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Abstract: This study evaluates the effectiveness of deep learning and canonical machine learning
models for detecting diseases in crayfish from an imbalanced dataset. In this study, measurements
such as weight, size, and gender of healthy and diseased crayfish individuals were taken, and at
least five photographs of each individual were used. Deep learning models outperformed canonical
models, but combining both approaches proved the most effective. Utilizing the ResNet50 model for
automatic feature extraction and subsequent training of the RF algorithm with these extracted features
led to a hybrid model, RF-ResNet50, which achieved the highest performance in diseased sample
detection. This result underscores the value of integrating canonical machine learning algorithms with
deep learning models. Additionally, the ConvNeXt-T model, optimized with AdamW, performed
better than those using SGD, although its disease detection sensitivity was 1.3% lower than the
hybrid model. McNemar’s test confirmed the statistical significance of the performance differences
between the hybrid and the ConvNeXt-T model with AdamW. The ResNet50 model’s performance
was improved by 3.2% when combined with the RF algorithm, demonstrating the potential of hybrid
approaches in enhancing disease detection accuracy. Overall, this study highlights the advantages
of leveraging both deep learning and canonical machine learning techniques for early and accurate
detection of diseases in crayfish populations, which is crucial for maintaining ecosystem balance and
preventing population declines.

Keywords: crayfish; disease detection; sustainability; machine learning; deep learning

1. Introduction

Freshwater crayfish play a significant role in assessing the health of aquatic ecosystems.
These organisms occupy important positions in aquatic food webs and can reach high
biomass levels [1]. Moreover, they can be utilized as effective bioindicators due to their
sensitive responses to water quality and pollutants [2]. Despite having a wide distribution
worldwide with nearly 540 species [3], they are predominantly found outside of Antarctica
and the African continent [4].

The narrow-clawed crayfish, scientifically named Astacus leptodactylus Eschscholtz,
1823, holds the distinction of being Turkey’s sole noteworthy freshwater crayfish species.
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Additionally, it is recognized as one of Europe’s most esteemed and economically significant
freshwater crustaceans [5,6]. In their comprehensive catalog of worldwide freshwater cray-
fish, Crandall and De Grave [7] have acknowledged Pontastacus leptodactylus Eschscholtz,
1823 as an equivalent term for A. leptodactylus Esch., 1823.

Every organism has responsibilities for sustainability, but human impact on the en-
vironment is pivotal, given our constant interaction with it [8]. Unfortunately, this often
leads to environmental harm, with humans unknowingly threatening their habitats while
benefiting from the environment. Fulfilling our responsibilities to protect the environment
is crucial in addressing today’s environmental issues and pollution [9]. The preservation
of underwater habitats is also crucial for the ecosystem balance of freshwater and inland
waters [10,11].

Digital image processing is an extremely effective method used in fisheries for detect-
ing diseases. This technique can analyze images of fisheries to identify signs of illness.
For example, changes in skin color, lesions, or wounds on fish can be easily identified
using digital image processing methods [12]. Additionally, image segmentation can be
employed to examine specific regions of the fish’s body for signs of disease [13]. Digital
image processing combined with machine learning and artificial intelligence techniques
can facilitate automated and accurate diagnosis of diseases in fish. This makes it pos-
sible to quickly detect diseases in large-scale fish farming facilities and take preventive
measures. Digital image processing provides speed and accuracy in detecting diseases
in fisheries while helping to maintain the health of the fish and reduce losses for fish
farmers [14–16].

Research on crayfish includes a variety of studies utilizing image processing and
artificial intelligence techniques. One of these studies suggests that an improved version
of the YOLOv5 model offers a lightweight method with high accuracy and generalization
performance for automatic, contactless, quick, and accurate classifying of live freshwater
crayfish [16]. Artificial intelligence-based machine learning methods have been employed
to classify healthy and unhealthy individuals of the Astacus leptodactylus species, which is
a good bioindicator [17]. Additionally, UDEEP (underwater deep learning edge computing
platform) plays a crucial role in environmental monitoring and combating invasive species
by detecting the presence and spread of signal crayfish and plastic waste using artificial
intelligence, Internet of Things devices, and edge computing [18].

The main disease symptoms observed in crayfish include melanization, color lesions,
and exoskeleton erosion [19]. These symptoms allow diseased individuals to quickly
transmit the disease to healthy ones within the population, leading to significant declines
in crayfish populations. The spread of disease in this way can result in rapid population
decreases and disrupt the ecosystem balance [20]. Advances in image processing technology
are expected to play a crucial role in detecting these diseases and preventing their spread
in crayfish populations. These technologies can enable early diagnosis and isolation of
diseased individuals, helping to control the disease and protect crayfish populations.

Detecting dark color changes on crayfish shells using artificial intelligence techniques
and image processing methods is considered important for preventing the spread of
disease in the ecosystem and identifying affected individuals. This study aims to detect
changes in images of affected crayfish using canonical machine learning, deep learning,
and vision transformer models. This approach can enable early intervention and control
of the disease.

The contribution of our study can be presented in two main points. First, to the best of
our knowledge, this is the first time that deep learning and vision transformer algorithms
were utilized for disease detection in crayfish. Second, by combining the mechanisms of
canonical machine learning and deep learning algorithms, disease detection with higher
performance in terms of sensitivity than the models used in both learning categories
was achieved.

The other sections of the study are as follows. Section 2 details the dataset used,
the overarching framework, and the algorithms related to traditional machine learning,
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deep learning, and vision transformers. Section 3 discusses the metrics for evaluating the
experiments, the statistical analyses performed, the configuration of the experiments, and
the findings obtained. The paper culminates with Section 4, where the final assessments
are articulated.

2. Materials and Methods
2.1. Data

During the fishing seasons of 2017 and 2018, specimens of Pontastacus leptodactylus
Eschscholtz, 1823 were collected by local fishermen from the waters of the Eğirdir, Beyşehir,
and Hirfanlı lakes. This study involved a comprehensive examination of 112 crayfish—
comprising 62 females and 50 males. Once in the laboratory, various morphometric pa-
rameters were meticulously measured for each crayfish, including weight (W), carapace
length (CL), carapace width (Cw), abdomen length (AL), abdomen width (Aw), chela leg
length (ChlL), chela width (Chw), and chela length (ChL). The samples’ sexes were also
identified, and at least five photographs were taken—both from the top and the underside
after flipping the organism—according to standard measurement specifications. A total of
1277 photographs were used in the study. Based on the main disease symptoms observed
in crayfish, including melanization, color lesions, and exoskeleton erosion [19], Pontastacus
leptodactylus samples obtained from the field were physically examined. Crayfish showing
signs of disease were classified as sick individuals. They were categorized into sick and
healthy groups accordingly.

For the tabular data containing manually extracted features, there were a total of
112 samples, of which 47 were sick and 65 were healthy. Therefore, the imbalanced
ratio is 0.723:1. To address missing values, they were replaced with 0. Additionally, to
apply min-max normalization, missing values were replaced with the mean value of the
respective feature.

Out of the 1277 crayfish photographs utilized for applying deep learning algorithms,
514 are classified as belonging to the sick class, while the remaining 763 are classified
as belonging to the healthy class. For the deep learning tasks, the imbalanced ratio is
0.674:1 and is maintained for both the training and testing sets. The dataset comprising
the photographs was partitioned into training and independent testing sets, with 70%
allocated to the training set and 30% to the testing set. The training set contains a total of
894 photographs, with 535 belonging to the healthy class and 359 to the sick class. In the
independent testing set, of the 383 photographs, 228 belong to the healthy class and the
remaining 155 belong to the sick class.

2.2. General Framework

In this study, our aim is to predict whether crayfish are healthy or sick using canonical
machine learning and deep learning models. Additionally, the results obtained by training
canonical machine learning algorithms with features extracted from deep learning models
have also been examined. For canonical machine learning algorithms, tabular data were
used as features, while crayfish photographs were used for deep learning algorithms. While
using deep learning algorithms, both transfer learning (TL) and training from scratch (FS)
processes were performed. The general framework is given in Figures 1 and 2.
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2.3. Canonical Machine Learning Models

The support vector machine (SVM) is a method from the domain of statistical learn-
ing [21]. It is supervised and utilizes a kernel-based approach. The kernel-based learning
technique involves an implicit transformation of the input data into a feature space of
higher dimensions, which is defined by a kernel function [21]. There are numerous kernel
functions that exist in literature [22]. The linear, polynomial, and radial basis function
kernels are among the most commonly used.

To put it another way, kernel-based learning employs a linear hyperplane as a decision-
making function for problems that are nonlinear, and then it applies a transformation back
into the nonlinear space [21]. The SVM uses the Lagrange multiplier to calculate the partial
differentiation of each feature in order to find the best solution. The objective of the training
process is to optimize the margin of the hyperplane, which is defined as the distance
between the hyperplane and the nearest support vectors from each class [23]. A broader
margin implies that the hyperplane has a higher probability of effectively handling data
that it has not encountered before. As a result, the model simplifies the training data to a
significant subset known as support vectors, thereby reducing its complexity [21].

The naive Bayes (NB) method, a simple probability classifier, computes a series of
probabilities by counting the occurrence and combinations of values within a certain
dataset [24]. Taking into account the value of the class variable, the method employs
Bayes’ theorem to determine the likelihood of a hypothesis based on the provided evidence,
operating under the assumption that the input features are conditionally independent
when the class label is given [25]. Despite the fact that this assumption of conditional
independence is deemed naive due to its infrequent occurrence in real-world applications,
the method is typically adept at rapidly learning in a wide range of controlled classification
problems [24].

The strength of the naive Bayes classifier lies in its ability to estimate the necessary
parameters (such as the means and variances of variables) for classification with only a
minimal amount of training data. Due to the assumption of variable independence, it is
only necessary to compute the variances of the variables for each class, rather than the
entire covariance matrix [24].

K-nearest neighbor (KNN) is a supervised pattern recognition method that is both
linear and non-parametric [26]. The core principle of this method is proximity-based: KNN
forecasts the label of an unknown instance by identifying ‘k’ instances that are similar,
determined by the computed Euclidean distances from instances in the training set. The
classification is then determined by the group to which the majority of the ‘k’ objects
belong, with any ties resolved by considering the sums of the relevant distances. The ‘k’
parameter plays a significant role in the classification model and is optimized by evaluating
the prediction capability at various ‘k’ values [27].

The method presents a multitude of advantages. One of its primary attributes is its
mathematical simplicity, which enables it to potentially yield classification results that may
surpass those derived from more complex pattern recognition techniques. Moreover, its
efficacy remains unaltered, irrespective of the spatial configuration of the classes [27].

A multilayer perceptron (MLP) is a type of neural network that consists of neuron
layers linked by weighted connections [23]. These neural networks are designed to mimic
the information-processing methods of the human brain. The multilayer perceptron begins
with an input layer, which includes a neuron for each feature, and concludes with an output
layer, which has a neuron for each potential class. In between these layers are hidden layers,
which contain a varying number of neurons [28].

This classifier is trained using backpropagation techniques. A group of inputs traverses
through the network of neurons layer by layer, moving from the input to the output
direction. Each hidden layer possesses weight and bias parameters that govern the neurons.
An activation function is employed to transition the data from the hidden layer to the output
layer [23]. Learning algorithms are utilized to determine the weights within the neural
network (NN) structure [28]. The selection of weights is based on minimizing performance
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metrics, such as the mean square error (MSE). Subsequently, the algorithm computes the
error by contrasting the achieved outputs with the actual values. The algorithm continues
to iterate through these steps for each group of inputs until a specified stopping criterion is
met [23].

Random forest (RF) is a member of the decision tree family that utilizes a supervised
ensemble learning method [29]. This ensemble technique is capable of mitigating the
instability of the base trees, resulting in more reliable predictions. Unlike other decision tree
algorithms that strive to identify the optimal variable, RF incorporates random variables.
The main rationale behind this strategy is to diminish the correlation among these potential
random trees [29]. This element of randomness is crucial in decision-making processes
because the presence of highly correlated variables can influence the prediction stage and
consequently degrade the prediction performance.

The model is usually executed through the following steps [30]: (i) bootstrapping is
performed on the samples from the original dataset to produce several training datasets;
(ii) the construction of unpruned decision trees involves the utilization of bootstrapped
samples. At each decision point within the tree, a randomly chosen subset of variables is
evaluated to ascertain the best possible division; and (iii) all predictions from the random
trees are subjected to majority voting to obtain the final outcome.

2.4. Vision Transformer (ViT)

The vision transformer (ViT) model is an advanced deep learning model that has
been explicitly engineered for computer vision tasks [31]. It employs a transformer-based
architecture, originally intended for natural language processing, for performing tasks
related to computer vision. The ViT model employs a decomposition method to segment
the input image into separate patches. These patches are subsequently converted into a
sequence of vectors through a linear embedding process. The patches are then processed
through several transformer encoder layers to identify dependencies and obtain meaningful
image representations. The model features a classification part that makes predictions
based on the obtained embeddings [31]. ViT demonstrates superior efficacy across a diverse
array of tasks pertaining to visual processing through pre-training and fine-tuning [31,32].

For this research, a variant of ViT known as MaxViT (multi-axis vision transformer)
was chosen [33]. The architecture includes a powerful, all-purpose transformer backbone
designed to encapsulate spatial interactions at both local and global scales throughout each
layer of the network. It features an innovative, independent multi-axis attention module
that merges blocked local attention with dilated global attention, thereby augmenting the
network’s global comprehension while maintaining linear complexity [33].

2.5. Deep Learning Models

A convolutional neural network (CNN) is a sophisticated deep learning algorithm
crafted for analyzing data with a grid-like topology, such as pixel data in images [34].
Distinct from standard neural networks, CNNs boast a unique structure that exploits the
inherent spatial relationships within data. This is achieved through the deployment of
convolutional filters across multiple layers, which are adept at autonomously identifying
and learning from local patterns such as lines, textures, and contours. As one progresses
through the layers of the network, these elementary features are synthesized into increas-
ingly complex and significant conceptual depictions [34].

A key strength of these models lies in their innate capability to autonomously identify
and learn salient features directly from raw data, eliminating the need for manual prepro-
cessing steps [34]. As the training progresses, CNNs are designed to discern and prioritize
the most promising features in a hierarchical manner. This intrinsic proficiency renders
them exceptionally adept at a variety of computer vision applications [34–36].

Pre-trained CNN networks are models that have undergone training on extensive
datasets such as ImageNet and are highly regarded within the deep learning domain [34,35].
These networks are adept at identifying a diverse array of visual elements, making them
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an excellent groundwork for further computer vision research. Utilizing these pre-trained
models allows one to capitalize on the knowledge they have amassed, thereby conserving
considerable time and resources that would otherwise be spent on training from the ground
up and facilitating the achievement of high-quality outcomes with greater efficiency [36].

In this study, ConvNeXt-T [37], EfficientNet v2 [38], ResNet50 [39], VGG16 [40], and
AlexNet [41] are utilized for classification tasks. EfficientNetV2 [38] represents an advance-
ment over its predecessor, EfficientNetV1, and introduces a novel class of convolutional
neural networks [42]. This upgraded version prioritizes two key objectives: accelerating
the training process and boosting the efficiency of parameters. It uses a smart combina-
tion of neural architecture search that considers training needs and compound scaling
methods [42] to achieve these goals.

ConvNeXt-T [37] represents a modernized convolutional network, evolving from tra-
ditional models such as Resnet through the integration of advanced methods akin to vision
transformers. This evolution has established ConvNeXt-T as a favored instrument within
the image-processing domain [43,44]. Distinguished from its counterparts, ConvNeXt-T is
an architecture that stands out by employing convolution blocks organized into channel
groups, which significantly enhances the network’s ability to learn [43]. The ConvNeXt-T
framework is composed of an array of convolution blocks, each featuring channel group-
ing [37]. These are succeeded by pooling and fully connected layers. The channel grouping
feature refines the traditional convolution layers by segmenting the input channels into
distinct groups, which then connect to only a portion of the output channels [43]. This
design trims the network’s parameter count and bolsters its ability to learn. ConvNeXt-T’s
contribution lies in its convolution blocks with channel grouping, coupled with a residual
convolution block structure, which collectively enhances learning efficiency and mitigates
the risk of overfitting [44]. Additionally, the architecture’s multiple convolution blocks
with channel grouping, followed by pooling and fully connected layers, contribute to its
optimal performance in various computer vision applications [43,44].

As the CNN network deepens, there can be a decline in both performance and con-
vergence speed [45]. ResNet50 [39], a type of residual network, addresses this issue by
efficiently extracting features from input data through a series of stacked residual blocks.
The ResNet-50 structure is organized into five stages, each containing a convolution and an
identity block, followed by an average pooling layer, and culminating in a fully connected
layer equipped with 1000 neurons [46]. Both the convolution and identity blocks consist of
three convolution layers. Each convolution layer is succeeded by a batch normalization
layer and a ReLU activation function. The batch normalization layers are responsible for
normalizing the activations of the input volume by calculating and applying the mean and
standard deviation of each convolutional filter’s response across mini-batches during each
iteration, thus standardizing the activation of the current layer [46].

In 2014, VGGNet secured the runner-up position in the ImageNet image classification
challenge, with its VGG16 model emerging as one of the top-performing classification
networks [47]. The designation ‘VGG16’ [40] indicates the presence of 16 parameter-
inclusive layers within the model. These layers are organized into five distinct blocks
accompanied by a series of fully connected layers. The first two blocks each contain two
convolutional layers, while the subsequent three blocks—block3, block4, and block5—each
have three convolutional layers [48]. After each convolution, the ReLU activation function
is applied. At the conclusion of every block, there is a max pooling layer. The VGG16
network’s concluding part is composed of three fully connected layers, with the softmax
function being utilized to generate the final output [48].

AlexNet [41] is renowned as a highly influential CNN widely utilized for pattern
recognition and various classification tasks [46,49]. Its structure is composed of five convo-
lutional layers, interspersed with max-pooling layers, and followed by a trio of successive
fully connected layers [46]. Initially, the input layer receives and processes the images. The
resulting output is then relayed to the second convolutional layer. Subsequently, this output
undergoes further processing through a pooling and normalization layer before advancing
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to the third and fourth convolutional layers. Finally, the output from the final convolutional
layer is transformed into a one-dimensional array via a fully connected layer [46].

3. Results
3.1. Evaluation Metrics

In our dataset, the terms true positives (TP) and true negatives (TN) denote the count
of cases accurately identified as sick and healthy, respectively. Conversely, false positives
(FP) refer to the instances wrongly labeled as sick, while false negatives (FN) pertain to the
cases mistakenly classified as healthy.

Accuracy represents the proportion of correct predictions made by a classification
model, compared to the overall number of predictions. It is calculated by dividing the
count of accurate predictions by the dataset’s total number of predictions. Mathematically,
accuracy can be expressed as:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Sensitivity, or recall, measures a classification model’s effectiveness in correctly identi-
fying positive cases. It is calculated as the fraction of true positives out of the total positive
instances, which includes both true positives and false negatives. It is particularly im-
portant in applications where identifying positive instances is critical, such as in medical
diagnosis or fraud detection. Sensitivity can be expressed as:

Sensitivity =
TP

TP + FN
(2)

Specificity assesses a classification model’s accuracy in identifying negative cases. It
is determined by the proportion of true negatives relative to the combined count of true
negatives and false positives. Mathematically, specificity can be expressed as:

Speci f icity =
TN

TN + FP
(3)

Precision is a metric that gauges the accuracy of a model’s positive predictions in
classification tasks. It is expressed as the ratio of true positive predictions to the overall
number of positive predictions made:

Precision =
TP

TP + FP
(4)

The F1 score represents a balanced metric that combines precision and recall through
their harmonic mean, offering a unified measure that equally weighs both aspects. It can
be expressed as:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(5)

The Matthews correlation coefficient (MCC) serves as an evaluative metric for the
effectiveness of binary classification. It considers every quadrant of the confusion matrix.
The MCC is mathematically formulated as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)
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The area under the curve (AUC) is a metric for assessing binary classification models’
performance. It quantifies the area beneath the receiver operating characteristic (ROC)
curve—a plot that depicts a binary classifier’s diagnostic capacity as the discrimination
threshold changes. The ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR) across different thresholds. The AUC reflects the likelihood that the
model will assign a higher score to a randomly selected positive instance over a negative
one. AUC values range from 0 to 1, where 0.5 signifies no discriminative power—equivalent
to random chance—and 1.0 signifies flawless discrimination, with all positive and negative
instances correctly identified.

3.2. Statistical Tests

Two statistical tests were conducted to measure whether the results obtained with
canonical machine learning and deep learning algorithms are statistically significant. The
first is the Wilcoxon test, and the second is the McNemar’s test.

3.2.1. Wilcoxon Test

The Wilcoxon signed-rank test is a non-parametric statistical method used in binary
classification to assess if two models differ significantly in their predictive accuracy. The
formula is given in Equation (7):

W = min
(
∑i:di>0 Ri, ∑i:di<0 Ri

)
(7)

In this context, di represents the discrepancy between paired predictions, while Ri
denotes the rank of the absolute discrepancies |di|. The test statistic W is subsequently
evaluated against the critical value from the Wilcoxon signed-rank distribution table, or
alternatively, the p-value is calculated to ascertain statistical significance.

3.2.2. McNemar’s Test

McNemar’s test, a non-parametric statistical method, is employed to evaluate and
compare the error rates of two binary classification models applied to an identical dataset.
It determines if the discrepancies in their performance are statistically significant. Given
a binary classification task, let CM1 and CM2 be two classification models evaluated on
the same set of n instances. Each instance is classified as either positive (1) or negative (0).
McNemar’s test analyzes the disagreement between the two models’ predictions, focusing
on instances where the models differ in their classification. The contingency table for
McNemar’s test is as follows:

According to Table 1, n11, n10, n01, and n00 represent the number of instances correctly
classified as positive by both models, classified as positive by CM1 but negative by CM2,
classified as negative by CM1 but positive by CM2, and correctly classified as negative by
both classification models, respectively. McNemar’s test statistic χ2 is based on the n10 and
n01 and is calculated as follows:

χ2 =
(|n10 − n01| − 1)2

n10 + n01
(8)

The test statistic in question adheres to a chi-square distribution with one degree
of freedom when the null hypothesis presumes identical error rates for the models. To
evaluate the significance of the observed variance, the test statistic is adjoined with the
critical value at a significance level α, as listed in chi-square distribution tables. Should
the test statistic exceed the critical value, the null hypothesis is dismissed, signifying
a statistically meaningful divergence in the error rates of the two classification models.
Another approach to determining the statistical significance is to compute the p-value.
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Table 1. Contingency table.

CM2 (1) CM2 (0)

CM1 (1) n11 n10

CM1 (0) n01 n00

3.3. Experimental Setup

Given the dataset’s modest size and the structured nature of the data, the 10-fold
cross-validation technique was employed. This resampling strategy is instrumental in
assessing a model’s performance and its ability to generalize. It involves dividing the
dataset into 10 equally sized segments, known as folds. The training occurs on 9 folds,
while the 10th fold is used for testing. This cycle is conducted 10 times, ensuring each fold
is used once as the test set. Such a method is effective in reducing overfitting and yields a
more dependable performance metric for the model on new data. Additionally, the ratio of
class imbalance was preserved across each fold.

Additionally, min-max normalization was applied to the tabular data to observe
whether it would have an effect on the results. Min-max normalization, commonly referred
to as feature scaling, is a method that adjusts the values of a feature to fall within a
designated range, often between 0 and 1. The transformation is defined as follows:

x′ =
x − min(x)

max(x)− min(x)
(9)

where x is an original value, min (x) is the minimum value of the feature, max (x) is the
maximum value of the feature, and x′ is the normalized new value. This normalization
process ensures that the values of the feature are scaled proportionally within the specified
range, preserving the relationships among the original data while enabling more effective
comparison and processing by machine learning algorithms.

During the training phase of the deep learning algorithms, both transfer learning
and training from scratch were applied. The stopping condition was set to 60 epochs or
a training loss of less than 0.01. Stochastic gradient descent (SGD) [49] was utilized in all
deep learning models. ConvNeXt-T was trained with adaptive moment estimation with
weight decay regularization (AdamW) [50] because it is a newer model compared to the
others. A batch size of 4 was used in all deep learning architectures.

In the hybrid model, the RF and ResNet50 models, which had the highest accuracy
among canonical machine learning and deep learning models, were utilized. When select-
ing deep learning models, those utilizing SGD for optimization were considered. In the
RF-ResNet50 hybrid model, features automatically extracted from crayfish images were
utilized to feed the RF algorithm. The features were obtained from the average pooling
layer immediately preceding the fully connected layer of the ResNet50 model. By providing
these features as input to the RF algorithm, the class of the image was determined. The
architecture of the hybrid model is given in Figure 3.
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3.4. Experimental Results

The hyper-parameters for canonical machine learning algorithms without applying
min-max normalization are given below. During the fine-tuning process, the accuracy
evaluation metric was maximized, and the grid search method was utilized.

For MLP, the number of hidden layers was found as 3. The number of neurons was 50,
10, and 10 for the hidden layers, respectively. Since naive Bayes is a probabilistic classifier,
it does not have any hyperparameters. For KNN, the number of the nearest neighbors
was found as 17. For SVM, the cost and the gamma parameters were found as 1 × 106 and
1 × 10−8, respectively. For RF, the maximum depth and the number of trees were found as
3 and 100, respectively.

The hyper-parameters for canonical machine learning algorithms with applying min-
max normalization are given below. During the fine-tuning process, the accuracy evaluation
metric was maximized, and the grid search method was utilized.

For MLP, the number of hidden layers was found as 1. The number of neurons was
100 in the hidden layer. For KNN, the number of the nearest neighbors was found as 25.
For SVM, the cost and the gamma parameters were found as 1 × 109 and 0.001, respectively.
For RF, the maximum depth and the number of trees were found as 2 and 100, respectively.

The classification results for canonical machine learning algorithms without data
normalization and with data normalization are given in Tables 2 and 3, respectively.

Table 2. The results for canonical machine learning algorithms without normalization.

Model Accuracy Sensitivity Precision Specificity F1-Score MCC

MLP 0.616 0.298 0.583 0.846 0.394 0.173

KNN 0.598 0.277 0.542 0.831 0.366 0.129

NB 0.616 0.277 0.591 0.862 0.377 0.172

RF 0.661 0.404 0.655 0.846 0.500 0.282

SVM 0.616 0.404 0.559 0.769 0.469 0.186
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Table 3. The results for canonical machine learning algorithms with normalization.

Model Accuracy Sensitivity Precision Specificity F1-Score MCC

MLP 0.598 0.213 0.556 0.877 0.308 0.121

KNN 0.580 0.192 0.500 0.862 0.277 0.071

NB 0.580 0.021 0.500 0.985 0.041 0.022

RF 0.643 0.277 0.684 0.908 0.394 0.242

SVM 0.616 0.447 0.553 0.739 0.494 0.193

According to Table 2, the best accuracy, sensitivity, precision, F1-score, and MCC
performances were obtained with 0.661, 0.404, 0.655, 0.5, and 0.282, respectively, by utilizing
the RF model. On the other hand, the best specificity performance was obtained with 0.862
by utilizing the NB model. It can be said that the imbalanced data led to poor performance
in detecting sick individuals.

According to Table 3, the best accuracy, precision, and MCC performances were
obtained with 0.643, 0.684, and 0.242, respectively, by utilizing the RF model. The best
results for sensitivity and F1-score were obtained with 0.447 and 0.494, respectively, by
utilizing the SVM model. Finally, the best specificity performance was obtained with
0.985 by utilizing the NB model. All models, except SVM, experienced a performance
loss in accuracy and sensitivity evaluation metrics. Therefore, it can be said that the data
normalization had no influence on the performances of the canonical machine learning
classifiers for the dataset. On the contrary, the data normalization resulted in a performance
increase for detecting sick individuals with SVM, while it caused a performance decrease
in identifying healthy individuals.

The classification results for deep learning algorithms and MaxViT vision transformer
with TL and FS are given in Table 4. The results were obtained by utilizing the independent
test set.

Table 4. The results for deep learning algorithms.

Model Accuracy Sensitivity Precision Specificity F1-Score MCC Epoch

AlexNet (TL) 0.934 0.929 0.923 0.947 0.926 0.876 32

AlexNet (FS) 0.833 0.800 0.790 0.855 0.795 0.654 50

ResNet50 (TL) 0.945 0.929 0.935 0.956 0.932 0.886 16

ResNet50 (FS) 0.757 0.794 0.669 0.733 0.726 0.517 60

VGG (TL) 0.893 0.884 0.856 0.899 0.870 0.779 18

VGG (FS) 0.854 0.819 0.819 0.877 0.819 0.697 44

RF-ResNet
(proposed hybrid model) 0.940 0.961 0.900 0.925 0.928 0.878 N/A

Effnetv2 (TL) 0.903 0.825 0.927 0.956 0.873 0.799 60

Effnetv2 (FS) 0.584 0.174 0.465 0.864 0.253 0.052 60

MaxVit (TL) 0.926 0.871 0.944 0.964 0.906 0.848 60

MaxVit (FS) 0.593 0.077 0.480 0.943 0.133 0.040 60

ConvNeXt-T (TL) 0.870 0.871 0.818 0.868 0.844 0.733 60

ConvNeXt-T (FS) 0.713 0.729 0.624 0.702 0.673 0.424 60

ConvNeXt-T AdamW 0.969 0.948 0.974 0.983 0.961 0.935 31

According to Table 4, it can be seen that the models with transfer learning outper-
formed the same models trained from scratch. The best accuracy, precision, F1-score, and
MCC performances were achieved with the ResNet50 model. For the specificity evaluation
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metric, the MaxVit model outperformed the other models. Additionally, the RF-ResNet50
hybrid model obtained the best sensitivity performance with 100 trees having a maximum
depth of 3. Among the models evaluated, ResNet50 achieved the minimum number of
epochs to complete the training process. The ConvNeXt-T model trained with the AdamW
optimizer outperformed the other models in all metrics except for the sensitivity.

AUC scores for deep learning and vision transformer models are given in Table 5.

Table 5. AUC Scores for deep learning models.

Model AUC

AlexNet (TL) 0.987

AlexNet (FS) 0.891

ResNet50 (TL) 0.987

ResNet50 (FS) 0.842

VGG-16 (TL) 0.961

VGG-16 (FS) 0.922

EffNetv2 (TL) 0.973

EffNetv2 (FS) 0.614

MaxViT (TL) 0.982

MaxViT (FS) 0.519

ConvNeXt-T (TL) 0.957

ConvNeXt-T (FS) 0.535

RF-ResNet50 Hybrid 0.984

ConvNeXt-T AdamW 0.997

According to Table 5, the highest AUC score of 0.997 was obtained utilizing the
ConvNeXt-T AdamW model. With an SGD optimizer, the highest AUC score of 0.987 was
achieved by utilizing the AlexNet and ResNet50 models. The RF-ResNet50 hybrid model
ranked third in terms of AUC. As can also be seen in the table, the models with transfer
learning outperformed the same models trained from scratch.

In the tables presenting the Wilcoxon and McNemar’s test results for statistical signifi-
cance, bold values indicate a significant difference between the two models at the 5% level.
Arrows further indicate which model achieved higher accuracy. If both a left arrow and an
upward arrow are present next to a value, it should be understood that the two models
have the same accuracy value.

Wilcoxon test results for canonical machine learning algorithms without the data
normalization and with the data normalization are given in Tables 6 and 7, respectively.

Table 6. Wilcoxon test results without normalization.

p < 0.05

Classifier kNN MLP SVM RF NB

kNN 1 0.041 ↑ 0.336 0.727

MLP 0.041 ↑← 0.297 0.617

SVM 0.251 0.014 ↑←
RF 0.144

NB
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Table 7. Wilcoxon test results with normalization.

p < 0.05

Classifier kNN MLP SVM RF NB

kNN 1 0.0009 ↑ 0.819 0.0003 ↑←
MLP 0.0001 ↑ 0.819 0.0002←
SVM 0.0009 ↑ 0←
RF 0.0002←
NB

According to Table 6, there is a statistical significance between the results of the kNN
and SVM, MLP and SVM, and SVM and NB models. The results show that the SVM model
achieves statistically significant superiority in classification performance.

According to Table 7, there is a statistical significance between the results of the kNN
and SVM, kNN and NB, MLP and SVM, MLP and NB, SVM and RF, SVM and NB, and
RF and NB models. The results show that the SVM model achieves statistically significant
superiority in classification performance.

McNemar’s test results for canonical machine learning algorithms without the data
normalization and with the data normalization are given in Tables 8 and 9, respectively.

Table 8. McNemar’s test results without normalization.

p < 0.05

Classifier kNN MLP SVM RF NB

kNN 0.637 0.683 0.177 0.479

MLP 1 0.297 1

SVM 0.251 1

RF 0.297

NB

Table 9. McNemar’s test results with normalization.

p < 0.05

Classifier kNN MLP SVM RF NB

kNN 0.617 0.505 0.108 1

MLP 0.695 0.251 0.637

SVM 0.602 0.505

RF 0.127

NB

According to Tables 8 and 9, there is no statistical significance among the canonical
machine learning models. Data normalization also eliminated the statistically significant
differences observed between the models in their unnormalized state.

Wilcoxon test results for deep learning algorithms are given in Table 10.
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Table 10. Wilcoxon test results for DL models.

p < 0.05

Model AlexNet ResNet50 VGG EffNetv2 MaxViT ConvNeXt-T ConvNeXt-T
AdamW

RF-ResNet50
Hybrid

AlexNet 0.002 ↑ 0.041← 0.012← 0.67 0.059 0.001 ↑ 0.542

ResNet50 0.0004← 0.154 0.193 0.001← 0.354 0.292

VGG 0.0001 ↑ 0.311 0.877 0.001 ↑ 0.892

EffNetv2 0.005 ↑ 0.0004← 0.288 0.075

MaxViT 0.016← 0.175 0.393

ConvNeXt-T 0.006 ↑ 0.877

ConvNext-T
AdamW 0.151

RF-ResNet50
Hybrid

According to Table 10, Resnet50 and ConvNext-T with AdamW models have statisti-
cally significant superiority in classification performance. There is a statistical significance
between the results of the AlexNet and ResNet50, VGG, EffNetv2, ConvNeXt-T with
AdamW; ResNet50 and VGG, ConvNeXt-T; VGG and EffNetv2, ConvNeXt-T with AdamW;
EffNetv2 and MaxViT, ConvNeXt-T; ConvNeXt-T and ConvNeXt-T with AdamW models.

McNemar’s test results for deep learning algorithms are given in Table 11.

Table 11. McNemar’s test results for DL models.

p < 0.05

Model AlexNet ResNet50 VGG EffNetv2 MaxVit ConvNeXt-T ConvNeXt-T
AdamW

RF-ResNet50
Hybrid

AlexNet 0.715 0.013← 0.039← 0.423 0.0003← 0.028 ↑ 2.51× 10−29 ↑
ResNet50 0.0016← 0.016← 0.178 9.76× 10−6← 0.039 ↑ 1.01× 10−30←

VGG 0.586 0.069 0.257 9.76× 10−6 ↑ 7.9× 10−24 ↑
EffNetv2 0.216 0.107 0.0001 ↑ 1.80× 10−25 ↑
MaxVit 0.002← 0.003 ↑ 2.92× 10−28 ↑

ConvNeXt-T 4.14× 10−8 ↑ 1.52× 10−19 ↑
ConvNeXt-T

AdamW 4.47× 10−34 ↑

RF-ResNet50
Hybrid

According to Table 11, ConvNext-T with AdamW and the RF-ResNet50 hybrid models
have statistically significant superiority in classification performance. There is a statis-
tical significance between the results of the AlexNet and VGG, EffNetv2, ConvNeXt-T,
ConvNeXt-T with AdamW, RF-ResNet50 hybrid; ResNet50 and VGG, EffNetv2, ConvNeXt-
T, ConvNeXt-T with AdamW, RF-ResNet50 hybrid; VGG and ConvNeXt-T with AdamW,
RF-ResNet50 hybrid; EffNetv2 and ConvNeXt-T with AdamW, RF-ResNet50 hybrid;
MaxViT and ConvNeXt-T, ConvNeXt-T with AdamW, RF-ResNet50 hybrid; ConvNeXt-T
and ConvNeXt-T with AdamW, RF-ResNet50 hybrid; ConvNeXt-T with AdamW and
RF-ResNet50 hybrid models.
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4. Conclusions

In this study, on the existing imbalanced dataset, deep learning models demonstrated
higher performance in terms of evaluation metrics compared to canonical machine learning
models trained with manually extracted features. Although canonical models may yield
poor results, they can be beneficial when combined with deep learning models. Utilizing
the ResNet50 model for automatic feature extraction and subsequent training of the RF
algorithm with these extracted features led to a hybrid model achieving the highest perfor-
mance in diseased sample detection. Since deep learning algorithms automatically extract
features, classifying these features with RF resulted in high accuracy. The boosting and
bagging methods used in RF contribute to this effect because, in RF, features are randomly
selected when constructing trees, which helps reduce the correlation between trees. This
finding serves as evidence for the usefulness of the canonical machine learning algorithms.
Utilizing AdamW as the optimizer in the ConvNeXt-T deep learning algorithm led to
higher performance compared to the models obtained by utilizing SGD. However, the
utilization of the AdamW optimizer resulted in a disease detection performance sensitivity
that was 1.3% lower than that of the hybrid model. According to McNemar’s test results,
the classification performances of the hybrid model and the ConvNeXt-T model trained
with AdamW are also statistically significant. Another noteworthy result is that the perfor-
mance of the ResNet50 model, which provided the highest performance among the models
trained with SGD for detecting diseased samples, was enhanced by 3.2% when utilizing the
RF canonical machine learning algorithm. This study focuses solely on classification; the
detection of diseased areas in images will be conducted in the next phase of the research.
Future work will involve developing advanced image processing techniques to accurately
identify and localize affected regions. This will enhance the overall diagnostic process and
provide a more comprehensive understanding of the disease progression.

Future research inspired by the findings of this study can focus on various directions.
Firstly, enhancing the generalization capabilities of models by collecting larger and more
balanced datasets is crucial. Investigating different organism species using similar models
could expand biological monitoring capacity across ecosystems in terms of health and
sustainability. Additionally, integrating the developed models with real-time data streams
in field studies can facilitate rapid disease detection and control. Research efforts should
prioritize optimizing deep learning models for more efficient operation. These endeavors
could provide effective tools for monitoring and conserving the health of freshwater
ecosystems, thereby contributing to environmental sustainability goals.
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