moulds, as the functions now played by these new 
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facilities has provided the creation, design and engineering and tool 

management, thus being able to compete with the "big” international 

market. 

An investment of about 12 million euros was made that did strengthen 

the position of ESRD in this market sector, thus making an increase 

in production as well as increasing exports 

At the moment, the DRT has approximately 120 employees and 

currently exports to Germany, Russia, Spain, France, Mexico, 

Portugal, India, and Austria. 

The new facilities are located at the address: Rua dos Marinherios, 

lota 6 No. 146 Industrial Area Cova das Faias- ZICOFA 2415-806 

Marrazes – Leiria 

DRT also have a page on the Internet at: www.drtmouldes.com 

  

2.2 Facilities and Equipment 

This is the plan and layout of the company, on the 1st floor is the part 

of the drawing and offices which is not visible from this plan. For 

easier to be appreciated: 

• Benches Zone 

• Erosion zone 

• Machining Zone 

• Injection Zone 

• Zone reception, restaurant and some meeting rooms 

• Warehouse zones 

• Load Zone and downloads 
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Figure 3 - Ground plan of DRT (DRT Moldes, 2012) 

 

2.2.1 Design / Project 

The drawing room is located on the 1st floor of the company, being 

one of the cleanest and nice place to work form the entire plant. This 

department is divided by designers of moulds and electrodes 

designers. In total, about 22 people, including four for electrode 

design and 18 for the mould design. 

The company uses two programs, Catia V5 and Creo 3.0 for part of 

the moulds and the Power Shape for the design of part of the 

electrodes 

 

 

Figure 4 - Drawing Room (DRT Moldes, 2012) 
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2.2.2 Machining (CNC) 

In this department about 20 employs and is composed of 17 CNCs for 

machining. 

There are several types of machining centres present in this part of the 

company, half of them to work in small-sized pieces and do not need 

to have large working desks especially the 3 axes CNC. There are also 

some 5-axis here the table is larger and can do the mould which are 

larger and more complex. There is also a machining 6-axis CNC that 

used for drilling deep hole, one of the most impressive machines this 

company doing more complex jobs. 

There is another CNC also quite interesting but it is only used to make 

holes. It also has a rotating table, but not in angle upon itself and that 

the drill head bears various lengths. This structure is horizontal and 

can make angles from the -15º and 30º and can make holes up to an 

incredible 2 meters. 

There are other two centres of machining, but not in this department. 

These two machining centres, 3-axes and other axes 5 are to be 

inserted at the electrodes, which I will speak ahead. 

In this department there is also a room dedicated to CAM which has 

about 7 computers equipped with the Mouldex 3D CAM programs 

where the people work and where the professionals who have a 

machining Centre in charge are also entitled to use for programming.  

 

Figure 5 - Six Axis CNC machine and CAM room (DRT Moldes, 2012) 
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2.2.3 Erosion 

This department is of those we have few workers, total 4 because there 

are two machines for each employee. This part consists of eight CNC 

machine erosion penetration, the second wire cutting machines CNC 

and the other wire drilling machine. 

Also in this department there is a cell which includes two machining 

centres but to make graphite electrodes need not have a large size 

compared to machining centre of steel, with a 3 axis and 5 axes. It is 

further constituted by two warehouses which take about 180 

electrodes, a robot that transports electrodes for warehouses electrode 

and a measuring machine. 

There is also a compartment near the cell that is where you prepare 

the graphite making the cut and fixation. This department consists of 

an electric saw, a press and a manual milling machine.  

 

 

Figure 6 - Machine Erosion CNC machine (DRT Moldes, 2012) 
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2.2.4 Bench  

Part of the bench may be one of the Interesting areas and busy, all the 

time because this part is where we begin to assembly the mould.   

This department has about 20 people. 

It comprises about work, each equipped with essentially tools for 

adjustment and assembly of moulds. 

There is a press that this department reaches the 2,000 tons of 

clamping force, a central polishing which comprises an isolated room 

if any dust that may arise on the part of the stands, this being equipped 

with specific materials and light enough to better see mordant the 

finish area. There is also a room for the laser welding isolated visually 

as its light is very harm to view. Although the bench is part of 

warehouse with everything one needs to work along the lines as 

sandpaper until the number 1200, paints, hundreds of settings screws, 

drills, electrical parts, etc. 

 

 

Figure 7 - Bench (DRT Moldes, 2012) 
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2.2.5 Injection 

Injection moulding moulds and high pressure die casting dies are 

fabricated to a standard mould set. The standard mould set consists of 

two clamp plates, two cavity plates, guiding elements between them, 

an optional back plate, two risers and an ejector set. Ejector set 

consists of an ejector base plate, an ejector retaining plate and an 

optional set of buffer plates. Guiding elements are guide pillars, guide 

sleeves and centring sleeves in each corner of the mould. 

This injection moulding process may be used for production in large 

quantities and pieces of many different sizes. The material of choice 

is melted and injected under pressure into a mould, and the area of the 

cavity that will determine the shape that is intended in the final part. 

The injection moulding process is considered by many ways the best 

choice for economically producing a large scale, but nevertheless the 

material cost is often significant. 

The cycle of a mould during injection moulding is as follows: 

a) Mould Closing 

b) Injection advance unit 

c) Injection of plastic material into the mould 

d) Cooling the mould and consequently the moulded part 

e) Opening the mould 

f) Advancement of extractors 

 

Figure 8 - Injection machine (CustomPart.net, 2007) 
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2.2.6 Integration in company 

Integration in the DRT was good. Even before starting the Internship 

I knew two workers of this company who gave me good references. 

The day I started the Internship, on 12 March, the Chief decided that 

I should begin in the area of the CNC. I was then Left with Mr. Pedro, 

one of CNC worker of the most experienced and knowledgeable of 

what he do. Over 3 month I was in the same department and  I was 

transferred to the drawing area, where I stayed about two weeks in 

charge of Mr. José Gabriel, a man with good sense of humour and that 

helped me to interact with other employees of this department. The 

next step was to understand about the electrode design, but this has 

not happened since I was referred to the cell. 

Both in part from the stands, drawing and erosion people were 

friendly and available. 

In short, since the beginning of the Internship to its end I felt 

integrated because the environment has always been good. 

2.2.7 Design 

As had been said earlier, this drawing room is divided by designers of 

moulds and electrodes designers. On the first day I went to a mould 

designer, Mr. José Gabriel was already working on a template with 

him for a few months. 

What is CAD? The CAD, being an English acronym which translated 

means Aided Design or Computer Aided Design, is a generic name 

that is attributed techniques used to produce technical drawings and 

is used in a series of areas. 

This type of program has tools for constructing different geometric 

shapes and three-dimensional shapes. 

The company uses two programs, Catia V5 and creo 3.0 for part of 

the moulds and the Power Shape for the design of part of the 

electrodes. 
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Figure 9 - Designing Room (DRT Moldes, 2012) 

I saw that there was a planning of the moulds where such was visible: 

• Preliminary + Mould flow Delivery 

• Preliminary Approval + Mould flow / delivery of the list of materials 

• 3D models of Delivery + beginning of Milling 

• Home Erosion 

• Structures Delivery Systems  

• Home of the bench 

The times varied depending on the size and complexity of the mould. 

I noticed that it is then a work order for everything to be done as 

quickly and as well economic. At first, the client sends the piece that 

he want to be made that may already be a part produced by another 

cast, or if a new piece in digital format. The play is studied to know 

where you have to take the balances, extractors, if you need furniture 

elements, etc. It then made a preliminary that is sent to the customer 

to give his approval. Once approved, it is possible to order some of 

the plates, well ahead already quite work, I noticed that the designers 

have permanent contact with the schemers cutting steel for any 

changes that may be made must be communicated before the job is 

done. I realized also that the designer has to be in touch with the 

customer to say at what stage will the mould and even if the designer 

find a problem has to ask if the piece itself can be changed a few 

millimetres, for example to get the balance work perfectly. This same 

thing happened while I was with this gentleman and the customer left 

to be done these changes without any problem., As I was not allowed 
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to use the company's software because it could unintentionally modify 

or delete important things was using the well-known CAD program 

Solid Edge, a program that I have installed on your computer while 

attending the course, I was trying to keep up while Mr. Joseph, plates 

slide and mobile elements, This is a different work area from any other 

because it would use much the head instead of force, In the database 

that had already had stored some parts such as buffers, records, all 

kinds of screws, etc. So it's easier for how some parts are already made 

is not lost so much time drawing. When I realized, since the two weeks 

had passed and it was then time to move to the electrode design 

section. This section, which is on the same drawing room had only 

three hours, long enough for me to pass the program using the Power 

Shape and start trying to make shapes of the electrodes from measures 

invented by me. 

2.2.8 Other 

This category of "other" is part of some machines that do not fit into 

any of the above said categories, but all are interconnected because 

deep down they are all necessary, some more use and importance than 

others but all with its value. 

In this category are the 4 injection machines that the company has, all 

with different characteristics can be tested mould varied much 

physical characteristics such as types of plastics and injection forces. 

There are also scattered by the various sheds five grinders manuals, a 

rectifier automatic, plus two manual milling machines used more to 

less rigorous work as feet for the moulds, also has two lathes, a manual 

and other CNC. Chain saws for cutting steel, an apparatus for 

exchanging mills by heating the cones and immense bridges for 

carrying the moulds and their components. The maximum load for the 

strongest bridge that there is 35 tons, but there are more in quantity 

can only carry up to 5 tons 
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Figure 10 - Manual Grinding (DRT Moldes, 2012) 
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3. Subtractive Manufacturing and Additive 

Manufacturing 

Machining is any of various processes in which a piece of raw 

material is cut into a desired final shape and size by a controlled 

material-removal process. The processes that have this common 

theme, controlled material removal, are today collectively known 

as subtractive manufacturing, in distinction from processes of 

controlled material addition, which are known as additive 

manufacturing. Exactly what the "controlled" part of the definition 

implies can vary, but it almost always implies the use of machine 

tools (in addition to just power tools and hand tools). 

Additive Manufacturing (AM) is defined by the American Society of 

Testing and Materials (ASTM) as “the process of joining materials to 

make objects from 3D model data, usually layer upon layer, as 

opposed to subtractive manufacturing, methodologies, such as 

traditional machining” AM methods differ from subtractive methods, 

such as milling or turning, by the intuitive concept that the part is 

being created by the incremental addition of material. Common 

industry names for the AM methods are: freeform fabrication, additive 

processes, layered manufacturing (LM), additive techniques, and 

additive layer manufacturing (ALM).Currently, there are seven ALM 

processes with the following normalized names adopted by ASTM 

International Committee F42 on Additive Manufacturing 

Technologies: Vat Photo polymerization process (commercially 

known as stereo lithographic), Material Jetting (ink jet printing), 

Binder Jetting (3d printing), Material Extrusion (fused deposition 

modelling), Sheet Lamination (laminated object manufacturing), 

Direct Energy Deposition (laser engineered net shaping), and Powder 

Bed Fusion [selective laser sintering (SLS), selective laser melting 

(SLM) , electron beam melting (EBM), direct metal manufacturing, 

and direct metal laser sintering (DMLS)]. 
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3.1 Additive Manufacturing v/s Subtractive 

Manufacturing 

Both additive and subtractive manufacturing methods have their own 

advantages which makes them appropriate for different circumstances 

a brief comparison is presented. 

Speed  

Additive manufacturing such as done by of complex parts with a 

lower lead time than CNC machining. Other than production lead 

time, once you submit and loading your choice of thermoplastic 

material, no specific tooling or setup is needed. This allows you the 

freedom and responsiveness to shorten your prototype, development 

and production cycle. CNC machining requires tooling set-up and 

initial programming for geometries of new parts. Both additive and 

subtractive manufacturing require the relevant process lead-time to 

schedule your task.  

Complexity  

In DMLS manufacturing parts with complex geometry directly from 

your CAD files. Because of the deposition process, where material is 

built up in layers, central hollows and voids and internal structure are 

possible with high tolerance with DMLS that might not be possible 

with CNC machining, as DMLS builds up the product from layers of 

applied material. With CNC machining, some complex internal 

structures are not possible as there is no access for the machine tool.  

Customization 

 Both CNC and 3D processes allow a range of parts customization. 

However due to the mentioned shorter setup and complex capability, 

3D can manufacture individually customized parts such as medical 

devices which are also intended for long duration use. Five-axis CNC 

machines also routinely are used to produce individual dental 

products 
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Material 

 DMLS uses a range of polymer materials including ABS, 

Polycarbonate, and PC/ABS, which combines light weight with high 

strength. CNC machining can use both polymers (such as Delrin) and 

a wide range of metals including aluminum, titanium, magnesium, 

brass and stainless and HC steels and exotic metals and alloys. 

Function  

While some of the materials used above are used by both processes, 

the function and or specifications of the end product may dictate the 

choice of material. Each process can lend itself to contrasting end use. 

Product from a subtractive process is usually somewhat more suitable 

for long duration use. However its shorter lead time makes FDM 

suitable for checking fit or for producing presentation and external 

design models though some of the products of 3D printing are long 

lifetime personalized products used in the medical and dental 

industries.  

Size and Finish 

 Fused Deposition Modelling allows finished product sizes of up to 

900 cubic cm. CNC subtractive machining can manufacture parts of 

up to a cubic meter square with even longer lengths possible. While 

3D printing can achieve various levels of tolerance for the most 

accurate results, CNC machining is capable of achieving more 

accurate tolerances and cosmetic and surface finishes across a higher 

volume of parts 

Part Quantity  

Additive manufacturing is well suited to single or small numbers of 

items manufacture, when the material, tolerance and finish aspects are 

already considered and setup time is eliminated. Subtractive CNC 

machining requires longer setup and programming time and operator 

skill. However once prototyping has been completed using additive 

processes, and if you are moving to larger volumes you would likely 

then consider moving to a more cost effective subtractive process. 
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Hybrid Processing  

As we have both capability in both additive and subtractive, we can 

apply the flexibility of additive with the accuracy & finish of 

subtractive techniques. This means that we can manufacture products 

with previously unachievable geometry and introduce high precision 

features in hybrid operations. 
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  4. CNC 

Computer Numerical Control (CNC) is a specialized and versatile 

form of Soft automation and its applications cover many kinds, 

although it was initially developed to control the motion and operation 

of machine tools. 

Computer Numerical Control may be considered to be a means of 

operating a machine through the use of discrete numerical values fed 

into the machine, where the required 'input' technical information is 

stored on a kind of input media such as floppy disk, hard disk, CD 

ROM, DVD, USB flash drive, or RAM card etc. The machine follows 

a predetermined sequence of machining operations at the 

Predetermined speeds necessary to produce a work piece of the right 

shape and size and thus according to completely predictable results. 

A different product can be produced through reprogramming and a 

low-quantity production run of different products is justified. 

Numerical Control: NC is the operation of M/c tool by a series of 

coded instructions consisting of numbers, letters of the alphabets and 

symbols, which the MCU (Machine Control Unit) can understand.  

Computer Numerically Controlled: When numerical control is 

performed under computer supervision, it is called computer 

numerical control (CNC). Computers are the control units of CNC 

machines. A programmer enters some information in the program, but 

the computer calculates all necessary data to get the job done. For both 

NC and CNC systems, working principles are the same. Only the way 

in which the execution is controlled is different. Normally, new 

systems are faster, more powerful, and more versatile.  



18 

 

 

Figure 11 - CNC Machine (DRT Moldes, 2012) 

 

4.1. Working Principles of CNC Machine 

CNC is computerized technology by controlling the relative 

movements between the tool and the work piece geometrical shapes 

are machined. Control of these relative movements through coded 

letters numbers is known as Numerical Control of machine tools.  

NC is simply a way of electronically controlling the operations of a 

machine. In conventional machine operator directly controlling the 

machine functions. Where as in NC machine a separate media which 

is in between machine and operator is controlling the machine 

functions. These NC machines do not have any memory of their own 

and hence capable of only executing a simple block of information 

fed to it at a time. Hardware automation gave way to computer 

controlled automation in manufacturing process. Computer numerical 

control is the term used when the control system of an NC includes a 

computer. The availability of a dedicated computer permits new 

control features to be made available on CNC machines. 
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Figure 12 - Working Principle of CNC Machine (Nanfara, Uccello, & Murphy, 1995) 

 

4.2. Control Systems 

Open Loop Systems: Open loop systems have no access to the real 

time data about the performance of the system and therefore no 

immediate corrective action can be taken in case of system 

disturbance. This system is normally applied only to the case where 

the output is almost constant and predictable. Therefore, an open loop 

system is Unlikely to be used to control machine tools since the 

cutting force and loading of a machine tool is never a constant. The 

only exception is the wire cut machine for which some machine tool 

builders still prefer to use an open loop system because there is 

virtually no cutting force in wire cut machining. 
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Figure 13 - Block diagram of open loop system (Nanfara, Uccello, & Murphy, 1995) 

 

Close Loop Systems: In a close loop system, feedback devices 

closely monitor the output and any disturbance will be corrected in 

the first instance. Therefore high system accuracy is achievable. This 

system is more powerful than the open loop system and can be applied 

to the case where the output is subjected to frequent change. 

Nowadays, almost all CNC machines use this control system. 

 

Figure 14 - Block diagram of Close loop system (Nanfara, Uccello, & Murphy, 1995) 

   4.3. Elements of CNC Machine 

A CNC system consists of the following 6 major elements: 

a. Input Devices 

b. Machine Control Unit 

c. Machine Tool 

d. Driving System 

e. Feedback Devices 

f. Display Unit 
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4.3.1 Input Devices 

Floppy Disk Drive: Floppy disk is a small magnetic storage device for CNC 

data input. 

USB Flash Drive: A USB flash drive is a removable and rewritable 

portable hard drive with compact size and bigger storage size than a 

floppy disk 

Serial communication: The data transfer between a computer and a 

CNC machine tool is often accomplished through a serial 

communication port. 

Ethernet communication: Due to the advancement of the computer 

technology and the drastic reduction the cost of the computer, it is 

becoming more practical and economic to transfer Part programmes 

between computers and CNC machines via an Ethernet 

Communication cable. This media provides a more efficient and 

reliable means in part programme transmission and storage. 

4.3.2 Machine Control Unit (MCU): The machine control unit is the 

heart of the CNC system. There are two sub-units in the machine 

control unit: the Data Processing Unit (DPU) and the Control Loop 

Unit (CLU). 

Control Loop Unit: The data from the DPU are converted into 

electrical signals in the CLU to control the driving system to perform 

the required motions. Other functions such as machine spindle 

ON/OFF, coolant ON/OFF, tool clamp ON/OFF are also controlled 

by this unit according to the internal machine code 

4.3.3. Machine Tool: This can be any type of machine tool or 

equipment. In order to obtain high Accuracy and repeatability, the 

design and make of the machine slide and the Driving lead screw of a 

CNC machine is of vital importance. The slides are usually machined 

to high accuracy and coated with anti-friction material such as PTFE 

and Turcite in order to reduce the stick and slip phenomenon. Large 

diameter Recirculating ball screws are employed to eliminate the 

backlash and lost motion. Other design features such as rigid and 

heavy machine structure; short machine table overhang, quick change 
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tooling system, etc. also contribute to the high accuracy and high 

repeatability of CNC machines. 

 

(a)     (b) 

Figure 15 - (a) Ball Screw in CNC Machine, (b) Ball Screw Structure (Manuf., 2007) 

4.3.4 Driving Systems: The driving system is an important 

component of a CNC machine as the accuracy and repeatability 

depend very much on the characteristics and performance of the 

driving system. The requirement is that the driving system has to 

response accurately according to the programmed instructions. This 

system usually uses electric motors although hydraulic motors are 

sometimes used for large machine tools. The motor is coupled either 

directly or through a gear box to the machine lead screw to moves the 

machine slide or the spindle. Three types of electrical motors are 

commonly used they are DC Servo motor, AC Servo motor,Stepping 

motor 

4.3.5 Feedback Device: In order to have a CNC machine operating 

accurately, the positional values and speed of the axes need to be 

constantly updated. Two types of feedback devices Are normally 

used, positional feedback device and velocity feedback device. 

Positional Feed Back Devices: There are two types of positional 

feedback devices: linear transducer for direct positional measurement 

and rotary encoder for angular or indirect linear measurement. 

Linear Transducers - A linear transducer is a device mounted on the 

machine table to measure the actual displacement of the slide in such 

a way that backlash of screws; motors, etc. would not cause any error 

in the feedback data. 

 



23 

 

          

Figure 16 - Linear Transducer (Courtesy of Hidenhain) (Manuf., 2007) 

Rotary Encoders - A rotary encoder is a device mounted at the end 

of the motor shaft or screw to measure the angular displacement. This 

device cannot measure linear displacement directly so that error may 

occur due to the backlash of screw and motor etc 

                

Figure 17 - Incremental and Absolute Rotary Encoder (Manuf., 2007) 

Velocity Feedback Device: The actual speed of the motor can be 

measured in terms of voltage generated from a tachometer mounted 

at the end of the motor shaft. DC tachometer is essentially a small 

generator that produces an output voltage proportional to the speed.  

 

Figure 18 - Tachogenerator (Courtesy of challan) (Manuf., 2007) 
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4.3.6 Display Unit: The Display Unit serves as an interactive device 

between the machine and the operator.  

 

 

Figure 19 - Display Unit for CNC machine (Courtesy of Heidenhai) (DRT Moldes, 2012) 

 

4.4 IMPORTANT TERMS RELATED TO CNC 

MACHINING 

Machine Zero - Machine zero is a point at the origin of the machine’s 

coordinate measuring system. All the Axis movements and other 

dimensions are measured from this point. It is similar to the origin of 

coordinate measuring system. 

Machine reference point - It refers to the initial point of return for 

the purpose of measuring/feedback systems. Whenever a CNC 

machine is switched on the feedback system has to be initialized by 

referring this point on every axis. 

Work Zero - This is the origin for the measuring of dimensions of 

work piece. The programmer is free to select it anywhere on the 

drawing. 

Absolute measuring system - In this measuring system all the 

dimensions are made from the work zero, which defined. The machine 
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control uses work zero as the reference point to position the tool 

during program execution. The main advantage of programming in 

absolute system is that any point can be readily changed without 

affecting subsequent dimensions. 

Incremental measuring system - The movements are based on the 

change in position between two successive points. It expresses the 

relative distance between the current location and the next position. 

This type of measuring system is called Incremental Measuring 

system. The main advantage of this system is that sum of the 

dimensions must always be zero if start point and finishing point is 

same at the end of programming which makes it easy to check a 

program.  

Axis designation (conventions) - Axis designation for each type of 

machine tool is suggested in the EIA (Electronic Industries 

Association) RS 274-B standard. This conforms to ISO 

Recommendations R831. The nomenclature of the three main axes 

(X, Y AND Z) is based on the “Left hand rule”. The thumb indicates 

the orientation of the X-axis; the index finger indicates the Y-Axis, 

and the middle finger points in the direction of the Z-axis. 

Spindle speed - The spindle speed is the rotational frequency of the 

spindle of the machine, measured in revolutions per minute (RPM). 

The preferred speed is determined based on the material being cut. 

Using the correct spindle speed for the material and tools will greatly 

affect tool life and the quality of the surface finish. 

Feed rate - Feed rate is the velocity at which the cutter is fed, that is, 

advanced against the work piece. It is expressed in units of distance 

per revolution for turning and boring (millimeters per revolution). For 

milling it is expressed in units of distance per time for milling 

(millimeters per minute). 

Cutting Speed - Cutting speed may be defined as the rate (or speed) 

that the material moves past the cutting edge of the tool, irrespective 

of the machining operation used — the surface speed. 
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4.5 CASE STUDY ON WALL THICKNESS 

Product wall thickness is a key consideration when designing 

products for plastic injection molding.  Thicker walls will offer more 

strength, but they are also more likely to suffer from warping as the 

plastic cools in the mold.  Engineers and designers are usually more 

focused on pushing the boundaries in the other direction, and using 

the minimum wall thickness for injection molding they can get away 

with.  When mass-producing plastic parts there are a number of 

advantages to keeping them thin and light, and the longer the 

production run, the more significant these benefits become: 

• Thinner parts require less material, reducing material costs 

• Thinner parts cool quicker, thereby shortening the molding cycle and 

reducing unit costs 

• Thinner parts weigh less, potentially reducing shipping costs 

          

 

Figure 20 - Sample tool (DRT Moldes, 2012) 

Cost savings are highest when components have a minimum wall 

thickness, as long as that thickness is consistent with the part’s 

function and meets all mold filling considerations. As would be 

expected, parts cool faster with thin wall thicknesses, which means 
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that cycle times are shorter, resulting in more parts per hour. Further, 

thin parts weigh less, using less plastic per part. On average, the wall 

thickness of an injection molded part ranges from 2mm to 4mm (.080 

inch to .160 inch). Thin wall injection molding can produce walls as 

thin as .05mm (.020 inch). 

Considerations 

Generally, minimum wall thickness for injection molding is dictated 

by strength and the structural requirements of the product or 

component.  We’ve also got to take the flow behavior of the material 

into account, as there is a direct relationship between the maximum 

achievable flow length for a given wall thickness and injection 

pressure.  In both cases modern structural and flow analysis software 

will assist engineers in selecting the optimal wall thickness. 

Just to add another variable into the mix, we can also use different 

types of plastics that have different strength and cooling 

properties!  However, as a rule, the minimum wall thickness for 

conventional injection molding is 0.3mm, and even then it depends on 

the characteristic of the part itself.  Below this it is unlikely we would 

be able to guarantee the results. 

Design Advice 

From a molding perspective, it’s good practice to keep wall 

thicknesses as uniform as possible.  This is because thinner walls cool 

(and therefore shrink) quicker than the thicker walls, which can cause 

warping to occur and result in internal stresses in the product, 

definitely what you don’t want when you’re pushing the boundaries 

of wall thickness! When design considerations dictate that a uniform 

wall thickness is not possible, then the change in thickness should be 

as gradual as possible to avoid stress concentrations and abrupt 

cooling differences.  
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Figure 21 - Abrupt Transitions from Thin to Thick (DRT Moldes, 2012) 

 It´s inevitable that your parts will require some variations in wall 

thickness due to the incorporation of structural features such as ribs, 

bosses and gussets. However, the transition from thin to thick should 

be as gradual as possible in order to avoid mold-filling phenomena 

such as flow hesitation or race tracking. Given a choice, molten plastic 

flowing inside of an injection mold cavity will always take the path 

of least resistance, typically towards the thicker wall sections. Flow 

hesitation occurs when the melted plastic flows into a thicker section 

while the flow in the thinner section stalls and sometimes freezes off 

completely, causing major problems. Race tracking occurs when the 

molten plastic “races” around the edges of a part due to thicker wall 

sections around the perimeter of the part compared to the interior wall 

sections. Maintaining gradual transitions from thin to thick– as seen 

in the diagram–can help reduce these phenomena or eliminate them 

altogether, resulting in higher-quality molded parts with fewer 

manufacturing defects. 

Rib Design 

Ribs are commonly used in plastic parts to provide structural integrity, 

prevent part warpage and aid in the integration of internal 

components. However, if ribs are not designed properly relative to the 

surfaces they’re attached to, problems such as sink marks, warpage 
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and part failure can occur. The following rib design guidelines work 

well for most plastics materials:   

 

Figure 22 - Rib Design (DRT Moldes, 2012) 

• Rib thickness at the base should be between 50-70% of the 

nominal wall thickness. 

• Rib height should be 2.5 – 3X the nominal wall thickness. 

• Ribs should have 0.5 – 1.5 degrees of draft (for ejection). 

• Rib base radii should be 0.25 – 0.4X the nominal wall thickness. 

• The distance between two ribs should be 2 – 3X the nominal 

wall thickness. 
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Figure 23 - Avoiding Sharp Corners (DRT Moldes, 2012) 

Sharp corners in plastics parts act as stress concentrators that can 

lead to crazing, cracking, increased susceptibility to chemical attack 

and ultimately, part failure – so it’s a really good idea to avoid them 

at all costs. The good news, it’s usually pretty easy to add fillets or 

chamfers to avoid sharp corners altogether as can be seen in this 

diagram. 
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5. EDM 

Electric discharge machining, sometimes also known as spark 

machining, spark eroding ,burning, die sinking, wire burning (or) wire 

erosion is a manufacturing process whereby a desired shape is 

obtained using electrical discharges (sparks). Material is removed 

from the work piece by a series of rapidly recurring current discharges 

between two electrodes, separated by a dielectric liquid and subject to 

an electric voltage. One of the electrodes is called the tool-electrode, 

or simply the "tool" or "electrode", while the other is called the work 

piece-electrode, or "work piece". 

When the distance between the two electrodes is reduced, the intensity 

of the electric field in the volume between the electrodes becomes 

greater than the strength of the dielectric (at least in some point(s)), 

which breaks, allowing current to flow between the two electrodes. 

This phenomenon is the same as the breakdown of a capacitor 

(condenser). As a result, material is removed from both electrodes. 

Once the current stops (or is stopped, depending on the type of 

generator), new liquid dielectric is usually conveyed into the inter-

electrode volume, enabling the solid particles (debris) to be carried 

away and the insulating properties of the dielectric to be restored. 

Adding new liquid dielectric in the inter-electrode volume is 

commonly referred to as "flushing". Also, after a current flow, 

the potential between the electrodes is restored to what it was before 

the breakdown, so that a new liquid dielectric breakdown can occur. 

Two types of erosion are used in DRT: 

1. Erosion with wire  

2. Erosion with penetration 

5.1. Erosion with Wire 

In wire electric discharge machining (WEDM), also known as wire 

cut EDM or wire cutting, a thin single-strand metal wire, usually brass, 

is fed through the work piece, submerged in a tank of dielectric fluid, 

typically deionized water. Wire-cut EDM is typically used to cut 

plates as thick as 300mm and to make punches, tools, and dies from 
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hard metals that are difficult to machine with other methods. The wire, 

which is constantly fed from a spool, is held between upper and lower 

diamond guides. The guides, usually CNC-controlled, move in the x–

y plane. On most machines, the upper guide can also move 

independently in the z–u–v axis, giving rise to the ability to cut tapered 

and transitioning shapes (circle on the bottom, square at the top for 

example). The upper guide can control axis movements in x–y–u–v–

I–j–k–l. This allows the wire-cut EDM to be programmed to cut very 

intricate and delicate shapes. The upper and lower diamond guides are 

usually accurate to 0.004 mm, and can have a cutting path or kerf as 

small as 0.021 mm using Ø 0.02 mm wire, though the average cutting 

kerf that achieves the best economic cost and machining time is 

0.335 mm using Ø 0.25 brass wire. The reason that the cutting width 

is greater than the width of the wire is because sparking occurs from 

the sides of the wire to the work piece, causing erosion. This "overcut" 

is necessary, for many applications it is adequately predictable and 

therefore can be compensated for (for instance in micro-EDM this is 

not often the case). Spools of wire are long — an 8 kg spool of 

0.25 mm wire is just over 19 kilometres in length. Wire diameter can 

be as small as 20 micrometres and the geometry precision is not far 

from +/- 1 micrometre. The wire-cut process uses water as its 

dielectric fluid, controlling its resistivity and other electrical 

properties with filters and de-ionizer units. The water flushes the cut 

debris away from the cutting zone. Flushing is an important factor in 

determining the maximum feed rate for a given material thickness. 

Along with tighter tolerances, multi axis EDM wire-cutting 

machining centres have added features such as multi heads for cutting 

two parts at the same time, controls for preventing wire breakage, 

automatic self-threading features in case of wire breakage, and 

programmable machining strategies to optimize the operation. Wire-

cutting EDM is commonly used when low residual stresses are 

desired, because it does not require high cutting forces for removal of 

material. If the energy/power per pulse is relatively low (as in 

finishing operations), little change in the mechanical properties of a 

material is expected due to these low residual stresses, although 

material that hasn't been stress-relieved can distort in the machining 
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process. The work piece may undergo a significant thermal cycle, its 

severity depending on the technological parameters used. Such 

thermal cycles may cause formation of a recast layer on the part and 

residual tensile stresses on the work piece. If machining takes place 

after heat treatment, dimensional accuracy will not be affected by heat 

treat distortion. 

 

Figure 24 - CNC Wire Cut EDM Machine (DRT Moldes, 2012) 

After erode the machine is tested with the same zone through proper 

tools to whether the measure is correct, to ascertain whether it is 

necessary to remove more material or not  

 

Figure 25 - CNC Wire Cut EDM Machine (DRT Moldes, 2012) 
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5.2. Erosion with Penetration 

It is done by using a graphite electrode or copper, having been made 

the study of which is done in eroded area. It focuses on the hole / box 

or another place to start to erode. The head of the machine already set 

with the electrode and already in place makes orbits while eroding and 

the electrode to erode the steel waste, a type of sludge that will be 

filtered later. The electrode is not in contact into with the material 

being always at a certain distance in both x and z what is termed GAP. 

the piece is covered by a dielectric liquid and how ever  the graphite 

is an excellent conductor of electric shock, this upon contact, the 

graphite begins to erode as the machine launches electric shocks to 

make it possible to do the required work. In this type of erosion there 

is a VDI scale where the roughness values by / levels is presented, it 

is possible to obtain the desired roughness 

 

 

Figure 26 - Erosion with Penetration (DRT Moldes, 2012) 

 

5.2.1. Erosion with Dielectric: Every experienced, expert knows that 

the flushing process is of utmost importance, when metals are 
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subjected to this procedure. The dielectric must flush away the eroded 

particles from the gap between electrode and work piece, otherwise 

they may form bridges, which cause short circuits. Such arcs can burn 

big holes in the work piece and in the electrode. Modern spark erosion 

plants therefore have a built in power adaptive control system, which 

increases pulse spacing as soon as this happens and reduces or shuts 

off the power supply completely. The more thin-bodied a dielectric 

and the lower its surface tension, the better it is able to meet flushing 

requirements. 

 

Figure 27 - Erosion with Dielectric (DRT Moldes, 2012) 

                          

 

Figure 28 - To get better understanding how these is developed is explained in Erode 3-

boxes (DRT Moldes, 2012) 
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Figure 29 - Cell (DRT Moldes, 2012) 

It all starts by designers in the upstairs to they bring A4 sheets 

indicating the graphite measurements in the rough, kind of graphite, 

type of rod to use, time it takes the precession machining, 

observations, quantity, you have mirrors and in X or Y, the value of 

GAP so that the machine is intended (3x, 3x or 5x / 5), developer name 

and identification electrode by mould piece and electrode number are 

included in the above sheet 

 

After receiving this sheet we will search to see, if there would be 

material required for action if it were not found, would have to fill out 

an internal request for an order of graphite was done with the right 

measures. 
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 After the graphite arrived measurement are taken. The measurements 

are taken in the x, y, and z axes for e.g. (455x150x122 mm.) 

After placing the graphite comes on top of the sheet to which it 

belongs has to go looking for kind of stems that are described in the 

sent sheet. In total there are 10 types of rods as shown in the following 

table. 

Table 1 - Types of Stems 

50×50        

R20 

Normally used / Can 

be used on the robot 

50×50         

PL 

Normally used / Can 

be used on the robot 

25×25        

EW 

Normally used / Can 

be used on the robot 

15×15        

EW 

Normally used / Can 

be used on the robot 

50×100       

PL 

Not much used / 

Inserted by hand 

100×150     

PL 

Not much used / 

Inserted by hand 

15×15    

COPPER 

Not much used / 

Inserted by hand 

15×40    

COPPER 

Not much used / 

Inserted by hand 

25×25    

COPPER 

Not much used / 

Inserted by hand 

25×63    

COPPER 

Not much used / 

Inserted by hand 

 

Copper rods they are used when you want to erode something that is 

deeper and normal stems that outwardly has 50x50x50 and hit the 
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piece. Another solution was to make the much longer electrode but 

then there would be problems both in the same machining as the 

erosion process to be so fragile. 

 

 

Figure 30 –Graphite rod (DRT Moldes, 2012) 

After arrange the types of applications in paper, rod has to proceed to 

the cleaning of the faces of the graphite z using a manual cutter. The 

graphite is then smoothed on one side to the rod to be placed 

perpendicular to the graphite. After the parts cleaned on one side they 

are separated and the manual milling cutter is replaced by a drill 6, 8 

or 10mm depending on the type of stem which is desired. 

After the parts are removed it is time to find your centre to carry out 

drilling to hold the rod in graphite. When we drill in the exact centre 

of the piece walked x 18 or 20 mm depending on the rod and make a 

hole about 20 mm in depth. After all the parts are properly pierced has 

to be made will thread cutting with a machine that is in the zone of 

the stands. Having made the thread is time to tighten the rod to 

graphite. These raw electrodes are measured by a meter gauge and 
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then have to take 1 mm to make sure that cleans well. This value is 

recorded on the sheet and then also be seen by erosion staff. After 

labels are taken. 

It carries a rod to be identified with the mould number, electrode 

number, whether it is right or mirror and mirror in x or y, GAP and 

height z. Then a chip is placed on the rod and it's all arranged on the 

side of the cell to the table. Imagining we have 6 electrodes to place. 

We get the 6 electrodes and the sheet and check if the data on the 

labels will correspond sheet that accompanies them. Then it is 

checked whether all screws are tight, and the same with the chip. Then 

you create a folder where you put the number of the mould and start. 

To that folder is imported the program you want and you need to pay 

attention to see to that machine are directed those electrodes. After 

imported the programs of electrodes right and left have to edit and 

change for each of the 3 number electrodes. So when you open one of 

the programs appear three rectangles the pale pink-violet colour, 

which means that nothing has yet been registered 

Electrodes have to separate the rights of left and we recording the pre-

set each chip compared the label. Deep down you do it assign a 

program to each chip and each stem has a chip. In this case we assign 

a program equal to 3 chips that were equivalent to the right electrode 

of the program and we assign another program like other 3 chips that 

amounted to the left electrode program. 

After all prepared and registered it's time to put these electrodes in 

one of the cell warehouses. 

After put in place, close the door of the warehouse and wheel, causing 

the chips to go through sensors. The positions are all present on a 

monitor and those that are green is because they are ready to be 

machined and which are pale pink-violet colour are those just put and 

was still nothing changed, so have these six rectangles that we have 

to put the priority we want depending on their urgency. 
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Figure 31 - Electrodes measuring machine (DRT Moldes, 2012) 

 

Supposedly the electrodes after machined should be measured with an 

own machine that measures to the thousandth before being taken but 

that does not happen because there is so much work and so little time. 

What is usually done often in the case of having many electrodes with 

the same program is to try one to see do well, then at night when it 

gets to do yourself no problem because it has a well while we were 

present, to be sure that next they also do will do well without us 

playing so safe and there is no danger of the machine stop in the 

middle of the night with problems because of machining. 

 

Figure 32 - Electrodes (DRT Moldes, 2012) 
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At the end of one electrode machining, the robot will pick you up and 

puts in place where fetched, then grabs the next that have the highest 

priority and puts the machine from which it takes earlier. When seem 

the pieces and if they are urgent are immediately taken to the foot of 

the erosion machines for use but when there is nothing pressing to do 

fill up boxes that take up to 12 electrodes and are put for later use. The 

cell always needs some maintenance and inventory records. 

There are always three steps that have to do when you arrive in the 

morning: 

- Remove the warehouse electrodes that are ready; 

- Clean the cabins of CNCs; 

- Check times of tools 

There are about 30 different tools on each machine as we can see by 

this list: 

                   

 

Figure 33 - Rotary burrs list that exist in every CNC machine (DRT Moldes, 2012) 
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When they reached the 1100 minutes, the tools are taken and can be 

seen the glow at the tip meaning that the diamond bath is out. So it 

takes the cone with the cutter and will be sought a new mill. There is 

a machine that heats the cone and that they have to choose the 

correct heating program for the type of cone and open enough to be 

able to take the old mill and the other having already prepared will is 

so far down.  

 

 

Figure 34 - Thermal heating machine for changes rotary burrs (DRT Moldes, 2012) 

 

 

Figure 35 - CNCroulette 3X (DRT Moldes, 2012) 

Parts made in a plastic injection moulding process can have their own 

unique set of possible defects. The following is one of the most 
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common defects associated with the plastic injection process in which 

I worked on 

5.3 Case study: Feasibility Study on Draft angle 

Draft angles are needed so that a plastic part can be released from the 

mould without distortion or damage. The high pressures of injection 

moulding force the plastic to touch all the surfaces of a mould’s cores 

and cavities. The cavity becomes so tightly packed that it is often 

difficult to remove the part. Sometimes, shrinkage will actually make 

it easier to take the part out of the mould, but in other cases, shrinkage 

will cause the part to stick to the mould’s cores. These natural 

occurrences call for draft angles. 

 

Figure 36 - Draft angle analysis (DRT Moldes, 2012) 
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Draft angles are needed so that a plastic part can be released from the 

mold without distortion or damage. The high pressures of injection 

molding force the plastic to touch all the surfaces of a mold's cores and 

cavities. The cavity becomes so tightly packed that it is often difficult to 

remove the part. Sometimes, shrinkage will actually make it easier to take 

the part out of the mold, but in other cases, shrinkage will cause the part 

to stick to the mold's cores. These natural occurrences call for draft angles. 

No single draft angle is suitable for all parts. Each individual part requires 

a unique specification. Large parts call for more draft than small parts. 

Thin-walled parts that undergo high-pressure injection molding need 

more draft than parts that are subjected to lower-pressure molding. When 

calculating appropriate draft angles, the plastic material's shrinkage and 

physical properties are also considerations. Sizeable draft angles and 

smooth polish should be used for parts molded in strong, inelastic, 

abrasive and gluey materials. Smaller draft angles can be utilized on soft, 

malleable and slippery plastics. 

From a cost and manufacturability viewpoint, the ideal draft angle is the 

largest angle that will not lessen the customer's satisfaction with the 

product. The minimum allowable draft angle is harder to quantify. Plastic 

material suppliers and molders are the authority on what is the lowest 

acceptable draft. In most instances, 1i per side will be sufficient, but 

between 2i and 5i per side would be preferable. If the design is not 

compatible with 1i, then allow for 0.5i on each side. Even a small draft 

angle, such as 0.25i, is preferable to none at all. 

Draft angles must be provided for several part details. For example, the 

sidewalls that are perpendicular to the mold's parting line must be drafted. 

Other areas that require draft angles include mounting flanges, gussets, 

holes, hollow bosses, louvers and other holes. The location of the mold's 

parting line sometimes remains unknown, however. This lack of 

information makes it impossible to ascertain whether the part's draft 

angles should have positive or negative values. As a result, designers 

commonly draw the part without individual draft angles but with a general 

specification such as 'allowable draft 1°. 
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6. DMLS 

It was not until the 1970’s that the first powder AM methods began to 

appear (Systems, 2004). In 1971, Ciraud applied for a patent on a 

powder AM method, which was described in the patent as "the 

invention makes possible the manufacture of parts which can have 

extremely complex shapes, without the need for casting moulds” 

(Systems, 2004). In the latter half of the 1970s, Householder patented 

the first powder laser sintering system (Systems, 2004). This sintering 

system was described in the patent as able "to provide a new and 

unique moulding process for forming three-dimensional articles in 

layers and which process may be controlled by modern technology 

such as computers” (Systems, 2004). In 1992 and 1994, the first and 

second commercial selective laser sintering machines were shipped: 

the sintersation 2000 by DTM Corporation and EOSINT (P) 350 by 

EOS Firm respectively (Systems, 2004).  In 1995, one of the first 

direct metal laser sintering machines, the EOSINT M 250, was 

installed for commercial use (Systems, 2004). This machine allowed 

for the best part complexity, geometry, and surface quality to date for 

any direct metal laser sintering machine (Systems, 2004). In 2004, 

the EOSINT M 270 machine series was released, featuring a solid-

state fibre laser (Systems, 2004). EOS continued to develop new and 

exotic models of DMLS machines, even making a precious metal 

machine (PRECIOUS M 080) (Cerreta, Direct Metal Laser Sintering 

:An Overview, 2014). In 2013, EOS released it latest and most 

advanced machine (EOS M 290) for the manufacturing of high 

performance metal components (Cerreta, Direct Metal Laser 

Sintering :An Overview, 2014)                                                                              

6.1. Definitions 

In current literature, DMLS is defined differently by various 

publication authors (Bewilogua, et al., 2009), (Systems, 2004), 

(Sateesh, 2014, pp. 772-779) . Levy distinguished multiple metal AM 

methods and their processing conditions (Bewilogua, et al., 2009) and 

his definition of DMLS is most appropriate for the focus of this work.  

Levy defined DMLS as a single stage part building based on a liquid 
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phase sintering (LPS) process (Bewilogua, et al., 2009). This 

definition distinguishes DMLS from two similar SLS methods that 

produce a solid metal part, which are often mistaken for DMLS. The 

first method differs from DMLS in that a metal part is created by laser 

sintering a powdered material containing the desired metal particles, 

which are covered in a low melting point polymer (commonly called 

a “binder”), to form what is known as a “green part”. In this indirect 

method, only the binder is melted, which requires the use of post 

processing and heat treatment (usually conventional sintering in an 

industrial furnace) to create the final part. Similarly, the second 

method differs from DMLS in that a mixture of metal powders is used. 

One metal powder has a lower melting temperature than the other, 

which allows for selective melting of one metal, but commonly results 

in poor mechanical properties of the final part. 

6.2. Mechanics 

In order to understand the basic mechanics of DMLS, one must 

investigate the following elements of DMLS: binding mechanisms 

(http://www.protolabs.co.uk/additive-manufacturing, n.d.), 

parameters and their relationship to densifications, processing steps 

(Dewidar M. M., 2002), and equipment (Dewidar M. M., 2002), 

Rapid Prototyping. 

Binding Mechanism: According to the Metal Handbook, “sintering 

is a thermally activated process (with or without external pressure 

application), whereby the powder particles are made to bond together, 

changing physical and mechanical properties, and developing toward 

a state of maximum density, i.e. zero porosity, by occurrence of 

atomic transport” (Cerreta, Direct Metal Laser Sintering :An 

Overview, 2014). Sintering is crucial to the DMLS process, and is 

governed by the following parameters: temperature, time, and 

geometry of powdered particles, composition of the powder Mix, 

density of the powder compact, and composition of the protective 

atmosphere in the sintering furnace (Dewidar M. M., 2002). 

Kruth found that SLS technologies can be categorized by four binding 

mechanisms: solid state sintering, chemically induced binding, liquid 
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phase sintering partial melting, and full melting. As mentioned earlier, 

Levy’s definition of DMLS was chosen for the focus of this study, and 

consequently only the LP partial melting binding mechanism will be 

discussed in detail (Dewidar M. M., 2002). LPS itself has “two 

technologies” distinguished by the type of binder used, namely that 

with a different binder, and that with no distinct binder (Dewidar M. 

M., 2002). DMLS would be classified under the latter technology as 

a fusing powder mixture process. Fusing powder mixtures are 

characterized by multiple phases that are partially molten. The author 

would encourage the reader to further examine the literature for 

detailed information on any of the other binding mechanisms 

Parameters and Densification: Simchi provided a comprehensive 

study wherein six different metal powders were sintered and analysed 

to better understand the mechanisms of densification and the role of 

manufacturing parameters (Sateesh, 2014).Process parameters were 

defined as variables that control the laser sintering process, in contrast 

to material parameters, defined as: chemical constitutions and the 

purity of the material, method of alloying, and particle characteristics. 

Multiple parameters affect the final part density achieved using 

DMLS, and the corresponding microstructural features. Laser power, 

laser wavelength, laser spot size, laser scan rate, scan line spacing, 

powder layer thickness, scanning geometry, working atmosphere, and 

powder bed temperature are pertinent process parameters. In contrast, 

particle size, shape, and distribution are pertinent material parameters. 

Process parameters were varied, along with scan strategy and sintering 

atmosphere, and final part densities were recorded .The conclusions 

of the study were highly valuable to the continued research and 

improvement of DMLS, and are summarized as follows (Sateesh, 

2014): Improved densification occurs with increased laser energy 

input to the powder until a certain saturation point. Chemistry, shape, 

and size of metal powder particles affect the densification of DMLS 

processes. Nitrogen sintering atmosphere yields less densification 

than argon sintering atmosphere. Dewidar found that for high-speed 

steel, part density increased with laser beam power, and decreased 

with increasing scan speed and space (Sateesh, 2014)This makes 
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sense because all three process parameter affect the amount of energy 

(the power density) delivered to the selected region of the powder bed. 

These results match further studies, specifically Simchi’s study of 

densification of iron (Simchi, 2006), Tang’s research on copper- 

based alloy (Simchi, 2006), Kruth’s study of lasers and materials 

(Simchi, 2006), and Alkahari’s study of consolidation characteristics 

of ferrous-based metal powder (Simchi, 2006). In addition, Tang 

found that particle shape (which affects the loose powder density) and 

binder mix fraction affect the final density of the sintered part 

(Simchi, 2006). 

Process Steps:  All DMLS parts start as concepts designed in a 

Computer Aided Design (CAD) software (Purtonen, 2014). The 

corresponding CAD file is then be exported in a printable form (.STL, 

.STEP) to the DMLS machine (Purtonen, 2014). 

The DMLS machine then builds each layer as follows (Purtonen, 

2014): The stage containing the metal powder is raised.The new layer 

of powder is spread across the old layer of powder via a spreading 

mechanism. The laser scans the powder bed to selectively sinter 

particles according to the current slice instructions dictated by the cad 

file. The build stage is lowered one layer thickness in preparation for 

receiving the fresh layer of powder. This process is repeated until the 

part is finished. 

Equipment’s: Though there are multiple DMLS machines on the 

market, a DMLS machine consists of the following components 

(Purtonen, 2014): a laser for selective irradiation of the metal powder, 

focusing optics for beam consolidation and maximum intensity of the 

laser beam, scanning mirrors to direct the beam to the desired powder 

bed location, a laser chiller unit for temperature control of the laser 

components, a motion control table for adding layers of material to 

the powder bed, a build cylinder for adding the new powder layer, 

spreader assembly for spreading and levelling the powder layer, an 

inert gas containment and delivery system for atmospheric gas control 

which prevents oxidation of particles, and finally a vacuum assembly 

for flushing the build chamber. 
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Lasers: There are mainly four kinds of lasers that are used in DMLS: 

Solid Fibre Lasers, Carbon Dioxide (CO2) lasers, Neodymium-Doped 

Yttrium Aluminium garnet (ND: YAG) lasers, and disk lasers. The 

ND: YAG laser has a wavelength of 1.06µm. The CO2 laser was the 

most common laser used in commercial applications (including 

DMLS) with a wavelength of 10.6µm; however, it is now being 

replaced by fiber and disk lasers, which have shorter wavelengths(less 

than 2 µm), and allow for faster build times Selection of the laser type 

and wavelength should be based on the known absorption 

characteristics of the material (Manuf., 2007) 

6.3. Parameters and Densification 

Simchi provided a comprehensive study wherein six different metal 

powders were sintered and analysed to better understand the 

mechanisms of densification and the role of manufacturing 

parameters. 

Process parameters were defined as variables that control the laser 

sintering process, in contrast to material parameters, defined as: 

chemical constitutions and the purity of the material, method of 

alloying, and particle characteristics. Multiple parameters affect the 

final part density achieved using DMLS, and the corresponding 

microstructural features. Laser power, laser wavelength, laser spot 

size, laser scan rate, scan line spacing, powder layer thickness, 

scanning geometry, working atmosphere, and powder bed 

temperature are pertinent process parameters. In contrast, particle size, 

shape, and distribution are pertinent material parameters. 

Process parameters were varied, along with scan strategy and sintering 

atmosphere, and final part densities were recorded .The conclusions 

of the study were highly valuable to the continued research and 

improvement of DMLS, and are summarized as follows: Improved 

densification occurs with increased laser energy input to the powder 

until a certain saturation point. Chemistry, shape, and size of metal 

powder particles affect the densification of DMLS processes. 

Nitrogen sintering atmosphere yields less densification than argon 

sintering atmosphere. 
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Dewidar found that for high-speed steel, part density increased with 

laser beam power, and decreased with increasing scan speed and 

space. This makes sense because all three process parameter affect the 

amount of energy (the power density) delivered to the selected region 

of the powder bed. These results match further studies, specifically 

Simchi’s study of densification of iron, Tang’s research on copper- 

based alloy, Krutch’s study of lasers and materials, and Alkahari’s 

study of consolidation characteristics of ferrous-based metal powder. 

In addition, Tang found that particle shape (which affects the loose 

powder density) and binder mix fraction affect the final density of the 

sintered part. 

 6.4 Process Steps 

All DMLS parts start as concepts designed in a Computer Aided 

Design (CAD) software. The corresponding CAD file is then be 

exported in a printable form (.STL, .STEP) to the DMLS machine. 

The DMLS machine then builds each layer as follows: The stage 

containing the metal powder is raised. 

The new layer of powder is spread across the old layer of powder via 

a spreading mechanism. The laser scans the powder bed to selectively 

sinter particles according to the current slice instructions dictated by 

the cad file. The build stage is lowered one layer thickness in 

preparation for receiving the fresh layer of powder. Though there are 

multiple DMLS machines on the market, a DMLS machine consists of 

the following components (Sateesh, 2014) laser for selective 

irradiation of the metal powder, focusing optics for beam 

consolidation and maximum intensity of the laser beam, scanning 

mirrors to direct the beam to the desired powder bed location, a laser 

chiller unit for temperature control of the laser components, a motion 

control table for adding layers of material to the powder bed, a build 

cylinder for adding the new powder layer, spreader assembly for 

spreading and levelling the powder layer, an inert gas containment and 

delivery system for atmospheric gas control which prevents oxidation 

of particles, and finally a vacuum assembly for flushing the build 

chamber. 
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Lasers: There are mainly four kinds of lasers that are used in DMLS: 

Solid Fiber Lasers, Carbon Dioxide (CO2) lasers, Neodymium-Doped 

Yttrium Aluminium garnet (ND: YAG) lasers, and disk lasers.  The 

ND: YAG laser has a wavelength of 1.06µm. The CO2 laser was the 

most common laser used in commercial applications(including 

DMLS) with a wavelength of 10.6µm; however, it is now being 

replaced by fibre and disk lasers, which have shorter wavelengths (less 

than 2 µm),  and allow for faster build times. Selection of the laser 

type and wavelength should be based on the known absorption 

characteristics of the material  

Rapid Prototyping 

Rapid prototyping is a group of techniques used to quickly fabricate 

a scale model of a physical part or assembly using three-dimensional 

computer aided design (CAD) data. 

                                   

Figure 37 - CAD Model and Finished Path (http://www.unite.com.pt/, 2015) 

Surface finish 

Surface finish, also known a surface texture or surface topography, is 

the nature of a surface as defined by the 3 characteristics 

of lay, surface roughness, and waviness. It comprises the small local 

deviations of a surface from the perfectly flat ideal (a true plane). 

Roughness average (Ra) is the arithmetic average of the absolute 

values of the roughness profile ordinates. Also known as Arithmetic 

Average (AA) and Center Line Average (CLA). The average 

roughness is the area between the roughness profile and its mean line, 

or the integral of the absolute value of the roughness profile height 

over the evaluation length. 
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Table 2 - All surface roughness is measured in Ra (roughness average) (Cerreta, Direct Metal Laser 

Sintering :An Overview, 2014) 

Material Surface Standard Metric 

Aluminum (AlSi10Mg) Horizontal 0.00024-0.00039" 6-10 µm 

Aluminium (AlSi10Mg) Vertical 0.00118-0.00157" 30-40 µm 

Titanium (Ti64) Performance Horizontal 0.00036-0.00047" 9-12 µm 

Titanium (Ti64) Performance Vertical 0.00160-0.00320" 40-80 µm 

Titanium (Ti64) Speed Horizontal 0.00023-0.00039" 6-10 µm 

Titanium (Ti64) Speed Vertical 0.00137-0.00157" 35-40 µm 

Stainless (PH1) Horizontal 0.00010-0.00020" 2.5-4.5 µm 

Stainless (PH1) Vertical 0.00060-0.00160" 15-40 µm 

Maraging Steel (MS1) Horizontal 0.00016-0.00025" 4-6.5 µm 

Maraging Steel (MS1) Vertical 0.00078-0.00195″ 20-50 µm 

Inconel (IN718) Horizontal 0.00016-0.00025″ 4-6 µm 

Inconel (IN718) Vertical 0.00078-0.00195″ 20-50 µm 

 



53 

 

 

Figure 38 - Conformal cooling (http://www.unite.com.pt/, 2015)
 

 

6.5. Working principle 

The basic principle of the Direct Metal Laser Sintering (DMLS) 

Technology is to melt down thin layers (20 ÷ 60 µm) of Metal 

Powder with an electronically driven LASER beam (200W) • Layer 

by layer, it is possible to build any kind of shape and geometry, even 

those which are impossible to obtain with any other kind of 

technology. The accuracy is ± 0,05mm. (Cerreta, Direct Metal Laser 

Sintering :An Overview, 2014). 
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Figure 39 - Step by step procedure of DMLS (http://www.unite.com.pt/, 2015) 

 

6.6. DMLS MACHINE 

EOSINT M280 (4 off) – Metal Sintering Machine Effective  

• Building volume (including building platform):250mm x 

250mm x 325mmLaser Type: Yb-fibre laser, 400 W 

• Build speed (material-dependent):2 – 8 mm3/slayer 

• Thickness: 20 – 80 µm 
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Figure 40 - Machine DMLS (http://www.unite.com.pt/, 2015)
 

 

6.6.1. Metal Powders Used (http://www.unite.com.pt/, 2015) 

Currently available alloys used in the process include 17-4 and 15-

5 stainless steel, maraging steel, cobalt chromium, Inconel 625 and 

Nickel alloy IW718, aluminium AlSi10Mg, and titaniumTi-64 

 

  Stainless steel 17-4                                                Titanium Ti-64 
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               Aluminium                                            Nickel alloy IW 718 

                               

Figure 41 - Metal powder used in DMLS (http://www.unite.com.pt/, 2015) 

                                   

6.7. Research Areas 

Much research has taken place in DMLS since the mid 1990’s, most 

likely being attributed to the release of the first commercial SLS 

machines (Mellor, 2014). The related works have covered a wide 

range of subjects involving DMLS, and can mainly be categorized into 

five topics: effects of DMLS parameters on outputs (Joseph W. 

Newkirk, 2015), specific DMLS applications and feasibility (Effects 

of Welding Parameters Onto Keyhole Geometry for Partial 

Penetration Laser Welding, 2015), (Additive Manufacturing of Al 

Alloys and Aluminium Matrix Composites (AMCs), 2014) DMLS 

simulation and modelling, investigation of equipment and process 

improvements to current DMLS systems, and DMLS behaviour of 

specific types of powders. For the purpose of this work, certain 

contemporary investigations have been considered most beneficial to 

DMLS theory and have been summarized. These summaries only 

represent a small portion of the breadth of works that have occurred 

in DMLS, and the author would encourage the reader to delve further 

into the literature contained in the reference section for more 

information. 

Top Surface Quality: Yang investigated and defined top surface 

quality (TSQ) as the surface morphology contained in the xy plane 

(the surface parallel to the substrate) (Additive Manufacturing of Al 

Alloys and Aluminium Matrix Composites (AMCs), 2014).TSQ is 

important because every layer of powder is sintered on a previously 
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sintered layer of powder, except for the substrate. If the quality of the 

bonding between layers is not high, certain defects can occur such as: 

balling, war page, poor densification, and oxidation (Cerreta, Direct 

Metal Laser Sintering :An Overview, 2014). The study reported that 

defects could be avoided by maintaining top surface flatness, 

compactness, and cleanliness. Even further, the TSQ influencing 

factors were: surface status of the substrate, additive materials, 

structural powder morphology, scanning space, layer thickness, layer 

number, and balance of laser power and scanning speed (Cerreta, 

Direct Metal Laser Sintering :An Overview, 2014). The results 

verified that TSQ heavily influences overall final part qualities, and 

that its control is paramount for the output of high performance DMLS 

parts (Cerreta, Direct Metal Laser Sintering :An Overview, 2014). 

Consolidation Characteristics: Another important publication 

reported on the consolidation characteristics of ferrous-based metal 

powder.  It utilized a high speed camera with a telescoping lens to 

record sintering behaviour in the powder fusion zone (PFZ) (Dewidar 

M. M., 2002). Line consolidation was a term used to describe the 

consolidation of metal powders in the PFZ of a laser beam (Dewidar 

M. M., 2002). The line consolidation region was reported to have five 

distinct areas:  the laser beam irradiated area, the PFZ, the liquid/melt 

pool area, the solidification area, and finally the powder free area. In 

addition, it was found that there are five types of line consolidation in 

DMLS of ferrous based powder, namely: continuous, discontinuous, 

ball-shaped, weak, and very little consolidation (Dewidar M. M., 

2002). Poor consolidation will lead to a part with inferior mechanical 

properties because it will cause inhomogeneity in the three 

dimensional object’s structure (Dewidar M. M., 2002).  

Post processing DMLS Parts: As mentioned earlier, DMLS is based 

on a LPS partial melting binding mechanism. Because of this binding 

mechanism, surface roughness, porosity, residual stresses, and 

microstructural inhomogeneity exist in DMLS parts (Jialin Yang 

Institute of Machinery Manufacturing Technology, 2012). It has 

been widely known that shot peening and other post processing 

treatments can alleviate the previously mentioned items, and multiple 
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works have been carried out to see how post processing affects DMLS 

parts. Likewise, the focus of this study (Jialin Yang Institute of 

Machinery Manufacturing Technology, 2012) was the 

characterization of post processed samples created from three 

different DMLS powders. The resulting hardness and porosity, cross 

sectional micrographs, and surface residual stresses were recorded 

(Jialin Yang Institute of Machinery Manufacturing Technology, 

2012). Analysis of the results led to the following conclusions: 

DMLS parts without post treatment have the above mentioned 

inconsistencies, parts that received shot peening showed homogenized 

surface residual stresses, and aging thermal treatment led to increased 

material hardness (Jialin Yang Institute of Machinery 

Manufacturing Technology, 2012). 

6.8. Advantages and Limitations of DMLS  

The Advantages are: 

• High speed: Because, no special tooling is required, parts can be built 

in a matter of hours. 

• Complex geometries: Components can be designed with internal 

features and passages that cannot be cast or otherwise machined. 

• High quality: DMLS creates parts with high accuracy and detailed 

resolution. 

6.8.1. Applications 

Rapid tooling and rapid prototyping were the main commercial 

applications for DMLS in its initial years in the market. There is a 

strong and growing interest in what is known as “rapid 

manufacturing”, which is the use of DMLS to create end-use parts. 

Multiple industries are using DMLS for the previously mentioned 

application because of the benefits of the technology such as material 

cost savings and low production run capability. The aerospace 

industry utilizes DMLS to fabricate end use parts (landing gears and 

titanium components) because of the very high cost savings in 

comparison with traditional manufacturing methods. In the auto-

industry, DMLS is used to create custom high performance metal parts 

(for formula one). One such example was the use of DMLS for 
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fabrication of a race car gear box which weighed 30% less than a 

traditionally manufactured gearbox. In the medical field, titanium 

alloy dental implants are now being manufactured via DMLS due to 

the economic advantage over traditional manufacturing. Likewise, 

bone reconstruction surgeons utilize DMLS to create implants such as 

craniofacial or orthopaedic implants.    

            Medical field                                               Aerospace  

 

 

          Automotive                                            Metal 3D Printing 

         

    Grippers                                   Gauges 

                                                                                

Figure 42 - Parts produced from DMLS (http://www.unite.com.pt/, 2015). 



60 

 

6.8.2. Limitations 

• Surfaces need to be polished. 

• Removing metal support structures and thermal post-processing is 

time consuming (you can’t have the supports in a different material 

than the part) 

6.9 Case study: Feasibility Study on Cooling 

Parts made in a plastic injection moulding process can have their own 

unique set of possible defects. The following is the one of the most 

common defects associated with the plastic injection process is 

cooling. By the additive manufacturing technique the cooling is 

increased and the time is decreased by the 43%, in the above scale the 

time required for cooling in the conventional process is 

42.508seconds. 

Where as in the additive manufacturing the time required in the 

conformal cooling system is 25.339s. 

By the DMLS 43% of time is reduced in cooling. 

 

 

 

Figure 43 - Conventional cooling (http://www.unite.com.pt/, 2015) 
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Figure 44 - Conformal cooling (http://www.unite.com.pt/, 2015) 

 

There has been a lot of talk among molders and mold makers of late about 

conformal cooling. Why? Because it’s an industry game changer. 

Conventional molds have straight-line cooling channels  Simply put, 

conformal cooling makes use of cooling lines in an injection mold that 

curve and closely follow the geometry of the part to be produced  There 

are a variety of methods for manufacturing a conformally cooled mold, 

that includes laser sintering. 

If conformal cooling is implemented with little or no engineering analysis, 

you can expect to get a 10% reduction in injection mold cycle time. 

However, by performing more engineering analysis—such as flow 

analysis, computational fluid dynamics (CFD), and finite-element 

analysis (FEA)—a better quality mold and more cycle reduction can be 

achieved. 

A typical cycle-time reduction range for a properly engineered, 

conformally cooled mold is 20% to 40%. If little or no engineering 

analysis is done, you risk premature mold failure or lack of performance 

because of poor design elements or incorrect assumptions that were not 

identified and corrected before mold manufacture. 
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7. Pros and Cons of Additive and Subtractive 

Technology 

As companies start to reassess their manufacturing strategy, and the 

development of micro-manufacturing hubs increase as part of the new 

industrial revolution, one thing is certain, demand will continue to rise 

for new technology that provides a better, faster, cheaper way of 

getting product to market. The solution to meet the changing needs of 

designers, engineers and manufacturers will be a combination of new, 

more flexible rapid prototyping and manufacturing machines 

employing either additive or subtractive methods. Additive and 

subtractive technologies allow companies to innovate product design, 

business models and manufacturing processes. By bringing the 

RP&M solution in-house, companies, manufacturers and micro-

manufacturing hubs gain shorter design iterations and data security, 

and reduce prototyping and manufacturing costs. The decision to 

invest in technology should be based on the end-part material required 

for prototypes and manufactured parts, and how the technology can 

fit into a company workflow. 

Emerging technologies are having a dramatic effect on the manufacturing 

industry. One of the most important of these is additive manufacturing, 

often referred to as DMLS. 

DMLS printing allows for the production of parts with complexity that 

can’t be matched by traditional manufacturing methods. It can be used to 

produce impossible-to-machine features, like parts without seams or 

joints. Complex geometric or organic shapes are often only possible to 

produce using additive manufacturing methods, as is true for hollow parts. 

Other advantages to additive manufacturing methods: 

• A part can be produced in much less time using additive 

manufacturing than using the traditional subtractive manufacturing 

methods. 

• The more complex (less solid) a part is, the faster and less expensive 

it is to produce. 
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• Anything that can be designed in a CAD program can be printed with 

additive manufacturing. 

• Parts used for fit checks, presentation models and short-term use can 

best be made with additive manufacturing. 

There are some drawbacks to additive manufacturing that, in some 

instances, make subtractive manufacturing the better choice. For example, 

when it comes to precision for common functional features, like flat faces, 

drilled and tapped holes, counterbores, and mating components, 

subtractive methods will generally produce results with the highest 

repeatability and dimensional accuracy. 

Other advantages to subtractive manufacturing methods: 

• Subtractive manufacturing produces lower, more capable tolerances 

than additive manufacturing. 

• Subtractive methods result in smoother surfaces than additive 

methods.  

 

Additive manufacturing creates micro-pores, which can lead to infection 

in medical uses and also add fatigue points that can lead to stress fractures 

with heavy loads. 

• Parts intended for long-term use or high-stress use are best made with 

subtractive manufacturing. 

• Medical and aerospace industries prefer subtractive for parts required 

to stay in the body for long periods of time and for flight-critical 

aerospace functions. 
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8. Conclusion and future work 

The completion of this Internship proved to be essential to my 

training, both personally and professionally. I managed to connect 

most of the theoretical knowledge that I acquired as a student of this 

course and were of tremendous help throughout this 9 month 

internship. 

I realized that teamwork is fundamental for everything to work well, 

as well as coordination and know how to manage the work in general 

and of each. Able to manage small internal conflicts makes the 

company to be functional in its entire entirety. Internship in this 

company is so great a closeness to the world of moulds makes realized 

the practice of what I had learned in theory in these course I attended. 

In my view, mould companies will have a great importance in the 

future, as more will be needed to achieve moulded parts evolve and 

modernize the world in any of the industries.as the pieces to mould 

increasingly tend to be larger and more complex technologies will 

follow, both in the sector of the drawing, as in use to inject material, 

among others. 

This Internship proved to be very diverse and nothing monotonous 

because every day there was something new to do and learn. I 

performed many important tasks not only for the proper functioning 

of a mould, but also for the proper functioning of the company. 

Over the nine months of training I learned a lot. For me, dealing daily 

with the same cast, to add parts and more parts, doing tests and more 

tests, it was gratifying to see their growth and all that was done, 

especially when tested in the injection machine, where I could see the 

plastic parts with the desired shape. 

The moulds sector is a sector that increasingly is being spoken and 

which occupies an increasingly prominent place. 

DMLS is considered an advanced manufacturing method and is being 

adopted by a wide range of industries that need any single use or 

combination of uses for rapid tooling, rapid manufacturing, and rapid 

prototyping.  The survey of the literature on the subject has led the 
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author to conclude that there are five areas that future research will 

focus on: DMLS process mappings (including parameters) for 

different powders, equipment and process modifications for increased 

efficiency (in terms of productivity and economy), application 

feasibility investigations, simulation and modelling, and sintered part 

surface quality.  Current barriers for DMLS include equipment cost, 

sintered part surface quality, and build time. As with any relatively 

new technology, cost is very high in comparison to when it becomes 

main stream. It will definitely come down as DMLS usage increases 

In these Internship I also worked at Bench and Injection, in this report 

I mentioned the work I performed in these area in the Annexes. 
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ANNEX 1: The Work done by me in DRT in 

Bench 

Bench is the most important phase of mold making process. I was 

asked to observe the work process in the Bench for almost 3 months 

so as to gain knowledge about different types of components and the 

various adjustment techniques used by them in order to have good 

quality part.Injection moulding moulds and high pressure die casting 

dies are fabricated to a standard mould set. The standard mould set 

consists of two clamp plates, two cavity plates, guiding elements 

between them, an optional back plate, two risers and an ejector set. 

Ejector set consists of an ejector base plate, an ejector retaining plate 

and an optional set of buffer plates. Guiding elements are guide 

pillars, guide sleeves and centring sleeves in each corner of the mould.            

 

 

Components in a Standard Mould (DRT Moldes, 2012) 

The standard mould is the most simple design ,basically the standard 

mould ,is same as two plate moulds construction, they divided in two 

side: cavity side and core side ,cavity side is the side that construct to 
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flowing plastic material from nozzle to cavity parts ,basically they 

consist of sprue, runner  

Injection moulding moulds and high pressure die casting dies are 

fabricated to a standard mould set. The standard mould set consists of 

two clamp plates, two cavity plates, guiding elements between them, 

an optional back plate, two risers and an ejector set. Ejector set 

consists of an ejector base plate, an ejector retaining plate and an 

optional set of buffer plates. Guiding elements are guide pillars, guide 

sleeves and centring sleeves in each corner of the mould.  

 

 

Guide elements (DRT Moldes, 2012) 

Mould is divided into two halves: fixed and movable half. Movable 

half consists of one clamping plate, the ejector set, risers and one 

cavity plate. The fixed half consists of one clamping plate. Guide 

pillars and guide sleeves lock the two halves together in vertical and 

horizontal directions. High pressure die casting and injection 

moulding machines have a mould closing mechanism, which press the 

mould halves tightly together 

The basic functional parts in a HPDC die or injection molding are:  

Cavity and cores (fixed and moving cores), which give the shape to 

the casting or molding  
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Runner system, which leads the molten raw material from the 

machine injection / shot system to the cavities  

Core moving mechanisms, which will move the movable cores in in 

the be‐ginning of the machine cycle and out along with the mold/die 

opening  

Ejecting mechanism, which removes the part front the cavity together 

with the machine ejection system  

Cooling/tempering channels, which keep the thermal balance during 

molding or casting operations  

The mold/die functional parts act together with the casting/molding 

machine. In the machine there are parts for dosing the raw material 

into the mold/die, parts for producing the core moving forces 

(electrical, hydraulic or pneumatic), parts for pro‐ducing the forces 

for ejection (electrical or hydraulic) and parts for circulating the 

cooling liquid inside the mold cooling/tempering channels. The 

system for circulating the cooling liquid may also be separate 

equipment’s like HPDC tempering devices.  

The space inside the mold in which the part is shaped is called a mould 

cavity. The surface between the fixed and movable halves is called a 

parting surface. As the first choice the parting surface should be planar 

like in the image below. Only if it is absolutely necessary to make 

stepped or shaped parting surface, this option could be taken into 

consideration. The two mould halves need to fit tightly together. 

Otherwise the high pressure inside the mould cavity during molding 

operation (or casting shot) will extrude the molding material to the 

parting surface. It is more difficult to pro‐duce surface flatness to 

shaped or stepped surfaces than to planar surfaces. 
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Left: Mould fixed side with the cavity. The space, inside which the part is shaped, is also 

called a cavity. Right: Mould movable side with a core. The surface between these mould 

halves is called a parting surface. (DRT Moldes, 2012) 

 

Core side construct to make shape for core, demoulding system and 

ejection system, at this side we design ejection system Standard 

mould have one parting line, and have an opening direction .this type 

of mould use in all kinds of plastic parts that doesn’t have undercut, 

inner and outer screw 

A steel device to mould a moulding material into a certain shape. The 

section that is engaged in opening / closing movement is called a core 

plate, and the section that is not is called a cavity plate. Generally, the 

front side of a part is a cavity plate and the rear side is a core plate. 

The core plate leaves a trace on a part, because it has an ejector pin to 

push the part. The cavity plate has a sprue bush, which is the entrance 

for molten plastic. 
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Hot runner (DRT Moldes, 2012) 

Injection moulding ejector set is fixed to the moulding machine with 

one element in the centre of the mould. Without guides, the ejector 

pins are sole elements, which support these plates along with the 

fixture. Compared to the ejection pins strength and stiffness, the 

ejector set produces a relatively high load. Even the smallest 

imbalance will bend and in the worst case break the pins. High 

pressure die casting die ejector set is fixed to the casting machine with 

four ejection bars. Four bars give rather good support, but it is still 

possible that the ejector set bends - for example if the part sticks to 

the die cavity from one side or there is some other kind of imbalance 

in the ejection. Usually the high pressure die casting machine ejector 

mechanism works with hydraulic cylinders. It returns the die ejector 

set to the back position with a cylinder backward movement. In some 

injection moulding machine types the ejector mechanism is returned 

with the mechanism backward movement. In some machines the 

returning movement is done with a spring in the fixture. High pressure 

die casting hydraulic cylinders typically produce also the backward 

movement. In any of these cases it is recommended to place four 

ejector set returning pins to mechanically return the ejection system 

to the initial position. The set of returning pins is also the lightest 

guiding construction. Returning pins are thick ejector pins, which are 

placed outside the cavity and extended to the mould parting surface. 
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If the ejector set returning system does not work properly, these pins 

secure the ejector set to the initial position.  

The Work done by me in DRT in Bench 

After the reeds all placed it is the turn of proceeding with placing 

plugs to cover the holes of the waters that were made to create the 

ways of water channels but they had to be covered so that the channel 

only has one input and one output. For it proceeded will place caps 

with ¼ measures '' ½ '', 1/8 '' and 3/8 '' that are already ordered 

according to the measures. These caps are screwed but first take a 

little glue which causes the cap skirt and does not seal as well. 

 

Bushing Channels sealed (DRT Moldes, 2012) 

 

Caps (DRT Moldes, 2012) 

It was used red lead inside the plate bushing and wants to seek a bridge 

to fit the sleeve before Inserting on the plate bushing. By placing the 



7 

 

bushing on the plate bushing is repaired which was not fully adjusted. 

And then with the help of the bridge, the sleeve was high, taking the 

beat red Ink transferring to another plate lean, so the sites where it 

appears painted is where fair. Where there appears painted is because 

not touched the face. 

 

 

Red lead (DRT Moldes, 2012) 

And then after making  some minor adjustments where it got a few 

hundredths or less so in the area of the corners and then proceeded 

placement will once again bushing in place and this time perfectly 

fitted with copper's help. Copper is used to hit the steel because copper 

material is softer then steel, thereby not spoiling the steel but the 

resulting force is high. 

 

Copper (DRT Moldes, 2012) 
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Then again adjust the sleeve in place. As this mould was about 

halfway through its construction, only managed to keep part of what 

is done in the bush because the rest was done. It was then that proceeds 

from placement of balances already set in place and extractors. Then 

it was all connected to the sheet of the extractors that was ready to 

links the pieces of balances already in place. 

 

Slide wear plates (DRT Moldes, 2012) 

While all this going on tight tears in the sheets slide and through the 

manual grinder with a millstone of 4 mm. The tear was deep about 

3/10. Then these are marked with wedges with numbers and were also 

marked in the steel where they would put. 

    

                 

Sliding bars (DRT Moldes, 2012) 
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These sheets were sent to carry nit riding treatment involving the 

introduction of nitrogen in the form of iron nitrides which provides 

them with a substantially higher strength and prevents the moving 

element. After reaching the treatment they were placed on site and the 

tight plates with conical screws and punched with machine screws. 

Then was put quite thick, thick oil itself on the plates slip so that the 

variable component not flu. After all well-oiled, it tested the mobile 

element that worked well with no gaps. At the edge of the variable 

component was also necessary to resort to the red lead to see if it was 

just the tip of the moving element is mordant area and could not have 

failures. The movement of the movable element was done through a 

guide mechanically pushing the mobile element to the right place 

while the mould closed. Then, having been assembled plate bushing 

with the plate of extractors and extractors of clamping plate was time 

to take the test to see if there was water leakage in the mould. 

 

Hot runner moulding system 

Thus a machine was connected via two hoses, one for input and one 

for output. The water is set at an initial pressure of 3 bar and the flow 

rate and had leaks were recorded, then it was put to 5 bar and the 

machine was turned off. If looked at for a gauge to whether the 

lowered pressure which meant that there would be an escape. 

Every plastic part starts in a mould. Moulds are classified into two 

main types, cold runner and hot runner. Each has its advantages and 

disadvantages. Your plastic injection moulded will be able to give you 

the costs and benefits of using these different systems. However, by 

understanding the key differences of these technologies, you can have 

a more educated discussion on the type of mould that would best fit 

your project. First, let’s discuss cold runner moulding systems Cold 

runner moulds usually consist of 2 or 3 plates that are held within the 

mould base. The plastic is injected into the mould via the sprue and 

fills the runners which lead to the parts in the cavity. In 2 plate moulds, 

the runner system and parts are attached, and an ejection system is 

used to separate the pair from the mould. For those of you who 
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assembled a model car at some point in your youth, the runners and 

the parts were not separated. The child assembling the model was 

responsible for that final part of the process. In 3 plate moulds, the 

runner is contained on a separate plate, leaving the parts to be ejected 

alone. In both systems, the runner is recycled and reground, reducing 

plastic waste. However, these processes can increase cycle time 

Hot runner moulds consist of 2 plates that are heated with a manifold 

system. The manifold sends the melted plastic to nozzles which fill 

the part cavities. There are several types of hot runner systems, 

however, in general, they fall into two main categories; externally 

heated and internally heated. The externally heated systems are well 

suited to polymers that are sensitive to thermal variations. Internally 

heated systems offer better flow control.  

The hot runner process eliminates runners entirely, so recycling and 

regrind (which can only be done with virgin plastics) do not impact 

cycle times. A variation of this system is called an insulated runner. 

The insulation, rather than heat, keeps the plastic in a molten state. 

This system can only accommodate a few types of plastics, 

specifically semi-crystalline polymers which have a low thermal 

conductivity.  

 

 

          

Water Leakage Test (DRT Moldes, 2012) 
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Recorded values of water leakage test (DRT Moldes, 2012) 

 

After the test done it was time to join the clamping plate extraction 

had previously been prepared with the addition of shims and support 

pillars. After all has been pressed will be doing another test. The 

movable element is removed and was carried out with the aid of a 

bridge connected with current the plate 8 to see if phase extraction 

was running. This was visible, everything worked  

                 

 

Extraction Test (DRT Moldes, 2012)
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Then the portion of the cavity that was already finished was attached to part of the 

chuck and the foot was placed in the mould which had previously been dyed orange. 

Then the mould was closed and clean and transported to the injection site so that it 

proceeds to the test. 

 

If the test in the injection was good, and I could see that the pieces were to come out 

as desired. In making observation of these pieces I noticed still quite noticed the lines 

left by the cutters in the machining but that overall the piece was doing well. 

 

Then these parts are observed more carefully and are made a report to know what 

they have to do so that the mould be well and that these parts do well. After the report 

will get proceeded to the mould opening of moulded area both in the cavity as in 

chuck. This experiment was very tiring because I had about two days, only 16 hours 

at a polishing moulded part of this zone of the bushing mould. Then it was verified 

by the gentleman who accompanied me was missing a part in eroded once again was 

named the chief bench who agreed and called the programmer to the electrodes that 

mould was then solve what happened. 

 

Then the employee who was decided to start work another mould and it was with this 

template, the number 749 who got to know the process from the beginning. This 

mould is to mirror a well-known brand in the automotive world. So I could see the 

injection clamping plates, the plate of the wells, the plate bushings, shims, and the 

sheet of the extractors, the clamping plate of the extractor and the extraction clamping 

plate when they are not connected and in form simpler. First was connected via 

machine screws and then adjusted the cavity, which was first treated by putting fins 

and channels covering water, the plate of wells and then the wells of the plate to the 

clamping plate of the injection, even without bringing the nozzle in site. Then the 

extraction is screwed clamping plate shims, and then the support pillars because the 

mould does not bend when 
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Mould Pillars (DRT Moldes, 2012) 

 

The next step is to treat part of the bushing as done for the other mould set as straws, 

post buffers, etc. The plates slide and have been torn through the grinder and then 

were sent for treatment but rather were marked with numbers. When they arrived 

they were placed in the right place and tight. Then put up the sleeve in place, i.e. the 

plate bushing that has been first adjusted through the use of red lead and where 

adjustments could be made to enter fair. After the balances are adjusted and extractor 

with the use of red lead to failures were checked after which it was fixed. It was put 

red lead and finding as if the extractor had to close. 

 

               

Balance adjustment (DRT Moldes, 2012)  
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When it was found that everything was perfectly done going to fit another extractor 

/ balance. After all the adjustments it was time to use lubricant in  and slide plate and 

test to see if the furniture elements worked well. This took place, but did not close 

properly because something was encounter its path. The two mobile elements had to 

be marked with red lead and adjusted in order to run the whole course to join steel 

with steel, so there is no slack.        

                                           

                                                                               

Mobile elements (DRT Moldes, 2012) 

 

Steel Removal in Mobile Element (DRT Moldes, 2012) 

 

Then it was prepared plate of extractors with the slide bar of balances. These were 

connected to the water channels it balances the water will also pass to cool the mould 

and thus also the plastic part. Then, it was made the extractor plate extractors 
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connection with the clamping plate thus connecting rods balances with the slide 

plates there by, but before the recores were put into the water on the plate and 

bushings of the cavity. The balances are used for parts can be injected with negative 

areas and that after opening the mould they go away first before the mould opening, 

not enough from the piece which has been shaped. 

 

      

Balances (DRT Moldes, 2012) 

                                   

      

Balances (DRT Moldes, 2012) 

Next, the connection was made by extraction of the clamping plate with shims were 

placed and the support pillars. One water test was done and the registered flow rate 
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in each channel. After the mobile element has been tested and since there were the 

adjustments were already all made was time to assemble the structure which would 

bring the hydraulic cylinders. This structure was assembled and then bolted with the 

cylinder more below. 

But before you attach the cylinder was made a test of whether the cylinder was 

working, it was then blown with air into the holes. 

 

                     

 

Hydraulic open structure (DRT Moldes, 2012) 

After all mounted proceeded to measurement will know the feet of pipe that had to 

cut then proceeding with spiking in these recores pipes for the oil. A machine to carry 

out the crimping was used. 

At the end of all mounted oil pipe was to seek an oil pressure machine to test whether 

all was well connected and working. The test was positive, everything was working 

well.      
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Crimping machine (DRT Moldes, 2012) 

 

 

Hydraulic oil Test (DRT Moldes, 2012) 

Then it was decided to have the mount before had prepared, the shims with the fixed 

pillars in the extraction clamping plate and everything was bolted plate will bushings. 

Part of the bushings was lying and was made a test to see if the extractors were 

functioning well, so were linked chains of a bridge plates pulled up, all found to be 

working well. 
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Extractor Test (DRT Moldes, 2012) 

Then the mould was closed but first painted in the area of the cavity with red lead to 

the beat to know that part rings and remove material. They have a technique is to 

close the mould, put the copper with about 60mm thickness and suddenly take on, 

causing the weight cavity of the bushing hitting thus simulating the force when 

closing the mould. They use this technique because there is only a press and this is 

complicated serve everyone. Then proceeded to paint the feet of mould on orange 

colour and are placed at the site. 

 

Risers (DRT Moldes, 2012) 

The moulded area of the sleeve and the cavity are polished to have a good finish.  

And after having everything in place, the mould is transported to the foot of the 

injection site. I could be there when this mould was tested and loved the same 

experience. The hydraulics worked well and balances also did their job well. The day 

after this experiment was transferred to another section. 
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4.5 Case study on Variotherm 

The polymer injection products produced by using the current injection moulding 

method usually have many defects, such as short shot, jetting, sink mark, flow mark, 

weld mark, and floating fibers. These defects have to be eliminated by using post-

processing processes such as spraying and coating, which will cause environment 

pollution and waste in time, materials, energy and labor. These problems can be 

solved effectively by using a new injection method, named as variotherm injection 

molding or rapid heat cycle molding (RHCM), a new type of dynamic mold 

temperature control system using steam as heating medium and cooling water as 

coolant was developed for variotherm injection molding. The injection mold is 

heated to a temperature higher than the glass transition temperature of the resin, and 

keeps this temperature in the polymer melt filling stage. To evaluate the efficiency 

of steam heating and coolant cooling, the mold surface temperature response during 

the heating stage and the polymer melt temperature response during the cooling stage 

were investigated by numerical thermal analysis. During heating, the mold surface 

temperature can be raised up rapidly with an average heating speed of 5.4°C/s and 

finally reaches an equilibrium temperature after an effective heating time of 40 s. It 

takes about 34.5 s to cool down the shaped polymer melt to the ejection temperature 

for demoulding. The effect of main parameters such as mold structure, material of 

mold insert on heating/cooling efficiency and surface temperature uniformity  

 

Temperature distribution around the weldline location at the end of filling for RHCM (DRT Moldes, 2012) 

 

Figure-i shows the temperature distribution of moldbase at the end of filling in 

Conventional Injection Molding (CIM). The high temperature region is located in the 

center of moldbase with highest temperature of 106°C. Figure-ii shows the 

temperature distribution of moldbase during filling phase in Rapid Heat Cycle 

Molding (RHCM). Obviously, the high temperature region is located around steam 

channel during filling phase. Figure-iii shows the temperature distribution of 
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moldbase in filling phase in Induction Heating Molding (IHM) process. Since the 

heating method is via the mold surface using electrical power, the high temperature 

region is located on the surface of cavity side at the beginning of filling. Also, at the 

end of filling, the temperature is cooled down. Finally, Figure-iii shows the 

temperature distribution of moldbase during filling phase in E-mold process. A high 

temperature region occurs around the heater when using the electrical heating. 

Furthermore, the usage benefits of high mold temperature for the quality 

improvement of injection parts can be verified via the temperature distribution 

around the weldline location as shown in Figure-iv and Table-i. Apparently, the 

application of variotherm technologies, including RHCM, IHM, and E-mold, makes 

the surface temperature raised up at the end of Filling. The strength of the weldline 

is therefore enhanced. 

  

(a) 0.001s                                     (b) 0.5s (end of filling) 

Figure-i- Temperature distribution of moldbase during filling phase in CIM process. (DRT Moldes, 2012) 

  

                       (a) 0.001s                                           (b) 0.5s (end of filling) 

Figure-ii- Temperature distribution of moldbase during filling phase in RHCM process (DRT Moldes, 2012) 
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                       (a) 0.001s                                      (b) 0.5s (end of filling) 

Figure-iii- Temperature distribution of moldbase during filling phase in IHM process (DRT Moldes, 2012) 

 

     

         (a) 0.001s                                                       (b) 0.5s (end of filling) 

Figure-iv The temperature distribution of moldbase during filling phase in E-mold process (DRT Moldes, 2012) 

 

 

Table-i  Temperature distribution around the weldline location for various technologies 

 

 Weldline temperature 

CIM 170°C ~200°C 

RHCM 190°C ~220°C 

IHM 205°C ~235°C 

E-MOLD 210°C ~240°C 
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ANNEX 2: The Work done by me in DRT in Injection 

 

Apart from observing the mold making process in the company, I was also assigned 

a task to study how the type of flow affects the final product during the plastic 

injection molding process and determine the most suitable flow type to conduct this 

process and the time duration for the whole process. 

Injection molding is a heat transfer process, by injecting a molten liquid into a metal 

mold and transfer the heat into the metal, where it is transferred into the cooling 

media. Plastic injection molding is the most important plastic production method.it 

is also the most complex processes due to the many delicate adjustments. The flow 

of liquid during the process may affect the final quality of the product. 

1. Parameters of Injection Molding 

The injection process should ensure the proper development of the product with 

smooth material filling and good mechanical properties. To accomplish this, the most 

important parameters to be controlled are temperature (melt temperature, mould 

temperature), pressure (plasticizing / back pressure, injection pressure, and holding 

pressure) and time (clamping time, injection time, holding time, cooling time).  

Temperature - Temperature has a significant influence on the final properties of the 

material regardless of the part design. Two of the process conditions which have a 

substantial influence on the behaviour of polymer are melt temperature and mould 

temperature.  

Melt Temperature - Melt temperature is the temperature of the polymer as it exits 

the injection machine nozzle and enters the mould. The correct choice of melt 

temperature is related to the quality and type of the plastic. The heating temperature 

of plastic should be always higher than the plastic flow temperature (melting point), 

but below its decomposition temperature.  

Mould Temperature – Mould temperature is controlled by the coolant flowing 

through the channels in the mould. This determines the cooling rate of the injected 

plastic. 

Pressure 

Plasticizing / Back Pressure - The resistance of the molten plastic to flow forward 

is known as back pressure. Typically, the back pressure is around 7-10 bar, thought 

it may be as low as 3.5 bar. Sometimes, back pressure is increased as much as 28 bars 

to improve melt uniformity, increase melt temperature or to eliminate air traps. 

Injection Pressure –Injection pressure is the pressure given to the molten plastic by 

the screw when the screw is moving forward to push the plastic in the mould. If the 
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injection pressure is high, the flow ability of the plastic is increased and if the 

injection pressure is low, the flow ability is decreased and problems like bubbles and 

void will arise. 

Holding Pressure – Even when the cavity is full, more pressure is given to melt 

plastic in order to pack the space completely. This pressure is called holding Pressure. 

Time - The time needed for one injection cycle is called cycle time. The cycle time 

includes clamping time, injection time, holding time and cooling time. 

Clamping Time – Clamping time is the time taken to clamp the mould in the 

injection moulding machine. If the clamping time is too long then the mould 

temperature will be too low while the plastic stays in the nozzle for a long time. If 

the clamping time is too short, mould temperature will be too high. 

Injection time – Injection time is the time from when the plastic starts to melt to the 

time the plastic is filled in the cavity of the mould. Normally, the injection time for 

small parts is around 3-5 seconds and for large parts is around 10 seconds. Injection 

time always has inverse effect on the injection speed. 

Holding Time – Holding time refers to time for continuing pressure on the plastic 

product. If the holding time is too short, the plastic product will not be tight enough 

and this may cause dent and unstable size. If the holding time is too long, stresses in 

the product will be increased. 

Cooling Time – Cooling time runs from the finish of the holding pressure to the 

opening of the mould. Cooling time depends on the thickness of the product, thermal 

properties of plastic and crystallization characteristics.   

2. Process and Equipment 

 

 

Injection machine (Bryce, 1996) 

Equipment for injection moulding evolved from metal die casting. An injection 

moulding machine consists of two principal components: 

The plastic injection unit and  

The mould clamping unit.  
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Injection Unit: The injection unit is much like an extruder. It consists of a barrel that 

is fed from one end by a hopper containing a supply of plastic pellets. Inside the 

barrel is a screw whose operation surpasses that of an extruder screw in the following 

respect: in addition to turning for mixing and heating the polymer, it also acts as a 

ram which rapidly moves forward to inject molten plastic into the mould. A no return 

valve mounted near the tip of the screw prevents the melt from flowing backward 

along the screw threads. Later in the moulding cycle the ram retracts to its former 

position. Because of its dual action, it is called a reciprocating screw, which name 

also identifies the machine type. Older injection moulding machines used a simple 

ram (without screw flights), but the superiority of the reciprocating screw design has 

led to its widespread adoption in today's moulding plants. To summarize, the 

functions of the injection unit are to melt and homogenize the polymer, and then 

inject it into the mould cavity 

 

 

Molding section (Bryce, 1996) 

Molding Section: Generally molds are made from hardened steel or aluminum 

having fiber glass coating it consists of  

Stationary plate (Mold cavity) and  

Movable plate (Mold core)  

Mold Base (front half and rear half), runner gate etc.) 

Gates (Edge gate, submarine gate, Fan gate) etc. 

Mold Function: To give desired shape to material, to withstand the injection pressure 

and clamped forces, to properly distribute the ejected melt, Cool and cure the 

material. 
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                                                  Mould (Bryce, 1996) 

 

Mould Function  

 Clamping Unit: The clamping unit is concerned with the operation of the mould. 

Its functions are to hold the two halves of the mould in proper alignment with each 

other;  

Keep the mould closed during injection by applying a clamping force sufficient to 

resist the injection force; and  

Open and close the mould at the appropriate times in the moulding cycle. The 

clamping unit consists of two platens, a fixed platen and a movable platen, and a 

mechanism for translating the latter. The mechanism is basically a power press that 

is operated by hydraulic piston or mechanical toggle devices of various types. 

Clamping forces of several thousand tons are available on large machines. 
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Injection Machine (Bryce, 1996) 

 

 

The cycle for injection moulding of a thermoplastic polymer proceeds in the 

following sequence. Let us pick up the action with the mould open and the machine 

ready to start a new moulding: 

Mould is closed and clamped.  

A shot of melt, which has been brought to the right temperature and viscosity by 

heating and by the mechanical working of the screw, is injected under high pressure 

into the mould cavity. The plastic cools and begins to solidify when it encounters the 

cold surface of the mould. Ram pressure is maintained to pack additional melt into 

the cavity to compensate for contraction during cooling. 

The screw is rotated and retracted with the no return valve open to permit fresh 

polymer to flow into the forward portion of the barrel. Meanwhile, the polymer in 

the mould has completely solidified. 

The mould is opened, and the part is ejected and removed. 
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Plastic granules dropping on to screw thread (Bryce, 1996) 

 

Parts made in a plastic injection moulding process can have their own unique set of 

possible defects. The following is one of the most common defects associated with 

the plastic injection process in which I worked on:- 

 

Sink Marks (DRT Moldes, 2012) 

Sinking is caused by the outer skin of plastic solidifying while the material inside is 

still molten and viscous. As it cools and solidifies, the material compacts. The best 

way to avoid these dimples is to design the part with a consistent wall thickness. 

However, many times the problem of sinking can be taken care of by adjusting the 

process parameters only. 
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In these area of the part, exists the real possibility of appearing sink marks I suggest the 

reduction of rib thickness to prevent these situation in the existing plastic part. 

Mold 

MOLD TEMPERATURE TOO HIGH OPPOSITE RIBS 

Explanation: Generally, a hot mold will allow a material to stay molten longer than a 

cold mold and cause the molecules to stay fluid longer before they cool and solidify. 

Upon ejection from the mold the material will be allowed to contract more than normal 

and excessive shrinkage will occur. This condition often occurs in the area of ribs because 

of the extra plastic in those areas, which requires more extensive cooling to maintain 

consistent shrinkage. Inconsistent shrinkage will result in sink marks. 

Solution: Decrease the mold temperature to the point at which the material has the proper 

flow and packs out the mold without shorting. Start with the material suppliers 

recommendations and adjust accordingly. Allow 10 cycles for every 10-degree change 

for the process to re-stabilize. 

SMALL GATES AND/OR RUNNERS 

Explanation: Gates and/or runners that are too small will cause excessive restriction to 

the flow of the molten plastic. Many plastics will then begin to solidify before they fill 

the cavity. The result is a material that is not fully contained within the metal mold 

surfaces and is allowed to shrink beyond normal expectations. The extended shrinkage 

causes sink marks. 

Solution: Examine the gates and runners to optimize their size and shape. Do not 

overlook the sprue bushing as a long sprue may solidify too soon. Use a heated bushing 
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or extended nozzle to minimize sprue length. Ask the material supplier for data 

concerning gate and runner dimensioning for a specific material and flow rate. 

IMPROPER GATE LOCATION 

Explanation: If certain materials are injected directly across a flat cavity surface they 

tend to slow down quickly as a result of frictional drag and cool off before the cavity is 

properly filled. The material is not held under proper pressure while solidifying and 

excessive shrinkage will cause sink marks as the part cools after ejection from the mold. 

Solution: Relocate or redesign the gate so that the molten plastic is directed against an 

obstruction such as a core pin. This will cause the material to disperse and continue to 

flow instead of slowing down. 

EXCESSIVE THICKNESS AT MATING WALLS 

Explanation: When a wall meets another wall, or when a boss is located on a wall, the 

area where they form a junction becomes a larger mass of plastic than the area 

surrounding it. The surrounding area cools and is already solidified while the larger mass 

continues to cool and shrink. Because the surrounding area is solid, non-uniform 

shrinkage occurs as the large mass area shrinks in on itself, causing sink marks to appear. 

Solution: Although it is good design practice to maintain all walls at a uniform thickness, 

in areas where a junction is formed, one of the walls should be between 60% and 70% of 

the mating wall thickness. This will minimize the mass at the junction until the shrinkage 

is equal in all areas and sink marks will not develop. 

Material 

IMPROPER FLOW RATE 

Explanation: Resin manufacturers supply specific formulations in a range of standard 

flow rates. Thin-walled products may require an easy flow material while thick-walled 

products can use a material that is stiffer. It is better to use as stiff a flow as possible 

because that improves physical properties of the molded part. But the stiff material will 

be more difficult to push and this may result in a less dense material filling the cavity 

image. The lower this density, the higher the amount of shrinkage that will occur after 

ejection, and sink marks may occur due to an imbalance of shrinkage factors. 


