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ARTICLE OPEN

Multi-polygenic score prediction of mathematics, reading, and

language abilities independent of general cognitive ability
Francesca Procopio 1✉, Wangjingyi Liao2, Kaili Rimfeld1,3, Margherita Malanchini 1,2, Sophie von Stumm 4,

Andrea G. Allegrini 1,5 and Robert Plomin 1

© The Author(s) 2024

Specific cognitive abilities (SCA) correlate genetically about 0.50, which underpins general cognitive ability (g), but it also means

that there is considerable genetic specificity. If g is not controlled, then genomic prediction of specific cognitive abilities is not truly

specific because they are all perfused with g. Here, we investigated the heritability of mathematics, reading, and language ability

independent of g (SCA.g) using twins and DNA, and the extent to which multiple genome-wide polygenic scores (multi-PGS) can

jointly predict these SCA.g as compared to SCA uncorrected for g. We created SCA and SCA.g composites from a battery of 14

cognitive tests administered at age 12 to 5,000 twin pairs in the Twins Early Development Study (TEDS). Univariate twin analyses

yielded an average heritability estimate of 40% for SCA.g, compared to 53% for uncorrected SCA. Using genome-wide SNP

genotypes, average SNP-based heritabilities were 26% for SCA.g and 35% for SCA. We then created multi-PGS from at least 50 PGS

to predict each SCA and SCA.g using elastic net penalised regression models. Multi-PGS predicted 4.4% of the variance of SCA.g on

average, compared to 11.1% for SCA uncorrected for g. The twin, SNP and PGS heritability estimates for SCA.g provide further

evidence that the heritabilities of SCA are not merely a reflection of g. Although the relative reduction in heritability from SCA to

SCA.g was greater for PGS heritability than for twin or SNP heritability, this decrease is likely due to the paucity of PGS for SCA. We

hope that these results encourage researchers to conduct genome-wide association studies of SCA, and especially SCA.g, that can

be used to predict PGS profiles of SCA strengths and weaknesses independent of g.

Molecular Psychiatry; https://doi.org/10.1038/s41380-024-02671-w

INTRODUCTION
For over a century, psychologists have developed hundreds of
cognitive performance measures and several taxonomies of
cognitive abilities. One of psychology’s most replicated and
accepted findings is that all cognitive abilities substantially
correlate with one another [1]. The shared variance between
cognitive abilities is known as general cognitive ability (g). A
widely accepted taxonomy of cognitive abilities is the Cattell-
Horn-Carroll (CHC) hierarchical model of intelligence [2]. The CHC
model positions g at the top of the three-stratum model,
representing what is in common among 16 factors at the middle
level of the model, such as quantitative knowledge, reading and
writing and processing speed. These broad factors encompass
clusters of scores of correlated cognitive measures that comprise
the lowest level. By tradition, we refer to the middle level of the
CHC model as specific cognitive abilities (SCA), even though these
factors are not independent of g.
Family, twin, and adoption studies have consistently found that

individual differences in both g and SCA are substantially heritable
[3]. A recent meta-analytic review of 747,567 monozygotic-
dizygotic twin comparisons reported that SCA are, on average,
56% heritable, which is similar to the 50% estimate typically found

for g [4]. Moreover, it is well established that the genetic
influences that contribute to individual differences in SCA
substantially covary among SCA with genetic correlations
consistently about 0.50 among diverse SCA [1]. Nonetheless, no
genetic correlations near 1.0 have been reported, indicating that
SCA have a unique genetic component and do not solely reflect
the heritability of g.
The few studies that have attempted to investigate the unique

genetic component of SCA suggest a surprising finding: the
heritabilities of SCA phenotypically corrected for g (SCA.g) via
regression are substantially heritable, 53% on average, very similar
to the average heritability estimate of 56% for the same measures
of SCA uncorrected for g [4].
The high heritability estimates of SCA and SCA.g make them

good targets for genome-wide association (GWA) analysis, which
identifies associations between DNA variants (single nucleotide
polymorphisms, SNPs) and a target complex trait. The effect sizes
of single SNP associations with complex traits are extremely small,
the largest accounting for less than 0.05% of the variance, but
these effects can be aggregated into polygenic scores (PGS) that
can be used as genetic predictors of SCA [5]. The development of
powerful polygenic scores of SCA would enable the creation of
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genetic profiles of strengths and weaknesses of cognitive abilities
from birth. For instance, a polygenic score for reading could be
used to detect risk for reading problems and enable interventions
to forestall problems rather than waiting for them to emerge in
school. However, due to the high genetic correlation between SCA
and g, much of the prediction of reading would be due to g rather
than reading per se, the unique aspect of the SCA. In order to
develop genetic profiles of SCA independent of g, GWA studies of
SCA.g are required.
To date, only one GWA study of SCA.g has been published.

Donati et al [6] conducted a GWA study of English, maths and
science independent of g, and reported significant SNP herit-
abilities for maths (24%) and science (15%). However, the sample
sizes used were too small to detect significant genome-wide
significant SNPs (maximum N= 3260). Moreover, the sample sizes
of early GWA studies of SCA were too small—fewer than 10,000
individuals and often fewer than 1000 – to identify replicable
associations for the very small effect sizes that we now know are
responsible for the heritability of complex traits [7–16]. As a result,
few genome-wide significant associations were found. Sample
sizes in the hundreds of thousands are required to identify SNP
associations of the expected effect size. Indeed, a recent GWA
study of five reading and language traits with sample sizes of up
to 34,000, but with a wide age range from 6 to 26 years, found
only one genome-wide significant association with one trait [17].
These GWA studies of SCA did not calculate PGS from their GWA

summary statistics to ascertain the power of their PGS to predict
their target traits in independent samples. However, because the
predictive power of PGS is correlated with the number of genome-
wide significant associations, their PGS are not likely to predict
much variance in the target traits. This trend can be seen in other
GWA studies of SCA that reported the predictive power of PGS
derived from their GWA summary statistics [18–21]. In contrast, a
GWA study of self-reported mathematics performance in second-
ary school with sample sizes of about 500,000 from 23andMe
yielded PGS that predicted an average of 6% of the variance in an
independent sample [20]. Similarly, a PGS derived from the latest
GWA study of the extremely broad trait of educational attainment
with a sample size of three million predicted 12.4% of the variance
for verbal grade point average (GPA), 10.0% for science GPA and
8.4% for mathematics GPA [22].
In summary, in order to develop genetic profiles of strengths

and weakness of SCA.g, large GWA studies of SCA.g are needed.
Until then, we can use extant PGS jointly in a multi-PGS strategy to
increase the proportion of variance predicted by SCA and SCA.g.
Analogous to the empirical approach used to create PGS by
aggregating SNPs as long as they add to the prediction of the GWA
target trait, a multi-PGS approach aggregates diverse PGS as long
as they add to the prediction of the target trait [23]. We can widen
this multi-PGS net beyond cognitive-related PGS to include PGS for
personality and mental health traits that tap into noncognitive
aspects of these abilities [24]. Finally, we can push this multi-PGS
approach to its agnostic limit by including PGS for traits whose
genetic relevance to cognitive traits is at best speculative, such as
sub-cortical brain volumes and physical health.
In this study, we used an inclusive multi-PGS approach to maximise

the prediction of mathematics, reading and language SCA and SCA.g
assessed at age 12 in the Twins Early Development Study (TEDS)
[25, 26]. We frame these genomic analyses in the context of
heritability estimates of these same measures of SCA and SCA.g from
twin analyses and SNP-based methods. This study was preregis-
tered with the Open Science Framework (OSF; https://osf.io/jxbz8/).

METHODS
Sample
Our sample was obtained from the Twins Early Development Study (TEDS)
[25, 26]. The TEDS is a longitudinal twin study, which recruited over 16,000

twin pairs born in England or Wales between 1994 and 1996. Currently,
over 8000 families still participate in the study, and they remain
representative of the English and Welsh population in terms of ethnicity
and socio-economic status for their birth cohort. The TEDS has collected a
wealth of data over multiple time points, including data on the
participants’ environment, physical wellbeing, personality, cognitive ability,
and educational achievements. In addition, genomic data is available for
over 10,000 twins.
In all our analyses, we excluded participants if they had a serious medical

condition that could impact their ability to take part in TEDS assessments,
severe problems surrounding birth which may have affected their
development, or if important background information was missing. The
sample sizes of each SCA and SCA.g by zygosity for the twin and genomic
analyses is shown in Supplementary Table S1. We combined same and
opposite-sex dizygotic twins in all our analyses because previous analyses
indicated that sex differences accounted for little variance [27].

Cognitive measures
At age 12, the twins completed a broad battery of 14 internet and
telephone-based cognitive assessments, described below. Details of the
assessment procedure and measures can be found in the TEDS data
dictionary (https://www.teds.ac.uk/datadictionary/home.htm).
We constructed composite measures from the SCA described by Davis

et al. [27]. Composite measures were created from standardised scores for
reading ability (mean of four measures), mathematical ability (mean of
three measures), language ability (mean of three measures) and g (mean of
four measures). The composite measures were corrected for age and sex
using standardised residuals.

Reading ability. To assess reading ability, the twins completed two online
reading comprehension tests and two reading fluency tests, one online
and the other via telephone. The two reading comprehension tests
included an adaptation of the Peabody Individual Achievement Test [28]
and the GOAL Formative Assessment in Literacy for Key Stage 3 [29]. The
two reading fluency tests included an online adaptation of Woodcock-
Johnson III Reading Fluency Test [30] and the Test of Word Reading
Efficiency (TOWRE) [31], which was administered via telephone.

Mathematical ability. To assess mathematical ability, the twins completed
three tests from the National Foundation for Education Research (NFER)
booklets 6 to 14 [32]: Understanding Numbers, Non-numerical Processes
and Computation, and Knowledge.

Language ability. Language ability was assessed using three online
language tests of syntax, semantics and pragmatics. The test of syntax was
the Listening Grammar subtest of the Test of Adolescent and Adult
Language (TOAL-3) [33]. The semantics test was Level 2 of the Figurative
Language subtest of the Test of Language Competence [34]. Pragmatics
was assessed by the Level 2 of the Making Inferences subtest, Language
Competence [34].

General cognitive ability (g). Rather than extracting a latent variable from
the 10 cognitive tests described above, g was assessed independently
using four online tests, two verbal reasoning tests and two non-verbal
reasoning tests [27]. The two verbal reasoning tests consisted of the WISC-
III-PI Multiple Choice Information (General Knowledge) and the Vocabulary
Multiple Choice [35]. The non-verbal tests included the WISC-III-UK Picture
Completion [35] and the Raven’s Standard and Advanced Progressive
Matrices [36, 37]. By deriving g from these four independent tests, we were
able to create a balanced g factor and avoided overcorrecting the SCA for
education-related tests of reading, mathematics and language. However,
as a comparison, we also created a g factor from all 14 tests.

g-corrected SCA (SCA.g). To construct the SCA.g measures, we regressed
the g factor from reading, mathematical and language ability and used the
standardised residuals as indices of SCA independent of g. A correlation
matrix between the SCA, SCA.g, and g can be found in Supplementary
Fig. S1. Each of the newly constructed SCA.g correlated strongly with their
respective SCA (0.76 – 0.81), but weakly with the other two uncorrected
SCA (0.22–0.29).
We also regressed the g factor derived from all 14 cognitive measures.

Supplementary Table S2 shows a correlation matrix between uncorrected
SCA, the 4-test g factor, the 14-test g factor, SCA corrected for the 4-test g
factor, and SCA corrected for the 14-test g factor. The two g factors
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correlate highly (0.82). We focus our presentation of results on the 4-test g
factor to avoid overcorrection, but results for twin and elastic net
regression analyses for reading, mathematics and language ability
corrected for the 14-test g factor are included in Supplementary Table S2.

Twin analyses
Twin analyses. The twin method was used to explore the genetic and
environmental aetiology of the SCA and SCA.g. Genetic and environmental
components of a complex trait can be estimated by taking advantage of
the quasi-experimental design provided by twins. Assuming additive
genetic effects, monozygotic (MZ) twins share 100% of their inherited DNA
variants, while dizygotic (DZ) twins share on average 50% of their DNA
variants that vary between people. Both MZ and DZ twins are assumed to
share 100% of their shared environment and 0% of their non-shared
environment. By comparing MZ and DZ correlations, this standard twin
model enables estimates of additive genetic (A), shared environmental (C)
and non-shared environmental (E) effects. These ACE components of
variance can be estimated by Falconer’s formula, which assumes an
additive model. A is calculated as 2(rMZ-rDZ), C is estimated as residual MZ
resemblance not explained by A (i.e., rMZ – A), and E is the remaining
variance (1 – rMZ). These estimates can be more accurately and elegantly
estimated by structural equation modelling [38]. We used maximum-
likelihood model-fitting in OpenMx for R to test the fit of the univariate
model and to estimate A, C and E parameters and their confidence
intervals [39].

Genomic analyses
SNP-based heritability. In addition to using a twin design to estimate
heritability of each SCA and SCA.g, we also used genomic data to calculate
SNP-based heritabilities. Details of the TEDS genotyping procedures can be
found in the supplementary material of a previous TEDS paper by Selzam
et al. [40] as well as in the TEDS data dictionary (https://www.teds.ac.uk/
datadictionary/studies/dna.htm).

SNP heritability estimates the variance explained by all the SNPs
included in genome-wide genotyping [41]. It represents the upper limit for
variance explained by a PGS. In order to maximise the sample size of our
genomic sample, we estimated SNP heritability using the method
proposed by Zaitlen et al. [42] as it allows for the inclusion of family
data, fraternal twins in our case.
We used the software, Genome-Wide Complex Trait Analysis (GCTA) to

conduct our analyses [43]. For each SCA and SCA.g, two matrices were
created. The first was a genomic relationship matrix (GRMg), which
estimated the identity by state (IBS) of all pairs of individuals in the dataset.
The second matrix was the kinship relationship matrix (GRMk). It was
derived from the initial GRMg in which the off-diagonals below 0.05 were
set to 0. Restriction maximum likelihood (REML) implemented using GCTA
was then applied to estimate the SNP-based and pedigree-based
heritability from the two GRMs. We used the first 10 principal components
and sex as covariates.

Polygenic scores (PGS). PGS were constructed for each of the genotyped
participants in the TEDS sample. The construction and quality control
procedures are documented in previous papers published by the TEDS
team [23, 40] and in the TEDS data dictionary: https://www.teds.ac.uk/
datadictionary/studies/measures/polygenic_scores.htm. The genome-wide
polygenic scores were previously derived using LDpred, and, as of 2022,
are now derived using LDpred2-auto [44, 45]. All PGS used all SNPs (i.e.,
p-value threshold of 1 for SNP selection) and were corrected for the first 10
principal components, batch, and type of SNP chip.
We applied an empirical approach in the selection of PGS for our analyses.

We began with 327 PGS available in the TEDS data dictionary as of 1stOctober
2023 that met our inclusion criteria (https://www.teds.ac.uk/datadictionary/
studies/measures/polygenic_scores.htm). We excluded PGS derived from
GWA discovery samples with fewer than 10,000 individuals and PGS from
GWA that included TEDS participants. In addition, due to 23andMe’s
proprietary restrictions, we were not able to use GWA summary statistics
that included 23andMe participants. These exclusions left us with 230 PGS.
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Fig. 1 ACE twin results. The additive genetic, shared environmental and non-shared environmental components of reading, mathematics
and language ability uncorrected for g (SCA) and corrected for g (SCA.g) at age 12. A= additive genetic influences; C= shared environmental
influences; E= non-shared environmental influences. 95% confidence intervals for the additive genetic component are shown in the figure.
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A sample size of 10,000 individuals was used as a further criterion for
selecting studies as this provides 80% power (alpha =0.05) to detect a
correlation of 0.03, which is the largest effect size expected (i.e., r2 < .001). We
correlated each of the 230 PGS with the three uncorrected composite SCA
scores (mathematics, reading and language). For each composite, we
excluded PGS that correlated less than 0.03 with them (Supplementary
Table S3). We then used a multi-PGS approach to predict each of the three
scores, as described in the next section. Supplementary Table S3 lists the PGS
included in each approach, and Supplementary Table S4 provides general
information on the PGS we included in this study.

Multi-PGS models. In order to maximise the prediction of SCA and SCA.g,
we constructed multi-PGS scores to investigate the joint ability of PGS to
predict the SCA and SCA.g measures [23]. Due to the large number of
correlated predictors, we used elastic net penalised regression models with
out-of-sample comparisons to reduce the number of PGS predictors and to
provide unbiased estimates of predictive power [46]. Elastic net combines
two types of regularisation: L1 regularisation (Lasso) and L2 regularisation
(Ridge). Lasso encourages sparsity by reducing the number of predictors,
and Ridge discourages extreme coefficient values by reducing the value of
large regression coefficients.
We ran the elastic net regression models using the R package glmnet

and caret [46, 47]. In all the models, the samples were split into an
independent training set (80%) and a hold-out set (20%). In the training
set, we performed 10-fold cross-validation repeated 100 times to select the
model that minimised the Root Mean Square Error. We estimated variance
explained (R2) in the hold-out set.
For comparison, we also conducted parallel standard multiple regression

analyses for each of the SCA and SCA.g.

RESULTS
Descriptive statistics
Means and standard deviations of the SCA and SCA.g are presented
in Supplementary Table S5. Sex differences were calculated for both
samples, and zygosity group differences (MZ and DZ) were also

compared in the twin sample. To test for group differences, we
conducted analysis of variance (ANOVA) of zygosity and sex and,
although we found some significant differences (Supplementary
Table S6), the differences accounted for less than 1% of the
variance. All the measures in the subsequent analyses were
corrected for age and sex, as twins correlate perfectly for age and
same-sex twins also correlate perfectly for sex, which will inflate
twin correlations for same-sex pairs [48].

Twin analyses
Figure 1 presents the ACE results from our twin model-fitting
analyses. Point estimates and confidence intervals are in
Supplementary Table S7. All the measures were found to be
substantially heritable. The average heritability estimate is 53% for
the uncorrected SCA and 40% for SCA.g, although none of these
SCA and SCA.g heritabilities differed significantly. The order of
heritability is the same for the SCA and SCA.g: heritability is
highest for reading and lowest for language, with mathematics in
the middle. C estimates were consistently lower for SCA.g than for
SCA. The ACE estimates calculated by Falconer’s formula applied
to twin intraclass correlations are nearly identical to the model-
fitting ACE estimates in Fig. 1 (see Supplementary Table S8).

SNP heritability
The SNP heritabilities for each SCA and SCA.g are presented in
Fig. 2. All SCA and SCA.g are significantly heritable. We observed a
similar trend as in our twin analyses: the average SNP heritability
of the SCA is higher (35%) than the average SNP heritability of the
g-corrected SCA.g (26%). In other words, for both twin and SNP
heritability, SCA.g are about 75% as heritable as SCA. The
overlapping standard errors for these SNP heritability estimates
indicate that differences between each pair of SCA and SCA.g are
not significant, including the slightly higher SNP heritability for

0%

10%

20%

30%

40%

50%

Reading Reading.g Maths Maths.g Language Language.g

S
N

P
 h

e
ri

ta
b

ili
ty

Fig. 2 SNP heritabilities. SNP heritability of reading, mathematics and language ability corrected and uncorrected for g with standard errors
as error bars.
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g-corrected mathematics (37.1%) as compared to uncorrected
mathematics (33.2%).

PGS predictions
Based on the criterion that a PGS correlate at least 0.03 with an
SCA, 57 PGS were selected for the multi-PGS analysis of reading
ability, 52 for mathematical ability and 50 for language ability.
These correlations are reported in Supplementary Table S3. The
highest correlations involved the 2022 PGS for educational
attainment (EA4) [22], which correlated 0.31, 0.28, and 0.28,
respectively, with reading, mathematical and language ability. All
PGS generally correlated similarly with the three SCA.
The key finding is that multi-PGS significantly predicted all three

SCA.g, although multi-PGS predicted significantly more variance
for SCA uncorrected for g (Supplementary Table S9). Figure 3
shows the variance predicted from multi-PGS elastic net penalised
regression models. The average variance explained was 11.1% for
SCA and 4.4% for SCA.g. We reran the analyses with only one
genotyped individual per DZ twin pair and found similar estimates
(average SCA= 9.6%; average SCA.g= 4.3%) (Supplementary
Table S10). In addition, simple multiple regression analyses
yielded a similar pattern of results (average SCA= 10.1%; average
SCA.g= 4.0%) (Supplementary Table S11).
As expected from the simple correlations (Supplementary

Table S4), the EA4 PGS provided the strongest independent
prediction of all three SCAs. EA4 PGS was also the strongest
independent predictor of SCA.g for language ability, but a PGS
for intelligence [49] was the strongest independent predictor
of SCA.g for reading.g and a PGS for cognitive performance
[20] was the strongest independent predictor for
mathematics.g.
The multi-PGS approach predicted only slightly more variance

than the single most predictive PGS (Supplementary Table S12).

The standardised coefficients for each of the PGS from the
multi-PGS elastic net penalized regression are shown in Fig. 4 for
SCA and for SCA.g. The number of PGS retained in these
regression analyses was 32, 33 and 22 for the three SCA,
respectively, and 23, 17 and 19 for the three SCA.g. Squaring
these coefficients, the largest independent contributions only
explain 4% of the variance. Nonetheless, although the indepen-
dent predictions from the other PGS are small, they add to the
predictive power of the multi-PGS.

DISCUSSION
Our twin analyses revealed that the twin heritabilities of reading,
mathematics and language ability independent of g (SCA.g) are
significant and substantial (average 40%), although lower than
SCA uncorrected for g (average 53%). In our previous meta-
analytic review of SCA and SCA.g, the average heritability
estimates were more similar: 53% for SCA.g and 56% for SCA
[4]. We hypothesise that our current estimates of the heritability of
SCA.g are more accurate, because they are based on an extensive
battery of four tests of g, four reading tests, three mathematics
tests and three language tests. The meta-analytic average
heritability of SCA.g was instead based on the previous literature
on SCA.g which consists of only three studies. One study
examined academic performance, rather than cognitive ability,
at age 16 [50], and the other two each investigated a single
domain of ability—mathematics [51] and spatial ability [52].
Regardless, the average twin heritability of the SCA.g investigated
here is substantial and the differences in heritability between the
respective g-corrected and uncorrected SCA is non-significant. In
addition, we investigated the twin heritability of reading,
mathematics and language ability corrected for a g factor derived
from all 14 cognitive assessments and found that the confidence
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Fig. 3 Multi-PGS results. Variance explained (R2) from the multi-PGS elastic net penalised regression models of reading, mathematics and
language ability uncorrected (SCA) and corrected (SCA.g) for g.

F. Procopio et al.

5

Molecular Psychiatry



-0.06 -0.02 0.02 0.06 0.1 0.14 0.18 0.22

Educational attainment (EA4) (Okbay, 2022)

Intelligence (IQ3) (Savage, 2018)

Non-word reading (Eising, 2022)

Cognitive performance (Lee, 2018)

Verbal and numerical reasoning (de la Fuente,
2021)

Bipolar Disorder (all) (PGC, 2021)

E1 (Rajagopal, 2023)

Height (Yengo, 2022)

Chronotype morning vs evening (UK Biobank, 2017)

Cortical Surface Area (Grasby, 2020)

Childhood IQ (Benyamin, 2014)

Mean putamen (Hibar, 2015)

Mean pallidum (Hibar, 2015)

Risk Tolerance (Linner, 2019)

HDL Cholesterol (GLGC, 2013)

Word reading (Eising, 2022)

Lung cancer (Patel, 2017)

Non-word repetition (Eising, 2022)

Verbal and numeric reasoning (Davies, 2016)

Reaction time (de la Fuente, 2021)

Hayfever allergic rhinitis eczema (UK Biobank,
2017)

Risk (First PC) (Linner, 2019)

Maths highest class completed (Lee, 2018)

Risk drinks a week (Linner, 2019)

Cognitive (Demange, 2021)

Fluid intelligence score (UK Biobank, 2017)

Household income (Hill, 2016)

Performance IQ (Eising, 2022)

Risk auto speed (Linner, 2019)

Spelling (Eising, 2022)

Ever had prostate specific antigen test (UK Biobank,
2017)

Matrix (de la Fuente, 2021)

Anorexia Nervosa (PGC,2019)

Memory (de la Fuente, 2021)

Trail making test - B (de la Fuente, 2021)

Height (GIANT, 2018)

Bipolar Disorder (PGC, 2018)

Standing height (UK Biobank, 2017)

Non-cognitive (Demange, 2021)

Reading Reading.g

-0.02 0 0.02 0.04 0.06 0.08 0.1

Educational attainment (EA4) (Okbay, 2022)

Executive Function (Hatoum, 2022)

Cognitive performance (Lee, 2018)

E1 (Rajagopal, 2023)

Intelligence (IQ3) (Savage, 2018)

Educational attainment (EA3) (Lee, 2018)

Chronotype morning vs evening (UK Biobank, 2017)

Serious medical condition/disability (UK Biobank,
2017)

Cognitive (Demange, 2021)

Number of self-reported cancers (UK Biobank,
2017)

Lung cancer (Patel, 2017)

Fluid intelligence score (UK Biobank, 2017)

Mean thalamus (Hibar, 2015)

Non-word repetition (Eising, 2022)

Childhood IQ (Benyamin, 2014)

Bipolar Disorder (all) (PGC, 2021)

Sleep duration (UK Biobank, 2017)

Maths highest class completed (Lee, 2018)

Word reading (Eising, 2022)

ASD (iPsych, PGC, 2018)

Bipolar Disorder (BDI) (PGC, 2021)

Pain type(s) in the last month (UK Biobank, 2017)

Performance IQ (Eising, 2022)

HDL Cholesterol (GLGC, 2013)

Mean putamen (Hibar, 2015)

Past tobacco smoking (UK, Biobank, 2017)

Self reported hayfever (UK Biobank, 2017)

Neo-openness to experience (Moor, 2012)

Bipolar Disorder (PGC, 2018)

Educational attainment (self report) (Davies, 2016)

Maths ability self report (Lee, 2018)

Mean hippocampus (Hibar, 2015)

Non-cognitive (Demange, 2021)

Memory (de la Fuente, 2021)

Time spent computer (UK Biobank, 2017)

Self rated health (Hill, 2016)

Trail making test - B (de la Fuente, 2021)

Mathematics Mathematics.g

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Educational attainment (EA4) (Okbay, 2022)

Intelligence (IQ3) (Savage, 2018)

E1 (Rajagopal, 2023)

Cognitive (Demange, 2021)

Mean thalamus (Hibar, 2015)

Serious medical condition/disability (UK Biobank,
2017)

Cognitive performance (Lee, 2018)

Lung cancer (Patel, 2017)

Non-word repetition (Eising, 2022)

Childhood IQ (Benyamin, 2014)

Chronotype morning vs evening (UK Biobank, 2017)

Mean putamen (Hibar, 2015)

Verbal and numerical reasoning (de la Fuente,
2021)

Verbal and numeric reasoning (Davies, 2016)

Reaction time (de la Fuente, 2021)

Maths highest class completed (Lee, 2018)

Hayfever allergic rhinitis eczema (UK Biobank,
2017)

Medication: glucosamine product (UK Biobank,
2017)

ASD (iPsych, PGC, 2018)

Fluid intelligence score (UK Biobank, 2017)

Symbol digit (de la Fuente, 2021)

Word reading (Eising, 2022)

Mean hippocampus (Hibar, 2015)

Mouth teeth problems (none of the above) (UK
Biobank, 2017)

Self rated health (Hill, 2016)

Trail making test - B (de la Fuente, 2021)

Language Language.g

a) b)

c)
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intervals between all the corresponding SCA.g overlap when
corrected for the 4-test g or the 14-test g (Supplementary
Table S2).
We also observed significant and substantial SNP heritabilities

for the three SCA.g. As with the twin heritability estimates, we
found that SNP heritability estimates for SCA.g were about 75% of
the SNP heritabilities for SCA (26% vs 35%).
The drop in heritability from SCA to SCA.g is more pronounced

in our multi-PGS prediction analyses (Fig. 3). The average variance
explained by multi-PGS was 11.1% for SCA and 4.4% for SCA.g. The
likely reason is that the most powerful and predictive PGS in all
the multi-PGS analyses are from GWA studies of the highly general
traits of educational attainment (EA4) [22], cognitive performance
[20], and intelligence (IQ3) [49]. These PGS are highly g-loaded, so
their predictive power would be expected to diminish for
g-corrected SCA. Our multi-PGS analyses also included PGS from
GWA studies of more specific measures of SCA, which added some
significant independent prediction of SCA corrected and uncor-
rected for g in our elastic net analyses. For instance, the PGS for
executive function [53] was the second most predictive PGS for
mathematics corrected and uncorrected for g. Therefore, although
the predictive power is modest for most of the SCA-related PGS
included in our analyses, they add to the overall variance
explained in our multi-PGS analyses. Importantly, these SCA-
related PGS were derived from GWA studies with substantially
smaller sample sizes than the most predictive PGS.
We hope these findings encourage more GWA studies of SCA

and, in particular, SCA.g. Our twin and SNP heritability estimates
indicate that SCA, both corrected and uncorrected for g, are good
targets for genomic prediction. In addition, the multi-PGS
approache indicate that existing PGS of SCA add to the prediction
of both SCA and SCA.g – even in models that include powerful
predictors from general traits.
The average results for SCA mask some interesting findings for

the individual SCA. For example, reading is significantly less
g-loaded compared to mathematical and language ability. Despite
the limitations of the extant PGS used in our multi-PGS analyses,
they predicted a substantial proportion of the variance for SCA.g
for reading (6.9%), but less so for mathematics (3.6%) and
language ability (2.5%). The twin heritability results support these
PGS findings. Mathematics and language ability have a greater
drop in twin heritability (from 50.6% to 34.9%, and from 42.5% to
23.6%, respectively) as compared to a drop from 67.0% to 62.1%
for reading. Although these results suggest that reading is less
g-dependent than mathematics and language, caution is war-
ranted because a common pathways twin model-fitting analysis of
these data reported that the genetic correlation between latent
factors representing reading and g is 0.88, similar to the genetic
correlations of 0.86 for mathematics and 0.91 for language [27].
In summary, these results provide further evidence for the

substantial heritability of SCA.g and provide the first multi-PGS
prediction of cognitive abilities independent of g. The results
hopefully mark the beginning towards creating PGS for SCA.g that
can be used to create genomic profiles of strengths and
weaknesses of abilities without the influence of g. This would
allow for a more targeted educational system. For example, if
genomic strengths of a child were identified for a cognitive skill,
interventions can be developed to nurture the skill from an early
age because polygenic scores do not change across development.
Similarly, if genomic weaknesses were identified, interventions can
be implemented before problems emerge in school. However, in
order to create SCA.g PGS with sufficient power to be practically
useful, GWA studies of SCA.g with samples in the hundreds of
thousands are required.
It is daunting to think about creating GWA studies with these

sample sizes that include test data for multiple SCA as well as g,
which would be needed to investigate SCA.g. Cognitive assess-
ments are time consuming and costly to administer, especially

with the sample sizes required to create powerful predictors of
SCA.g. However, a cost-effective solution is to create brief but
psychometrically valid measures of SCA that can be administered
to the millions of people participating in ongoing biobanks for
whom genomic data are available. For example, a gamified 15-
minute test has been created to assess verbal ability, non-verbal
ability, and g [54]. This approach could be extended to assess
other SCA and SCA.g. In the meantime, it is possible to use
summary statistics from separate GWA studies of SCA and of g
using GWAS-by-subtraction to isolate genetic effects on each SCA
independent of g [55]. We are currently conducting GWAS-by-
subtraction analyses using extant GWA summary statistics from
large GWA samples [17, 19] to create PGS for SCA and SCA.g.
Another option is to create PGS from GWA studies of self-

reported measures of SCA and g. Because cognitive tests are
usually time consuming and costly, self-report measures could be
a viable alternative [56]. For example, a large GWA analysis of self-
reported math ability (n= 564,698) and the highest math class
taken (n= 430,445) was conducted with participants from
23andMe [20]. The derived PGS predicted an average of 6.2% of
the variance of math GPA in an independent sample. Unfortu-
nately, due to the proprietary restrictions of 23andMe, we could
only include the top 10,000 SNPs in our PGS derived from the
GWA analysis of self-reported highest math class taken [20]. This
could be why the PGS for the highest math class taken was not a
strong independent predictor in our multi-PGS models for
mathematics uncorrected and corrected for g.

Limitations
The usual limitations of the twin method apply here [3], as well as
the typical limitations of PGS and GCTA analyses such as issues
related to conducting genomic analyses limited to additive effects
of the common SNPs genotyped on SNP arrays.
Although our sample is representative of the UK population for

family socio-economic status and ethnicity, the generalizability of
our results may be limited to similar populations [26]. In addition,
because the TEDS sample is predominantly white, only partici-
pants of white ethnic origin were genotyped and therefore
included in our analyses. This means that our findings are largely
only generalisable to other white populations. GWA analyses using
participants from other ancestral populations are needed.

CONCLUSION
The average twin heritability estimate of 40% and SNP heritability
estimate of 26% for g-corrected mathematical, reading and
language ability at age 12 provides further evidence that the
heritability of SCA is not merely a reflection of the genetic
influence of g. Although we found a substantial decrease in
variance explained by multi-PGS approaches for g-corrected SCA
compared to uncorrected SCA, this decrease is likely due to the
fact that the most powerful predictors in the multi-PGS approach
were consistently from GWA studies of the extremely general
traits of intelligence and educational attainment. Nonetheless, we
were able to predict up to 6.9% of g-corrected cognitive abilities
from DNA alone. We hope these results encourage researchers to
conduct more GWA studies of SCA, especially SCA.g, that can be
used to predict PGS profiles of SCA strengths and weaknesses
independent of g.
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