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1 Introduction

Every endomap f : X → X induces a partition of X into
disjoint orbits. Such decomposition is in general not
unique. However, in this text we provide a vectorized
Matlab implementation for an algorithm which can be
considered as a canonical decomposition of the domain
of an endomap into its finite (disjoint) orbits.

To do that we have to consider three different kind of
(finite) orbits that we will call initial orbits, linking orbits
and cyclic orbits.

The following definitions are useful in establishing the
three different kind of orbits.

Definition Let f : X → X be an endomap. An element
x ∈ X is said to be:

1. a initial point if card(f−1(x)) = 0;

2. a merging point if card(f−1(x)) > 1;

3. a linking point if card(f−1(x)) = 1.

Here card stands for cardinality and f−1(x) is the set of
all elements x′ ∈ X with f(x′) = x.

For the purposes of this note a sequence of f : X → X

is any subset S ⊆ X together with a distinguished ele-
ment x1 ∈ S and a map

η : S → N

such that

η(x1) = 1

and for any other x ∈ S, different from x1, there exists a
unique x′ ∈ S with

x = f(x′) and η(x) = η(x′) + 1.

Each sequence (S, x1, η) can be ordered as

x1, x2, . . . , xn, . . .

with xi+1 = f(xi). The element x1 is called the starting
element and, in case S is finite, say of length n, then xn

is called the last element in the sequence.

We are now in position to define the three different
kind of orbits which will be considered in this note.

Initial Orbits An initial orbit for an endomap
f : X → X is a finite sequence (S, x1, η) where x1 is a ini-
tial point and f(xn), the image by f of the last element
in the sequence, is a merging point. All the other points
are required to be linking points.

Linking orbits A linking orbit of f : X → X is a finite
sequence of f , say (S, x1, η), such that both the initial
point and the image by f of the last point are merging
points and all the others are linking points. Observe that
the image by f of the last point is no longer an element
in the sequence.

Cyclic orbits A cyclic orbit of f , is any finite sequence
(S, x1, η), in which every element is a linking point and
moreover x1 = f(xn), with xn the last point in the se-
quence.

Infinite orbits In this study, for practical reasons, we
are excluding the infinite orbits: the ones where x1 is an
initial point and all the other are linking points.

2 Partitioning a finite domain of an

endomap in its disjoint orbits

When X is not finite there is no guarantee that an en-
domap f : X → X can induce a partition on it into classes
of disjoint initial, linking and cyclic orbits. However, if X
is a finite set then we always have such a partition.

Proposition Let f : X → X be an endomap. The initial,
linking and cyclic orbits of f are all disjoint. Moreover,
when X is finite, they induce a partition of X.
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3 THE CYCLIC ORBITS AND ITS VECTORIZED IMPLEMENTATION

The remaining part of this text is devoted to a vec-
torized (see also [1]) Matlab implementation of an algo-
rithm to decompose a finite set X into the disjoint orbits
of an endomap.

2.1 The initial and linking orbits

For practical reasons we assume that

X = {1, . . . , n}

is the set of natural numbers between 1 and n and hence
an endomap of X is just a vector with length n whose all
entries are numbers in the range  !".

The following example will be used for the purpose of
illustrating the concepts:

f = [6 , 7 , 10 , 2 , 4 , 12 , 12 , 13 , 10 , 8 , 10 ,
13 , 13 , 15 , 16 , 14]

The notion of orbit, or sequence in the sense de-
fined above, is best illustrated by picturing the endomap
f : X → X as a directed graph

X
1X //

f
// X

whose vertices are the elements of X, the edges are also
the elements of X which are interpreted as follows: an
element x ∈ X is considered as an arrow (or edge)

x
x // f(x)

whose domain (or source) is x and whose codomain (or
target) is f(x).

Our example can so be pictured as a graph in the fol-
lowing manner:
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As we see it is now a simple task to visually identify
the initial points:

1, 3, 5, 9, 11,

and the merging points:

10, 12, 13.

All the others are linking points.
The initial orbits are the ones which start with an ini-

tial point and run over until a merging point is found in
the sequence (stopping immediately before the merging
point is reached):

1 , 6
3
5 , 4 , 2 , 7
9
11

The linking orbits are the ones which start with a
merging point and run over until a merging point is found
in the sequence (stopping immediately before the merg-
ing point is reached):

10 , 8
12
13

The remaining elements, that are not being used in
any of the initial or linking orbits are organized into cyclic
orbits. This is a general fact and may be stated as follows,
where I is the set of all inital points, M is the set of all
merging points, IM = I∪M and Ox is the set of elements
in the orbit whose first element is x.

Proposition Let f : X → X be an endomap. If

Y =
⋃

x∈IM

Ox

then the restriction of f to the set Z = X \ Y is a well
defined endomap

f : Z → Z

and moreover it is a bijection.

The Matlab vectorized code to obtain the initial and
merging points is the following:

1 % Input : t
2 t=t ( : ) ; % f o r c e t to be a column v e c t o r
3 % check i f t r e p r e s e n t s an endomap
4 t r y
5 t ( t ) ;
6 catch ME
7 error (ME. message )
8 end
9 nA=length ( t ) ;

10 % computing the i n i t i a l p o i n t s
11 I=s e t d i f f (1 :nA , t ) ;
12 % computing the merging p o i n t s
13 t s=sort ( t ) ;
14 ds t=d i f f ( t s ) ;
15 M=t s ( ds t==0);

3 The cyclic orbits and its vector-

ized implementation

Once all the initial and linking orbits are obtained, the
previous result tells us that the elements in X that where
not used in the initial or linking orbits are organized into
cyclic orbits. The following Matlab code is a vectorized
implementation of the simple procedure of decomposing
a permutation into its disjoint cycles.
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3 THE CYCLIC ORBITS AND ITS VECTORIZED IMPLEMENTATION

1 function Orb=o r b i t s (p)
2 % input : a v e c t o r p which i s a
3 % permutat ion on the s e t A={ 1 , . . . , nA } ;
4 % Output : Orb , a matr ix with the
5 % o r b i t s o f p , one o r b i t in each l i n e ,
6 % without r e p e a t i n g the c y c l e s

8 nA=length (p) ;
9 % f o r c e p to be a column v e c t o r

10 p=reshape (p , nA ,1 ) ;

12 % Check tha t i t i s a permutat ion
13 idA=(1:nA) ’ ;
14 invp (p)=idA ;
15 i f ~i s e q u a l (p( invp ) , idA )
16 disp ( ’ The input must be a permutation ! ’ )
17 Orb=[];
18 return
19 end

21 % the v e c t o r A w i l l be equa l to p̂ x ,
22 % on each i t e r a t i o n x
23 A=p( idA ) ;
24 x=1;

The following block of code can be improved by replacing
 !"# by  !$% with the due adjustments on the rest of the
code; the point is that if we arrive to the iteration &' !$%

then, from that moment on, there is only one cycle.

1 Z=[idA , zeros (nA , nA−1) ] ;

3 L=(A~=Z ( : , 1 ) ) ;
4 while any(L)
5 Z(L , x+1)=A(L) ;
6 % c u r r e n t i t e r a t i o n
7 A=p^{}
8 A(L)=p(A(L) ) ;
9 x=x+1;

10 % L0 i s the p r e v i o u s L to be
11 % compared with the c u r r e n t one
12 L0=L ;
13 L(L)=(A(L)~=Z(L ,1 ) ) ;
14 i f ~i s e q u a l (L , L0)
15 R=reduce (Z ( : , 1 : x ) , L0) ;
16 Z(R , : ) =0;
17 A(R)=0;
18 L(R)=0;
19 end
20 end

22 Orb=Z(Z ( : , 1 ) ~=0,1:x ) ;

The auxiliary function ()*+,) is described below.

1 function R=reduce (Z , L )
2 % a u x i l i a r f u n c t i o n :
3 % Z and L are as above ;
4 % R i n d i c a t e s the e l emen t s to be
5 % removed from the beg in ing o f a
6 % c y c l e be cause they are a l r eady
7 % being used in another c y c l e s

9 % element s to be removed ,
10 % i n i t i a l i z e d as f a l s e
11 R=f a l s e ( s ize (Z ( : , 1 ) ) ) ;

13 while any(L)
14 R f i=f ind (L ,1 , ’ f i r s t ’ ) ;
15 % a l l the e l emen t s in a c y c l e ,
16 % e x c e p t the s t a r t i n g one are
17 % removed , so tha t they do not

18 % s t a r t new c y c l e s
19 R(Z( Rf i , 2 : end) )=true ;
20 L(Z( Rf i , 1 : end) )=f a l s e ;
21 end

The procedure for computing the initial and linking
orbits is similar with the only difference that instead of
checking whether the current iteration is equal to the
starting one, one has to check if it is any one of the merg-
ing points.

An example of a (non-vectorized) implementation for
computing the initial and linking orbits may be obtained
as follows.

1 % I and M are computed as above
2 % i n i t i a l merging p o i n t s to be used
3 Orb=[]; IM=[];
4 l a b e l s =[]; cu r r l ab =1; % c u r r e n t l a b e l
5 for u=I
6 while ~ismember (u , IM)
7 Orb(end+1)=u ;
8 i f ismember (u ,M)
9 cu r r l ab=cur r l ab +1;

10 IM(end+1)=u ;
11 end
12 l a b e l s (end+1)=cur r l ab ;
13 u=t (u) ;
14 end
15 cur r l ab=cur r l ab +1;
16 end

At this point we have computed all the initial and link-
ing orbits, what remains is organized in cyclic orbits and
hence we can use the function -)(.%/(0 which trans-
forms a permutation into its disjoint orbits (see [2]).

1 % From here on we use the perm2orb
2 x=s e t d i f f ( t , Orb) ;
3 % f i n d p such tha t t ( x )=x (p) us ing digraph
4 [~,p]=digraph ( x ( : ) , t ( x ) ) ;
5 % g e t the o r b i t s o f p
6 orb=o r b i t s (p) ;
7 % l a b e l the o r b i t s o f p
8 orb=orb ’ ;
9 [ sorb1 , sorb2]=s ize ( orb ) ;

10 nz=orb~=0;
11 o r b l a b e l s=repmat (1 : sorb2 , sorb1 ,1 ) ;
12 o r b l a b e l s=o r b l a b e l s ( nz ) ;
13 v=x ( orb ( nz ) ) ;

15 %output
16 s=[Orb ( : ) ; v ( : ) ] ;
17 l a b e l s=[ l a b e l s ( : ) ; o r b l a b e l s ( : ) ] ;

One last issue has to be solved for a complete imple-
mentation. We have to be able to transform the restriction
of the original endomap from its original domain into the
set of linking points which do not belong to any initial
or linking orbit. This is done with the simple procedure
of transforming any directed graph with any set of edges
into a set of indexed labels, as follows.

1 function [d , c]=digraph (dom, cod )
2 % [d , c]=digraph (dom , cod )
3 % c r e a t e s l i n e a r i n d e x e s d and c f o r dom
4 % and cod i f dom and cod are ma t r i c e s

6 i f s ize (dom)~=s ize ( cod )
7 error ( ’dom and cod must be of same s i z e ’ )
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8 end

10 nA=s ize (dom,1) ;

12 [~,~,dc3]=unique ([dom; cod ] , ’ rows ’ ) ;
13 % index ing the dom and cod as a l i n e a r
14 % v e c t o r o f unique e n t r i e s where the
15 % f i r s t nA are from dom whi l e the l a s t
16 % ones (nA+1:2∗nA) are from cod
17 d=dc3 (1 :nA) ;
18 c=dc3 (nA+(1:nA) ) ;

Finally we may present the output of the example con-
sidered before, which is:

Orb Label
1 1
6 1

12 2
13 3

3 4
10 5

8 5
5 6
4 6
2 6
7 6
9 7

11 8
14 9
15 9
16 9

4 Applications Examples

Every directed graph induces an endomap. For example,
the endomap f introduced in section 2.1, is derived from

the graph depicted in the following diagram:
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The procedure to do so is very simple: for each vertex,
the incoming and outgoing edges are listed and matched.
Whenever the number of incoming edges is less than the
matching outgoing ones, an identity arrow is inserted.
This is the case for the vertex 9, which has two incoming
edges and no outgoing ones. Correspondingly, in f a loop
is present (labeled as 13).

If f : A → A is a given endomap, then every map
g : A → C, from the domain of the given endomap into
the complex plane, induces a planar curve which is a re-
alization of the graph depicting the endomap.
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Toolpath trajectory for a multi-material extrusion of a cylindrical scaffold with orthogonal orientation from

layer to layer.
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