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Resumo

Esta dissertação descreve a pesquisa e o desenvolvimento de um sistema de comunicação

para suportar dispositivos de controlo remoto (RCD) para set-top-boxes (STB) com o

sistema operativo Android. O RCD alvo é um dispositivo de baixa complexidade, que

captura os movimentos 3D para fornecer novas funcionalidades interativas para diferentes

tipos de conteúdos e aplicações multimédia.

A arquitetura do sistema consiste num RCD com sensores Magnéticos, Grav́ıticos

e de Velocidade Angular (MARG) para obtenção do movimento 3D, que transmite os

dados para uma STB Android. A comunicação entre o RCD e a STB foi implementada

através do protocolo de rádio frequência para eletrónica de consumo (RF4CE), o que exigiu

o desenvolvimento de um módulo externo para a Set-Top-Box. Foi desenvolvida uma

Interface de Programação de Aplicações (API) para permitir o processamento dos dados

do controlo remoto e a criação de seis perfis no Android: rato absoluto, rato relativo, multi-

toque, acelerómetro, giroscópio e magnetómetro. Para os sensores da unidade MARG

no dispositivo de controlo remoto serem reconhecidos nativamente no Android OS, foi

também desenvolvida uma biblioteca em Android, que lê os valores dos sensores através

da API. A demonstração das funcionalidades do sistema foi feita através de uma aplicação

Android, desenvolvida especificamente para simular e testar o ambiente de uma potencial

utilização.

Foi também efetuado, um estudo para descobrir se as funções mais complexas devem

ser executadas no RCD ou na STB Android. A solução ótima ainda permanece uma

questão em aberto, uma vez que depende dos requisitos da aplicação e da portabilidade

tendo em conta o consumo de energia. A análise do consumo de energia no RCD mostra

que a transmissão dos dados dados em bruto, para serem processados na API, resulta num

menor consumo de energia em geral, e consequentemente, numa maior portabilidade com

boa precisão. Uma vez que a STB não tem limitações sobre o consumo de energia e tem

um poder computacional superior, a API foi projetada para ser capaz de realizar todo o

processamento de dados dos sensores, permitindo assim, a implementação de algoritmos

de fusão complexos e com maior precisão.

Palavras-chave: Android, API, Set-Top-Box, USB, HID, Sensores
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Abstract

This dissertation describes the research and development of a communication system to

support remote control devices (RCD) for Android-based set-to-box (STB). The target

RCD is a low-complexity device using 3D motion tracking to provide new interactive

functionalities to different types of multimedia content and applications.

The system architecture comprises an RCD with Magnetic, Angular Rate, Gravity

(MARG) unit for 3D motion tracking, transmitting data to an Android STB. The com-

munication between the RCD and the STB was implemented using the Radio Frequency

for Consumer Electronics (RF4CE) protocol, which required the development of an ex-

ternal module for the STB. An Application Programming Interface (API) was developed

to enable seamless computation of the remote control data and allowing six input pro-

files on the Android: Absolute air mouse, Relative air mouse, multitouch, accelerometer,

gyroscope and magnetometer. To allow the sensors from the MARG unit in the remote

control device to be natively recognized on the Android OS, an Android sensors library

was also developed, this reads the sensors data from the API. The demonstration of the

system functionalities was done through an Android application specifically developed to

simulate and test a potential usage environment.

A study to find out whether the most complex functions should run on the RCD or

on the Android STB was also carried out. The optimal solution still remains an open

issue since it depends on the specific application and portability requirements taking into

account energy consumption. The analysis of energy consumption on the RCD shows that

transmitting the raw data from the sensors to be processed in the API, results in a lower

energy consumption, and consequently higher portability with good accuracy. Since the

STB has no limitations on energy consumption and superior computational power, the

API was designed to be able to perform all the processing of sensors data, thus allowing

the implementation of complex fusion algorithms with higher precision.

Keywords: Android, API, Set-Top-Box, USB, HID, Sensors

ix



This page was intentionally left blank.

x



List of Figures

2.1 IEEE 802.15.4 stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 IEEE 802.15.4 physical layer packet. . . . . . . . . . . . . . . . . . . . . . 9

2.3 IEEE 802.15.4 network topologies. . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 ZigBee R© RF4CE stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 ZigBee
TM

RF4CE topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 MiWi
TM

P2P stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Handshaking process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Compatibility between Bluetooth versions. . . . . . . . . . . . . . . . . . . 15

2.9 BLE stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Bluetooth Low Energy channels. . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 USB 3.x Cable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 USB architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Complex Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Configuration of speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Chirp handshake. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 USB protocol stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 USB logical connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 USB transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 USB descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 USB HID Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Android stack with details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 Android application anatomy. . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.13 Android boot sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.14 Android USB stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.15 East-North-Up coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



3.16 Android sensors stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 System developed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Remote Control Device prototype. . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Final scheme of PCB dongle. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 PCB dongle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Dongle flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.7 Radio Frequency modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8 USB HID Custom - Demo Input Report format . . . . . . . . . . . . . . . 46

4.9 Device - HID - Custom Demos directory tree. . . . . . . . . . . . . . . . . 47

4.10 API flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11 Android API Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.12 Android Sensors UML Structure. . . . . . . . . . . . . . . . . . . . . . . . 54

4.13 Android Sensor Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.14 Main Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 3D Visualizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.16 TV Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.17 Logger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.18 USB Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.19 Measurement system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.20 Results of energy consumption - Sensors. . . . . . . . . . . . . . . . . . . . 66

4.21 Results of energy consumption - Reading Sensors. . . . . . . . . . . . . . . 67

4.22 Results of energy consumption - Fusion Filters. . . . . . . . . . . . . . . . 68

4.23 Results of energy consumption - Send with MRF24J40MA. . . . . . . . . . 69

4.24 Results of energy consumption - MRF24J40MA. . . . . . . . . . . . . . . . 70

xii



List of Tables

2.1 Family of IEEE 802 standards. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Categories of IEEE 802.15 standard. . . . . . . . . . . . . . . . . . . . . . 8

3.1 USB speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Digital states of Chirp k and j in data lines. . . . . . . . . . . . . . . . . . 22

4.1 Calculated value of the variables for each module. . . . . . . . . . . . . . . 62

4.2 Value of the variables used in each module. . . . . . . . . . . . . . . . . . . 63

4.3 Maximum input voltage value in the amplifier from modules. . . . . . . . . 63

4.4 Characterization of energy consumption - Sensors . . . . . . . . . . . . . . 64

4.5 Characterization of energy consumption - Data processing . . . . . . . . . 64

4.6 Characterization of energy consumption - Module RF . . . . . . . . . . . . 64

4.7 Results of energy consumption - Sensors . . . . . . . . . . . . . . . . . . . 65

4.8 Results of energy consumption - Data processing . . . . . . . . . . . . . . . 65

4.9 Results of energy consumption - Module RF . . . . . . . . . . . . . . . . . 65

4.10 Remote control device setups and results. . . . . . . . . . . . . . . . . . . . 71

xiii



This page was intentionally left blank.

xiv



List of Acronyms

ADC Analog-to-Digital Converter

APK Android application Package

AES Advanced Encryption Standard

AOSP Android Open Source Project

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

BLE Bluetooth R© low energy

BPSK Binary Phase Shift Keying

CE Consumer Eletronics

CEC Consumer Electronics Control

DoF Degrees of Freedom

DMP Digital Motion Processor

DSSS Direct Sequence Spread Spectrum

FHSS Frequency Hopping Spread Spectrum

GCC GNU Compiler Collection

GFSK Gaussian Frequency Shift Keying

HAL Hardware Abstraction Layer

HCI Host Controller Interface

HOGP HID Over GATT Profile

xv



HS High Speed

HDMI High-Definition Multimedia Interface

HID Human Interface Device

I2C Inter-Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

ISM Industrial, Scientific and Medical

LAN Local Area Network

LED Light Emitting Diode

LSB Least Significant Bit

MAC Medium Access Control

MAN Metropolitan Area Network

MARG Magnetic, Angular Rate, Gravity

MCU Microcontroller Unit

MiWi Microchip Wireless Protocol

MLA Microchip Libraries for Applications

NDK Native Development Kit

NRZI Non Return to Zero Inverted

O-QPSK Offset Quadrature Phase-Shift Keying

OHA Open Handset Alliance

OpenGL Open Graphics Library

OS Operating System

OSI Open Systems Interconnection

P2P Peer to Peer

PAN Personal Area Network

xvi



PCB Printed Circuit Board

QoE Quality of Experience

RCD Remote Control Device

RAM Random Access Memory

RF Radio Frequency

RF4CE Radio Frequency for Consumer Electronics

ROM Read Only Memory

SIE Serial Interface Engine

SIG Special Interest Group

SoC System on Chip

SPI Serial Peripheral Interface

STB Set-Top-Box

UART Universal Asynchronous Receiver/Transmitter

UML Unified Modeling Language

UUID Universally Unique IDentifier

USB Universal Serial Bus

VM Virtual Machine

ZID ZigBee R© Input Device

ZRC ZigBee R© Remote Control

xvii



This page was intentionally left blank.

xviii



Contents

Acknowledgements v

Resumo vii

Abstract ix

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Wireless interfaces for consumer electronics 7

2.1 Family of IEEE 802 standards . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 IEEE Standard 802.15.4
TM

- Low Rate WPAN . . . . . . . . . . . . 9

2.1.2 ZigBee R© Radio Frequency for Consumer Electronics (RF4CE) . . . 11

2.1.3 Microchip Wireless Protocol (MiWi
TM

) P2P . . . . . . . . . . . . . 13

2.2 Bluetooth R© Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Universal Serial Bus (USB) in Android 17

3.1 Universal Serial Bus (USB) 2.0 . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Recent advances of Universal Serial Bus (USB) . . . . . . . . . . . 18

3.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xix



3.1.3 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.5 Types of transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.6 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.7 Human Interface Devices (HID) . . . . . . . . . . . . . . . . . . . . 27

3.2 Android Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Boot sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 USB architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Sensor stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Development of Android interfaces for enhanced remote control 39

4.1 Dongle: transceiver RF-USB . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Communication between RCD and dongle . . . . . . . . . . . . . . 45

4.1.2 Communication between dongle and STB . . . . . . . . . . . . . . . 46

4.2 Android API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Application programming interface . . . . . . . . . . . . . . . . . . 48

4.2.2 Android sensors library . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 User interface application . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Energy consumption analysis on remote control . . . . . . . . . . . . . . . 61

4.3.1 Test conditions and characterization . . . . . . . . . . . . . . . . . 63

4.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusions and Future Work 73

Bibliography 77

Appendix A Android API development tutorial 83

A.1 Build steps in Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.1 Recomended requirements . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.2 Android open source build . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.3 Android kernel build . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1.4 Android native C program . . . . . . . . . . . . . . . . . . . . . . . 87

A.1.5 Android sensors library compilation . . . . . . . . . . . . . . . . . . 88

xx



Chapter 1

Introduction

In the past years there has been a strong investment in technology development for tele-

vision and multimedia consumer market in general. Besides the evolution of screen res-

olutions, there has been an evolution that is bringing new types of multimedia content.

Before this evolution, the user had a limited interaction with the available content in the

television, but the trend is to have more interactive multimedia content and applications.

However the devices used for interaction did not follow this evolution, leading to a poor

Quality of Experience (QoE) [1].

There is also a trend for portable technology, leading to smaller devices with the same

or even higher computational power. This decrease in the size of devices increases their

portability, but also implies smaller battery, requiring efficiency in wireless communica-

tions and computational power in order to achieve reduced energy consumption [2].

Today, there are a set of solutions available in the market for interactivity with multi-

media systems. The Remote Control Device (RCD) of a Set-Top-Box (STB) or television

is used for interaction with multimedia content, mainly based on two dimensions (2D)

[3]. The evolution to 3D content and operation with added interactive functionalities,

requires the mapping of 3D movements into motion in 2D screen [4].

To reduce integration barriers, the main manufacturers are moving towards Android-

based systems. This operating system has increasingly been adopted for multimedia

content both on television1, and on the STB1 [5]. Since Android is an open system,

it allows an increased knowledge of its architecture, enabling faster implementation of

Application Programming Interfaces (API).

In the scope of this work, a system for 3D interaction with multimedia content was de-

veloped and tested. This system is divided into three functional modules: communication,

processing and application layer.

1 https://www.android.com/tv/ (visited on 29 August 2015)

https://www.android.com/tv/
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A proper computational balance between the RCD and the STB is important, i.e. one

has to decide whether the most complex functions (in terms of computational complexity)

should run on the RCD or on the STB, taking into account energy consumption. On the

one hand, running complex algorithms on the RCD results in higher energy consumption

when computing orientation estimates, and low energy consumption in communications

due to less data being transmitted. On the other hand, transmitting raw data to the STB

increases the energy required for communications, but allows the implementation of more

complex algorithms on the STB, thus leading to more accurate estimates.

The Application Programming Interface (API) developed in this work was designed to

have the least possible impact on the Operating System (OS). It receives data from RCD

and makes it available to the OS after the computation process. The implementation

on the STB side, also allows access to information about the user system (e.g., available

resources).

This work also included the challenge of implementing a Human Interface Device

(HID) and Sensors interfaces for transparent communication between a remote control,

with the ability to send 3D location data (relative position and absolute orientation),

and multimedia applications for Android environment. A demo application was also

implemented.

1.1 Goals

The goals of this dissertation were defined as follows:

• Study of wireless communications protocols for multimedia consumer equipment.

• Characterization of the Universal Serial Bus (USB) interfaces.

• Development of the hardware and firmware to receive data from RCD through wire-

less communication and redirects them through USB dongle to the STB.

• Study of the Android architecture to understand the implementation of sensors.

• Development of the library in Android to recognize the sensors in RCD as native.

• Study and implementation of the API in Android OS for computational process on

the STB.

• Development of an Android application for demo purposes that receives 3D motion

data from RCD through USB HID custom to control an 3D object.

• Development of the hardware and firmware for measuring the energy consumption

on the RCD.

• Analysis of the results obtained from energy consumption measurements on the

RCD
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1.2 Related Work

The Android OS, has native support for embedded sensors, for all types of devices. Al-

though there are not as many alternatives for the use of external sensors in this OS. In

this study, the sensors will be placed in remote control device, while the Android OS will

be running in the set-top-box. Therefore the sensors are considered external, i.e. the

sensors are not directly embedded in the Android device, which means that at any given

moment they can be connected or disconnected. This section presents a review of relevant

work related with techniques to make the external sensors recognized by the Android OS.

The following techniques were considered the most relevant.

Amarino [6]

The Amarino is a toolkit comprising an Android application and a library called

“MeetAndroid” for Arduino. This setup establish a communication between both

devices through Bluetooth, enabling the exchange of data between devices and mak-

ing it easier to receive data from sensors connected to Arduino. Although this toolkit

speed up the integration of Arduino sensors, this technique has some limitations, it

requires an application specifically developed for this purpose and an Arduino with

Bluetooth communication.

Open Intents - SensorSimulator [7]

The SensorSimulator was created to surpass the limitation of not having sensors

data in the Android emulator. This Simulator also allows recording sensors data

from a real Android device with embedded sensors. These data can then be later

sent over a socket connection to the Android application to simulate the sensors.

The use of SensorSimulator involves a specific library and a socket connection to

receive data in Android, this means that with SensorSimulator, one has to include

an application with complex data communications protocol (TCP/IP).

Sensor Emulation initiative for virtualized Android-x86 [8]

The Sensor Emulation is a system designed to emulate the sensors in virtualized

Android-x86 environment. This emulation is done at system-level to avoid the need

for changes in the Android application. This system comprises a server on the real

Android device to send the sensors data, an userspace “C” program in the host (e.g.

Ubuntu) to forward the data from the real to virtual device and emulator server

on the virtual Android device to receive the sensors data and make it available to

Android OS. This implementation was designed for virtualized Android where it

requires an socket-communication and an “C” program in the host machine to map

the data from the real to the virtual device.
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Open Data Kit Sensors [9]

The Open Data Kit Sensors is a high level framework used in the Open Data Kit

to simplify the process of integrating sensors in the Android OS. This framework

collects data from internal/external sensors and makes them available through an

Android service in background through inter-application communication. The ex-

ternal sensors can be connected with Android device through USB or Bluetooth.

Although it enables the use of external sensors, it implies the integration of the

Open Data Kit Sensors framework in the developed Application.

Almost all the techniques found during the research of the related work implements

a sensor simulation instead of sensor emulation. The main difference between the two is

that the emulation does not require any changes to the Android application, unlike the

simulation where it is necessary to use an additional library for accessing the simulated

sensors. The technique that best suits the desired goal of this study is the “Sensor

Emulation initiative for virtualized Android-x86” that avoid the changes in the Android

application, while allows to receive sensors data from an external source.

1.3 Publications

The following publications were produced during the development of this work:

• R. Santos, M. Rasteiro, H. Costelha, L. Bento, P. Assuncao and M. Barata, ”Motion-

based Remote Control Device for Enhanced Interaction with 3D Multimedia Con-

tent”, in Conference on Telecommunications (Conftele 2015), 17-18 September,

2015, Aveiro, Portugal

• R. Santos, H. Costelha, L. Bento, P. Assuncao and M. Barata, ”Enabling low-

complexity devices for interaction with 3D mediacontent via Android API”, in Con-

ference on Sciences and Technologies of Interaction (SciTecIN’15), 11-13 November,

2015, Coimbra, Portugal
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1.4 Dissertation structure

This dissertation is organized in five chapters. This first chapter addresses an overall

description of the project, objectives and related work. The second chapter includes

an overview of the most relevant state-of-the-art communications for Consumer Eletron-

ics (CE) devices; firstly the main characteristics of the wireless communications based

on the IEEE 802 standards are presented; secondly the Bluetooth R© low energy (BLE)

technology is described and then the current status of USB is also presented. The third

chapter contains the essential background related to the topics addressed in this work:

USB 2.0 and the Android OS architecture. The fourth chapter is divided into three sec-

tions about the developed work; starts by explaining the role of the dongle in the whole

system comprising the RCD and STB; then the second section presents the API devel-

oped to receive data from dongle and the application for demonstration purpose; the last

section characterizes the experimental evaluation tests and analyse the results of energy

consumption. Finally, in fifth chapter, some conclusions are presented, as well as some

suggestions for future work.
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Chapter 2

Wireless interfaces for consumer elec-

tronics

Advances in consumer electronics technology have introduced a new era of portable devices

towards Internet of Things (IoT), where more and more devices communicate with each

other. Typically, these devices tend to have small sizes, which have a critical impact on

the battery. In these cases, where low complexity devices are required, the main constrain

in wireless communications is to reduce the power consumption of the Radio Frequency

(RF) interfaces [10]. On the other hand, wired communication normally connects devices

that are attached to the power lines, thus the increase of communication speed is more

important than power consumption. The main objective of this chapter is to describe

the state of the art related to digital communication technology for consumer electronics.

Starting with an overview of the family of Institute of Electrical and Electronics Engineers

(IEEE) 802 Standards, which covers the Microchip Wireless Protocol (MiWi) and ZigBee R©

Radio Frequency for Consumer Electronics (RF4CE) communications, followed by the

review of BLE, then the last advances of USB are covered. This is one of the most used

architectures in wired communication. Other technologies like Z-Wave1, Thread2 and

WiFi3 were not reviewed since they do not fit in the context of this work.

1 http://www.z-wave.com (visited on 29 August 2015)
2 http://threadgroup.org (visited on 29 August 2015)
3 http://www.wi-fi.org (visited on 29 August 2015)

http://www.z-wave.com
http://threadgroup.org
http://www.wi-fi.org
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2.1 Family of IEEE 802 standards

The IEEE is the world’s largest association of technical professionals with the aim in

“Advancing Technology for Humanity”1 and is one of the leading in creation of standards.

The IEEE 802 standards are intended to define the specifications for Local Area Net-

work (LAN), Metropolitan Area Network (MAN). In the Table 2.1 is presented the groups

in this family, where in this dissertation the main focus was the IEEE 802.15 standard.

Table 2.1: Family of IEEE 802 standards2.

Name Description

IEEE 802.1 Bridging & Management
IEEE 802.2 Logical Link Control
IEEE 802.3 Ethernet
IEEE 802.11 Wireless LANs
IEEE 802.15 Wireless PANs
IEEE 802.16 Broadband Wireless MANs
IEEE 802.17 Resilient Packet Rings
IEEE 802.19 TV White Space Coexistence Methods
IEEE 802.20 Mobile Broadband Wireless Access
IEEE 802.21 Media Independent Handover Services
IEEE 802.22 Wireless Regional Area Networks

The IEEE 802.15 standard defines the categories presented in Table 2.2. The IEEE

802.15.4
TM

, focused on low rate wireless Personal Area Network (PAN), is the most rele-

vant in the context of this dissertation. This standard will be presented in the following

sub section as a basis for the MiWi and Zigbee RF4CE communications. It is also im-

portant to refer that the IEEE standardized Bluetooth as IEEE 802.15.1 in 2002, but

no longer maintains the standard [11]. Nowadays the Bluetooth is maintained by the

Bluetooth Special Interest Group (SIG), that will be explained in a later section.

Table 2.2: Categories of IEEE 802.15 standard3.

Name Description

IEEE 802.15.1 WPAN
IEEE 802.15.2 Coexistence
IEEE 802.15.3 High Rate WPAN
IEEE 802.15.4 Low Rate WPAN
IEEE 802.15.5 Mesh Networking
IEEE 802.15.6 Wireless Body Area Networks
IEEE 802.15.7 Visible Light Communication

1 http://www.ieee.org/about/tagline.html (visited on 29 August 2015)
2 From: https://standards.ieee.org/about/get/802/802.html (visited on 29 August 2015)
3 From: https://standards.ieee.org/about/get/802/802.15.html (visited on 29 August 2015)

http://www.ieee.org/about/tagline.html
https://standards.ieee.org/about/get/802/802.html
https://standards.ieee.org/about/get/802/802.15.html
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2.1.1 IEEE Standard 802.15.4
TM

- Low Rate WPAN

The IEEE 802.15.4
TM

is a standard that specifies the Physical and Medium Access Con-

trol (MAC) layer taking into acount the Open Systems Interconnection (OSI) model as

reference (Figure 2.1).

Data Link

Physical

Medium Access Control (MAC)

Physical Layer (PHY)

Network

Transport

Session

Presentation

Application

OSI ModelIEEE 802.15.4

Figure 2.1: IEEE 802.15.4
TM

stack.

The Physical layer (PHY) is in charge of RF communications and the IEEE

802.15.4
TM

specification defines the 868 MHz (Europe), 915 MHz (North Amer-

ica) and 2.4 GHz Industrial, Scientific and Medical (ISM) (worldwide) license-free

bands for operation with 1, 10 and 16 available channels and a theoretically data

rate of 20, 40 and 250 kbps respectively. The 868 MHz and 915 MHz bands use the

Binary Phase Shift Keying (BPSK) modulation, while the 2.4 GHz ISM band imple-

ments the Offset Quadrature Phase-Shift Keying (O-QPSK) modulation [12], [13].

In order to improve the protection against interferences the Direct Sequence Spread

Spectrum (DSSS) technique is used. The maximum packet size is 133 bytes that are

divided in Preamble, start-of-frame delimiter, frame length and PHY service data

unit as shown in Figure 2.2.

Octets: 4 1 1 <= 127

Field: Preamble start-of-frame 
delimiter frame length PHY service data unit

Figure 2.2: IEEE 802.15.4
TM

physical layer packet 1.

1 From: http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf (visited on 7
August 2015)

http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
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Medium Access Control (MAC) handles all access to the physical layer and provides

two services. The data service that provides the reception and transmission of

data through physical layer and the management service that performs the network

management [13].

IEEE Standard 802.15.4
TM

Network topologies

The IEEE Standard 802.15.4
TM

network is composed by two types of devices, Full Function

Device and Reduced Function Device. Depending on the role of the device in the network

it can be classified as PAN Coordinator, Coordinator or End device [14].

Full Function Device (FFD) is a device with full implementation of the protocol and

can act as coordinator or an end device.

Reduced Function Device (RFD) only the essential routines of the protocol were

implemented and can only act as an end device.

PAN Coordinator is the principal controller of a PAN and needs to be a FFD.

Coordinator has the capability to extend the physical range of the network and needs

to be a FFD.

End device can be a RFD or FFD, and normally are sensor nodes that provide infor-

mation to the network.

These devices can operate in a Star or Peer to Peer (P2P) topology (Figure 2.3), where

each can have only one PAN coordinator at a time. The main difference between the star

and P2P topology is that in the star topology all devices can only communicate with the

PAN Coordinator, while in the P2P they can only communicate between them [13],[15].

Figure 2.3: IEEE 802.15.4
TM

network topologies1.

1 From: http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf (visited on 7
August 2015)

http://standards.ieee.org/getieee802/download/802.15.4-2003.pdf
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2.1.2 ZigBee R© Radio Frequency for Consumer Electronics

(RF4CE)

The ZigBee R© RF4CE is a standard that defines the wireless communication network for

home entertainment equipment and remote control devices in CE domain to allow the

multi-vendor interoperability between them. This standard also aims to be low cost,

low latency and robust against interference. The Zigbee R© RF4CE protocol stack (Figure

2.4), have the lower layers, PHY and MAC, defined by the IEEE 802.15.4
TM

standard and

defines the network layer and the standard application profiles on top of these [16], [17],

[18].

Data Link

Physical

Medium Access Control (MAC)

Physical Layer (PHY)

Network

Transport

Session

Presentation

Application

OSI ModelZigBee RF4CE

ZigBee Remote 
Control (ZRC)

ZigBee Input 
Device (ZID)

Zigbee® RF4CE Network

Not explicitly defined

Figure 2.4: ZigBee R© RF4CE stack1.

The Physical Layer in the ZigBee R© RF4CE operates in the 2.4GHz ISM band. This

band can be overcrowded and to avoid interferences, besides the use of DSSS technique

defined by IEEE Standard 802.15.4
TM

, the ZigBee R© RF4CE uses only the channels 15, 20

and 25, from the 16 channels availables. The channels 15 and 20, fall in the gaps between

the 802.11 (Wi-Fi) channels 1, 6 and 11 [13], [19]. The ZigBee R© RF4CE Network Layer

controls the communication between devices, providing the ability to discover and connect

new devices with a secure communication, managing the channels (frequency agility) and

provides power saving mechanisms. The network is implemented in a full LAN capability

through multiple connections PAN in star topology with two node types [20].

Target device have the ability to create their own network.

Controller device can only join to the networks created by the target device.

1 Adapted from: Radio Frequency for Consumer Electronics (RF4CE) Protocol Overview, Mindteck
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TV RC

DVD RC

STB RC

Multi-function
RCTV

DVD

STB

(PAN 1)

(PAN 2)

(PAN 3)

Controller

Target

Figure 2.5: ZigBee
TM

RF4CE topology1.

The topology is presented in Figure 2.5 and comprises three PANs created by each of

the targets, three simple remote controllers that are connected to respective target and a

multi-function remote controller that can connect with all three targets.

The ZigBee R© RF4CE specification defines two profiles, located in the application layer

of the OSI model, that indicate how the devices communicate to ensure interoperability

[18]. These profiles are the ZigBee R© Remote Control and ZigBee R© Input Device de-

scribed bellow, but also permits vendors to define their own proprietary profile, called

manufacturer specific profiles.

ZigBee R© Remote Control (ZRC) Profile are intended to define the commands

needed to control the CE devices. These commands are based on the High-

Definition Multimedia Interface (HDMI) Consumer Electronics Control (CEC) but

the ZigBee R© Remote Control (ZRC) can query the CE device in order to get the

specific list of vendor commands supported by the device [16], [21].

ZigBee R© Input Device (ZID) Profile enables the most recent controllers to control

the CE devices. This profile use the USB HID specification, that enables devices

like touchpad, airmouse, keyboard, etc. to communicate with CE devices [16], [22].

1 From: https://docs.zigbee.org/zigbee-docs/dcn/09/docs-09-5231-03-rmwg-understandi

ng-zigbee-rf4ce.pdf (visited on 10 August 2015)

https://docs.zigbee.org/zigbee-docs/dcn/09/docs-09-5231-03-rmwg-understanding-zigbee-rf4ce.pdf
https://docs.zigbee.org/zigbee-docs/dcn/09/docs-09-5231-03-rmwg-understanding-zigbee-rf4ce.pdf
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2.1.3 Microchip Wireless Protocol (MiWi
TM

) P2P

MiWi
TM

P2P is a Microchip Technology Inc. proprietary protocol with the same target

for low power, low data rate and cost sensitive applications. As can be seen in Figure

2.6, this protocol stack uses the base of the IEEE Standard 802.15.4
TM

but with some

modifications that correspond to MiMAC and MiWi
TM

P2P layers.

Microchip Medium Access Control 
(MiMAC)

Microchip Peer to Peer Protocol 
(MiWi P2P)

Data Link

Physical

Medium Access Control (MAC)

Physical Layer (PHY)

Network

Transport

Session

Presentation

Application

OSI ModelMiWi P2P

Figure 2.6: MiWi
TM

P2P stack1.

The MiMAC defines the MAC layer for communication protocols and transceivers

supported by Microchip, removing the dependency between Microchip RF transceivers

and the protocols stacks. The MiWi
TM

P2P is a direct wireless communication that only

allows one hop and does not allow routing, which mean that all the devices needs to

be in range with the PAN coordinator. Another major difference in the MiWi
TM

P2P

protocol compared with IEEE 802.15.4
TM

is the handshaking process, that only needs

two steps instead of seven, as can be seen in the Figure 2.7. These changes lead to a

reduced complexity in the handshaking process. The MiWi
TM

P2P also uses an energy

scan method for finding the channel with the least noise and can perform channel hopping,

given that this protocol have frequency agility [12], [23].

1 Adapted from: MASTERs 2013 presentation - Advanced Wireless Networking (MiWi
TM

Protocol II), Microchip Technology Inc.
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(a) IEEE 802.15.4
TM

Handshaking.

(b) MiWi
TM

P2P Handshaking.

Figure 2.7: Handshaking process1.

2.2 Bluetooth R© Low Energy (BLE)

The Bluetooth R© wireless technology was intended to replace the wires for short range

communications. The BLE marketed as Bluetooth R© Smart was introduced as part of the

Bluetooth Core Specification version 4.0, with the objective to reduce the power consump-

tion of this technology. In the current year (2015), there are three types of devices, one

with the already mentioned BLE technology, other with the classic Bluetooth R© that is

the original version of the technology and the last one implements both technologies and

is called Bluetooth R© Smart Ready devices. As shown in Figure 2.8, Smart Ready devices

can act as a bridge between classic and BLE technologies, since these are not compatible

with each other [24], [25].

The BLE protocol stack consists in two main sections (Host and Controller) as can

be seen in Figure 2.9. The Controller comprises the lower layers of the stack that are

hardware dependent, and normally is implemented as a small System on Chip (SoC) with

1 From: http://ww1.microchip.com/downloads/en/AppNotes/01204a.pdf (visited on 7 August
2015)

http://ww1.microchip.com/downloads/en/AppNotes/01204a.pdf
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BR/EDR (classic Bluetooth) BR/EDR/LE (Dual-mode) BLE (Single-mode)

Figure 2.8: Compatibility between Bluetooth versions.

an integrated radio interface [26]. The Host is implemented as an application processor

and is less hardware dependent, since the Host Controller Interface (HCI) makes the link

between these two sections.

Figure 2.9: BLE stack1.

Physical layer (PHY) contains the analogue communication and modulation. This is

performed by the BLE radio that uses 40 channels with 2 MHz bandwith each, and

operates in the 2.4 GHz ISM band with Gaussian Frequency Shift Keying (GFSK)

modulation. The channels at 2402, 2426 and 2480 MHz, represented in the Figure

2.10, are reserved for advertising. These frequencies were chosen to minimize the

overlapping with IEEE 802.11 channels 1, 6 and 11, typically used by Wifi. The

remaining 37 channels are used for bidirectional communication between connected

devices. In order to avoid the interferences and wireless propagation issues, the

Frequency Hopping Spread Spectrum (FHSS) mechanism is used , to select one

channel for communications during a given time interval [24], [26].

Link Layer (LL) is responsible for general control of the link and transport, such as

enabling of encryption on the logical Transport, coding/decoding of packets and

the adjustment of the transmit power in the physical layer. This layer is the most

time dependent layer, since it has the scheduler that grants the time for physical

1 From: http://www.mdpi.com/1424-8220/12/9/11734 (visited on 15 August 2015)

http://www.mdpi.com/1424-8220/12/9/11734
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Figure 2.10: Bluetooth Low Energy channels.

channels. It also contains the device manager, that controls the behaviour of the

device like advertising, scanning, initiating, connected or in standby [27].

Host Controller Interface (HCI) is a bridge between Host and Controller. This in-

terface can be implemented as software API or through a physical interface such

as Universal Asynchronous Receiver/Transmitter (UART), Serial Peripheral Inter-

face (SPI), USB, etc [24].

Logical Link Control and Adaptation Protocol (L2CAP) provides data multi-

plexing for the higher layers and data encapsulation to fit the maximum payload

size of the L2CAP packets, that is 23 bytes [24].

Security Manager (SM) is intended to generate and manage the pairing keys in order

to have a secure communication between devices. The BLE use Advanced Encryp-

tion Standard (AES)-CCM cryptography with a block length of 128 bits [27].

The Attribute Protocol (ATT) allows to exchange attributes between devices. The

attribute is a small piece of data composed by the handle (address) with 16 bit

length, the type that is Universally Unique IDentifier (UUID) and value [24], [27].

The Generic Attribute Profile (GATT) is an abstraction layer to be used by the

application to communicate with ATT service. Each device can expose generic

attributes, that means, the device acts as GATT server, request attributes values

from a server, as an GATT client or can be both simultaneously [24], [27].

The Generic Access Profile (GAP) provides an interface for the application to con-

trol the behaviour of the device [27]. The device can act as broadcaster, observer,

peripheral or central. The device that acts as broadcaster sends advertising events

for the observer device to connect to it. Then the observer becomes the central

device that is the master, and the broadcaster becomes the peripheral device that

is the slave [28].



Chapter 3

The Universal Serial Bus (USB) in

Android

This chapter describes the technology used as base for the work developed in this disser-

tation. In the first section, the USB 2.0 is approached in order to understand how this

protocol establish the communication between two devices. This section provides details

of the architecture, communication and the HID class of devices. This HID class allows

to adapt the communication to match the needs for a specific device and the host will

automatically recognize the functions provided by the device without the need for a spe-

cific driver for each device. Also, the BLE and ZigBee R© RF4CE, described in the chapter

2, implements the HID class unmodified from the USB. In the second section, the An-

droid OS is presented, to give a better understanding of the software stack, applications,

boot sequence, sensors and USB stack. This depper knowledge was needed to implement

the java application, API and library for the sensors, that will be explained in the next

chapters of this dissertation.

3.1 Universal Serial Bus (USB) 2.0

In this project, USB 2.0 devices are used for communication with an interface class called

HID, which consists of devices that interact directly with the user. The keyboard, mouse

and remote control are examples of these devices. To develop a USB HID device, it is

necessary to know the USB architecture, communication protocol and available settings.

These features are described in the next sub sections, followed by the characteristics of

HID class.
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3.1.1 Recent advances of Universal Serial Bus (USB)

USB is the most used communication interface through cable to exchange data between

a host and peripheral device in a short distance. The last advances in this technology

introduced the USB 3.1 generation 2 and the USB Type-C
TM

[29]. The USB 3.1 is a dual

bus that provides backward compatibility with the previous USB 2.0. One bus is exactly

the same as the 2.0 and the other is the Enhanced SuperSpeed bus, as shown in Figure

3.1. As the name suggests this bus allows a higher speed communication between devices.

These speeds are described in the Table 3.1 [30].

VUSB
GND

D+
D-
SSRx+
SSRx-
SSTx+
SSTx-

USB 2.0

Enhanced 
SuperSpeed

USB 3.X

Figure 3.1: USB 3.x Cable.

Table 3.1: USB speeds

USB 3.1 USB 2.0

Speed
Gen 1 (5 Gbps) low-speed (1.5 Mbps)
Gen 2 (10 Gbps) full-speed (12 Mbps)

High-speed (480 Mbps)

The new USB Type-C is a connector ecosystem that arrives with the goal to be

smaller, thinner, reversible and to allow more power through cables. This ecosystem

enables the USB 3.1 and USB 2.0 given that implements both buses and allows the power

up to 20 volts with 5 amperes [30]. Besides the new advances in technology, unless the

highest speeds are needed, the USB 2.0 can be used given its backward compatibility.

Nowadays (in 2015), the USB Type-C
TM

is being introduced in the new devices and

despite the connector ecosystem is not in the scope of this dissertation, this option should

be considered because offers a reversible connector, provides a bi-directional power and

allows multiple modes, e.g. DisplayPort, HDMI, etc. To help understanding the work

developed in this dissertation, the USB 2.0 and the Android OS architecture are described

in the next sections.

3.1.2 Architecture

The USB is a industry-standard developed in the mid 90s, by a group of companies driven

by the need to simplify the connection of peripherals with the personal computer [30].

The first version of USB was released in January 1996 and despite some limitations at the
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time, it has been constantly evolving. Currently, it is an open architecture that allows

suppliers to develop systems with devices able to communicate between them [31].

The USB architecture is based on the star topology divided by layers, where the HUB

is the centre of each star (Figure 3.2) [32]. At the top it is located the host that is

responsible for managing the communication, which is used a master/slave protocol to

communicate with the devices. Next there are the connecting elements HUBs, needed to

interconnect the host with devices, which are the last elements of this connection. The

first HUB which is next to the host, is called “Root HUB”.

The maximum number of allowed connections in USB is 127 devices and 5 external

HUBs (excluding the “Root HUB”) [33]. However, given the maximum bandwidth limit

of the bus, the number of connected devices can be lower. The system can be separated

into three main parts, the devices, the host and the interconnection between them.

Root HUB
Host

HUB Device HUB

Device Device HUB Device

Device DeviceHUB

DeviceHUB

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

Device HUBDevice

HUB

Device

Device HUB

Figure 3.2: USB architecture1.

USB Device

A USB device can be referred as a physical or logical element that provides one or more

functions to the host, i.e. at the lowest level the USB device refers to the hardware compo-

nent and at higher level refers to the function performed by the USB device, respectively.

The USB standard defines the function as the capabilities provided to the host, e.g. mice,

keyboards, printers, etc. The devices that implement more than one function, are defined

by the industry-standard as composite devices or compound devices (Figure 3.3) [33].

Compound devices are independent devices, or with different addresses that are di-

rectly embedded in the HUB (e.g., keyboard with expansion ports).

1 From: R. Regupathy, Bootstrap Yourself with Linux-USB Stack, 1st ed. Course Technology Cengage
Learning, 2012.
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Composite devices do not use HUBs and have only one address, however, they are

composed of multiple independent interfaces (e.g., mouse and keyboard interface).

Root HUB
Host

HUB

Keyboard Mouse

Composite Device Compound Device

Address 1

Keyboard Mouse

Address 1 Address 2

Root HUB
Host

Interface 1 Interface 2

Figure 3.3: Complex Devices.

Anyway, the devices can not initiate communication with the host, they can only

answer and is not allowed direct communication between devices.

Host

In each system, there can only be one host per bus. The host should be responsible

for detecting devices connected to the bus and manage the communications, ensuring

that devices are able to send and receive data when needed. It is also responsible for

providing power to devices that need it (i.e., devices connected to self powered HUBs do

not need power from host) as well as try to save energy consumption when it is allowed,

by suspending the connection with device.

Communication speeds

The USB industry-standard, originally defined two speeds for communication, low speed

at 1.5 Mbps and full speed at 12 Mbps. Later in USB 2.0, with technological advances and

increased processing capacity it was necessary to define a speed higher than the previous

ones, having been set the new high speed as 480 Mbps [34]. The identification of the low

and full speed communication is performed through the voltage level of the data lines.

At the beginning of a connection, the host data lines, D+ and D- are set to zero volts,

since there is no pullup resistor to provide power (Figure 3.4). The USB device, needs to

indicate its communication speed by placing a pullup resistor in one of the data lines. For

the device to announce a full-speed communication with the host the pullup resistance

must be placed on the line D+ (Figure 3.4(a)), in the case of low speed, this must be

connected in line D- (Figure 3.4(b)). The pullup resistors change the voltage in data lines,
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these changes are used by the host to identify a new device connected to the bus [35].

Some devices may contain this resistance internally, allowing to choose through firmware

where it is connected (D+ or D-), otherwise it is needed externally [33].

Host
D+

D-

15 kΩ 15 kΩ

Device
D+

D-

1.5 kΩ

(a) Full speed

Host
D+

D-

15 kΩ 15 kΩ

Device
D+

D-

1.5 kΩ

(b) Low speed

Figure 3.4: Configuration of speeds

The high speed communication is not set at the hardware level, however, a resistance

in the data lines is required for the detection of a new device. When it intends to com-

municate in high speed the device must support full speed, since the communication is

initiated at this speed. At the beginning of the connection, the choice between these two

speeds, high and full speed, is made when the device is restarted through the process of

chirp handshake (Figure 3.5).

Figure 3.5: Chirp handshake1.

The USB device creates a chirp K (i.e., with the digital signal on line D+ as 0 and 1

in the D- line) which when detected by the HUB, if this has the ability to communicate

at full speed, responds by alternating k and j chirps (Table I). The device must detect

at least three pairs of alternating k and j chirps to assume that the hub is capable of

communicating high speed. Once detected, the device should turn off the pullup resistor

1 From: http://am.renesas.com/applications/key_technology/connectivity/usb/about_us

b/usb2_0/usb2_5/index.jsp (visited on 11 August 2015)

http://am.renesas.com/applications/key_technology/connectivity/usb/about_usb/usb2_0/usb2_5/index.jsp
http://am.renesas.com/applications/key_technology/connectivity/usb/about_usb/usb2_0/usb2_5/index.jsp
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in D+ line to start the communication in high speed, if not detected, must continue in

full speed mode and wait for the end of the reboot.

Table 3.2: Digital states of Chirp k and j in data lines.

D+ D-

Chirp k
High/Full speed 0 1

Low speed 1 0

Chirp J
High/Full speed 1 0

Low speed 0 1

Interconnection

The USB interconnection is made through a cable with four conductors, two for data and

two for power. The maximum cable length depends directly on the speed of communi-

cation. However, given the maximum limit of the bandwidth of the bus, the number of

connected devices can be lower. The main length constraint is due to the fact that there

is a maximum propagation time for each packet transmitted over the bus. If this limit is

exceeded, the packet is considered lost. The maximum length of cables for communica-

tions at full speed is 5 meters and at low speed is 3 meters [34]. The connection can be

extended up to 5 HUBs (excluding the root hub), so the limit is 30 meters at full speed

and 18 meters at low speed.

3.1.3 Power supply

The USB has the ability to supply power to the devices connected to the host and the

supply voltage is typically between 4.4-5.25V [34]. In this way there is no need for ad-

ditional cables, which makes the devices lightweight and inexpensive, since they do not

require an internal power source. However it is necessary to consider some limitations

of the available power. There are three classes of consumption for bus powered devices:

Low, High and self powered.

Low power devices, can sink up to ∼100 mA, while the high power devices can sink up

to ∼500 mA. For higher consumption the device should be self powered and can sink up

to 100 mA from the USB bus. The self powered HUB can supply 500 mA to each device,

while if it is fed by USB bus can only provide 500 mA distributed by the devices [33].
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3.1.4 Communication

The communication between USB devices is divided in three main sections: software,

abstraction of the protocol and hardware (Figure 3.6).

Host / Device

Controller Driver

Core Driver

USB Class Driver

API

Controller

Connection

Hardware

Abstration

Software

Figure 3.6: USB protocol stack.

The software section is where the custom application is created to transmit/receive

data. The Abstraction is divided into three layers: USB class driver, Core Driver and

Controller Driver. USB Class Driver is composed by specific methods for different classes

available in USB protocol (eg HID, video, audio). The Core Driver implements the USB

protocol base functionality. The Controller Driver makes the link between the software

and the hardware, so contains methods for reading and writing data in the physical

channels. The next layer of the protocol stack is the hardware that enables connection

between devices and the host.

The logical connection between the host and a terminal on the device is called a pipe

(Figure 3.7). This terminal on the device, called the endpoint and are typically in pairs,

respectively the input and output Endpoint. The Endpoint is seen as a buffer for the

device, since it has no initiative to communicate, and thus requires a memory space to

put the data until the host requests them. In the case of the host, which controls the data

communication, the endpoints are viewed as a pipe and not as buffer. At the beginning

of connection, the host starts the configuration of device, where the device indicates to

the host the available endpoints, their respective characteristics and which interfaces are

associated to it, except for the Endpoint 0. This endpoint is required on all devices, since

it is exclusively used by the host to control and configure the device.
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Host Device

endpoint 0

endpoint 0

input

Pipes

…

output

endpoint 1

endpoint 1

input

output

Figure 3.7: USB logical connections.

In USB communication there are two types of pipes, the Message pipe that is only

used for device configuration, and the Stream pipe which serves to exchange data between

device and host.

The mesage pipe has a format defined by the USB standard. This pipe is controlled

by the host, and data can flow in both directions, but who determines the direction is the

host, devices only can answer to requests. This supports only control transfers, which is

directly related to the endpoint 0 [36].

The stream pipe contains no format, meaning that the device can send any kind of

data throught the pipe. All the pipes have a predefined direction, input or output, and

can be controlled by the device or host [36].

3.1.5 Types of transfers

The transfers follows a structure defined by the USB protocol. That is, the data to be

transported through the stream or message pipes, are encapsulated according to the type

of transfer to be made. The USB defines four different types of transfers, allowing to be

chosen which is the most suitable for a particular communication. The types of transfers

are the following [33]:

• Control Transfers: They aim to configure, give orders and request information

about the current state of the device. Such transfers can only be made through the

message pipe (Endpoint 0).

• Isochronous Transfers: Are designed for streaming data in real-time. This type

of transfers guarantees the bandwidth, however, it is not made any error checking.

• Interrupt Transfers: They are suitable for small amounts of data to be trans-

ferred. During the configuration, the device tells to the host the maximum time
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allowed between data readings. If the device has no data to send, must return

Negative-Acknowledgment (NAK).

• Bulk Transfers: This is intended to transfer a large volume of information and

uses the maximum speed available for the transfer, but it is not guaranteed the

moment in which is made. This type of transmission has the lower priority, however,

it ensures that the transfer is made without errors.

Token 
Packet Data Packet Status 

Packet

Pipe
Transfer
Transaction Transaction

Figure 3.8: USB transfers1.

The transfers are made of one or more transactions, and each one contain up to three

packets (Figure 3.8) [37]. The first packet is the Token packet and contains information

about the type of transaction and its direction, device address, and the endpoint. The

second package, that is Data packet, consists in the data to be transferred and the last

packet, Status packet, refers to the state of the transaction, that is, if it has been a

successful transfer or not.

The data transmitted is encoded with the Non Return to Zero Inverted (NRZI) line

code and the Least Significant Bit (LSB) is send first. To ensure frequent transitions,

after successive six bits to ’1’, it is inserted the bit ’0’, this is known as bit stuffing

[33]. All packets begin with a synchronization pattern to enable the receiver clock to

be synchronized with the transmitter. This synchronization is considered as the start of

packet, and the end of packet is identified by an delimiter pattern.

The complexity of the protocol requires its implementation in specific hardware to

save computational resources from a micro-controller. This implementation is called

Serial Interface Engine (SIE) and is located in the hardware layer of the protocol stack

(Figure 3.6) [38].

1 From: http://www.keil.com/pack/doc/mw/USB/html/_u_s_b__protocol.html (visited on 11
August 2015)

http://www.keil.com/pack/doc/mw/USB/html/_u_s_b__protocol.html
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3.1.6 Descriptors

The descriptors of the USB devices consist in a data structure that allow to present

properties of the device to the Host. During the detection of a new device, the host starts

the enumeration process that relies on identifying the USB device and loading the correct

driver. The device identification is performed trough the transfers of descriptors in a

question and answer process. These descriptors are separated by several levels and are

organized hierarchically (Figure 3.9) [35], [32].

The device descriptor at the top level describes the vendor, product, class, subclass,

device protocol and how many settings exists. Each configuration contains a descriptor,

which informs the host about the configuration number, the maximum consumption of the

device, the features that are supported (e.g., Self-powered, remote activation, etc.) and

the number of interfaces. The interfaces represent functions implemented by the device

(e.g., Mouse, keyboard, etc.). The descriptor of the interface consists of the description

of the class, subclass, protocol, and number of endpoints. The descriptor of endpoints

contain the type of transfer, the maximum size of a packet and the address.

Devices USB HID constitute a specific class of an interface device is necessary in which

additional descriptors, these are described in the following section.

USB Device

Device 
descriptor

Configuration 
descriptor

Interface 
descriptor

Interface 
descriptor

Endpoint 1 
descriptor

Endpoint 1 
descriptor

Endpoint 2 
descriptor

Endpoint 2 
descriptor

Configuration 
descriptor

Interface 
descriptor

Endpoint 1 
descriptor

Endpoint 1 
descriptor

Configuration 1

Configuration 2

Interface 1

Interface 2

Interface 1

Figure 3.9: USB descriptors.
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3.1.7 Human Interface Devices (HID)

The HID is a class of USB devices defined by a set of standards and communication

protocols for devices that interact directly with humans. The USB protocol is used as a

base, as well as enumeration process, whereas USB HID device uses the description to

announce its operation to the host.

Through the descriptors, it is possible to unify the communication protocol while

maintaining the freedom to define the data sent over the communication channel. As

an example we have the mouse, which is an USB HID device and features a variety of

buttons, as well as the cursor movement functionality on the computer screen. That is,

through the descriptor we can set which data corresponds to the movement, and these

are recognized by the operating system through the drivers. However more data can be

sent, enabling the inclusion of additional features (e.g., ten buttons on a mouse).

The descriptor of an USB HID consists in the descriptors of an USB device, plus

the descriptor of the HID functionality, which in turn is divided in the device’s physical

description and the report that is sent to the host.

Figure 3.10: USB HID Descriptors1.

1 From: Device Class Definition for Human Interface Devices (HID), June 2001
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Report descriptor

The report descriptor of a device is a set of data that is exchanged between device and host,

and there are three report types: Input Reports, Output Reports and Feature Reports.

The descriptors sent by the host to the device are referred as Output Reports, while the

descriptors from the device, that are answers to the requests from host, are referred as

Input Reports. The Feature Report is optional and the data that can be manually read

and/or written. The data in this report normally represent the state of the device and

their configuration. The structure is defined by the descriptor of the USB HID device,

which refer the details of the device and the data sent. The USB standard has a document

with the details of all the features available for the USB HID report [39]. This report

allows to assign meaning to data, so that the applications on the host side might show

interest in a particular functionality without the need to know the place in where it came

(e.g., X and Y of mouse).

The mouse report, usually contains the declaration of three buttons, wherein each

button is represented by 1 bit. Through the report it is possible to define the meaning of

each bit (e.g., the first bit is the left button, the second bit is the middle button, etc.).

Through the meaning of the data for the predefined fields in the report, the developed

application does not need to know the order of them. However, it is also possible to define

a custom communication, where the fields do not are predetermined by the standard USB

HID. Given this flexibility the report does not have a fixed size, since this varies according

to the amount of data to send.

The report consists in a vector of bytes, that describes the data. These bytes usually

are shown in two columns. The first column is the command and the second it is the

value (Report 3.1).

Report 3.1: HID

1 0x05, 0x01, // USAGE_PAGE (Generic Desktop)

2 0x09, 0x02, // USAGE (Mouse)

3 0xa1, 0x01, // COLLECTION (Application)

4 0x09, 0x01, // USAGE (Pointer)

5 0xa1, 0x00, // COLLECTION (Physical)

6 0x09, 0x30, // USAGE (X)

7 0x09, 0x31, // USAGE (Y)

8 0x15, 0x81, // LOGICAL_MINIMUM (-127)

9 0x25, 0x7f, // LOGICAL_MAXIMUM (127)

10 0x75, 0x08, // REPORT_SIZE (8)

11 0x95, 0x02, // REPORT_COUNT (2)

12 0x81, 0x06, // INPUT (Data,Var,Rel)
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13 0xc0, // END_COLLECTION

14 0xc0 // END_COLLECTION

The command USAGE PAGE, selects the group of devices that will be used. The

USAGE indicates which type of device that is inside of the previous group will be used

in the definitions of the data.

In this case, the Report 3.1, begins by defining the table of generic desktop devices

at line 1, and then indicates the device functionality as a mouse, on line 2. After we

indicate the type of device, we can organize data into groups. In this case, we indicate

that we have a collection of data that is used by applications (line 3). This collection

uses data of the type pointer (line 4), that is, will be composed by data that corresponds

directly to a screen axis. The pointer type collection, contains a collection of data that

is directly represented geometrically, hence the collection of physical data type. This

collection consists of the data X and Y (line 6 and 7). Each data can have a logical value

between -127 and 127 (line 8 and 9), that are represented by 8 bits (line 10). On line 11,

it is indicated how much data is reported, and in this case is 2 times the report size (8),

representing X and Y values. Finally, is indicated that the data is an input on the host,

and its value is variable and relative (line 12).

Physical descriptor

The physical description of the device, indicates which parts of the body should be used

to handle the device. In the case of mouse, it is possible to describe which fingers are used

to activate the buttons, as well as to distinguish between left-handed and right-handed.

This description is not mandatory and in most devices, this type of information does not

bring much use.

3.2 Android Architecture

Android was initially a company founded by Andy Rubin, Chris White, Nick Sears, and

Rich Miner in October 2003, with focus in mobile devices with capabilities to adapt to

information to the user. In August 2005 it was acquired by Google that began building

partnerships with companies related to mobile ecosystem and in November 2007 has

announced the Open Handset Alliance (OHA)1 [40], [41].

The first version of Android OS in Alpha phase was only available for OHA and Google

members. Only on 5 November 2007, the Beta phase was available to the community and

that date is popularly known as the Android birthday [41]. However, the first commercial

1 http://www.openhandsetalliance.com/index.html

http://www.openhandsetalliance.com/index.html
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version 1.0 was released only on 23 September 2008. Besides the two first versions (1.0

and 1.1) that do not have official names, all the other releases have tasty names that

follow the Latin alphabet in the first letter. Since they only started in the third release,

the first official name “cupcake” starts with the third letter in Latin alphabet [41], [42].

As Android was growing, the variety of devices that implements the OS was also

growing. Nowadays Android OS is designed for phones, tablets, wearables, televisions

and auto-mobiles, but given the fact that it is open-source, it allows to be implemented

in a variety of other devices. It is worth noting that although the Android OS is claimed

as open-source, the truth is that some times does not follow that spirit. The source code

may take some time to become available and consumer devices contain several closed

source software components that difficult the porting for other devices [41]. In order to

better understand what is involved in the Android OS, this section presents an overview

of the Android software stack, followed by the boot sequence and the USB and Sensors

architecture in the following sub sections.

3.2.1 Software Stack

The Android Software Stack can be represented in five main layers (Figure 3.11), the

Android Applications layer, Android Framework layer, Android Runtime layer, Hardware

Abstraction Layer and Kernel layer. The lowest layer in the stack will connect directly

with hardware in device.

Android Applications Layer is where stays all the applications that interacts directly

with the user. This applications can be native (e.g, Phone, Settings, Contacts, etc.) or

third party (e.g, Skype, Facebook, etc.).

Android Framework Layer is a set of libraries for Android Applications that provides

the generic functionalities of the Android OS, in order to prevent the developer from

having to code the most basic tasks, which would require an increased effort to develop

the application (e.g., Telephony Manager, Location Manager, etc.). Android Runtime

Layer comprises in a Virtual Machine (VM) and in core libraries in Java. The both upper

layers are developed in Java and execute within the VM. The VM has the functionality

of byte code interpreter.

Hardware Abstraction Layer is implemented in C programming language and allows

the upper layers in stack to be independent of the hardware used. At the same level are

the native core libraries in order to guide the device in handling different types of data

(e.g., Open GL|ES, WebKit, libc, etc.).

Kernel layer of android consist of a Linux kernel adaptation that has the main purpose

1 From: http://www.slideshare.net/opersys/inside-androids-ui

http://www.slideshare.net/opersys/inside-androids-ui
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Figure 3.11: Android stack with details1.

of managing the input/output requests from the upper layers into hardware signals.

Android Applications

The Android applications are written in Java through the Android SDK tools that creates

an Android application Package (APK). To create a more secure environment, all the

applications that run on the Android OS, live in their own sandbox. This means that each

application has its own VM and the code runs in isolation from the others applications,

applying the principle of least privilege [41].

The applications can be build with four essential blocks, know as Activities, Services,

Content providers and Broadcast receivers. An activity is responsible for managing the

content displayed on the user’s screen. Normally the activity is considered the main of the

application, thus it is only possible to have an activity to run at a time. The services are

aimed at operations that take a long time and have to be initiated by other components.

Since these can be performed in the background, it is possible to avoid freezing the user

interface. The content provider is responsible for managing the access to a set of data, that

is, provides the data from one application to the application that request it. Broadcast

receivers are components that receives the announcements that exist on Android OS.

This announcements can be originated by the system, like the screen rotation, or can be

originated by the applications to inform all the other about some action [43].
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Applications can be divided into three categories, Foreground Activity, Background

Service or Intermittent Activity. The Foreground Activity applications are composed

mainly of user interface to perform a certain task and are suspended when this interface

is not visible to the user. As a simple example we have the games, which are only active

while the user is playing. Background Service applications typically do not depend on

the user interface and are used to perform periodic tasks or tasks that take a long time.

Intermittent Activity applications usually consist of both the Foreground Activity and

Background Service [44].

The anatomy of Android application comprises files and folders, where the most im-

portant are shown in Figure 3.12. The “java” folder contains all the java source files of

the project and by default its created the “MainActivity.java” that runs on application

startup. The “res” folder groups all resources in the project, where have inside four main

folder. The “xml” folder contains the preferences and configuration files. The “values”

folder contains simple values, such as the definition of colour value for a colour string.

There are multiple layout and drawable folders, since they can be specific for the size

of the screen and resolution. The “layout” folder contains the files that represents the

screens user interface. The “drawable” folder is composed by the Bitmap files used by the

layout files. The “AndroidManifest.xml” file describes the fundamental characteristics of

the application, such as the components used and the main activity to load at startup.

Android 
Application

src

main

res java

xml values layout

AndroidManifest.xml

drawable-layout- drawable-drawable-

Figure 3.12: Android application anatomy.

Android Framework Layer

Android Framework is the base of every application, which includes everything between

the Java applications and the native user space, or as can be seen in the Figure 3.11,

between “App API” and “JNI”. This includes the framework packages “android.*”, stan-
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dard Java classes “java.*”, system services used to manage the functionalities of the OS

and the Android runtime. In opposite of applications, the framework was designed to

be used as it is, to change the behaviour of it, is required to go into source file of An-

droid OS. The Binder is an inter-process communication (IPC) mechanism to manage

the communications between components [45].

Android Runtime Layer

The Android runtime is a VM that replaces the Dalvik VM in Android 5.0 “Lollipop”.

To understand better the differences between them, it is necessary to explain the basic

concept of Java VM. The Java VM is an interpreter that converts bytecode into machine

executable code. The bytecode is an intermediate form of Java applications that is not

hardware dependent. The Dalvik VM and Android runtime are like a Java VM specifically

design for embedded systems. The Dalvik VM makes the compilation during the runtime,

which is called Just-in-Time (JIT) compilation, while the Android runtime use the Ahead-

of-Time (AOT) compilation, which can improve application performance given that during

the runtime the application is already compiled. It is noteworthy that the Android runtime

is compatible with the Dalvik VM bytecode [46]. The Java Native Interface (JNI) provides

an interface to the native application in C and C++ languages communicate with Java

applications and vice-versa.

Android Hardware Abstraction Layer

The Hardware Abstraction Layer provides the connection between the kernel drivers in

the bottom layer and the services in the upper layer. This abstraction hides details of

hardware, allowing to have different hardware to accomplish the same task, that is, this

standardizes the function provided by the hardware, regardless the differences between

manufacturers.

Android Kernel Layer

The Android kernel is an adaptation of Linux kernel where it is added important features

for a mobile embedded platform. It is important to mention that the development of device

drivers, keeps unchanged compared to Linux. However, given these specific additions to

Android, it is not possible to directly import a Linux kernel for Android [47].

In order to understand better what is involved in the OS, in the next sub section it

will be explained the boot sequence.
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3.2.2 Boot sequence

The boot sequence in Figure 3.13 starts when the power button of device is pressed. Then

the code is executed from pre defined location which is hardwired on Read Only Memory

(ROM) and loads the Bootloader. The Bootloader starts the Random Access Memory

(RAM) disk and sets the basic requirements for kernel to load, this is also a checkpoint

for security in order to load only the OS allowed. The kernel is responsible for managing

the available hardware resources, making their respective startup and ensuring that they

are available to the OS. Upon completion of the hardware configuration, the initiation of

Android OS starts by loading the “init.rc” file. This file contains the instruction to set

up environment variables, create mount points, mount file systems, set out of memory

(OOM) adjustments, and start native daemons. Also the file “init.<device>.rc”1 is loaded

with the instructions for a particular device. It is in this step of initialization that the

VM is started.

Figure 3.13: Android boot sequence2.

In the normal operation of the Java VM for each application it is initialized one VM,

but given the restrictions of the memory in this kind of devices, the Android OS have a

daemon called “Zygote” to launch applications and manage this issue. This daemon when

1 Where <device> parameter contains the code name of device
2 From: K. Yaghmour, Embedded Android. O’Reilly Media, Inc., 2013
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is started preloads all the necessary Java classes and resources, starts the System Server

and opens a socket to listen the requests for starting applications. The System Server

starts the activity manager that loads the launcher, known as home screen for Android

users. So when the user wants to start an application, performs a click on the icon, then

the request is made to the activity manager that forwards it to the Zygote, which in turn

makes a fork of the existing VM. The issue with memory is surpassed with the kernel

policy of copy-on-write (COW) for forks, that means, when the fork is made the existing

memory is not really copied, instead it is only created a reference that points to this

memory. Is only created a copy when it is needed to write in this memory, given that this

memory comprises in Java classes and resources, where they are normally immutable, is

never created a copy of this memory. So this memory is only loaded one time and all the

applications use their own VM, with a reference for this memory that contains all the

resources needed and already loaded [45].

3.2.3 USB architecture

Under the scope of this project, Figure 3.14 shows the Android USB stack in host mode.

This stack is similar with the one presented in Figure 3.6, in section 3.1.4, where the

abstraction layer of Figure 3.6 is presented in the Figure 3.6 as kernel layer. The “libusb-

host” (a thinner version of “libusb”) is the user space library that allow the detection of

USB devices and provides the access for controlling data transfer between host and device.

The USB Service and USB Function blocks are frameworks in the android.hardware.usb

package to provide the USB access to Java Applications [48].

Figure 3.14: Android USB stack1.

1 From: R. Regupathy, Unboxing Android USB: A hands on approach with real world examples.
Apress, May 2014
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3.2.4 Sensor stack

Most android devices have sensors built-in the device and the Android platform divide

them into three categories: Motion, Environmental and Position sensors [49].

Motion sensors are referred to as the sensors to measure acceleration and rotational

forces, such as, accelerometer and gyroscope.

Environmental sensors measure environmental parameters like illumination, tempera-

ture of air and humidity. Barometers, photometers, and thermometers are normally

the sensors used.

Position sensors measure the physical position of the device, such as, orientation sen-

sors and magnetometers.

Besides the hardware-based sensors, the Android platform also defines some virtual

sensors that derive from the data of one or more hardware-based sensors. These virtual

sensors are created by the sensor fusion implemented in the Android Open Source Project

(AOSP) that already includes the Gravity, Linear acceleration and Rotation vector sensor

[50], [51].

Gravity sensor uses the accelerometer and gyroscope (if available) or the magnetometer

(if gyroscope is not available) to report the direction and magnitude of gravity in

m/s2 for the three axis (x, y and z).

Linear acceleration sensor results from the difference between the accelerometer and

the gravity sensor. The hardware-based sensors used are the same as the Gravity

sensor and the output is also in m/s2 for the three axis (x, y and z).

Rotation vector sensor reports the quaternion orientation (x, y, z and w) that is ob-

tained from the values of accelerometer, magnetometer and also the gyroscope when

available.

The Android uses the East-North-Up coordinates system, presented in Figure 3.15, as

reference for sensors. This coordinates system does not change when the device’s screen

orientation changes. The coordinate system is pre-defined with the natural device orien-

tation, that means it can be based on either portrait or landscape orientation, depending

on the device natural orientation, but the coordinates system does not change during the

utilization of device [52].
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Figure 3.15: East-North-Up coordinates1.

The Figure 3.16 presents the Android OS stack for the hardware-based sensors. The

bottom layer represents the driver to communicate with the hardware, this communication

is not specifically defined by the Android, it can be implemented using the different

protocols available, such as Inter-Integrated Circuit (I2C), SPI, USB, etc. The driver also

creates the sensor in the Android file system, to be able to export the data to the user

space. Then the “Sensor HAL” manages the data from sensor and the request from the

upper layers in the Android OS. The Sensor Manager is part of the framework available

for the application in Java to interact with sensor.

Sensor Driver

Android Sensors API

Kernel Input File System

Sensor HAL
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Figure 3.16: Android sensors stack2.

1 From: Hardware abstraction layer for Android. STMicroelectronics, September 2012.
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/applicati

on_note/DM00063297.pdf
2 Adapted from: https://source.android.com/devices/sensors/sensor-stack.html

and http://blog.chinaunix.net/uid-21074389-id-3217663.html

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/application_note/DM00063297.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/application_note/DM00063297.pdf
https://source.android.com/devices/sensors/sensor-stack.html
http://blog.chinaunix.net/uid-21074389-id-3217663.html
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Chapter 4

Development of Android interfaces

for enhanced remote control

The system developed in this work aims to enable new forms of interaction with 3D

content and to improve the user experience. As can be seen in Figure 4.1, it consists in

a RCD with 6 Degrees of Freedom (DoF) and a STB. The RCD prototype presented

in Figure 4.2 was provided by the Tech4Home1 company, an Small Medium Enterprise

(SME) expert in the field of RCDs.

The RCD prototype is able to track 3D motion using a set of sensors commonly known

as Magnetic, Angular Rate, Gravity (MARG). MARG Sensors are composed by an ac-

celerometer, gyroscope and magnetometer, each with 3 orthogonal axes. In this work

the MARG unit from Ivensense2 also includes an Application-Specific Integrated Cir-

cuit (ASIC) embedded processor, designated as Digital Motion Processor (DMP), which

computes the orientation of the device using the information retrieved by the accelerom-

eter and gyroscope sensors. This RCD has the following six modes, that were also imple-

mented in the Android STB to identify and read the data from RCD [53].

Z-Axis

Y-
Ax

is

X-Axis

Android
Set-Top-Box

6DoF Remote
Control Device

RF4CE
3D

Figure 4.1: System developed.

1 Tech4Home: www.tech4home.pt
2 Invensense:http://www.invensense.com

www.tech4home.pt
Invensense: http://www.invensense.com
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Figure 4.2: Remote Control Device prototype.

Idle Mode

In this mode of operation, only the key events are sent by the RCD, including: key

pressed, key released or key repeated, are transmited. The MARG unit remains in

sleep mode and no motion events are sent.

Relative Mouse Mode

The relative navigation is calculated on RCD with tilt compensation, which sends

the mouse displacement. In this mode of operation keys can also be send. Data is

only transmitted in this mode when there is relative motion or a key is pressed.

Absolute Mouse Mode

The difference of this mode to the previous is only regarding to the type of navi-

gation. The information retrieved by the DMP converts the orientation to absolute

coordinates in the screen. In this work the calculations needed to proceed with this

type of navigation was implemented in a custom Android API, because the informa-

tion about screen resolution was needed and the communication was unidirectional.

Demo Mode

During the development of this work an Android application, that will be explained

later, was made in order to qualitatively access the orientation retrieved by the

implemented filters and the DMP. This mode was created to allow demonstrations

of the accuracy of the remote orientation in a subjective way and to give an example

of navigation in multimedia contents using gestures.

Scroll Gestures Mode

This mode allows scroll and zoom using rotations of the RCD. Similarly to the

Relative Mouse Mode, the information is sent only when there is a rotation wide

enough to generate a scroll event on the screen.

Sensors Mode

In this mode all the sensors (accelerometer, gyroscope and magnetometer) readings

are sent to the Android system. Data rate for this mode is performed at 50 Hz.
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The Android based STB runs the OS 5.0, it has no limitations on energy consumption

and a far superior computational power, ROM and RAM memory, when compared to the

RCD. The communication between devices is done wirelessly with the ZigBee R© RF4CE

protocol.

Given that the RCD is intended to be a low-complexity device, an issue in this work

was to decide whether the most complex functions in terms of computational complexity

should run on the RCD or on the STB, taking into account energy consumption. On the

one hand, running complex algorithms on the RCD results in high energy consumption

for processing orientation estimates and low consumption data transmission, because less

data is transmitted. On the other hand, by transmitting the raw data to the STB,

increases the energy required for transmission but allows the implementation of more

complex algorithms on the STB, thus higher precision.

To evaluate the problem of computational load balance, two solutions, marked as

option “A” and “B” (see figure 4.3), were implemented:

Option “A” RCD movement is acquired by the MARG unit, the raw data is used by

the RCD processing unit, and the processed data is transmitted to the STB;

Option “B” All raw data is transmitted from the RCD to the STB where it is processed.

An external module (USB dongle) was developed to implement the communication

between the RCD and the STB via RF. The dongle receives data from the RCD through

ZigBee R© RF4CE protocol and forwards them to the STB through USB 2.0 HID custom.
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4.1 Dongle: transceiver RF-USB

The dongle was developed with the purpose of receiving data from the RCD and forwards

them to the STB. The scheme and final drawing of Printed Circuit Board (PCB) dongle

that was developed is presented in the Figure 4.4 and 4.5, respectively. The module is fed

by 5 V from the USB connection with the host, using a voltage regulator to 3.3 V needed

by the microcontroller and RF modules. The Light Emitting Diode (LED) is a power

indicator. The capacitors are those recommended by the datasheet of the microcontroller

used from Microchip Technology Inc., which in this case was PIC32MX795F512L. It was

also implemented a button, used to reset the microcontroller. The High Speed (HS) ex-

ternal oscillator used was necessary due to the use of USB, which requires an external

oscillator for a correct operation, since it only utilizes the internal oscillator for the detec-

tion of new connections. For the communications a female head was used for the MiWi
TM

and ZigBee R© RF4CE modules, and the USB 2.0 female connector of Type A. It is noted

that the female connectors are intended to create a socket for each module, which eases

the exchange between modules. It is noteworthy that only one RF module can be used at

a time and given this constraint, both modules were implemented in the same area of the

PCB, as can be seen in Figure 4.5(b). Connectors for programming the microcontroller

and the Tech4Home module were also left available.

Figure 4.4: Final scheme of PCB dongle.
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(a) Final draw of PCB dongle. (b) Photo of PCB dongle.

Figure 4.5: PCB dongle.

The firmware implemented in the dongle is shown in the flowchart of Figure 4.6.

The firmware starts running when the device is powered by the host through USB, that

is, when the connection is made between the host (STB) and the dongle. Then, the

necessary interfaces are initialized in the microprocessor to communicate with modules.

The RF4CE and MiWi RF modules uses SPI and BLE uses the UART interface. The

USB interface is always necessary, as it is the only way for the dongle to communicate

with STB. Later the microcontroller enters in the infinite loop waiting to receive data

from the RF module. When new data is received, it confirms if the debug mode is enabled

and if it is sends the data via UART and flashes the LED. Although there is no hardware

in the final version to enable the use of debug, that was maintained in order to enable

compatibility with previous versions of hardware. When the debug is disabled, it does not

increase the computational needs, since the code is not converted to binary format, and

consequently not sent to the microcontroller. This was achieved with the preprocessor

conditional statement shown in Code 4.1, where the instructions are only compiled if the

“DEBUG ON” macro is declared.

Code 4.1: Preprocessor conditional statement

1 #ifdef DEBUG_ON

2 <instructions>

3 #endif /* MACRO */
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After receiving the data, the first byte is checked in order to know the type of infor-

mation sent by RCD. This verification is always required in order to know for which USB

HID interface the data should be sent.

Dongle
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Debug?
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True
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through UART

Mode?

Remote Control 
Payload = 3

Remote Control 
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Payload = 63
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Reset
Air Mouse DemoSensorsUser IdGestures
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Payload = 63

Send data 
through USB

False
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Figure 4.6: Dongle flowchart.

The communication modules are discussed in greater detail in the following sub sec-

tions, “Communication between RCD and dongle” and “Communication between dongle

and STB”.
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4.1.1 Communication between RCD and dongle

The communication with the RCD was initially performed with the MRF24J40MA module

(Figure 4.7(b)), which is a RF transceiver at 2.4 GHz ISM band, developed by Microchip

Technology Inc. This module consists in the MRF24J40 chip that running at 20 MHz,

which communicates with the dongle through the SPI protocol and receives data through

the MiWi
TM

protocol.

Then the ZigBee R© RF4CE communication was chosen, which included the

CC2531F256 chip, that is a SoC operating at 24 MHz. Its main application is also

intended for RF 2.4 GHz communications and it is developed by Texas Instruments. This

chip was embedded in a module developed by Tech4Home, as shown in Figure 4.7(a),

who was in charge of adding the antenna and the electronics required for its operation, as

well as the firmware. This connects the dongle through the SPI protocol to perform the

transfer of the received data.

During the development phase the BLE module was used for proof of concept. How-

ever, this was not included in the final version of the remote control, given the fact that

it does not implement this protocol. The selected module was RN4020 from Microchip

Technology Inc., which appears in Figure 4.7(c). This module, uses version 4.1 of the

Bluetooth and the communication with the dongle is done through UART by American

Standard Code for Information Interchange (ASCII) commands.

(a) Tech4Home
module with
ZigBee R©

RF4CE proto-
col.

(b)
MRF24J40MA
module from
Microchip Tech-
nology Inc.
with MiWi

TM

protocol.

(c) RN4020 module
from Microchip Tech-
nology Inc. with BLE
protocol.1

Figure 4.7: Radio Frequency modules.

1 From: http://www.microchip.com/_images/ics/small-RN4020-MODULE-22.png (visited on 29
August 2015)

http://www.microchip.com/_images/ics/small-RN4020-MODULE-22.png
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4.1.2 Communication between dongle and STB

The communication with the STB was done by USB through HID. For this purpose the

five interfaces were established as described below, which fall into two categories, Customs

(Demo and Remote Control) and Sensors (Accelerometer, Gyroscope and Magnetometer).

Custom (Demo) is a frame with a maximum of 64 byte length to send information for

the Android application. This information follows the Input Report format shown

in Figure 4.8.

Code qW qX qY qZ Gesture Roll Pitch Yaw User IDfield

8 Variable 8Bits

Figure 4.8: USB HID Custom - Demo Input Report format

Custom (Remote Control) is a frame with also a maximum of 64 byte length to send

information for the API.

Accelerometer, Gyroscope, Magnetometer are three interfaces that represents the

sensors and each have two types of reports: Feature and Input.

The implementation of this interface was made with the firmware of project

“Device - HID - Custom Demos” from Microchip Libraries for Applications (MLA) ver-

sion “microchip solutions v2013-06-15”1 as a base. The main deadlock of this project were

the dependencies with several libraries across multiple folders. There were only available

to edit the “usb descriptors.c.” and the “usb config.h.”, as shown in Figure 4.9, that do

not allow to add more interfaces neither Features Reports.

After getting clean and independent project files from the library, the project was

ready for the changes. Since the project comes with one custom interface and it is needed

two, the next step was to add another custom interface. Note that the custom interfaces,

only requires the payload size, since the fields do not have a predefined meaning for the

OS, so it was not necessary to modify the custom interface that comes in the project. To

add a new interface it was needed to define in “usb config.h” file, the follow parameters:

ID of Interface, Number of Endpoints, ID of Endpoint, Input/Output Report size, Inter-

val between reports, Number of Descriptors, Configuration Report Size and modify the

Maximum number of interfaces and endpoints. Then, the information about this interface

was added to the configuration descriptor, along with the input report descriptor in the

file “usb descriptors.c”. However, given that the library only supports an interface, the

Input Report is never sent. It is needed to change the “usb function hid.c” inside the

1 http://www.microchip.com/pagehandler/en-us/devtools/mla/legacy-mla.html

http://www.microchip.com/pagehandler/en-us/devtools/mla/legacy-mla.html
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Figure 4.9: Device - HID - Custom Demos directory tree.

“USB” in the source directory to indicate the descriptors location when the request is

made by the host, and is also required to initiate the endpoints.

The sensors interface requires the same previous steps, plus the changes to enable the

Feature Reports. To add this report it is necessary to change the file “usb function.c” to

implement an handler to set/get the reports, in order to decide the action for each type

of report (Input/Output/Feature).

Although the sensors were implemented in the dongle, they were only partially tested.

For the test a digital USB analyser was used, where it was possible to check the packets

from the Input Report for all sensors and all sensors were recognized by the Windows

and Linux OS. The kernel from the Android OS does not implement the USB HID

Sensors, so it is impossible to test, although the kernel of the new version of Android OS

for 64 bit microprocessor should implement this interface. According to the source code

available from Google, all versions later than 3.4 implement this interface, as can be seen

by the presence of the file “hid-sensor.txt” in “android-3.X/Documentation/hid/” folder1.

To overcome this problem for the previous version of kernel in the Android OS, it was

necessary to implement a library for sensors, that will be explained in the next section,

to provide the values from the RCD sensors to the Android OS.

4.2 Android API

The STB is based on Android OS and the communication is made through an USB

dongle, although it is not possible to use the HID software stack to implement all the

interfaces (e.g., absolute mouse HID) because the data must be pre-processed before

1 https://android.googlesource.com/kernel/common.git/

https://android.googlesource.com/kernel/common.git/
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making it available to the OS. Another limitation imposed by the OS, is the impossibility

of getting the mouse pointer coordinate values when absolute coordinates are used. The

proposed system was designed to have the least possible impact on the STB in order to

avoid the need for a custom build, i.e. avoid the need for recompiling the kernel or the

Android OS. The Hardware Abstraction Layer (HAL) in the user space revealed to be

the adequate place for the implementation of the data processing module, the API and

the sensor library, because it is not hardware-dependent and allows receiving data from

any communication interface (e.g. Bluetooth, I2C, SPI, etc.), as shown in figure 4.3.

The main purpose of the API is:

Option “A” to integrate the processed sensors data from RCD with screen information

from the user’s setup.

Option “B” to perform all the heavy processing that requires a great deal of power

consumption in the RCD and integrate the result data with screen information from

the user’s setup or the make the raw data from sensors available to the Android OS

trough the library specifically developed for this RCD.

As proof of concept, a user interface application for Android OS was developed to

show the RCD ability to control 3D multimedia content. This application implements

an USB service to receive data from either a virtual or physical USB connection, one

user interface with menus and 3D multimedia content developed with Open Graphics

Library (OpenGL).

Both implementations in STB are described in the following sub sections. First the

API and sensors library are explained, which are located on the underside of the stack

(Figure 4.3), followed by the user interface application.

4.2.1 Application programming interface

The API was developed in the C programming language as a native application. For

the development of such applications there is a Native Development Kit (NDK) available

for Android devices. However this was not used, since it requires an application in Java

for Android to run and start the native application. Thus, only the GNU Compiler

Collection (GCC), available with NDK, was used to build the native application developed

for the Android device. The Appendix A shows how to compile the Android Open Source

and how to build the native application.

The application flowchart can be observed in figure 4.10. The native application must

start when the device is powered, so it was necessary to make changes in the bootloader,

to load the API as a service. Those changes consisted in editing the “init.< device >.rc”1
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Figure 4.10: API flowchart.
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file (code shown in code 4.2), followed by the build2 and flash2 of the boot image into the

device [45].

Code 4.2: init.< device >.rc

1 ...

2 service hermes /data/local/API/REMOTE6DOF

3 class main

4 user root

5 ...

Given that the API is in the HAL level, it is possible to declare HID profiles and inputs

that make the data available for the entire OS and respective applications at higher layers.

Figure 4.11 shows the interaction between the blocks of the API in the Android software

stack.

Host Controller Driver

USB Core

libusb

Kernel USB File System

Android USB API
(android.hardware.usb)

API

Class Driver

uhid

Kernel Input File System

uinput

USB Service

USB ServiceJava

JNI Input Service
Windows 
Manager 
Service

Android
kernel space

Android
user space

Figure 4.11: Android API Stack3.

1 Where <device> parameter contains the code name of device.
2 The boot image was compiled trough the steps presented in sub section Build bootimage and Flash

Android device with custom bootimage in Appendix A.
3 Adapted from: Rajaram Regupathy. Unboxing Android USB: A hands on approach with real world

examples. Apress, May 2014
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After starting the API, five input profiles on the Android OS are declared and ini-

tialised: the pen, the multitouch, accelerometer, gyroscope and magnetometer inputs.

These profiles were created using a module in user space to create and handle the input

devices, i.e. an “uinput” kernel module. To create a new virtual device (e.g., the multi-

touch input device, as shown in Code 4.3), the following sequential actions have to be

taken:

1 Open the user interface (“/dev/uinput”) and create a temporary device;

2 Publish which input events the device will generate;

3 Create a structure with the basic information of device, namely the maximum and

minimum values for the input events;

4 Send the command to the interface to create the device.

The pen input device was implemented to overcome the Android OS limitation of not

making the pointer visually available for the absolute mouse. Two conditions have to be

fulfilled in order to make the pointer visible on the screen: (i) explicit configuration of

the requirement for a pointer and (ii) claim that the pen is in the range of the screen.

Code 4.3: Creation of multi-touch input

1 uimt->fd_uinput = open("/dev/uinput", O_WRONLY | O_NONBLOCK);

2 if(uimt->fd_uinput < 0) die("error: open");

3

4 if(ioctl(uimt->fd_uinput, UI_SET_EVBIT, EV_KEY) < 0) die("error: ioctl");

5 if(ioctl(uimt->fd_uinput, UI_SET_KEYBIT, BTN_TOUCH) < 0) die("error:

ioctl");

6

7 if(ioctl(uimt->fd_uinput, UI_SET_EVBIT, EV_ABS) < 0) die("error: ioctl");

8 if(ioctl(uimt->fd_uinput, UI_SET_ABSBIT, ABS_X) < 0) die("error: ioctl");

9 if(ioctl(uimt->fd_uinput, UI_SET_ABSBIT, ABS_Y) < 0) die("error: ioctl");

10 if(ioctl(uimt->fd_uinput, UI_SET_ABSBIT, ABS_MT_POSITION_X) < 0)

die("error: ioctl");

11 if(ioctl(uimt->fd_uinput, UI_SET_ABSBIT, ABS_MT_POSITION_Y) < 0)

die("error: ioctl");

12 if(ioctl(uimt->fd_uinput, UI_SET_ABSBIT, ABS_MT_TRACKING_ID) < 0)

die("error: ioctl");

13 if(ioctl(uimt->fd_uinput, UI_SET_ABSBIT, ABS_MT_SLOT) < 0) die("error:

ioctl");

14

15 memset(&uidev, 0, sizeof(uidev));
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16 snprintf(uidev.name, UINPUT_MAX_NAME_SIZE, name);

17 uidev.id.bustype = BUS_USB;

18 uidev.id.vendor = 0x1;

19 uidev.id.product = 0x1;

20 uidev.id.version = 1;

21 uidev.absmax[ABS_X] = max_x;

22 uidev.absmax[ABS_Y] = max_y;

23 uidev.absmax[ABS_MT_POSITION_X] = max_x;

24 uidev.absmax[ABS_MT_POSITION_Y] = max_y;

25 uidev.absmin[ABS_MT_TRACKING_ID] = -1;

26 uidev.absmax[ABS_MT_TRACKING_ID] = TRKID_MAX;

27 uidev.absmax[ABS_MT_SLOT] = num_slots - 1;

28

29 if(write(uimt->fd_uinput, &uidev, sizeof(uidev)) < 0) die("error: write");

30 if(ioctl(uimt->fd_uinput, UI_DEV_CREATE) < 0) die("error: ioctl");

The pen and multitouch virtual input devices are initialized taking into account the

screen size of the device where it is running. This is done by reading the resolution field

“FBIOGET VSCREENINFO” of the framebuffer “/dev/graphics/fb0”. The accelerome-

ter, gyroscope and magnetometer were implemented to provide the values from the sensors

to the library that is explained later. The relative mouse, joystick, gamepad and consumer

eletronic virtual USB HID devices, are created through a similar procedure but this time,

using an USB interface in user space “/dev/uhid”.

Using the “libusb”1 the USB is started as host in order to receive data from the

dongle. If there is an error during any of the initializations, the API waits 50 seconds

and tries again, repeating the process until there is no error. This ensures that the API

only continues after establishing a proper connection with the dongle. It should be noted

that the device may not be connected when the API is started, so through this cycle, it

can be ensured that the device is detected with a maximum delay of 50 seconds from the

connection. When no errors are detected, it initializes the request for information to the

dongle and the data is read from the USB buffer. Then, the received data pass through

an error checking, and if an error occurs while receiving or sending data, a soft reset is

performed by software, leading to an API reinitialisation which ensures that there is no

accumulation of errors. If there are no errors, these data are handled and sent to the

corresponding USB HID profiles and user Inputs of Android OS. The HID and the user

input are automatically processed by the Android OS, with the exception for the sensor

input, that are processed by the library specifically developed for the RCD used. This

library is explained in following sub section Android sensors library.

1 http://libusb.info

http://libusb.info
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4.2.2 Android sensors library

The Android sensors library was developed using the library provided by Asahi Kasei

Microdevices Corporation1 as base. The instructions to compile the library are presented

in section “Build bootimage ” of Appendix A. This library was defined as the default

library for the sensors, to avoid the conflict with the existing library for the device, given

that the “ServiceManager” of the Android Framework checks the path “/system/lib/hw”

of Android OS, to find if there are present the following sensors library [54]:

• sensors.default.so

• sensors.<device>.so2

To add support for sensors from the RCD, the first step was to define list of sensors

implemented in the “sensor.cpp” file (Code 4.4), where for each sensor it was needed to

defined the following fields (e.g., Accelerometer sensor):

Code 4.4: sensor.cpp

1 ...

2 name = ‘‘3-axis Accelerometer’’,

3 vendor = ‘‘Tech4Home/IPL - Ricardo Santos’’,

4 version = 1,

5 handle = SENSORS_ACCELERATION_HANDLE,

6 type = SENSOR_TYPE_ACCELEROMETER,

7 maxRange = 19.62f,

8 resolution = 19.62f / 32768,

9 power = 0f,

10 minDelay = 100000,

11 reserved = {}

12 ...

Then was needed to create a custom class for each sensor that extends the

“SensorBase” class and has the ability to read the input events defined in the previ-

ous section 4.2.1. Each sensors class finds the respective event in the system, by searching

for the event with the name pre-defined in the class, i.e., the class accelerometer, gyro-

scope and magnetometer will search for the event with name “AccelerometerTech4Home”,

“GyroscopeTech4Home” and “MagnetometerTech4Home” respectively. The Unified Mod-

eling Language (UML) structure for the custom sensors class implemented are presented

in Figure 4.12.

1 From: https://android.googlesource.com/platform/hardware/akm/+/lollipop-release/A

K8975_FS/libsensors/ (visited on 17 September 2015)
2 Where <device> parameter contains the code name of device

https://android.googlesource.com/platform/hardware/akm/+/lollipop-release/AK8975_FS/libsensors/
https://android.googlesource.com/platform/hardware/akm/+/lollipop-release/AK8975_FS/libsensors/
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# openInput(const char* inputName): int
# open_device(): int
# close_device(): int
+ readEvents(sensors_event_t* data, int count): int
+ hasPendingEvents(): bool
+ getFd(): int

# dev_name: const char*
# data_name: const char*
# input_name: char *
# dev_fd: int
# data_fd: int

SensorBase

- setInitialState(): int
+ readEvents(data:sensors_event_t*, count:int): int
+ hasPendingEvents(): bool
+ getFd(): int

- mEnabled: int
- mInputReader: InputEventCircularReader
- mPendingEvent: sensors_event_t
- mHasPendingEvent: bool
- input_sysfs_path: char*
- input_sysfs_path_len: int

accSensor

- setInitialState(): int
+ readEvents(data:sensors_event_t*, count:int): int
+ hasPendingEvents(): bool
+ getFd(): int

- mEnabled: int
- mInputReader: InputEventCircularReader
- mPendingEvent: sensors_event_t
- mHasPendingEvent: bool
- input_sysfs_path: char*
- input_sysfs_path_len: int

gyroSensor

- setInitialState(): int
+ readEvents(data:sensors_event_t*, count:int): int
+ hasPendingEvents(): bool
+ getFd(): int

- mEnabled: int
- mInputReader: InputEventCircularReader
- mPendingEvent: sensors_event_t
- mHasPendingEvent: bool
- input_sysfs_path: char*
- input_sysfs_path_len: int

magSensor

+ fill(fd:int): ssize_t
+ readEvent(input_event const** events): ssize_t
+ next(): void

- mBuffer: struct input_event*
- mBufferEnd: struct input_event*
- mHead: struct input_event*
- mCurr: struct input_event*

InputEventReader

Figure 4.12: Android Sensors UML Structure1.

The next step was to create a poll context in the “sensor.cpp” file, in order to inform

the Android OS to receive the previous input events found. Those event sends the x, y

and z values for each sensor, then the correspondent class makes the matching between

the user input values received and the sensors values for the Android OS.

The flowchart in Figure 4.132, show how the sensor service (SensorService.cpp) initial-

ize the sensors class (sensors.h and sensors.cpp) implemented in this project. The sensor

service will start by searching for the sensors library in the system, after find the sensor

library, it will request to initialize the sensor (in the “Sensor.cpp” file). The activation/de-

activation and the sample frequency for the sensor was not dynamically implemented, the

sensors are always active with a constant sample frequency [54].

All the three sensors were tested in Android OS and they work with either the applica-

tions available in Play Store as well as the OS itself, e.g., to rotate the screen orientation.

The successful implementation of hardware-based sensors showed also the virtual sensors

described in the previous Chapter The Universal Serial Bus (USB) in Android, Section

3.2.4. However, the use of the three hardware-based sensors reveal some delay, that was

not noticeable only with the accelerometer.

1 From: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/app

lication_note/DM00063297.pdf (visited on 15 September 2015)
2 From: http://webcache.googleusercontent.com/search?q=cache:L3ao1uUxbMwJ:blog.pickb

ox.me/2014/11/06/sensors-hal/+&cd=1&hl=pt-PT&ct=clnk&gl=pt

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/application_note/DM00063297.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/application_note/DM00063297.pdf
http://webcache.googleusercontent.com/search?q=cache:L3ao1uUxbMwJ:blog.pickbox.me/2014/11/06/sensors-hal/+&cd=1&hl=pt-PT&ct=clnk&gl=pt
http://webcache.googleusercontent.com/search?q=cache:L3ao1uUxbMwJ:blog.pickbox.me/2014/11/06/sensors-hal/+&cd=1&hl=pt-PT&ct=clnk&gl=pt
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4.2.3 User interface application

The user interface application was used to evaluate and test the result of the sensor fusion

system in the RCD from the point of view of use in applications. This has a simple user

interface with only one main menu from which it is possible to access new screens that

allow different actions. The main menu was created with a style popularized by Android,

that is a drawer menu, which is hidden on the left side of the screen. The access to the

menu can be done by simply clicking on the application icon at the top left of screen or

dragging from the left outside of the screen to inside. In this menu (Figure 4.14) four

different options are available: Home, 3DVisualizer, TVSimulation, Logger.

Figure 4.14: Main Menu. Figure 4.15: 3D Visualizer.

Figure 4.16: TV Simulation. Figure 4.17: Logger.

Home is the default screen when the application starts, which only has an image that

describes the project and it is similar to that shown in Figure 4.1.

3D Visualizer has at the top left of the screen a text box that displays in real time data

received from the transmission of the RCD. The first four data fields represent the

quaternion, the fifth corresponds to the identified gesture and the last three fields

are the Euler angles (roll, pitch and yaw respectively). The center of the screen has

a figures, that follow the pose the remote control.
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TV Simulation aims to simulate a menu where the user can change the channels and

choose the one to watch. The navigation in this menu can be performed by pressing

the arrow in the screen with the mouse or through predefined gestures.

Logger allows viewing and recording the last received data. This screen is divided into

three parts, on the left it shows a sequence of the last 20 received data, updated

in real time. On the right side there are three buttons, that allows to save, read of

delete a file, while the data is displayed in the left side of the screen.

After being defined the application interface, it was developed the background service

to receive data from the RCD through USB.

USB background service for user interface application

The application was developed for using data via USB and it was decided to put all

the management of the USB in a service, in order to make it completely independent of

the interface presented to the user, as shown in Figure 4.18. This background service

is responsible for requesting, reading and sending data for a particular device, since the

application is seen as USB host. That is, when the dongle is connected, the service will

check if the device is the one expected by the application. If it is, then a request is made

by the service in order to be in charge of the interface.

This service has been set up so that is always running regardless of the user screen

presented. However, for the service to be running, is required to have the application

active. In order to detect when a device is connected, a list of the interested USB devices

is declared in the file “AndroidManifest.xml” (Code 4.5). So, when a new device is

detected among those in the filter (Code 4.6), a new instance of the application starts, if

not already running. This filter, only indicates the vendor and product ID of the interested

USB devices.

Since there is a bug in Android OS, each time the device is turned on, it starts a

new instance of the application, regardless if it was already started, which accumulates

multiple instances of the same application. This bug was bypassed through line 5 in Code

4.5, which indicates to the application, that only allows one instance on the Android OS

at a time, thus removing the previous instance.
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MainActivity USBService USBDevice

Check USB Type

Start USB 
Service

Android OS

Stop USB 
Service

USB Device attached

USB Device deattached

Load Device

USBCustomHID

[if USB custom HID]
initialize connection

Loop

Request data to 
USB

Send data to 
messenger

Receives data

Unload Device

Thread

Refresh layout

Message

Figure 4.18: USB Block Diagram.

Code 4.5: AindroidManifest.xml

1 ...

2 <manifest ...>

3 <application ...>

4 <activity ...

5 android:launchMode="singleTask">

6 ...

7 <intent-filter>

8 <action android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED" />

9 </intent-filter>

10 <meta-data android:name="android.hardware.usb.action.USB_DEVICE_ATTACHED"

11 android:resource="@xml/device_filter" />

12 </activity>

13 <service android:name="hermes.settopbox.Brains.Services.USBService"/>

14 </application>

15 </manifest>

16 ...
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Code 4.6: device filter.xml

1 <resources>

2 <usb-device vendor-id="1240" product-id="63"/> <!-- Custom HID demo -->

3 </resources>

Since this service runs in background, the main process is free in order to not affect

interaction with the user. During the application start, an “IntentFilter” is created, telling

the system to receive a notification when any of the devices in the list is detached (Code

4.7).

Code 4.7: Receiver register

1 IntentFilter filter = new IntentFilter();

2 filter.addAction(UsbManager.ACTION_USB_DEVICE_DETACHED);

3 this.registerReceiver(receiver, filter);

During startup of the communication with USB device a new thread is created running

in background as an infinite loop and managing all communication. The thread just makes

a request for data (Code 4.8, line 6) and receives them (Code 4.8, line 11). Between each

request a waiting period of 1 second is implemented and the request is made while receiving

no answer, until the device is detached.

The received data are then passed through a verification, in which the request code

has to be equal to the first value of the received data (Code 4.8, line 16). The received

data has variable length, depending on the accuracy of the information sent by the device,

following the order showing Figure 4.8. The information is only processed if there is an

interface that needs to receive that data (Code 4.8, line 16). That data is processed and

encapsulated in two different types of messages:

• The message of the text type, where the goal is to show the raw data on the screen,

without any processing.

• The message of the rotation type, processes the information received and separates

according to the structure of the data packet (Figure 4.8). This is a way to keep

the protocol more secure, given the need to know the structure of the protocol.

After processing the received data, these are presented to the user through the previ-

ously described interface.
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Code 4.8: Communication thread, file:USBCustomHID.java

1 while(true) {

2 ...

3 /* Send the request to read the Message */

4 do{

5 result = connection.bulkTransfer(endpointOUT, getRequest,

getRequest.length, 1000);

6 } while((result < 0) && (wasCloseRequested() == false));

7

8 /* Read the Message of that request */

9 do{

10 result = connection.bulkTransfer(endpointIN, getResults,

getResults.length, 1000);

11 } while((result < 0) && (wasCloseRequested() == false));

12

13 /* If there was data successfully read,... */

14 if(result > 0 && outMessenger != null && getRequest[0] == getResults[0])

{

15 // Send in Text format

16 Message message = Message.obtain();

17 message.obj = new USBMessageText(new String(getResults).substring(1,

result));

18 // Send in Rotations format

19 Message message2 = Message.obtain();

20 message2.obj = new USBMessageRotations(new

String(getResults).substring(1, result));

21 try {

22 outMessenger.send(message);

23 outMessenger.send(message2);

24 } catch (RemoteException e) {

25 // TODO Auto-generated catch block

26 e.printStackTrace();

27 }

28 }

29 }
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4.3 Energy consumption analysis on remote control

As described in the introduction of this chapter and presented in Figure 4.1, the system

was developed with two possible solutions. In order to chose the best option (Option “A”

or “B”) in terms of QoE and greater battery life, an analysis on the energy consumption

of each module of RCD was made. The RCD modules consists of a Microcontroller

Unit (MCU), MARG sensors and a RF module.

Consumption measurements were taken at a 100 kHz sampling rate and 14 bit reso-

lution between -2.5 and +2.5 V. As shown in figure 4.19(a), to measure the current sunk

by each module, a shunt resistor (R1) was connected to ground, thereby allowing to get

the voltage drop (VL) to compute the current. In order to use the full Analog-to-Digital

Converter (ADC) range, a inverting summing amplifier with the OP37 was used (figure

4.19(b)), where the gain and the output voltage is calculated by the set of equations (4.1 -

4.4). Since the input value V2 ∗ A2 was designed to the range between 0 and 5 volts, it

was necessary to use an input voltage V1 ∗ A1 to create the offset of +2.5 volts, in order

to fit the output (VO) within the range used by the acquisition system.

(a) Module for mea-
surement.

+

-‒

(b) Inverting summing amplifier.

Figure 4.19: Measurement system.

A1 = −R2

R4

(4.1)

A2 = −R2

R3

(4.2)

VL = V2 [V] (4.3)

VO = A1 ∗ V1 + A2 ∗ V2 [V] (4.4)
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The component values used in the measurement system (Figure 4.19) to get equation

4.6, are presented in the following equations (4.5a, 4.5b and 4.5c).

R2 = 10 kΩ (4.5a)

R4 = 20 kΩ (4.5b)

V1 = −5 V (4.5c)

VO = 2, 5 + A2 ∗ V2 [V] (4.6)

Taking into account the maximum current indicated in the datasheet of the modules,

the remaining variables present in the Table 4.1 were determined, through the set of

equations 4.7a, 4.7b and 4.7c. The value of R1 was defined to not exceed the maximum

voltage drop recommended by the datasheet module.

VLmax = Imax ∗R1 [V] (4.7a)

A2 =
5

VLmax

(4.7b)

R3 =
R2

A2

Ω (4.7c)

Table 4.1: Calculated value of the variables for each module.

Imax R1 VLmax A2 R3

[mA] [Ω] [mV] [Ω]

Microcontroller 200 0,22 44 113,64 88
Radio Frequency 23 1 23 217,39 8,5
Sensors 13 1 13 384,62 26

Given the limited available resistance values, these are rounded to the nearest value,

as can be seen in Table 4.2. Although the maximum allowed voltage in the case of the

microcontroller is lower than the calculated in Table 4.1, were made tests to ensure that

the voltage Vmax does not exceed 50 mV. For all other cases the Vmax is higher than the

previously calculated value.
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Table 4.2: Value of the variables used in each module.

R3 A2 Vmax

[Ω] [mV]

Microcontroller 100 100 50
Radio Frequency 68 147,06 34
Sensors 39 256,41 19,5

Taking into account the gains (A2) obtained by the Table 4.2 and the maximum

voltage (VLmax) in Table 4.1, it is possible to calculate the maximum voltage input on the

amplifier (VLmax*A2). The values are presented in Table 4.3, and the value Vinput does

not exceed 5 Volts.

Table 4.3: Maximum input voltage value in the amplifier from modules.

VLmax A2 Vinput

[mV] [V]

Microcontroller 44 100 4,4
Radio Frequency 23 147,06 3,4
Sensors 13 256,41 3,3

After concluding the hardware design for power consumption measurements, a char-

acterization of tests was made.

4.3.1 Test conditions and characterization

The measurements of energy consumption were made in three modules. In the microcon-

troller module energy consumption was measured for the data processing, sensor reading

and RF transmission, as can be seen in Table 4.5. Data processing consists of the filter

algorithm for sensors plus relative or absolute mouse estimation algorithms developed in

[53]. In reading sensors were tested two modules, MPU9150 and the MPU9250, where

the power consumption tests are characterized in Table 4.4. Both modules were tested

in three possible settings, reading data from the DMP, reading RAW data or both. For

RF transmission different sizes of payload were tested, characterized in the Table 4.6, in

order to analyze the energy impact. All procedures were performed in the microcontroller

at 80 Mhz, where all modules are powered at 3.3 Volt. For comparison purposes, only the

consumption peaks of operations characterized in the tables were measured. They do not

represent the total consumption, since the period in which the module is not doing any

operations was not taken into account.
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Table 4.4: Characterization of energy consumption - Sensors

Sensors
MPU9150 MPU9250

100 [Hz]
DMP 128 [bits] Test 1.1 Test 1.4
RAW 288 [bits] Test 1.2 Test 1.5
DMP + RAW 416 [bits] Test 1.3 Test 1.6

Table 4.5: Characterization of energy consumption - Data processing

Data processing
PIC32MX7xx

100 [Hz]

Reading MPU9150
DMP 128 [bits] Test 2.1
RAW 288 [bits] Test 2.2
DMP + RAW 416 [bits] Test 2.3

Reading MPU9250
DMP 128 [bits] Test 2.4
RAW 288 [bits] Test 2.5
DMP + RAW 416 [bits] Test 2.6

50 [Hz]

Filters

Madgwick Test 3.1
Mahony Test 3.2
Madgwick Adaptive Test 3.3
Mahony Adaptive Test 3.4
DMP Yaw correction Test 3.5
Relative Mouse Test 3.6
Absolute Mouse Test 3.7

Send with MRF24J40MA Payload

3 [bytes] Test 4.1
5 [bytes] Test 4.2
9 [bytes] Test 4.3

15 [bytes] Test 4.4
19 [bytes] Test 4.5
24 [bytes] Test 4.6

Table 4.6: Characterization of energy consumption - Module RF

Module RF
MRF24J40MA

50 [Hz] Payload

3 [bytes] Test 5.1
5 [bytes] Test 5.2
9 [bytes] Test 5.3

15 [bytes] Test 5.4
19 [bytes] Test 5.5
24 [bytes] Test 5.6
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4.3.2 Experimental Results

Table 4.7: Results of energy consumption - Sensors

MPU9150 MPU9250
Energy Peak Energy Peak

consumption durantion consumption durantion
[Joule] [ms] [Joule] [ms]

100 [Hz]
DMP 128 [bits] 2.32008e-04 7.20 1.88291e-04 7.07
RAW 288 [bits] 2.31050e-04 7.21 1.86139e-04 7.05
DMP + RAW 416 [bits] 2.32282e-04 7.21 1.89113e-04 7.08

Table 4.8: Results of energy consumption - Data processing

PIC32MX7xx
Energy Peak

consumption durantion
[Joule] [ms]

100 [Hz]

Reading MPU9150
DMP 128 [bits] 2.48291e-04 0.72
RAW 288 [bits] 2.89949e-04 0.85
DMP + RAW 416 [bits] 4.76695e-04 1.38

Reading MPU9250
DMP 128 [bits] 2.45270e-04 0.71
RAW 288 [bits] 3.01690e-04 0.82
DMP + RAW 416 [bits] 4.81338e-04 1.39

50 [Hz]

Filters

Madgwick 1.41394e-04 0.38
Mahony 7.29484e-05 0.20
Madgwick Adaptive 2.14523e-04 0.57
Mahony Adaptive 1.06858e-04 0.29
DMP Yaw correction 6.89736e-05 0.19
Relative Mouse 3.50383e-05 0.10
Absolute Mouse 9.15764e-05 0.25

Send with MRF24J40MA Payload

3 [bytes] 2.41117e-05 0.07
5 [bytes] 2.75855e-05 0.08
9 [bytes] 3.80335e-05 0.11

15 [bytes] 4.49740e-05 0.13
19 [bytes] 4.87658e-05 0.14
24 [bytes] 5.58275e-05 0.16

Table 4.9: Results of energy consumption - Module RF

MRF24J40MA
Energy consumption Peak durantion

[Joule] [ms]

50 [Hz] Payload

3 [bytes] 5.35162e-05 0.58
5 [bytes] 5.97764e-05 0.65
9 [bytes] 7.00594e-05 0.77

15 [bytes] 8.90354e-05 0.97
19 [bytes] 1.00867e-04 1.10
24 [bytes] 1.17342e-04 1.26
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Figure 4.20: Results of energy consumption - Sensors.
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Figure 4.21: Results of energy consumption - Reading Sensors.
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Figure 4.22: Results of energy consumption - Fusion Filters.
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Figure 4.23: Results of energy consumption - Send with MRF24J40MA.
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Figure 4.24: Results of energy consumption - MRF24J40MA.
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4.3.3 Analysis of results

The analysis of results were performed with the implementation of five setups, comprising

representative sensors data acquisition and software algorithm implementation. The QoE

was taken into account in the power consumption tests, since it is affected by the pointer

position refresh rate on the screen, which depends on the sensors data processing and

transmission frequency. For all tested setups, the data acquisition is done at 100Hz and

transmission at 50Hz. Setups 1, 2 and 3 correspond to the processing in the RCD (Option

“A” in Figure 4.3). Setups 4 and 5 have the computational load in the STB (Option “B”

in Figure 4.3). All setups are presented in Table 4.10.

In the first setup, the data from the sensors is acquired in RAW and, using the Mahony

filter (MhF), is computed the device orientation to determine the HID relative mouse

position, results are fitted in 2 bytes (X and Y) and sent via RF, with 1 byte representing

the header [55]. The second setup also uses the MhF to determine the HID absolute mouse

position, in this setup the results are fitted in 4 bytes (X and Y). The two added bytes

arise by matching the range of values with the size of the screen, which requires at least 2

bytes for each dimension. In the setup 3 the device orientation is computed by the DMP,

so it is not necessary to apply further data processing. The results are also fitted in 4

bytes (X and Y) has in the previous setup. Setup 4 consists in the acquisition of raw data

and its respective transmission, i.e., 3 bytes for each sensor (Accelerometer, Gyroscope

and Magnetometer), plus 1 byte for the header. In the setup 5 both DMP and RAW data

are acquired, but only the orientation computed by the DMP and the Magnetometer data

are transmitted. It consist on 3 bytes for each component of the DMP, 2 bytes for the

Magnetometer data and 1 byte for the header.

Table 4.10: Remote control device setups and results.

Setup
Data Computational

Payload
Energy Peak

acquisition processing consumption duration
[Bytes] [mJ] [ms]

1 Gyro + Acc + Mag MhF + Air Mouse Rel. 3 1.1612726 16.69
2 Gyro + Acc + Mag MhF + Air Mouse Abs. 5 1.2275447 16.92
3 DMPquat + Gyro + Acc + Mag Air Mouse Abs. 5 1.5198403 17.92
4 Gyro + Acc + Mag - 19 1.1252908 16.98
5 DMPquat + Gyro + Acc + Mag - 15 1.4749114 18.18

The results for energy consumption and the peak duration for each setup that are

listed in Table 4.10, leading to the following conclusions for each test performed. Setups

1 and 2 were used to test the sensors data processing in the RCD using the RAW data,

which results in the relative and absolute mouse, respectively. As expected, the absolute

mouse implementation requires more energy, as it needs more processing and more data

to be sent. Setup 3 implements part of the sensors data processing in the sensors module
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through the DMP. Results show that it requires more energy than Setup 2, which performs

data processing from the RAW sensors data in the microcontroller. In Setup, 4 RAW data

is obtained from the sensors without any processing being done in the RCD. Although

this results in more data to be transmitted, this Setup revealed to consume less energy

than all the Setups presented above. Setup 5 uses the DMP processing in sensors module

in order to transmit less data, however it consumes more energy than the Setup 4. The

results listed in Table 4.10 show that there is less energy consumption on the acquisition

of RAW data. Setup 4 has the lowest consumption, since no processing is done in the

remote, as it consists in reading RAW data and its respective RF transmission. When

the processing is performed in the RCD, acquire raw data and processing Mahony filter

evidence a lower power consumption compared to acquire DMP plus RAW data from

sensors in order to avoid Mahony filter processing.

The QoE was tested using an Android application, shown in Figure 4.15, specifically

developed to simulate and test a potential usage environment. Also the results of the

subjective tests in [53], that were carried out to evaluate how friendly is the RCD to non-

expert users, revealed that absolute orientation computed in the STB presents smoother

motion tracking and good user experience.



Chapter 5

Conclusions and Future Work

The recent advances in STB and television technology, such as the ”smart TVs” and the

integration of Android, allows to deliver more multimedia content to the user. Although

the remote control devices in the market to interact with the multimedia content, displayed

in the television, stills needs some improvements to be more intuitive to the user.

This work had as main objective the development of an Hardware/Software interface

for enhanced remote control devices, comprising of a Remote Control Device (RCD),

Dongle, STB with Android OS.

In this dissertation, the remote control device used was developed by Miguel Rasteiro

and Tech4Home [53]. This device has novel characteristics, such as 6 Degrees of Freedom

through a set of sensors commonly known as MARG sensors, allowing an absolute orien-

tation to use the device as a pointer. The sensors in remote control device in addition to

have a reduced frequency of calibration and to enabling gesture-based controls, can also

be used to play games.

Those advances in technology allows improved user interaction in the digital world,

although, battery life versus computational power can still be problematic. This work

studied the current wireless communications solutions for low energy devices that are

in the market for communication between the STB and the RCD. All the low energy

solutions are simpler versions of the one that exist previously. Since one solution is not

the best for all situations, they should be chosen for the main role that will be used. In

the CE devices the most used are the BLE and RF4CE.

There were already some techniques for integration of devices with sensors on the

Android operating system, however these techniques have some limitations, such as de-

pendencies with either hardware or software. Although, the “Sensor Emulation initiative

for virtualized Android-x86” had the closest approach of the desired [8].

The USB 2.0 communication with HID and Sensors interfaces was also implemented
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between Dongle and STB. The USB demonstrated to be a solid architecture with a very

well defined protocol. The interfaces allowed to customize and adapt the functionality of

the device without the need to change the host. This implementation is recognized as

very good pattern for development in such way that the Bluetooth R© already adopted it,

as HID Over GATT Profile (HOGP), and also the ZigBee R© RF4CE as ZigBee R© Input

Device (ZID). However, if it is necessary to perform some processing in the data received

by the host before they are available to the OS, the procedure becomes more complicated.

To overcome this problem an API was developed in the user space to process the data

before making it available to the OS. This receives the data through the USB with

a custom interface, processes the data and makes them available through virtual USB

interfaces and the input services in the OS. The API allowed the processing of sensors

data and the implementation of the absolute mouse and gestures.

The HID sensors interface was also implemented but was not fully tested. It was

revealed that the kernel in Android OS does not yet implement the driver for this interface,

preventing the tests. According to the source code documentation, there are plans to

introduce this support in future releases. To overcome this problem in the current version

of Android kernel, was needed to implement an sensors library specifically developed to

receive the data from the API. The library was tested and successfully showed the values

from the sensors in either the OS, games and the applications from the Play Store.

Although the external sensors are working in this work, the delay to get the sensors

data from the RCD to the Android OS, should be analysed. As more sensors are sent,

the delay will be bigger. Given that Android already includes a procedure for creating

virtual sensors, when some physical sensors are present, this can help to increase the delay,

which results in a poor experience for the user. The HID sensors interface can also be

tested with the Android devices that already have built-in the new version of kernel with

this class. This would allow an easier integration of the RCD with the Android OS for

future versions. Also, the ZID profile or HOGP for wireless communications is suggested,

providing the possibility to remove the dongle.

Another way to process the data, was through the USB service inside an Android

application. However, this is not the best solution, because the data processed is not

available outside the application. This option was used only to demonstrate the capabil-

ities of the RCD in one STB environment. This application allowed to test the gestures

to select and change channels, check the 3D orientation of RCD and record data from

sensors.

Whereas the main target are low-power remote controls, energy analysis was carried

out to decide whether the processing of sensor data, must be performed in the RCD

or STB. In this work the energy consumption analysis revealed that the computational
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processing of data should be made on the STB through the use of an API. Although it

requires sending more data it consumes less energy than reading the computed orientation

from the DMP or computing the orientation estimation in the RCD. In terms of energy

consumption, is suggested the creation of different profiles that represent the different

types of user, to analyse the total consumption of the remote control and obtain an

estimate of battery life.

The overall system was successfully tested with a good user Quality of Experience

and the mains goals achieved. The RCD communicates through RF4CE to the dongle

developed, that forwards the data to the STB through USB with HID classes. Then it was

implemented an API to process the sensors data allowing the absolute mouse and gesture

or to send sensors data to the library developed allowing the use of external sensors with

any application in the Android OS. Also, the simulation of the STB user interface was

done through an Android application.
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Appendix A

Android API development tutorial

This chapter have the purpose of discribing the process to develop native aplications for

Android with Standalone Toolchain from the Native Development Kit (NDK), in order

to cross-compile the aplication for the target device. In this process is also described how

to build the Android operating system and kernel from scratch. This is only required if

it’s needed to change the original files in operating system, for example, to change the

init.rc file to load the application during boot.

A.1 Build steps in Linux

All this steps were performed in linux distribution Ubuntu LTS (14.04) with Nexus 7

(2013) as target device that have the code name ”flo”.

A.1.1 Recomended requirements

It’s recomended by google the following specifications.

https://source.android.com/source/building.html

• 100GB of free space available

• 8/16GB RAM

• Quad-Core processor

A.1.2 Android open source build

In order to build the source code of Android it’s required to have some extra tools installed.

Then we proceed to the download of source code files, in order to be able to build the
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operating system. Given the fact that it’s needed to make a cross-compile, that means

we compile the code in one device to run in another, we have to setup the environment

variables to tell to the compiler wich device we will use for the operating system. The script

in source code files used for this configuration already have the option for some devices

from google. After the sucessful build, flash the device with new operating system. All

the steps are listed bellow.

Initializing a Build Environment

1 $ sudo apt-get update

2 $ sudo apt-get install openjdk-7-jdk

3 $ sudo apt-get install bison g++-multilib git gperf libxml2-utils make

zlib1g-dev:i386 zip

Downloading the Source

The version downloaded was 5.0.2, but it can be another. All the versions released can

be seen here:

• https://android.googlesource.com/platform/manifest/+refs

1 $ mkdir ~/AOSP

2 $ mkdir ~/AOSP/bin

3 $ PATH=~/AOSP/bin:$PATH

4 $ curl https://storage.googleapis.com/git-repo-downloads/repo >

~/AOSP/bin/repo

5 $ chmod a+x ~/AOSP/bin/repo

6 $ cd ~/AOSP

7 $ mkdir WORKING_DIRECTORY

8 $ cd WORKING_DIRECTORY

9 $ repo init -u https://android.googlesource.com/platform/manifest -b

android-5.0.2_r1

10 $ repo sync

Then after getting the source code, its needed to download the driver for the device.

In this case, we have a Nexus 7 [2013] (Wi-Fi) (”flo”), with the version 5.0.2 (LRX22G)

of android. So we download the driver from the link:

• https://developers.google.com/android/nexus/drivers

After all the source files, its needed to setup the environment.
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1 $ source build/envsetup.sh

2 $ lunch aosp_flo-userdebug

Then to compile we do:

1 $ make -j8 otapackage

2 $ fastboot -w flashall

3 $ fastboot reboot

A.1.3 Android kernel build

To build the Android kernel the steps are similar to the Android operating system. Con-

sidering that all the required tools mentioned in section A.1.2 are installed, the first step

is to download all the source files. Then it is recommended to match the kernel version to

build with the version in original operating system. After that, it is required to configure

the environment variables to make a cross-compile for the desired device. As optional,

can be enabled the option to load modules. Given that, everything is ready to compile the

kernel. After the successful compilation, the kernel is moved to the folder in the source

code of operating system, in order to create a boot image with the new kernel. To finish,

it is only needed to flash the boot image in the device with this new one. All the steps

are listed bellow.

Downloading the Source

1 $ mkdir ~/AOSP/WORKING_DIRECTORY_KERNEL

2 $ cd ~/AOSP/WORKING_DIRECTORY_KERNEL

3 $ git clone https://android.googlesource.com/kernel/msm.git

4 $ git clone

https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6

5 $ echo "export

PATH=~/AOSP/WORKING_DIRECTORY_KERNEL/arm-eabi-4.6/bin:$PATH"

Checking the kernel version of Android OS

In this case the device have the code name ”flo”.

1 $ cd ~/AOSP/WORKING_DIRECTORY/device/asus/flo-kernel/

2 $ git show
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Advance our custom kernel to the version of Android OS

Note: The version of original kernel can be other.

1 $ cd ~/AOSP/WORKING_DIRECTORY_KERNEL/msm

2 $ git checkout 154bef4

Setup environment

The configurations were made for the Nexus 7 (2013) device with code name ”flo”.

1 $ export ARCH=arm

2 $ export SUBARCH=arm

3 $ export CROSS_COMPILE=arm-eabi-

4 $ make flo_defconfig

Enable modules (Optional)

If we want to allow the kernel to load modules, run the following script. Otherwise, skip

it.

1 $ sed -i -e ’s/# CONFIG_MODULES is not set/CONFIG_MODULES=y/g’ .config

Compile Kernel

1 $ make -j8

2 $ cp ~/AOSP/WORKING_DIRECTORY_KERNEL/msm/arch/arm/boot/zImage

/Volumes/android/WORKING_DIRECTORY/device/asus/flo-kernel/

3 $ mv kernel kernel_backup

4 $ mv zImage kernel

Build bootimage

1 $ cd ~/AOSP/WORKING_DIRECTORY/

2 $ source build/envsetup.sh

3 $ lunch aosp_flo-userdebug

4 $ make -j8 bootimage
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Flash Android device with custom bootimage

1 $ fastboot flash boot out/target/product/flo/boot.img

2 $ fastboot reboot

A.1.4 Android native C program

The Android native application can be compiled using the standalone toolchain in the

Native Development Kit (NDK). So, the first step is to download the NDK, to extract

the standalone toolchain. Then the application it’s created using regular text editor and

compiled with the GNU Compiler Collection contained in standalone toolchain. To finish,

the application is copied to the device and it’s ready to be launch.

First download Android NDK to ˜/AOSP/

• https://developer.android.com/tools/sdk/ndk/index.html

Setup the cross-compiler for Android devices

1 $ mkdir ~/AOSP/STANDALONE_TOOLCHAIN

2 $ cd ~/AOSP

3 $ ./android-ndk-r10d-linux-x86_64.bin

4 $ cd android-ndk-r10d/build/tools

5 $ ./make-standalone-toolchain.bin --system=linux-x86_64

--toolchain=arm-linux-androideabi-4.6 --platform=android-21

--install-dir=~/AOSP/STANDALONE_TOOLCHAIN

--ndk-dir=~/AOSP/android-ndk-r10d

6 $ cd ~/AOSP/STANDALONE_TOOLCHAIN/bin

7 $ ./arm-linux-androideabi-gcc --version

Create ”Hello World” native application

1 $ cd ~/AOSP

2 $ mkdir UHID

3 $ nano helloWorld.c
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Application:

1 #include <stdio.h>

2 int main(void){

3 printf("Hello World!\n");

4 return 0;

5 }

Build and Run ”Hello World” native application

1 $ cd ~/AOSP/STANDALONE_TOOLCHAIN/bin

2 $ ./arm-linux-androideabi-gcc -pie -fPIE -o ~/AOSP/UHID/helloWorld

~/AOSP/UHID/helloWorld.c

3 $ cd ~/AOSP/UHID

4 $ adb push helloWorld /data/local/tmp

5 $ adb shell

6 $ su

7 $ cd /data/local/tmp

8 $ ./helloWorld

A.1.5 Android sensors library compilation

To compile the Sensor Library first is needed to setup the environment variables:

1 $ cd ~/AOSP/WORKING_DIRECTORY

2 $ source build/envsetup.sh

3 $ lunch aosp_flo-userdebug

4 $ make -j8 bootimage

Then to compile the library is used the command “mm”:

1 $ cd ~/AOSP/WORKING_DIRECTORY/hardware/akm/AK8975/libsensors

2 $ mm

Then the next step is to copy the library to the device:

1 $ cd ~/AOSP/WORKING_DIRECTORY/out/target/product/flo/system/lib/hw/

2 $ adb push sensors.default.so /data/local/tmp

In order to copy the library from the temporary folder to the Android OS is needed

to remount the system with write permission:
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1 $ adb shell

2 $ mount

Get the path for the system:

1 ...

2 /dev/block/platform/omap/omap_hsmmc.0/by-name/system /system ext4

ro,relatime,barrier=1,data=ordered 0 0

3 ...

Remount the file system:

1 $ su

2 $ mount -o remount,rw /dev/block/platform/omap/omap_hsmmc.0/by-name/system

The final step is to copy the library and fix the permissions:

1 $ cp /data/local/tmp/sensors.default.so /system/lib/hw/

2 $ chmod 644 /system/lib/hw/*

3 $ chown root:root /system/lib/hw/*
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