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Abstract: Given an arbitrary region on the plane, modelled as a graph with a symmetry, we describe a procedure
to find the best orientation for slicing, via a zigzag tool-path trajectory based curve, in order to minimize its disconti-
nuities. We also develop some directions on how to generalize the procedure up to the level of optimizing tool-path
trajectories on arbitrary surfaces rather than planar regions only.
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1 Introduction

The generation of optimized tool-path trajectories is a de-
manding and computationally difficult problem that has
been considered since the early ages of CAD/CAM sys-
tems of rapid prototyping and rapid manufacturing of
new products in the area of industry and enterprises in
general. Hence it has already been addressed for the last
thirty years or so. Nevertheless, the more recent applica-
tion of 3-D printing, namely to medical application has
provided new and challenging problems in this area. The
old methods that were already well established are no
longer applicable as the technology has moved from the
point of view of subtractive manufacturing to additive
manufacturing, suggesting new perspectives and strate-
gies of machine toolpath generation. One of the big con-
straints of this systems is the necessity of a good finishing
detail level. In particular it is a heavy handicap the im-
possibility of always having a continuous toolpath for a
whole region at a given layer. We will present some as-
pect of implementation and optimization for this kind of
toolpath generation systems. We will give special atten-
tion to the so-called zig-zag strategy, giving some details
on how it is modelled and implemented in a computer
system, and also on how to optimize the number of dis-
continuities in the path. These results are already imple-
mented for planar regions but we will also give further
indications on how they can be extended to the level of
trajectories to cover regions in arbitrary triangulated sur-
faces. In this text we will also explain how to develop a
procedure to automatically generate toolpath trajectories
in abstract triangular spaces, with possibly applications to
other areas of interest rather that the rapid-prototyping
and rapid-manufacturing of products for the industry.

This text is only an extended abstract of a ongoing
work. It presents ideas and algorithms that can be im-
plemented in any computational system such as Matlab.
It considers the case of tool-path optimization trajecto-
ries in arbitrary planar regions defined by a graph with a

symmetry, as it is defined in [1]. The trajectories by them-
selves are generated with an algorithm described in [2].
At the end we give some directions on how to generalize
the results for arbitrary surfaces.

2 Establishing the framework

As it is explained in [1], an arbitrary region in the plane
may be described as a graph with a symmetry, that is a
system (A,B, d, c, ϕ) in which

A
d

//

c
// B

is a directed graph and

ϕ : A → A

is a bijection such that dϕ = c. As usual, the elements
in A are considered as directed edges with an element
a ∈ A pictured as

d(a)
a

// c(a) ,

and its image by ϕ considered as the successor directed
edge defining the contour of the region

d(a)
a

// c(a)
ϕ(a)

// cϕ(a) ,

with the assumption that its interior is always on the left.

For practical purposes we give a specific example
which will be used throughout the text to illustrate the
several steps involved in the outlined procedure.
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3 FINDING THE BEST ORIENTATION FOR SLICING

Fig. 1 - Original curve orientation.

The example is depicted in Figure 1 above and it is
defined by the following data, presented as a sequence
of directed edges, each one determined by its endpoints,
encoded in a vector named P . In other words, we have a
set A = {1, 2, 3, . . . , 58, 59}, and a set B ⊂ R

2. The vector
P is displayed as:

P =
−19.3566, 13.9876
−19.2874, 13.9291
−19.1665, 13.9291
−19.0801, 14.0168
−19.0719, 14.1372
−19.1089, 14.2534
−19.1829, 14.4065
−19.2515, 14.5121
−19.3360, 14.6071
−19.4487, 14.6820
−19.5121, 14.7039
−19.6388, 14.7259
−19.7368, 14.7259
−19.8404, 14.7113
−19.9556, 14.6893
−20.0536, 14.6235
−20.1169, 14.5797
−20.2033, 14.4700
−20.2494, 14.3385
−20.2321, 14.2361
−20.1342, 14.1703
−20.0363, 14.2946
−20.0132, 14.4042
−19.9853, 14.4698
−19.9246, 14.5015
−19.8824, 14.4645
−19.8507, 14.3959
−19.8402, 14.3062
−19.8507, 14.1267
. . .

. . .
−19.9035, 14.0475
−19.9880, 13.9947
−19.9985, 13.9102
−19.9672, 13.8121
−19.8462, 13.7317
−19.7310, 13.6879
−19.6619, 13.6294
−19.6158, 13.5197
−19.6388, 13.3955
−19.6964, 13.3077
−19.7598, 13.1762
−19.7598, 13.0665
−19.6676, 12.9496
−19.5006, 12.9203
−19.3335, 12.9423
−19.2586, 13.0007
−19.1492, 13.1396
−19.1377, 13.2785
−19.1722, 13.4393
−19.2471, 13.5417
−19.3220, 13.6294
−19.4372, 13.7317
−19.5179, 13.7829
−19.5812, 13.9072
−19.6100, 14.0022
−19.6158, 14.0972
−19.5467, 14.1630
−19.4718, 14.1630
−19.4199, 14.1484
−19.3796, 14.0680

The maps d, c are, respectively, the first and second
components, while the map ϕ is defined by ϕ(i) = i+1 if
i ≤ 59 and ϕ(59) = 1. The maps d and c may be also seen
in terms of the vector P as d(i) = P (i, 1), c(i) = P (i, 2).

In the next section we assume a vector such as P is de-
fined and will deduce a collection of possible orientations
which minimize the tool-path trajectories, as exemplified
in Figure 2.

Fig. 2 - Zig-zag toolpath trajectories.

3 Finding the best orientation for

slicing

Given P as before, we want to minimize the number of
inflection points for a scan angle θ. The algorithm is de-
scribed in pseudo-code, using Matlab syntax.

1 Input : P − n−by−2, polygon ’ s v e r t i c e s as
2 rows (x , y )
3 Output : Aopt − m−by−2, m ranges (amin , amax)
4 of opt imal angles .

6 % conv e r t to complex form
7 Pc=P∗[1; i ] ;

9 % Obtain the o r i e n t a t i o n o f each edge :
10 A=angle ( Pc ( [2 :end , 1 ] )−Pc )∗180/pi

12 % Get inne r ang l e s
13 IA=mod(mod(180−A,360)+mod(A([2 :end , 1 ] ) ,360)

,360) ;

We are interested in the concavities, i.e,  !"#$%. At
a convex vertex, as the scan slope passes the emerging
edge’s slope, that vertex ceases to be an inflection point.
At the same time, the next vertex becomes a new inflec-
tion point, if it is convex, too. So as this scanning slope is
reached, no new net inflection points are added. Some-
thing different occurs when we consider concave vertices:
as we reach the emerging edge’s slope, a new inflection
point appears (in fact, two).

When two successive vertices are concave, no net in-
flection point is added, either.

1 % Concave v e r t i c e s :
2 CC=IA>180

4 % Changes , tha t i s , s e quen c e s convex−>concave
5 % Thi s i s the non−t r i v i a l d i f f i c u l t par t
6 DC=d i f f (CC([end , 1 : end ]) )

8 % Sor t the ang l e s (mod 180) :
9 A3=sortrows ([mod(A,180) , DC])

By cummulative sum of the net change in number of
inflection points, we find the range of theta with the min-
imum amount of infl. points:
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4 CONCLUSION

1 A4=[A3( : , 1 ) , cumsum(A3 ( : , 2 ) ) ]

3 % Ex t r a c t the needed in fo rmat ion :
4 ixm=f ind (A4 ( : , 2 )==min(A4 ( : , 2 ) ) ) ;

6 tmp=[ixm−ixm ([end , 1 : end−1]) , . . .
7 ixm ([2 :end , 1 ] )−ixm]~=1
8 ixm=[ixm(tmp ( : , 1 ) ) , ixm(tmp ( : , 2 ) ) ]
9 AOpt=[A4( ixm ( : , 1 ) ,1) ,A4( ixm ( : , 2 ) ,1) ]

The result of each of the preceding steps applied to
the input data P as defined in the previous section is pre-
sented at the end.

The output result is presented as ranges of angles in
the form

 !"#$%!&'  !"#$ (&)

 !"#$%!*'  !"#$ (*)

+++

 !"#$%!,'  !"#$ (,

which for the working example has the following result.

-./0 1

2 *3+445*

&45+&46& &32+&6*7

This means that for rotations with an angle between
0 and 27.5592 degrees, there are a minimum number of
discontinuities in the tool-path trajectory. For rotation an-
gles ranging from 27.5592 to 159.1581 degrees, the num-
ber of discontinuities is increasing while it again attends
a minimum when the rotation angle is between 159.1581
and 170.1824. Again form 170.1824 to 360 there is a larger
number of discontinuities.

The suggested optimal angles are displayed in the fol-
lowing pictures.

4 Conclusion

To conclude we remark that the procedure may be gen-
eralized to the context where the region is not necessar-
ily planar but is embedded into an arbitrary surface in
the space. This is important for the purpose of generating
tool-path trajectories for rapid manufacturing and rapid
prototyping since it will allow a greater number of ap-
plications. To to that we will only need to transform the
structure used in [2] by imposing that the linking lines
between two intersected points in the same g-component,
to use the nomenclature of [2], are no longer straight
lines but are geodesic path instead. This part is not yet
implemented. It will use algorithms for working with
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geodesic paths and then combine the structure (E, r, g, s)
used in [2],requiring also the geometric information con-
cerning the convexity of each edge, used in here, obtain-
ing thus the same results for surfaces.
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Appendix

Below is presented the output of each relevant step in the execution of the procedure described in the text. Each
vector is listed from top to bottom and from left to right and from one page to the next one.
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