Curvas geodésicas: um exemplo com resolução analítica.

by J. P. FATELO AND N. MARTINS-FERREIRA

ESTG, CDRSP Instituto Politécnico de Leiria

Resumo Apresentamos um exemplo de uma superfície não trivial em \mathbb{R}^3 na qual as curvas geodésicas são encontradas analiticamente.

1 Introdução

Tal como explicado em [1], na maioria dos casos, as curvas geodésicas são obtidas com recurso a aplicações computacionais. Entre as superfícies com curvas geodésicas encontradas analiticamente e sem aproximações, destacam-se o caso da superfície esférica com a solução (*intuitiva*) correspondente aos "grandes círculos" e o caso do cilindro que, neste particular, não é muito diferente de um plano onde as geodésicas são retas. Neste artigo considera-se uma superfície de revolução que, mesmo não sendo trivial, permite uma determinação explícita, em termos de funções elementares, das suas curvas geodésicas.

Na secção 2, apresentamos a superfície considerada. Na secção 3, resolvemos as equações das geodésicas para este exemplo e explicitamos as soluções sujeitas a condições iniciais e, na secção 4, as soluções na presença de condições de fronteira.

As figuras expostas neste artigo foram geradas usando a aplicação Mathematica [2].

2 A superfície

Em geral, as superfícies de revolução em \mathbb{R}^3 podem ser parametrizadas da seguinte maneira

$$\overrightarrow{\sigma}(\alpha,\theta) = \big(r(\alpha)\cos\theta, r(\alpha)\sin\theta, z(\alpha)\big). \tag{1}$$

Neste artigo, vamos considerar o caso em que

$$r(\alpha) = \frac{1}{\sqrt{\alpha}},$$
$$z(\alpha) = \int_{\frac{1}{\sqrt[3]{4}}}^{\alpha} \sqrt{1 - \frac{1}{4x^3}} \, dx,$$

onde $\alpha \geq \frac{1}{\sqrt[3]{4}}$ e $\theta \in \mathbb{R}$. A função z pode ser expressa em termos da função gama Γ e da função hipergeométrica ${}_{2}F_{1}$ da seguinte maneira:

$$z(\alpha) = \frac{\sqrt{\pi} \Gamma\left(-\frac{1}{3}\right)}{\sqrt[3]{4} \Gamma\left(\frac{1}{6}\right)} + \alpha \,_2 F_1\left(-\frac{1}{2}, -\frac{1}{3}, \frac{2}{3}, \frac{1}{4 \,\alpha^3}\right).$$

Parte da superfície assim definida está representada na Fig. 1.

O parâmetro θ assume qualquer valor real e considera-se a seguinte interpretação: pontos com o mesmo valor de α mas com valores de θ que diferem por um múltiplo de 2π correspondem à mesma posição geométrica mas situam-se em *camadas* diferentes da superfície.

Fig. 1: Vista parcial da superfície em estudo.

Estas expressões de r e z foram escolhidas porque têm a seguinte propriedade:

$$r'^2 + z'^2 = 1.$$

Assim, o tensor métrico da superfície é uma matriz com a forma

$$g = \left(\begin{array}{cc} r'^2 + z'^2 & 0\\ 0 & r^2 \end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1/\alpha \end{array}\right).$$

A partir do tensor métrico, obtêm-se as equações das geodésicas [1]:

$$\ddot{\alpha} + \frac{1}{2\,\alpha^2}\,\dot{\theta}^2 = 0\tag{2}$$

$$\ddot{\theta} - \frac{1}{\alpha} \dot{\alpha} \dot{\theta} = 0.$$
 (3)

Uma geodésica na superfície é um conjunto de pontos parametrizado por $\vec{\sigma}(\alpha(t), \theta(t))$, onde *t* é um parâmetro real e $\alpha = \alpha(t)$ e $\theta = \theta(t)$ são soluções das equações (2) e (3). Estas equações formam um sistema autónomo uma

Scripta-Ingenia, Summer Solstice, June 21, 2015.

[🕈] http://cdrsp.ipleiria.pt 🛛 🕿 (351) 244-569441 🛛 🖾 scripta.ingenia@ipleiria.pt

vez que não dependem explicitamente da variável independente *t*. Na secção seguinte, o sistema é resolvido com a utilização de leis de conservação, também conhecidas por *first integrals*.

3 Geodésicas a partir de um ponto dado

Nesta secção apresentam-se os cálculos necessários para obter as soluções dos caminhos geodésicos que começam num dado ponto inicial. Em primeiro lugar, observa-se que o sistema de equações (2) e (3) implica:

 $\frac{d}{dt}\left(\dot{\alpha}^2 + \frac{1}{\alpha}\dot{\theta}^2\right) = 2\,\dot{\alpha}\left(\ddot{\alpha} + \frac{1}{2\,\alpha^2}\dot{\theta}^2\right) = 0$ $\frac{d}{dt}\left(\frac{\dot{\theta}}{\alpha}\right) = \frac{1}{\alpha}\left(\ddot{\theta} - \frac{1}{\alpha}\,\dot{\alpha}\,\dot{\theta}\right) = 0.$

е

Por conseguinte, as curvas geodésicas são soluções do seguinte sistema mais simples:

$$\dot{\alpha}^2 + \frac{1}{\alpha} \dot{\theta}^2 = v^2 \tag{4}$$

$$\dot{\theta} = \alpha \, l,\tag{5}$$

onde $v \in l$ são constantes arbitrárias. É possível relacionar (4) e (5), respetivamente, com a conservação da energia e do momento angular. De facto, estas quantidades são conservadas ao longo de um caminho geodésico uma vez que este é o caminho seguido por uma partícula livre, ou seja, sem forças a atuar sobre ela (para além daquelas que a mantêm na superfície).

Uma primeira classe de soluções corresponde ao caso l = 0, em que θ se mantém constante ao longo da geodésica, que é portanto um "meridiano" da superfície, e em que α varia linearmente com t.

Fig. 2: Um meridiano.

Para determinar as soluções com $l \neq 0$, substitui-se (5) em (4), e obtem-se a equação

$$\dot{\alpha}^2 = v^2 - \alpha \, l^2$$

donde

$$\dot{\alpha} = \pm \sqrt{v^2 - \alpha \, l^2}$$

Considerando que são conhecidos os valores de α e θ em t = 0 (e notando $\alpha(0) = \alpha_0$ e $\theta(0) = \theta_0$), esta equação reduz-se a:

$$\sqrt{v^2 - \alpha l^2} = \sqrt{v^2 - \alpha_0 l^2} \mp \frac{l^2}{2} t.$$

Usando a notação $\beta_0 = \dot{\alpha}(0) = \pm \sqrt{v^2 - \alpha_0 l^2}$, a solução escreve-se

$$v^2 - \alpha l^2 = \left(\beta_0 - \frac{l^2}{2}t\right)^2,$$

ou seja,

$$\alpha(t) = \alpha_0 + \beta_0 t - \frac{l^2}{4} t^2.$$
 (6)

Usando este resultado na equação (5), determina-se θ :

$$\theta(t) = \theta_0 + \alpha_0 \, l \, t + \frac{\beta_0 \, l}{2} \, t^2 - \frac{l^3}{12} \, t^3. \tag{7}$$

Em resumo, com as condições iniciais $\alpha(0) = \alpha_0$, $\theta(0) = \theta_0$, $\beta_0 = \dot{\alpha}(0)$ e $\omega_0 = \dot{\theta}(0) = \alpha_0 l$, as soluções de (2) e (3) são

$$\alpha(t) = \alpha_0 + \beta_0 t - \frac{\omega_0^2}{4 \alpha_0^2} t^2$$

e

$$\theta(t) = \theta_0 + \omega_0 t + \frac{\beta_0 \omega_0}{2 \alpha_0} t^2 - \frac{\omega_0^3}{12 \alpha_0^3} t^3,$$

sempre que $\alpha_0 + \beta_0 t - \frac{\omega_0^2}{4 \alpha_0^2} t^2 \geq \frac{1}{\sqrt[3]{4}}$.

Por exemplo, no caso $\alpha_0 = 1, \theta_0 = -2, \beta_0 = 4.25$ e $\omega_0 = 1.3$, a geodésica está representada na figura seguinte.

Fig. 3: Caminho geodésico 1.

Segue outro exemplo com $\alpha_0 = 2$, $\theta_0 = -1.8$, $\beta_0 = 4.5$ e $\omega_0 = 4$.

Fig. 4: Caminho geodésico 2.

Neste segundo exemplo, a curva geodésica não corresponde ao caminho mais curto entre as extremidades representadas. Mas isso não é uma contradição, conforme vamos esclarecer na próxima secção. Devido às condições iniciais, a curva não podia seguir diretamente para o ponto final, ou dito de outra forma, nas condições deste exemplo as extremidades da curva representadas estão em *camadas* diferentes da superfície o que obriga a curva a enrolar uma vez.

4 Geodésicas entre dois pontos

As soluções obtidas na secção anterior permitem obter os caminhos geodésicos a partir de um ponto inicial caraterizado pelos valores $\alpha_0 \in \theta_0$ e conhecidos os dois parâmetros $\beta_0 \in l$ ou, de forma equivalente, $\beta_0 \in \omega_0 = \alpha_0 l$. Na prática, um problema que surge com alguma frequência consiste na determinação de um caminho geodésico entre dois pontos dados. Para isso, é necessário conseguir escrever os dois parâmetros $\beta_0 \in l$ em função dos pontos extremos do caminho em causa. A *Fig. 5* mostra um exemplo de dois pontos sobre um "paralelo" (conjunto de pontos da superfície com o mesmo valor de z) bem como o caminho geodésico que os liga.

Fig. 5: Caminho geodésico entre dois pontos de um mesmo paralelo.

Os próprios paralelos não são curvas geodésicas uma vez que girar sobre paralelos de menor raio equivale a uma menor distância percorrida.

Supõe-se então que os valores de α e θ são conhecidos para dois valores de t. Sem perda de generalidade, a escolha destes valores pode ser t = 0 e t = 1:

$$\alpha(0) = \alpha_0 \quad ; \quad \theta(0) = \theta_0 \quad ; \quad \alpha(1) = \alpha_1 \quad ; \quad \theta(1) = \theta_1.$$

Uma escolha diferente de t = 1, correspondente ao segundo ponto dado, apenas altera a velocidade com que o caminho geodésico é percorrido mas não o *trilho* na superfície. A partir de (6) e (7), obtêm-se as relações

$$\alpha_1 = \alpha_0 + \beta_0 - \frac{l^2}{4}$$
$$\theta_1 = \theta_0 + \left(\alpha_0 + \frac{\beta_0}{2}\right) l - \frac{l^3}{12},$$

donde se conclui que:

$$\beta_0 = \alpha_1 - \alpha_0 + \frac{l^2}{4} \tag{8}$$

$$l^{3} + 12(\alpha_{0} + \alpha_{1})l + 24(\theta_{0} - \theta_{1}) = 0.$$
 (9)

Esta equação de terceiro grau é incompleta e pode resolver-se através da mudança de variável

$$l = x - 4 \, \frac{\alpha_0 + \alpha_1}{x}$$

que produz uma equação quadrática em x^3 . A solução é:

$$l = \sqrt[3]{12(\theta_1 - \theta_0) + 4\sqrt{9(\theta_1 - \theta_0)^2 + 4(\alpha_0 + \alpha_1)^3}} + \sqrt[3]{12(\theta_1 - \theta_0) - 4\sqrt{9(\theta_1 - \theta_0)^2 + 4(\alpha_0 + \alpha_1)^3}}.$$
 (10)

Usando (8) e (9), as equações (6) e (7) podem agora ser escritas em termos de α_0 , α_1 , θ_0 e θ_1 . Mantendo a notação (10) por conveniência, o resultado é:

$$\alpha(t) = \alpha_0 (1-t) + \alpha_1 t + \frac{l^2}{4} t (1-t)$$
 (11)

$$\theta(t) = \theta_0 (1-t) + \theta_1 t + \frac{l}{2} (\alpha_0 - \alpha_1) t (1-t) + \frac{l^3}{24} t (1-t) (2t-1).$$
(12)

Estão reunidas as condições para voltar ao aparente paradoxo da *Fig. 4* onde a curva representada, apesar de ser parte de uma geodésica, não é o caminho mais curto entre as suas extremidades. Para exemplificar a análise, considere os pontos $A = \vec{\sigma}(2, -1.8)$ e $B = \vec{\sigma}(5.5, 6)$. Usando as equações (11) e (12) com $\alpha_0 = 2$, $\theta_0 = -1.8$, $\alpha_1 = 5.5$ e $\theta_1 = 6$, obtém-se a curva geodésica entre A e B representada na *Fig. 6*.

em camadas diferentes. A curva geodésica entre A e $B_2 = \overrightarrow{\sigma}(5.5, 6 + 2\pi)$ está representada na Fig. 8.

A Fig. 9 representa a curva geodésica entre A e $B_4=\overrightarrow{\sigma}(5.5,6+6\pi)$

Fig. 9: Caminho geodésico entre A e B₄.

enquanto a Fig. 10 representa a curva geodésica entre A e $B_{-1} = \overrightarrow{\sigma}(5.5, 6 - 4\pi)$.

Fig. 10: Caminho geodésico entre $A \in B_{-1}$ *.*

5 Conclusão

Este estudo resulta de um trabalho ainda em curso sobre a possibilidade de axiomatizar a noção de caminho geodésico através de uma operação binária que a cada dois pontos associa o ponto médio do percurso geodésico que os une. Neste caso a operação binária seria dada pelas equações (11) e (12) com $t = \frac{1}{2}$. O exemplo aqui ilustrado serviu o propósito de testar os axiomas de uma tal estrutura algébrica.

Bibliografia

- J. P. Fatelo, Nelson Martins-Ferreira, *Curvas Geodésicas em superfícies*, Scripta-Ingenia, June 2014, No. 2, 22-25.
- [2] Wolfram Research, Inc., Mathematica, Version 9.0, Champaign, IL (2012).

Fig. 6: Caminho geodésico entre A e B.

Fig. 7: Caminho geodésico entre $A \in B_0$.

Fig. 8: Caminho geodésico entre $A \in B_2$.

Observa-se que $\theta_1 - \theta_0 = 7.8$, ou seja, superior a 2π . O que significa que A e B não estão situados na mesma *camada* da superfície. O ponto $B_0 = \overrightarrow{\sigma}(5.5, 6-2\pi)$ está situado na mesma posição da superfície de B <u>e</u> na mesma *camada* de A. Usando as equações (11) e (12) com $\alpha_0 = 2$, $\theta_0 = -1.8$, $\alpha_1 = 5.5$ e $\theta_1 = 6 - 2\pi$, obtém-se a curva geodésica entre A e B_0 representada na *Fig. 7*.

Agora sim, foi encontrado o caminho mais curto entre as duas posições na superfície.

Podemos também procurar caminhos geodésicos entre A e outros pontos na mesma posição de B mas

Scripta-Ingenia, Summer Solstice, June 21, 2015.

[🏶] http://cdrsp.ipleiria.pt 🛛 🕿 (351) 244-569441 🛛 scripta.ingenia@ipleiria.pt