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  Abstract 

 

The battlefield is a harsh and inhuman environment, where deaths and destruction 

take lead role. Through many millennia there was blood shed all over the world, people 

who many time died in a battle that sometimes they didn‘t even care about. 

 

Today, the battle field is very different, machines take most damage and there are 

less casualties, this is because of the advancements made in the fields of aeronautics, 

weaponry, nautical, vehicles, armor, and psychology. 

 

Also there is another important party that throughout the last decades made a 

special and decisive advantage to the side which is more advanced in this field, it is 

intelligence and simulation. Intelligence today gives enormous advantage to one country as 

you ―see and feel‖ the battlefield hundreds or thousands kilometers away. Then, with the 

data provided by intelligence, countries can simulate the battle in order to deploy the most 

efficient units into battle.  

 

In this thesis we propose a warfare simulator analysis tool using a multi-objective 

approach and artificial intelligence. Further on, the 1991 Gulf war scenario is used to 

simulate and the results are presented and analyzed. 

 

The approach used in this thesis is difficult to be used in games due to its 

processing complexity and computing demands. 

 

Keywords: Meta-heuristic, Warfare simulator, Multi-objective optimization, Artificial 

intelligence, Evolutionary algorithms. 

  



 

V 

 

 

 

 

 

 

 

 

 

 

 

 

This Page Intentionally Left Blank 



 

VI 

Resumo 
 

O campo de batalha é um meio adverso e inumano, onde a morte de seres humanos 

e a destruição têm o papel principal. Desde há muito tempo que sangue é derramado por 

todas as partes do globo, e muitos desses seres humanos morrem numa guerra que não é 

sua e pela qual não têm o mínimo apreço. 

 

Atualmente, o campo de batalha é muito diferente, as máquinas é que sofrem o 

maior dano e há menos mortes. Isto deve-se aos avanços feitos nas áreas da aeronáutica, do 

armamento, da náutica, dos veículos terrestres, da proteção e da psicologia. 

 

Nas últimas décadas, a informação secreta e as simulações, também tem tido um 

papel preponderante para as nações mais desenvolvidas. As informações secretas do campo 

de batalha trazem uma grande vantagem para as nações uma vez que podem ―sentir‖ o 

campo de batalha a centenas ou milhares de quilómetros de distância. Depois, com a 

informação recolhida pelos serviços secretos, os corpos militares podem simular o campo 

de batalha, para que deste modo possam mobilizar as unidades de combate mais eficientes 

para a batalha em questão.  

 

Nesta dissertação é proposto um simulador de guerra e uma ferramenta de análise 

utilizando métodos de otimização multi-objectivo e inteligência artificial. A batalha da 

guerra do golfo de 1991 é utilizada para simular e os resultados são posteriormente 

apresentados e analisados. 

 

Os métodos utilizados nesta dissertação dificilmente poderão ser utilizados em 

jogos devido à sua complexidade de processamento e requisitos de computacionais. 

 

Palavras-chave: Meta heurística, Simulador de combate, Otimização Multi-objectivo, 

Inteligência artificial, Algoritmos evolucionários. 
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Introduction 

 

1.1. Warfare Scope 

 

Contemporary warfare paradigms and the complexity of operations introduce new 

challenges for the decision-making and operational planning processes and operating 

procedures of headquarters. Operational headquarters are often composite organizations made 

up of international military staff augmented by governmental and nongovernmental, national 

or international, organizations. This fact exacerbates new challenges introduced by the new 

generation of warfare, which makes the training of headquarters more and more complex. 

Emerging combat modeling and information technologies offer effective approaches that can 

tackle the complexities of this task. Therefore, computer-assisted simulation exercises aim to 

immerse the training audience in an environment as realistic as possible and to support 

exercise planning and control personnel in such a way that they can steer the exercise process 

toward the exercise objectives as effectively as possible. It has become the main tool for the 

headquarter training. 

 

With aim on Researchers, military strategists and analysts, this thesis introduces the 

reader to Adaptive complex system modeling for realistic modern ground warfare simulation 

analysis based on evolutionary multi-objective meta-heuristic techniques. 

The term warfare simulation can be used to cover a wide spectrum of activities, 

ranging from full scale field exercises to abstract computerized models that can proceed with 

little or no human involvement. This thesis focuses on the computerized models with the 

objective of being the most realistic a computer model can possibly be. The objective is to 

provide the analyst or strategist a series of data which he will analyze and derive the best 

option based on his expertise. 

The military area is an area that benefits from the most detailed and realistic 

simulations, due to enormous resources needed in war, both material and human. If a battle 
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can be to some extent predicted before it happens the troops will be more effective in reaching 

their goals, there will be less casualties and the resources used will be optimized. 

Figure 1 shows the difference between the Vietnam and Iraqui war regarding the 

number of deaths. 

 

 

Fig. 1. US Deaths in Vietnam and Iraq [37] 

 

The main difference between these figures is due to intelligence and sophistication in 

the battle field which reduced dramatically the number of deaths. So, as simulations begin to 

become more and more realistic this figures tend to low even more as the parts involved in the 

conflict go better prepared to combat with much more intelligence than ever before.  

Due to the overwhelming nature of war planning, this thesis will focus on ground 

warfare, and will not simulate supply, air warfare or marine operations. It will however take 

into account the nature of the terrain the battle will evolve and the obstacles on site. In order 

for this simulation to be the most realistic, the most reliable data must be provided. Also, the 

approach used in this thesis is difficult to be used in games due to its processing complexity 

and computing demands. 
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As with all subjects in the warfare paradigm, this thesis might bring some ethical 

considerations because it will be widely spread over the internet and other mediums. Anyone 

can read it, make use of it and even expand the model presented. Following this reasoning, 

some terrorists, people or groups, might make use of it to plan attacks or learn how to think 

like military corps. However, this is not the use intended for this thesis.  

DISCLAIMER: We are not responsible for, and expressly disclaim all liability for, damages 

of any kind arising out of use, reference to, or reliance on any information within this thesis. 

Some of the content found in this thesis may be offensive to some people. We do not have 

any affiliation with any future, present, or past political parties, military organization, or 

religious orders.  

To solve the problem presented, we are going to propose a meta-heuristic which will 

make use of known algorithms and meta-heuristics, such as, evolutionary models, A-star 

pathfinder, KMeans clustering algorithms, among others. Then, we will propose an analysis 

framework, in order to simplify the analysis of the resulting data. 

 

1.2. Thesis Structure 

 

This thesis is divided into eight sections. First, it will begin by presenting some models 

already being used by some military corps. The second section will demonstrate the approach 

used to solve the problem; it will detail the problem complexity and multi-objective 

optimization. Then, the third section will introduce the background canonical models used, 

such as, the evolutionary, A-star and KMeans clustering algorithms. Next, the meta-heuristic 

created as the proposed solution for this problem will be detailed and decomposed into 

operators. In the fifth section the problem instance will be detailed, this thesis will use the 

Gulf War of 1991 as the instance to solve. After introducing the instance of the problem, in 

the seventh section, an example of a solution is given with the resulting maps. Then, in the 

seventh section, the results achieved will be presented, discussed and an analysis model will 

be presented. Finally, in the final section, some conclusions will be drawn and some future 

work will be proposed as continuity for the approach proposed by this thesis.  
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Related Work 

 

Warfare simulation is still one of the areas which is highly confidential and most time 

hidden from public view. So, there isn‘t much information about the systems used by military 

corps other than names and simple descriptions, this section will list some simulations from 

two different categories, high-resolution constructive simulations and highly aggregated 

constructive simulations. The list is far from being exhaustive. The aim is to provide a set of 

examples to give insight in this area. As a final remark, the examples given in this section 

only focus on the simulation aspect and are not an analysis tool with well defined metrics.  

 

2.1. High-Resolution Constructive Simulations 

 

High-resolution constructive simulations are typically for tactical levels starting from a 

single troop up to several brigades. The terrain, weather, and entities are simulated detailed in 

these models. Each weapon, individual soldier, and combat system can be a simulated entity. 

Terrain modeling can be as detailed as centimeters, leaves of trees, and furniture in a room. 

Engagements are modeled typically between entities. Computations can be done for each 

single bullet shot by a troop. 

As the level of detail increases, the more detailed data and the higher hardware capacities 

(i.e., memory and computational power) are required. Hardware capacities introduce limits on 

the size of simulation (i.e., the number of entities and the size of the simulation area). 

Therefore, there is a trade-off between the level of detail and the size of a simulation. As the 

hardware capacities increase, the limitations on the size of simulation disappears. For 

example, a typical play box for a high resolution constructive simulation system used to be 

200 kilometers x 200 kilometers a decade ago. Nowadays, there are high resolution 

constructive simulation systems that can simulate as many as 50,000 entities in an area as 

large as 2000 kilometers x 2000 kilometers [39]. 
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Apart from the hardware constraint, the other factors like the level of planning and the 

number of operators also affect the selection between a high-resolution or highly aggregated 

simulations. The higher the level of detail a model has, the more manpower is required to run 

the model because more details are needed in the commands. 

Table 1. High-resolution constructive simulation systems. 

Name/Service/Source 

Nation 

Terrain Play Box in 

Kilometers 

Entities Virtual Automated 

Virtual Battle Space 2 

(VBS2)/Joint/ 

Australia 

Rapid terrain generation 

from DTEP, shape and 

imagery files. It can import 

three-dimensional (3-D) 

models (buildings, 
vegetation, etc) from 3DS or 

OpenFlight. 

Up to 350x350 

for DTED-1. 

Up to 120x120 

for DTED-2. 

Up to 40x40 for 

DTED-3. 

More than 1000 

artificial 

intelligence (AI) 
entities. 

120-200 human 

players. 

Real-time 
rendering and 

highly accurate 

3-D 
representations 

of objects, 

forces, and 
terrain. 

Scripted semi-

automated 

behavior. 

Gefects Simulation 

(GESI) or 

Simulation four 
Rahmenubungen 

(SIRA)/Army with 

air and maritime 

entities/Germany 

Uses TerraVista to read 

many data formats, such as 
digital terrain elevation data 

(DTED), digital height 

model (DHM), digital 
feature analysis data 

(DFAD), authoritative 

topographic cartographic 
information system 

(ATKIS), and geographic 

tagged image file format 
(GEOTIFF). 

Up to 

2000x2000. 
Up to 32,000. 3-D view of 

terrain and 
entities. 

Artificial 
intelligence to 

create 

autonomous 
forces from 

selected 

entities. 

Korp-Rahmenmodell 

(KORA)/Army/ 

Germany 
Interface formats are DTEF, 

DFAD, and GEOTIFF. 

Up to 

1000x1000. 
Not limited. No. 

Behavior 

agents. 

SCIPIO/Army/France DTED-1, Vector map 0 

(VMAP0)/VMAP1, Geo-
referenced maps or photos. 

No limitations. 

Currently used 

in exercises with 
a play box of 

2000x2000. 

No hard limitations. 

Several thousand 
entities or units. 

No. 

Semi-

automated 

forces. 

 
   

  

CATS-TCT/Army/ 

Sweden 

DTED, VMAP, 
Geo-referenced maps, or 

photos. 

No limitations. 

Play box 

enough to cover 
a 

brigade level 

exercise. 

No hard limitations. 
As many entities as 

can be in a brigade. 

3-D viewer. No. 

DEHOS/Navy/Turkey High resolution from 
VMAP and shape data. 

5 million square 

nautical 

miles. 

No hard limitations. 

More than 1000 

naval entities. 
No. No. 

Joint Conflict and 
Tactical Simulation 

(JCATS)/Joint/US 

Terrain generation from 
DTED, shape and 

imagery files. 

4000x4000. 

No hard limitations, 

about 100,000 
entities. Up to 10 

sides. 

No. No. 

One Semi-automated 

Forces (OneSAF)/ 

Joint/US 

Very high resolution (1/ 

12,500). High-resolution 
buildings (elevator shaft, 

balcony, stair, etc.). 

500x500. 

Up to 25 sides. 
Entities 

up to brigade level. 

In high resolution. 
Up to 500 entities. 

In 

low resolution up to 
5000 entities. 

3-D viewer. 

Enhanced 

semi-

automated 

force 

behaviors. 
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2.2. Highly Aggregated Constructive Simulations 

 

Examples for the highly aggregated constructive simulation systems are listed in table 2, 

which is again far from being exhaustive. 

The major difference visible to users between high-resolution and highly aggregated 

simulation systems is the representation of the terrain and environment. In highly aggregated 

systems, the play box is tessellated with either hexagons or squares, and each of these 

hexagons or squares represents the following: 

 Terrain characteristics (i.e., forest, ocean, desert, etc.) 

 Mobility characteristics (i.e., good, bad, no mobility, etc.) 

 Altitude or depth 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Terrain representations in highly aggregated constructive simulations [38]. 

 

Moreover, the sides of these hexagons or squares are used to introduce obstacles like 

rivers, tank ditches, shores, minefields, and so on. For example, a river that can be an obstacle 

for the unit mobility must follow the edges of these geometric shapes. This approach may not 

look very realistic, and sometimes the results from simulation do not match with the maps and 

the data in C2 systems. For example, the real location of the river may be several kilometers 

different from a hexagon edge. Because the model uses the hexagon edge as an obstacle, a 

unit may stuck somewhere that does not look realistic. 
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Table 2. Highly aggregated constructive simulation systems. 

Name/Service/Source 

Nation 

Terrain Play Box in 

Kilometers 

Sides/Units Automated 

WAGRAM/Army/France 
DTED-1, VMAP0/VMAP1, 

Geo-referenced maps, or photos. 

No limitations. 

Currently used in 
exercises with a 

play box of 

2000x2000. 

No hard limitations. 
Several thousand 

entities or units. 

Semi-automated 

forces. 

ORQUE/Navy/France 
DTED-1, VMAP0/VMAP1, 

Geo-referenced maps, or photos. 

No limitations. 
Currently used in 

exercises with a 

play box of 

2000x2000. 

No hard limitations. 

Several thousand 

entities or units. 

Semi-automated 

forces. 

Simulations Modell fur 
ubungen Operativer Fuhrung 

(SIMOF)/Army-Air/ Germany 

Interface formats are DFAD and 

GEOTIFF. 

Up to 2500x2000. Not limited. No. 

Air Land Interactive Conflict 

Evaluation (ALICE)/ 
Airforce/Germany 

DTED, DFAD, vector, and 
scanned 

maps. 

4000x4000. Not limited. No. 

CATS-TYR/Joint/Sweden 

DTED, VMAP, Geo-referenced 
maps, or 

photos. 

No limitations. 
Play box enough to 

cover a corps level 

exercise. 

No hard limitations. 

As many entities as 
can be in a brigade. 

No. 

Joint Operational Command 
and Staff Training System 

(JOCASTS)/Joint/UK 

Hexagons. The size of hexagons 

can be 
changed. 

Corps size 

exercises. 
No hard limitations. 

No. 

Joint Theater Level Simulation 
(JTLS)/Joint/US 

Hexagons. The size of hexagons 
can be changed. The side length 

can be as short as 1 kilometer. 

However, when the side length is 
less than 3 kilometers, the 

performance of model depends on 

the scenario and number of units 
in the scenario. 

4000x4000. 

Up to 10 sides. As 

many as 10,000 units 

(no hard limit). 

No. 
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Approach 

 

This thesis will explore current, and introduce new techniques with the aim of 

improving the reliability of warfare computer simulation. Such techniques can bring 

significant advantages in numerous real life scenarios. 

 

After reviewing the state-of-the-art, we reach the conclusion that none of solutions 

addressed this matter in an efficient way. Also, there is not much information about them as 

they are closed systems used by governments to simulate battlefield scenarios. 

Accordingly, this thesis proposes a new simulation meta-heuristic based on an 

evolutionary approach with the use of evolutionary algorithms. This meta-heuristic will 

behave, much as possible, as the military would do in the battlefield. And mainly will be 

opened to everyone. 

 

3.1. Design challenges and considerations 

 

Warfare simulation, while theoretically a very attractive proposition, faces additional 

design and implementation hurdles when compared to other types of simulation. Thus, special 

care must be taken when designing a meta-heuristic which purpose is to simulate the 

battlefield. 

 

3.1.1. Problem Complexity 

 

Computational complexity is a branch of the theory of computation in theoretical 

computer science and mathematics that focuses on classifying computational problems 

according to their inherent difficulty. In this context, a computational problem is understood 
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to be a task that is in principle possible of being solved by a computer (which basically means 

that the problem can be stated by a set of mathematical instructions). Informally, a 

computational problem consists of problem instances and solutions to these problem 

instances. For example, primality testing is the problem of determining whether a given 

number is prime or not. The instances of this problem are natural numbers, and the solution to 

an instance is yes or no based on whether the number is prime or not. 

A problem is regarded as inherently difficult if its solution requires significant 

resources, whatever the algorithm used. The theory formalizes this intuition, by introducing 

mathematical models of computation to study these problems and quantifying the amount of 

resources needed to solve them, such as time and storage. One of the roles of computational 

complexity theory is to determine the practical limits on what computers can and cannot do. 

Closely related fields in theoretical computer science are analysis of algorithms and 

computability theory. A key distinction between analysis of algorithms and computational 

complexity theory is that the former is devoted to analyzing the amount of resources needed 

by a particular algorithm to solve a problem, whereas the latter asks a more general question 

about all possible algorithms that could be used to solve the same problem. More precisely, it 

tries to classify problems that can or cannot be solved with appropriately restricted resources. 

In turn, imposing restrictions on the available resources is what distinguishes computational 

complexity from computability theory: the latter theory asks what kind of problems can, in 

principle, be solved algorithmically. 

 Complexity classes 

 What is a complexity class? 

Typically, a complexity class is defined by (1) a model of computation, (2) a resource (or 

collection of resources), and (3) a function known as the complexity bound for each resource 

[40]. 

 

The models used to define complexity classes fall into two main categories: (1) machine-

based models, and (2) circuit-based models. Turing machines (TMs) and random-access 

machines (RAMs) are the two principal families of machine models. There are different kinds 

of (Turing) machines, such deterministic, non-deterministic, alternating, and oracle machines 

which are out of the scope of this thesis. 
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When there is the necessity to model real computations, deterministic machines and 

circuits are our closest links to reality. Then why consider the other kinds of machines? There 

are two main reasons. 

 

The most potent reason comes from the computational problems whose complexity we are 

trying to understand. The most notorious examples are the hundreds of natural NP-complete 

problems [1]. To the extent that we understand anything about the complexity of these 

problems, it is because of the model of non-deterministic Turing machines. Non-deterministic 

machines do not model physical computation devices, but they do model real computational 

problems. There are many other examples where a particular model of computation has been 

introduced in order to capture some well-known computational problem in a complexity class. 

The second reason is related to the first. Our desire to understand real computational problems 

has forced upon us a repertoire of models of computation and resource bounds. In order to 

understand the relationships between these models and bounds, we combine and mix them 

and attempt to discover their relative power. Consider, for example, non-determinism. By 

considering the complements of languages accepted by non-deterministic machines, 

researchers were naturally led to the notion of alternating machines. When alternating 

machines and deterministic machines were compared, a surprising virtual identity of 

deterministic space and alternating time emerged. 

 

Subsequently, alternation was found to be a useful way to model efficient parallel 

computation. This phenomenon, whereby models of computation are generalized and 

modified in order to clarify their relative complexity, has occurred often through the brief 

history of complexity theory, and has generated some of the most important new insights [41]. 

 

Other underlying principles in complexity theory emerge from the major theorems 

showing relationships between complexity classes. These theorems fall into two broad 

categories. Simulation theorems show that computations in one class can be simulated by 

computations that meet the defining resource bounds of another class. The containment of 

non-deterministic logarithmic space (NL) in polynomial time (P), and the equality of the class 

P with alternating logarithmic space, are simulation theorems. Separation theorems show that 

certain complexity classes are distinct. 
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Complexity theory currently has precious few of these. The main tool used in those 

separation theorems we have is called diagonalization. This ties in to the general feeling in 

computer science that lower bounds are hard to prove. Our current inability to separate many 

complexity classes from each other is perhaps the greatest challenge posed by computational 

complexity theory. 

 

 Time and Space Complexity Classes 

Fundamental time classes and fundamental space classes, given functions      and     : 

 

1.             is the class of languages decided by deterministic Turing machines of 

time complexity     ; 

2.             is the class of languages decided by non-deterministic Turing machines 

of time complexity t(n); 

3.              is the class of languages decided by deterministic Turing machines of 

space complexity     ; 

4.              is the class of languages decided by non-deterministic Turing 

machines of space complexity     . 

 

 Canonical Complexity Classes 

        Table 3. Canonical Complexity Classes 

Complexity class Time/Space class decomposition Class Name 

                Deterministic log space 

                 Non-deterministic log space 

               Polynomial time 

                Non-deterministic polynomial 

time                      Polynomial space 

                

                 

                  Deterministic exponential time 

                   Non-deterministic exponential 

time                         Exponential space 

 

NP is the set of all decision problems for which the instances where the answer is 

―yes‖ have efficiently verifiable proofs of the fact that the answer is indeed ―yes‖. More 
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precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing 

machine. In an equivalent formal definition, NP is the set of decision problems where the 

―yes‖ instances can be recognized in polynomial time by a non-deterministic Turing machine. 

The equivalence of the two definitions follows from the fact that an algorithm on such a non-

deterministic machine consists of two phases, the first of which consists of a guess about the 

solution which is generated in a non-deterministic way, while the second consists of a 

deterministic algorithm which verifies or rejects the guess as a valid solution to the problem 

[2]. 

The complexity class P is contained in NP, but NP contains many important problems, 

the hardest of which are called NP-complete problems, for which no polynomial-time 

algorithms are known. The most important open question in complexity theory, the P = NP 

problem, asks whether such algorithms actually exist for NP-complete, and by corollary, all 

NP problems. It is widely believed that this is not the case [42]. 

As described before, the complexity class NP can be defined in terms of NTIME as 

follows: 

                             

   

 (1) 

 

The NP class has several sub classes, as presented in table 4.  

 

Table 4. NP Sub Classes 

NP sub classes 

NP-Complete 

NP-Hard 

 NP-easy 

 NP-equivalent 

 Co-NP 

 Co-NP-complete 
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 NP-Hard 

 

NP-hard (non-deterministic polynomial-time hard), is a class of problems that are, 

informally, ―at least as hard as the hardest problems in NP‖. A problem H is NP-hard if and 

only if there is an NP-complete problem   that is polynomial time Turing-reducible to   (i.e., 

    TH). In other words, L can be solved in polynomial time by an oracle machine with an 

oracle for  . Informally, we can think of an algorithm that can call such an oracle machine as 

a subroutine for solving  , and solves   in polynomial time, if the subroutine call takes only 

one step to compute. NP-hard problems may be of any type: decision problems, search 

problems, or optimization problems. 

As consequences of definition (note that these are claims, not definitions) [43]: 

 Problem   is at least as hard as  , because   can be used to solve  ; 

 Since   is NP-complete, and hence the hardest in class NP, also problem   is at 

least as hard as NP, but   does not have to be in NP and hence does not have to be 

a decision problem (even if it is a decision problem, it need not be in NP); 

 Since NP-complete problems transform to each other by polynomial-time many-

one reduction (also called polynomial transformation), all NP-complete problems 

can be solved in polynomial time by a reduction to  , thus all problems in NP 

reduce to  ; note, however, that this involves combining two different 

transformations: from NP-complete decision problems to NP-complete problem   

by polynomial transformation, and from   to H by polynomial Turing reduction; 

 If there is a polynomial algorithm for any NP-hard problem, then there are 

polynomial algorithms for all problems in NP, and hence       ; 

 If       , then NP-hard problems have no solutions in polynomial time, while 

       does not resolve whether the NP-hard problems can be solved in 

polynomial time; 

 If an optimization problem   has an NP-complete decision version  , then   is 

NP-hard. 

A common mistake is to think that the NP in NP-hard stands for non-polynomial. 

Although it is widely suspected that there are no polynomial-time algorithms for NP-hard 
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problems, this has never been proven. Moreover, the class NP also contains all problems 

which can be solved in polynomial time. 

The traditional lines of attack for NP-hard problems are the Following: 

 

 Devising algorithms for finding exact solutions (they will work reasonably fast only 

for relatively small problem sizes); 

 Devising ―suboptimal‖ or heuristic algorithms, i.e., algorithms that deliver either 

seemingly or probably good solutions, but which could not be proved to be optimal; 

Such algorithms can be: genetic algorithms, tabu search, ant algorithms, among others. 

 Finding special cases for the problem (―sub problems‖) for which either better or exact 

algorithms are available. 

 

 The Units Movement case 

In this case the goal is to minimize the total movement cost between the targets having to 

pass to each one of them; this case is similar to the traveling salesman problem. So, one wants 

the best path which corresponds to a sequence of targets. In order to enumerate the set of 

paths, first is chosen one target, then another one, and so on. 

Number of different paths: If   is the number of targets, then, at each step   there can be 

chosen between     targets. 

So,                                             

Complexity: The complexity is          . As expected, this approach leads to an 

(hyper-)exponential algorithm. (the factorial function is hyper-exponential:     

             

 

 

 

 

 



 

16 

 

 

 

  

 

 

 

 

 

 

The best route is DACBE costing 185. 

Complexity of verification: If a solution (i.e. a sequence of targets) is given, how long 

is it to compute its cost? 

Only one path to explore, with     targets, so the complexity of verification is 

linear:     . 

So, this case is in NP and is hard because it is an optimization problem with the 

objective of finding the least-cost path through all the targets of a weighted map and the 

decision problem (―given the cost and a number x, decide whether there is a path cheaper than 

x‖) is NP-Complete. If there was a non-deterministic Turing machine, all the paths could be 

explored in one go, with linear complexity. 

Following this reasoning, the complexity of this optimization involves at least one NP-

hard problem making it NP-hard. 

 

3.1.2. Multi-objective optimization 

 

For multiple-objective problems, the objectives are generally conflicting, preventing 

simultaneous optimization of each objective. Many, or even most, real engineering problems 

Fig. 3. Units case example 
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actually do have multiple objectives, i.e., minimize cost, maximize performance, maximize 

reliability, etc. These are difficult but realistic problems. EAs are a popular meta-heuristic that 

is particularly well-suited for this class of problems. Traditional EAs are customized to 

accommodate multi-objective problems by using specialized fitness functions and introducing 

methods to promote solution diversity. 

 

There are two general approaches to multiple-objective optimization. One is to combine 

the individual objective functions into a single composite function or move all but one 

objective to the constraint set. In the former case, determination of a single objective is 

possible with methods such as utility theory, weighted sum method, etc., but the problem lies 

in the proper selection of the weights or utility functions to characterize the decision-maker‘s 

preferences. 

 

In practice, it can be very difficult to precisely and accurately select these weights, even 

for someone familiar with the problem domain. Compounding this drawback is that scaling 

amongst objectives is needed and small perturbations in the weights can sometimes lead to 

quite different solutions. In the latter case, the problem is that to move objectives to the 

constraint set, a constraining value must be established for each of these former objectives. 

 

This can be rather arbitrary. In both cases, an optimization method would return a 

single solution rather than a set of solutions that can be examined for trade-offs [44]. For this 

reason, decision-makers often prefer a set of good solutions considering the multiple 

objectives. 

 

The second general approach is to determine an entire Pareto optimal solution set or a 

representative subset. A Pareto optimal set is a set of solutions that are non-dominated with 

respect to each other. While moving from one Pareto solution to another, there is always a 

certain amount of sacrifice in one objective(s) to achieve a certain amount of gain in the 

other(s). Pareto optimal solution sets are often preferred to single solutions because they can 

be practical when considering real-life problems since the final solution of the decision-maker 

is always a trade-off. Pareto optimal sets can be of varied sizes, but the size of the Pareto set 

usually increases with the increase in the number of objectives. 
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 Multi-objective optimization formulation 

 

Consider a decision-maker who wishes to optimize   objectives such that the objectives 

are non-commensurable and the decision-maker has no clear preference of the objectives 

relative to each other. Without loss of generality, all objectives are of the minimization type 

— a minimization type objective can be converted to a maximization type by multiplying 

negative one. A minimization multi-objective decision problem with   objectives is defined 

as follows: 

 

Given an  -dimensional decision variable vector             in the solution space  , 

find a vector    that minimizes a given set of   objective functions 

                       . The solution space   is generally restricted by a series of 

constraints, such as            for         , and bounds on the decision variables. 

 

In many real-life problems, objectives under consideration conflict with each other. 

Hence, optimizing   with respect to a single objective often results in unacceptable results 

with respect to the other objectives. Therefore, a perfect multi-objective solution that 

simultaneously optimizes each objective function is almost impossible. A reasonable solution 

to a multi-objective problem is to investigate a set of solutions, each of which satisfies the 

objectives at an acceptable level without being dominated by any other solution. 

 

If all objective functions are for minimization, a feasible solution   is said to dominate 

another feasible solution        , if and only if,             for         and       

      for least one objective function  . A solution is said to be Pareto optimal if it is not 

dominated by any other solution in the solution space. A Pareto optimal solution cannot be 

improved with respect to any objective without worsening at least one other objective. The set 

of all feasible non-dominated solutions in   is referred to as the Pareto optimal set, and for a 

given Pareto optimal set, the corresponding objective function values in the objective space 

are called the Pareto front. For many problems, the number of Pareto optimal solutions is 

enormous (perhaps infinite) [45]. 

 

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in 

the Pareto optimal set. However, identifying the entire Pareto optimal set, for many multi-

objective problems, is practically impossible due to its size. In addition, for many problems, 
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especially for combinatorial optimization problems, proof of solution optimality is 

computationally infeasible. Therefore, a practical approach to multi-objective optimization is 

to investigate a set of solutions (the best-known Pareto set) that represent the Pareto optimal 

set as well as possible. With these concerns in mind, a multi-objective optimization approach 

should achieve the following three conflicting goals [3]: 

 

1. The best-known Pareto front should be as close as possible to the true Pareto 

front. Ideally, the best-known Pareto set should be a subset of the Pareto 

optimal set; 

2. Solutions in the best-known Pareto set should be uniformly distributed and 

diverse over of the Pareto front in order to provide the decision-maker a true 

picture of trade-offs; 

3. The best-known Pareto front should capture the whole spectrum of the Pareto 

front. This requires investigating solutions at the extreme ends of the objective 

function space. 

 

For a given computational time limit, the first goal is best served by focusing 

(intensifying) the search on a particular region of the Pareto front. On the contrary, the second 

goal demands the search effort to be uniformly distributed over the Pareto front. The third 

goal aims at extending the Pareto front at both ends, exploring new extreme solutions.
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Background Canonical Models 

 

4.1. Supporting procedures and mechanisms 

 

As stated before the problem which we are trying to solve with the meta-heuristic 

described later in this thesis is somehow complex and demanding, so there are several well 

known canonical models and algorithms used for solving the problem which are described in 

this section. This section aims that the reader understands all the terms and algorithm 

principles used throughout the thesis, although it is not exhaustive. 

 

4.1.1. Evolutionary  algorithms 

 

 Aims of this section 

 

The most important aim of this section is to describe what an Evolutionary Algorithm 

(EA) is. This description is deliberately based on a unifying view presenting a general scheme 

that forms the common basis of all Evolutionary Algorithm variants. The main components of 

EAs are discussed, explaining their role and related issues of terminology. Further on the 

general issues for EAs are discussed concerning their working. Finally, EAs are put into a 

broader context and their relation is explained with other global optimization techniques. 

 

 What is an Evolutionary Algorithm? 

 

As the history of the field suggests there are many different variants of EAs. The 

common underlying idea behind all these techniques is the same: given a population of 

individuals the environmental pressure causes natural selection (survival of the fittest) and 
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this causes a rise in the fitness of the population. Given a quality function to be maximized we 

can randomly create a set of candidate solutions, i.e., elements of the function's domain, and 

apply the quality function as an abstract fitness measure - the higher the better. Based on this 

fitness, some of the better candidates are chosen to seed the next generation by applying 

recombination and/or mutation to them. Recombination is an operator applied to two or more 

selected candidates (the so-called parents) and results one or more new candidates (the 

children). Mutation is applied to one candidate and results in one new candidate. 

 

Executing recombination and mutation leads to a set of new candidates (the offspring) 

that compete - based on their fitness (and possibly age) - with the old ones for a place in the 

next generation. This process can be iterated until a candidate with sufficient quality (a 

solution) is found or a previously set computational limit is reached. In this process there are 

two fundamental forces that form the basis of evolutionary systems. 

 

 Variation operators (recombination and mutation) create the necessary diversity and 

thereby facilitate novelty, while 

 selection acts as a force pushing quality. 

 

The combined application of variation and selection generally leads to improving fitness 

values in consecutive populations. It is easy (although somewhat misleading) to see such a 

process as if the evolution is optimizing, or at least ―approximating‖, by approaching optimal 

values closer and closer over its course. Alternatively, evolution it is often seen as a process 

of adaptation. 

 

From this perspective, the fitness is not seen as an objective function to be optimized, but 

as an expression of environmental requirements. Matching these requirements more closely 

implies an increased viability, reflected in a higher number of offspring. The evolutionary 

process makes the population adapt to the environment better and better. 

 

Note that many components of such an evolutionary process are stochastic. During 

selection fitter individuals have a higher chance to be selected than less fit ones, but typically 

even the weak individuals have a chance to become a parent or to survive. For recombination 

of individuals the choice of which pieces will be recombined is random. Similarly for 

mutation, the pieces that will be mutated within a candidate solution, and the new pieces 
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replacing them, are chosen randomly. The general scheme of an EA can is given in listing 1 in 

a pseudo-code fashion; figure 3 shows a diagram. 

 

 

 

 

 

 

 

 

 

It is easy to see that this scheme falls in the category of generate-and-test algorithms. The 

evaluation (fitness) function represents a heuristic estimation of solution quality and the 

search process is driven by the variation and the selection operators. EAs posses a number of 

features that can help to position them within in the family of generate-and-test methods: 

 

 EAs are population based, i.e., they process a whole collection of candidate solutions 

simultaneously; 

 EAs mostly use recombination to mix information of more candidate solutions into a 

new one; 

 EAs are stochastic
1
. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 Stochastic refers to systems whose behavior is intrinsically non-deterministic. A stochastic process is one 

whose behavior is non-deterministic, in that a system's subsequent state is determined both by the process's 

predictable actions and by a random element. 

BEGIN 

   INITIALIZE population with random candidate solutions; 

   EVALUATE each candidate; 

   REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO 

       1 SELECT parents; 

       2 RECOMBINE pairs of parents; 

       3 MUTATE the resulting offspring; 

       4 EVALUATE new candidates; 

       5 SELECT individuals for the next generation; 

   END REPEAT 

END 

Fig. 4. The general scheme of an Evolutionary Algorithm as a flow-chart [46]. 

Listing 1. Pseudo-code of an EA general scheme 
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The various dialects of evolutionary computing that were mentioned previously all 

follow the general outlines in figure 4, and differ only in technical details. For instance, the 

representation of a candidate solution is often used to characterize different streams. 

Typically, the candidates are represented by (i.e., the data structure encoding a solution has 

the form of) strings over a finite alphabet in Genetic Algorithms (GA), real-valued vectors in 

Evolution Strategies (ES), finite state machines in classical Evolutionary Programming (EP) 

and trees in Genetic Programming (GP). These differences have a mainly historical origin. 

Technically, a given representation might be preferable over others if it matches the given 

problem better, that is, it makes the encoding of candidate solutions easier or more natural. 

For instance, for solving a satisfiability problem the straightforward choice is to use bit-

strings of length  , where   is the number of logical variables, hence the appropriate EA 

would be a Genetic Algorithm. 

 

For evolving a computer program that can play checkers, trees are well-suited (namely, 

the parse trees of the syntactic expressions forming the programs), thus a GP approach is 

likely. It is important to note that the recombination and mutation operators working on 

candidates must match the given representation. Thus for instance in GP the recombination 

operator works on trees, while in GAs it operates on strings. As opposed to variation 

operators, selection takes only the fitness information into account, hence it works 

independently from the actual representation. Differences in the commonly applied selection 

mechanisms in each stream are therefore rather a tradition than a technical necessity. 

 

 Components of Evolutionary Algorithms 

 

In this section is discussed EAs in detail. EAs have a number of components, procedures 

or operators that must be specified in order to define a particular EA. The most important 

components, indicated by italics in listing 1, are: 

 

 representation (definition of individuals); 

 evaluation function (or fitness function); 

 population; 

 parent selection mechanism; 

 variation operators, recombination and mutation; 
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 survivor selection mechanism (replacement). 

 

Each of these components must be specified in order to define a particular EA. 

Furthermore, to obtain a running algorithm the initialization procedure and a termination 

condition must be also defined. 

 

 Representation (Definition of Individuals) 

 

The first step in defining an EA is to link the ―real world‖ to the ―EA world‖, that is to set 

up a bridge between the original problem context and the problem solving space where 

evolution will take place. Objects forming possible solutions within the original problem 

context are referred to as phenotypes, their encoding, the individuals within the EA, are called 

genotypes. The first design step is commonly called representation, as it amounts to 

specifying a mapping from the phenotypes onto a set of genotypes that are said to represent 

these phenotypes. For instance, given an optimization problem on integers, the given set of 

integers would form the set of phenotypes. Then one could decide to represent them by their 

binary code, hence 18 would be seen as a phenotype and 10010 as a genotype representing it. 

It is important to understand that the phenotype space can be very different from the genotype 

space, and that the whole evolutionary search takes place in the genotype space. A solution - a 

good phenotype - is obtained by decoding the best genotype after termination. To this end, it 

should hold that the (optimal) solution to the problem at hand - a phenotype - is represented in 

the given genotype space. 

 

The common EC terminology uses many synonyms for naming the elements of these two 

spaces. On the side of the original problem context, candidate solution, phenotype, and 

individual are used to denote points of the space of possible solutions. This space itself is 

commonly called the phenotype space. On the side of the EA, genotype, chromosome, and 

again individual can be used for points in the space where the evolutionary search will 

actually take place. This space is often termed the genotype space. Also for the elements of 

individuals there are many synonymous terms. A place-holder is commonly called a variable, 

a locus (plural: loci), a position, or - in a biology oriented terminology - a gene. An object on 

such a place can be called a value or an allele. 

 



 

26 

 

It should be noted that the word ―representation‖ is used in two slightly different ways. 

Sometimes it stands for the mapping from the phenotype to the genotype space. In this sense 

it is synonymous with encoding, i.e., one could mention binary representation or binary 

encoding of candidate solutions [47]. The inverse mapping from genotypes to phenotypes is 

usually called decoding and it is required that the representation be invertible: to each 

genotype there has to be at most one corresponding phenotype. The word representation can 

also be used in a slightly different sense, where the emphasis is not on the mapping itself, but 

on the ―data structure‖ of the genotype space. This interpretation is behind speaking about 

mutation operators for binary representation, for instance. 

 

 Evaluation Function (Fitness Function) 

 

The role of the evaluation function is to represent the requirements to adapt to. It forms 

the basis for selection, and thereby it facilitates improvements. More accurately, it defines 

what improvement means. From the problem solving perspective, it represents the task to 

solve in the evolutionary context. Technically, it is a function or procedure that assigns a 

quality measure to genotypes. Typically, this function is composed from a quality measure in 

the phenotype space and the inverse representation. To remain with the above example, if the 

goal was to maximize    on integers, the fitness of the genotype 10010 could be defined as 

the square of its corresponding phenotype:          . 

 

The evaluation function is commonly called the fitness function in EC. This might cause a 

counterintuitive terminology if the original problem requires minimization for fitness is 

usually associated with maximization. Mathematically, however, it is trivial to change 

minimization into maximization and vice versa. 

 

Quite often, the original problem to be solved by an EA is an optimization problem. In 

this case the name objective function is often used in the original problem context and the 

evaluation (fitness) function can be identical to, or a simple transformation of, the given 

objective function. 
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 Population 

 

The role of the population is to hold (the representation of) possible solutions. A 

population is a multiset
2
 of genotypes [48]. The population forms the unit of evolution. 

Individuals are static objects not changing or adapting, it is the population that does. Given a 

representation, defining a population can be as simple as specifying how many individuals are 

in it, that is, setting the population size. In some sophisticated EAs a population has an 

additional spatial structure, with a distance measure or a neighborhood relation. In such cases 

the additional structure has to be defined as well to fully specify a population. As opposed to 

variation operators that act on the one or two parent individuals, the selection operators 

(parent selection and survivor selection) work at population level. In general, they take the 

whole current population into account and choices are always made relative to what we have. 

For instance, the best individual of the given population is chosen to seed the next generation, 

or the worst individual of the given population is chosen to be replaced by a new one. In 

almost all EA applications the population size is constant, not changing during the 

evolutionary search. 

 

The diversity of a population is a measure of the number of different solutions present. No 

single measure for diversity exists, typically people might refer to the number of different 

fitness values present, the number of different phenotypes present, or the number of different 

genotypes. Other statistical measures, such as entropy, are also used. Note that only one 

fitness value does not necessarily imply only one phenotype is present, and in turn only one 

phenotype does not necessarily imply only one genotype. The reverse is however not true: 

one genotype implies only one phenotype and fitness value. 

 

 Parent Selection Mechanism 

 

The role of parent selection or mating selection is to distinguish among individuals based 

on their quality, in particular, to allow the better individuals to become parents of the next 

generation. An individual is a parent if it has been selected to undergo variation in order to 

create offspring. Together with the survivor selection mechanism, parent selection is 

responsible for pushing quality improvements. In EC, parent selection is typically 

probabilistic. Thus, high quality individuals get a higher chance to become parents than those 

                                                           
2
 A multiset is a set where multiple copies of an element are possible. 
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with low quality. Nevertheless, low quality individuals are often given a small, but positive 

chance, otherwise the whole search could become too greedy and get stuck in a local 

optimum. 

 

 Variation Operators 

 

The role of variation operators is to create new individuals from old ones. In the 

corresponding phenotype space this amounts to generating new candidate solutions. From the 

generate-and-test search perspective, variation operators perform the ―generate‖ step. 

Variation operators in EC are divided into two types based on their arity
3
 [49]. 

 

 

 Mutation 

 

A unary
4
 variation operator is commonly called mutation. It is applied to one genotype 

and delivers a (slightly) modified mutant, the child or offspring of it. A mutation operator is 

always stochastic: its output - the child - depends on the outcomes of a series of random 

choices
5
. It should be noted that an arbitrary unary operator is not necessarily seen as 

mutation. A problem specific heuristic operator acting on one individual could be termed as 

mutation for being unary. However, in general mutation is supposed to cause a random, 

unbiased change. For this reason it might be more appropriate not to call heuristic unary 

operators mutation. The role of mutation in EC is different in various EC-dialects, for instance 

in Genetic Programming it is often not used at all, in Genetic Algorithms it has traditionally 

been seen as a background operator to fill the gene pool with ―fresh blood‖, while in 

Evolutionary Programming it is the one and only variation operator doing the whole search 

work. 

 

It is worth noting that variation operators form the evolutionary implementation of the 

elementary steps within the search space. Generating a child amounts to stepping to a new 

point in this space. From this perspective, mutation has a theoretical role too: it can guarantee 

that the space is connected. This is important since theorems stating that an EA will (given 

                                                           
3
 The arity of an operator is the number of objects that it takes as inputs. 

4
 An operator is unary if it applies to one object as input. 

5
 Usually these will consist of using a pseudo-random number generator to generate a series of values from some 

given probability distribution. These can sometimes be referred as ―random drawings‖. 
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sufficient time) discover the global optimum of a given problem often rely on the property 

that each genotype representing a possible solution can be reached by the variation operators 

[55]. The simplest way to satisfy this condition is to allow the mutation operator to ―jump‖ 

everywhere, for example, by allowing that any allele can be mutated into any other allele with 

a non-zero probability. However it should also be noted that many researchers feel these 

proofs have limited practical importance, and many implementations of EAs do not in fact 

possess this property. 

 

 

 Recombination 

 

A binary variation operator
6
 is called recombination or crossover. As the names 

indicate such operator merges information from two parent genotypes into one or two 

offspring genotypes. Similarly to mutation, recombination is a stochastic operator: the choice 

of what parts of each parent are combined, and the way these parts are combined, depends on 

random drawings. 

 

Again, the role of recombination is different in EC dialects: in Genetic Programming it 

is often the only variation operator, in Genetic Algorithms it is seen as the main search 

operator, and in Evolutionary Programming it is never used. Recombination operators with a 

higher arity (using more than two parents) are mathematically possible and easy to 

implement, but have no biological equivalent. Perhaps this is why they are not commonly 

used, although several studies indicate that they have positive effects on the evolution [56]. 

 

The principal behind recombination is simple - that by mating two individuals with 

different but desirable features, we can produce an offspring which combines both of those 

features. This principal has a strong supporting case - it is one which has been successfully 

applied for millennia by breeders of plants and livestock, to produce species which give 

higher yields or have other desirable features. EAs create a number of offspring by random 

recombination, accept that some will have undesirable combinations of traits, most may be no 

better or worse than their parents, and hope that some have improved characteristics. 

Although the biology of the planet earth, (where with a very few exceptions lower organisms 

reproduce asexually, and higher organisms reproduce sexually), suggests that recombination 

                                                           
6
 An operator is binary if it applies to two objects as input. 
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is the superior form of reproduction, recombination operators in EAs are usually applied 

probabilistically, that is, with an existing chance of not being performed. 

 

It is important to note that variation operators are representation dependent. That is, 

for different representations different variation operators have to be defined. For example, if 

genotypes are bit-strings, then inverting a 0 to a 1 (1 to a 0) can be used as a mutation 

operator. However, if possible solutions are represented by tree-like structures another 

mutation operator is required. 

 

 

 Survivor Selection Mechanism (Replacement) 

 

The role of survivor selection or environmental selection is to distinguish among 

individuals based on their quality. In that it is similar to parent selection, but it is used in a 

different stage of the evolutionary cycle. The survivor selection mechanism is called after 

having created the offspring of the selected parents. As mentioned in the ―Population‖ 

section, in EC the population size is (almost always) constant, thus a choice has to be made on 

which individuals will be allowed in the next generation. This decision is usually based on 

their fitness values, favoring those with higher quality, although the concept of age is also 

frequently used. As opposed to parent selection which is typically stochastic, survivor 

selection is often deterministic, for instance ranking the unified multiset of parents and 

offspring and selecting the top segment (fitness biased), or selecting only from the offspring 

(age-biased). 

 

Survivor selection is also often called replacement or replacement strategy. In many cases 

the two terms can be used interchangeably. The choice between the two is thus often 

arbitrary. A good reason to use the name survivor selection is to keep terminology consistent: 

step 1 and step 5 in Figure 4 are both named selection, distinguished by an adjective. A 

preference for using replacement can be motivated by the skewed proportion of the number of 

individuals in the population and the number of newly created children. In particular, if the 

number of children is very small with respect to the population size, i.e., 2 children and a 

population of 100. In this case, the survivor selection step is as simple as to choose the two 

old individuals that are to be deleted to make place for the new ones. In other words, it is 

more efficient to declare that everybody survives unless deleted, and to choose whom to 
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replace. If the proportion is not skewed like this, i.e., 500 children made from a population of 

100, then this is not an option, so using the term survivor selection is appropriate. 

 

 Initialization 

 

Initialization is kept simple in most EA applications: The first population is seeded by 

randomly generated individuals. In principle, problem specific heuristics can be used in this 

step aiming at an initial population with higher fitness. Whether this is worth the extra 

computational effort or not is very much depending on the application at hand. There are, 

however, some general observations concerning this issue based on the so-called anytime 

behavior of EAs. 

 

 Termination Condition 

 

As for a suitable termination condition we can distinguish two cases. If the problem has a 

known optimal fitness level, probably coming from a known optimum of the given objective 

function, then reaching this level (perhaps only with a given precision   > 0) should be used 

as stopping condition. 

 

However, EAs are stochastic and mostly there are no guarantees to reach an optimum, 

hence this condition might never get satisfied and the algorithm may never stop. This requires 

that this condition is extended with one that certainly stops the algorithm. Commonly used 

options for this purpose are the following: 

 

1. the maximally allowed CPU time elapses; 

2. the total number of fitness evaluations reaches a given limit; 

3. for a given period of time (i.e, for a number of generations or fitness evaluations), the 

fitness improvement remains under a threshold value; 

4. the population diversity drops under a given threshold. 

 

The actual termination criterion in such cases is a disjunction: optimum value hit or 

condition   satisfied. If the problem does not have a known optimum, then we need no 

disjunction, simply a condition from the above list or a similar one that is guaranteed to stop 
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the algorithm. Later on in the ―Working of an evolutionary algorithm‖ section the issue of 

when to terminate an EA will be revisited. 

 

 Example Applications 

 

 The 8-Queens Problem [52] 

 The Knapsack Problem [53 – 54] 

 

 Working of an Evolutionary Algorithm 

 

EAs have some rather general properties concerning their working. To illuminate how 

an EA typically works we assume a one dimensional objective function to be maximized. 

Figure 5 shows three stages of the evolutionary search, exhibiting how the individuals are 

distributed in the beginning, somewhere halfway and at the end of the evolution. In the first 

phase, directly after initialization, the individuals are randomly spread over the whole search 

space, see figure 5, left. Already after a few generations this distribution changes: caused by 

selection and variation operators the population abandons low fitness regions and starts to 

―climb‖ the hills as shown in figure 5, middle. Yet later, (close to the end of the search, if the 

termination condition is set appropriately), the whole population is concentrated around a few 

peaks, where some of these peaks can be sub-optimal. In principle it is possible that the 

population ―climbs the wrong hill‖ and all individuals are positioned around a local, but not 

global optimum. Although there is no universally accepted definition of what the terms mean, 

these distinct phases of search are often categorized in terms of exploration (the generation of 

new individuals in as-yet untested regions of the search space), and exploitation (the 

concentration of the search in the vicinity of known good solutions). 

 

 

 

 

 

 

 

 

Fig. 5. Typical progress of an EA illustrated in terms of population distribution [47]. 
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Evolutionary search processes are often referred to in terms of a trade-off between 

exploration and exploitation, with too much of the former leading to inefficient search, and 

too much of the latter leading to a propensity to focus the search too quickly for a good 

discussion of these issues). Premature convergence is the well-known effect of losing 

population diversity too quickly and getting trapped in a local optimum. This danger is 

generally present in EAs; although there are techniques to prevent it. 

 

The other effect we want to illustrate is the anytime behavior of EAs. This is shown by 

plotting the development of the population's best fitness (objective function) value in time, see 

figure 6. This curve is characteristic for EAs, showing rapid progress in the beginning and 

flattening out later on. This is typical for many algorithms that work by iterative 

improvements on the initial solution(s). The name ―any time‖ comes from the property that 

the search can be stopped at any time, the algorithm will have some solution, be it suboptimal. 

 

 

 

 

 

 

 

 

 

 

 

Based on this anytime curve some general observations can be made concerning 

initialization and the termination condition for EAs. As for initialization, recall the question 

from the ―initialization‖ section whether it is worth to put extra computational efforts into 

applying some intelligent heuristics to seed the initial populations with better than random 

individuals. In general, it could be said that the typical progress curve of an evolutionary 

process makes it unnecessary. This is illustrated in figure 7. As the figure indicates, using 

heuristic initialization can start the evolutionary search with a better population. However, 

typically a few (in the figure:  ) generations are enough to reach this level, making the worth 

of extra effort questionable. 

 

Fig. 6. Typical progress of an EA illustrated in terms of development of the best fitness (objective function to 

be maximized) value within population in time [47]. 
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The anytime behavior also has some general indications regarding termination 

conditions of EAs. In figure 8 the run is divided into two equally long sections, the first and 

the second half. As the figure indicates, the progress in terms of fitness increase in the first 

half of the run,  , is significantly greater than the achievements in the second half,   . This 

provides a general suggestion that it might not be worth to allow very long runs: due to the 

anytime behavior on EAs, efforts spent after a certain time (number of fitness evaluations) 

may not result in better solution quality. 

 

 

 

 

 

 

 

 

 

 

 

This review of EA behavior is closed with looking at EA performance from a global 

perspective. That is, rather than observing one run of the algorithm, consider the performance 

of EAs on a wide range of problems. Figure 9 shows the 80's view after Goldberg [58]. What 

the figure indicates is that robust problem solvers - as EAs are claimed to be- show a roughly 

even good performance over a wide range of problems. This performance pattern can be 

compared to random search and to algorithms tailored to a specific problem type. EAs clearly 

outperform random search. A problem tailored algorithm, however, performs much better 

Fig. 7. Illustrating why heuristic initialization might not be worth. Level a show the best fitness 

in a randomly initialized population, level   belongs to heuristic initialization [47]. 

Fig. 8. Illustrating why long runs might not be worth. X shows the progress in terms of fitness 

increase in the first half of the run, Y belongs to the second half [47]. 
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than an EA, but only on that type of problem where it was designed for. As we move away 

from this problem type to different problems, the problem specific algorithm quickly looses 

performance. In this sense, EAs and problem specific algorithms form two antagonistic 

extremes. This perception has played an important role in positioning EAs and stressing the 

difference between evolutionary and random search, but it gradually changed in the 90's based 

on new insights from practice as well as from theory. The contemporary view acknowledges 

the possibility to combine the two extremes into a hybrid algorithm. As for theoretical 

considerations, the No Free Lunch Theorem has shown that (under some conditions) no 

black-box algorithm can outperform random walk when averaged over ―all‖ problems [57]. 

That is, showing the EA line always above that of random search is fundamentally incorrect.  

 

 

 

 

 

 

 

 

 

 Evolutionary Computing and Global Optimization 

 

There has been a steady increase in the complexity and size of problems that are desired 

to be solved by computing methods and EAs are often used for problem optimization. Of 

course EAs are not the only optimization technique known, and in this section is explained 

where EAs fall into the general class of optimization methods, and why they are of increasing 

interest. 

 

In an ideal world, where the technology and algorithms were possessed that could 

provide a provably optimal solution to any problem that could suitably pose to the system. In 

fact, such algorithms exist: an exhaustive enumeration of all of the possible solutions to our 

problem is clearly such an algorithm. For many problems that can be expressed in a suitably 

mathematical formulation, much faster, exact techniques such as Branch and Bound Search 

are well known. However, despite the rapid progress in computing technology, and even if 

there is no halt to Moore's Law (which states that the available computing power doubles 

Fig. 9. 1980's view on EA performance after Goldberg [58][47]. 
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every one and a half year), it is a sad fact of life that all too often the types of problems posed 

by users exceed in their demands the capacity of technology to answer them.  

 

Decades of computer science research have taught that many ―real world‖ problems can 

be reduced in their essence to well known abstract forms for which the number of potential 

solutions grows exponentially with the number of variables considered. For example many 

problems in transportation can be reduced to the well known ―Travelling Sales Person‖ 

problem, i.e., given a list of destinations, to construct the shortest tour that visits each 

destination exactly once. If we have   destinations, with symmetric distances between them, 

the number of possible tours is given by 
  

 
                    , which is 

exponential in  . While exact methods whose time complexity scales linearly (or at least 

polynomially) with the number of variables, exist for some of these problems, it is widely 

accepted that for many types of problems often encountered, no such algorithms exist. Thus 

despite the increase in computing power, beyond a certain size of problem the search for 

provably optimal solutions must be abandoned and other methods looked for finding good 

solutions. 

 

The term Global Optimization will be used to refer to the process of attempting to find 

the solution    out of a set of possible solutions S which has the optimal value for some 

fitness function  . In other words, if trying to find the solution    such that        

           (here a maximization problem is assumed, the inequality is simply reversed for 

minimization). 

 

As noted above, a number of deterministic algorithms exist which if allowed to run to 

completion are guaranteed to find   . The simplest example is, of course, complete 

enumeration of all the solutions in  , which can take an exponentially long time as the number 

of variables increases. A variety of other techniques exist (collectively known as Box 

Decomposition) which are based on ordering the elements of   into some kind of tree and 

then reasoning about the quality of solutions in each branch in order to decide whether to 

investigate its elements. Although methods such as Branch and Bound can sometimes make 

very fast progress, in the worst case (due to searching in a suboptimal order) the time 

complexity of the algorithms is still the same as complete enumeration. 
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After exact methods, a class of search methods is found, known as heuristics which 

may be thought of as sets of rules for deciding which potential solution out of   should next 

be generated and tested. For some randomized heuristics, such as Simulated Annealing [59 – 

60] and (certain variants of) EAs, convergence proofs do in fact exist, i.e., they are guaranteed 

to find   . Unfortunately these algorithms are fairly weak, in the sense that they will not 

identify    as being globally optimal, rather as simply the best solution seen so far. 

 

An important class of heuristics is based on the idea of using operators that impose 

some kind of structure onto the elements of  , such that each point   has associated with it a 

set of neighbors     . In figure 10 the variables (traits)   and   were taken to be real valued, 

which imposes a natural structure on S.  

 

 

Fig. 10. Illustration of Wright's adaptive landscape with two traits [47]. 

 

The reader should note that for many types of problem where each variable takes one of 

a finite set of values (so-called Combinatorial Optimization) there are many possible 

neighborhood structures. As an example of how the landscape ―seen‖ by a local search 

algorithm depends on its neighborhood structure, the reader might wish to consider what a 

chess board would look like if we re-ordered it so that squares which are possible next moves 

for a knight are adjacent to each other. Note that by its definition, the global optimum,    will 

always be fitter than all of its neighbors under any neighborhood structure. 
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So-called Local Search algorithms [59] (and their many variants) work by taking a 

starting solution  , and then searching the candidate solutions in      for one    that 

performs better than  . If such a solution exists, then this is accepted as the new incumbent 

solution and the search proceeds by examining the candidate solutions in      . Eventually 

this process will lead to the identification of a local optimum: a solution which is superior to 

all those in its neighborhood. Such algorithms (often referred to as Hill Climbers for 

maximization problems) have been well studied over the decades, and have the advantage that 

they are often quick to identify a good solutions to the problem (which is in fact sometimes all 

that is required in practical applications). However, the downside is that frequently problems 

will exhibit numerous local optima, some of which may be significantly worse than the global 

optimum, and no guarantees can be offered in the quality of solution found. A number of 

methods have been proposed to get around this problem by changing the search landscape, 

either by reordering it through a change of neighborhood function (i.e., Variable 

Neighborhood Search [61]) or by temporally assigning low fitness to already seen good 

solutions (i.e., Tabu Search). However the theoretical basis behind these algorithms is still 

very much in gestation. 

 

There are a number of features of EAs which distinguish them from Local Search 

algorithms, relating principally to their use of a population. It is the population which 

provides the algorithm with a means of defining a non-uniform probability distribution 

function (p.d.f.) governing the generation of new points from  . This p.d.f. reflects possible 

interactions between points in the population, arising from the recombination of partial 

solutions from two (or more) members of the population (parents). This contrasts with the 

globally uniform distribution of blind random search, or the locally uniform distribution used 

by many other stochastic algorithms such as simulated annealing and various hill-climbing 

algorithms. 

 

The ability of EAs to maintain a diverse set of points not only provides a means of 

escaping from one local optimum: it provides a means of coping with large and discontinuous 

search spaces, and if several copies of a solution can be maintained, provides a natural and 

robust way of dealing with problems where there is noise or uncertainty associated with the 

assignment of a fitness score to a candidate solution. 
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4.1.2. Multi-objective evolutionary algorithms 

 

Being a population-based approach, EAs are well suited to solve multi-objective 

optimization problems [50]. A generic single-objective EA can be modified to find a set of 

multiple non-dominated solutions in a single run. The ability of EA to simultaneously search 

different regions of a solution space makes it possible to find a diverse set of solutions for 

difficult problems with non-convex, discontinuous, and multi-modal solutions spaces. The 

recombination operator of EAs may exploit structures of good solutions with respect to 

different objectives to create new non-dominated solutions in unexplored parts of the Pareto 

front. In addition, most multi-objective EAs do not require the user to prioritize, scale, or 

weigh objectives. Therefore, EAs have been the most popular heuristic approach to multi-

objective design and optimization problems. Jones et al. [4] reported that 90% of the 

approaches to multi-objective optimization aimed to approximate the true Pareto front for the 

underlying problem. A majority of these used a meta-heuristic technique, and 70% of all 

meta-heuristics approaches were based on evolutionary approaches. 

 

The first multi-objective EA, called vector evaluated EA (or VEGA), was proposed by 

Schaffer [5]. Afterwards, several multi-objective EAs were developed including: 

 

 Multi-objective Genetic Algorithm (MOGA) [6];  

 Niched Pareto Genetic Algorithm (NPGA) [7];  

 Weight-based Genetic Algorithm (WBGA) [8];  

 Random Weighted Genetic Algorithm (RWGA)[9];  

 Non-dominated Sorting Genetic Algorithm (NSGA) [10];  

 Strength Pareto Evolutionary Algorithm (SPEA) [11];  

 improved SPEA (SPEA2) [12];  

 Pareto-Archived Evolution Strategy (PAES) [13];  

 Pareto Envelope-based Selection Algorithm (PESA) [14];  

 Region-based Selection in Evolutionary Multi-objective Optimization (PESA-II) [15];  

 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) [16]; 

 Multi-objective Evolutionary Algorithm (MEA) [17]; 

 Micro-GA [18];  

 Rank-Density Based Genetic Algorithm (RDGA) [19];  
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 Dynamic Multi-objective Evolutionary Algorithm (DMOEA) [20].  

 

Note that although there are many variations of multi-objective EA in the literature, these 

cited EA are well-known and credible algorithms that have been used in many applications 

and their performances were tested in several comparative studies. Several survey papers 

[1,11,21–27] have been published on evolutionary multi-objective optimization. Coello lists 

more than 2000 references in his website [28]. Generally, multi-objective GA differ based on 

their fitness assignment procedure, elitism, or diversification approaches. In table 5, 

highlights of the well-known multi-objective with their advantages and disadvantages are 

given. Is also important to note that although several of the state-of-the-art algorithms exist as 

cited above, many researchers that applied multi-objective EA to their problems have 

preferred to design their own customized algorithms by adapting strategies from various 

multi-objective EA. This observation is a motivation for introducing the components of multi-

objective EA rather than focusing on several algorithms [51]. 
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Table 5. List of well-known multi-objective EA 

Algorithm Fitness assignment 
Diversity 

mechanism 
Elitism 

External 

population 
Advantages Disadvantages 

VEGA [5] 

Each subpopulation 

is evaluated with 

respect to a 

different objective 

No No No 

First MOGA 

Straightforward 

implementation 

Tend converge to 

the extreme of 

each objective 

MOGA [6] Pareto ranking 

Fitness 

sharing by 

niching 

No No 
Simple extension of 

single objective GA 

Usually slow 

convergence 

Problems related 

to niche size 

parameter 

WBGA [8] 

Weighted average 

of normalized 

objectives 

Niching. 

Predefined 

weights 

No No 
Simple extension of 

single objective GA 

Difficulties in 

non-convex 

objective function 

space 

NPGA [7] 

No fitness 

assignment, 

tournament 

selection 

Niche count as 

tiebreaker in 

tournament 

selection 

No No 

Very simple 

selection process 

with tournament 

selection 

Problems related 

to niche size 

parameter 

Extra parameter 

for tournament 

selection 

RWGA [9] 

Weighted average 

of normalized 

objectives 

Randomly 

assigned 

weights 

Yes Yes 
Efficient and easy 

implemention 

Difficulties in 

non-convex 

objective function 

space 

PESA [14] 
No fitness 

assignment 

Cell-based 

density 
Pure elitist Yes 

Easy to implement. 

Computationally 

efficient 

Performance 

depends on cell 

sizes 

Prior information 

needed about 

objective space 

PAES [28] 

Pareto dominance is 

used to replace a 

parent if offspring 

dominates 

Cell-based 

density as tie 

breaker 

between 

offspring and 

parent 

Yes Yes 

Random mutation 

hill climbing 

strategy 

Easy to implement 

Computationally 

efficient 

Not a population 

based approach. 

Performance 

depends on cell 

sizes 

NSGA [10] 

Ranking based on 

non-domination 

sorting 

Fitness 

sharing by 

niching 

No No Fast convergence 

Problems related 

to niche size 

parameter 

NSGA-II [29] 

Ranking based on 

non-domination 

sorting 

Crowding 

distance 
Yes No 

Single parameter 

(N) 

Well tested 

Efficient 

Crowding 

distance. Works in 

objective space 

only 

   (Continued)  
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Algorithm Fitness assignment 
Diversity 

mechanism 
Elitism 

External 

population 
Advantages Disadvantages 

SPEA [11] 

Ranking based on 

the external archive 

of non-dominated 

solutions 

Clustering to 

truncate 

external 

population 

Yes Yes 

Well tested 

No parameter for 

clustering 

Complex 

clustering for 

algorithm 

SPEA-2 [12] 
Strength of 

dominators 

Density based 

on the  -th 

nearest 

neighbor 

Yes Yes 

Improved SPEA 

Make sure extreme 

points are preserved 

Computationally 

expensive fitness 

and density 

calculation 

RDGA [19] 

The problem 

reduced to bi-

objective problem 

with solution rank 

and density as 

objectives 

Forbidden 

region 

cellbased 

density 

Yes Yes 

Dynamic cell 

update 

Robust with respect 

to the number of 

objectives 

More difficult to 

implement than 

others 

DMOEA [20] Cell-based ranking 

Forbidden 

region 

cellbased 

density 

Yes (implicitly) No 

Includes efficient 

techniques to update 

cell densities 

Adaptive 

approaches to set 

GA parameters 

More difficult to 

implement than 

others 

 

 

After analyzing the components of several EA multi-objective algorithms, we reached 

the conclusion that they do not fit the problem instance which we are trying to solve in this 

thesis. This is due to fact that the problem instance is a special case of multi-objective 

optimization, named many-objective optimization. Many-objective optimization problems are 

those who have more than 2 or 3 objectives, and the problem depicted in this thesis is clearly 

a problem in which we can find dozens of concurrent objectives. So, some very known multi-

objective evolutionary algorithms, such as, NSGA-II and SPEA are very difficult to apply to 

this problem [63]. 

 

4.1.3. A-star pathfinder algorithm 

 

To find the safest and fastest path to the enemy while avoiding obstacles a A-star 

pathfinder algorithm variant is used. This algorithm returns the path to the enemy in a grid 

avoiding any obstacles in the way. The A-star is one of the algorithms with the purpose of 

finding a solution to a problem that involves state transitions, they are called path finding 

algorithms. 
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These algorithms have special impact in problems which have a vast number of 

solutions for each state or in problems with a large number of states until the target is reached. 

The A-star algorithm finds, in each state, the following possible states, making an 

estimate of the remaining distance to the target (H), and chooses the one that provides the 

largest progress with the lowest cost to continue testing. 

This algorithm implements this principle through the use of three lists: 

1. An open list, which contains all the states that were reached but were not tested; 

2. A closed list, which contains the evaluated states; 

3. A successors list, built at each iteration with the following states of the element in test. 

In short, the A-star algorithm works in this way: 

 Add the initial state to the open list 

 While the open list has elements and the list is not transferred to the closed list 

o Search for the element with the lowest total cost (F) 

o Move to closed list 

o Search for successors 

o For each successor 

 If it is an obstacle or is in the closed list, ignore 

 If not 

 If it is not present in the open list, set the parent as the current 

node and calculate F,G and H 

 If it is in the open list, calculate again G (Total cost for the 

current path) if it is less than the previous value replace the 

parent node, G and F value 

The A-star algorithm, for its simplicity and bearing on the problem was nominated as a 

―help‖ agent to find the shortest and most reliable path to the target. This becomes strikingly 

useful in cases where the direction of the target is contrary to the direction that the units have 

to go to find it. 
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4.1.4. KMeans clustering algorithm 

 

To use the A-star algorithm for finding the best path to the target, first there is the need 

to define a point where the unit or units are. When there is only one unit, the point is the unit 

itself, but when several units are involved, we need to find a point in the grid which is, as 

much as possible, the nearest to all the units, named centroid. For this we use the KMeans 

Clustering algorithm. 

KMeans (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that 

solve the well known clustering problem. The procedure follows a simple and easy way to 

classify a given data set through a certain number of clusters (assume   clusters) fixed a 

priori. The main idea is to define   centroids, one for each cluster. These centroids should be 

placed in a cunning way because of different location causes different result. So, the better 

choice is to place them as much as possible far away from each other. The next step is to take 

each point belonging to a given data set and associate it to the nearest centroid. When no point 

is pending, the first step is completed and an early grouping is done. At this point we need to 

recalculate   new centroids as barycenters of the clusters resulting from the previous step. 

After we have these   new centroids, a new binding has to be done between the same data set 

points and the nearest new centroid. A loop has been generated. As a result of this loop we 

may notice that the   centroids change their location step by step until no more changes are 

done. In other words centroids do not move any more. Finally, this algorithm aims at 

minimizing an objective function, in this case a squared error function. The objective function 
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is a chosen distance measure between a data point   
   

 and the cluster 

centre   , is an indicator of the distance of the n data points from their respective cluster 

centers. 

 

The algorithm is composed of the following steps: 
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Although it can be proved that the procedure will always terminate, the KMeans 

algorithm does not necessarily find the most optimal configuration, corresponding to the 

global objective function minimum. The algorithm is also significantly sensitive to the initial 

randomly selected cluster centers. The KMeans algorithm can be run multiple times to reduce 

this effect. 

KMeans is a simple algorithm that has been adapted to many problem domains. As it will 

be demonstrated, it is a good candidate for extension to work with fuzzy feature vectors.  

 An example  

Suppose that there is   sample feature vectors            all from the same class, and is 

known that they fall into   compact clusters,      . Let    be the mean of the vectors in 

cluster  . If the clusters are well separated, a minimum-distance classifier can be used to 

separate them. That is,   is in cluster   if         is the minimum of all the   distances. 

This suggests the following procedure for finding the   means: 

 

 

 

 

 

1. Place   points into the space represented by the objects that are 

being clustered. These points represent initial group centroids; 

2. Assign each object to the group that has the closest centroid; 

3. When all objects have been assigned, recalculate the positions of 

the   centroids; 

4. Repeat Steps 2 and 3 until the centroids no longer move. This 

produces a separation of the objects into groups from which the 

metric to be minimized can be calculated. 

 Make initial guesses for the means            

 Until there are no changes in any mean 

o Use the estimated means to classify the samples into clusters  

o For   from 1 to    

 Replace    with the mean of all of the samples for cluster   

o End For 

 End Until 

Listing 2. Procedure for finding the   means 
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In figure 11 is an example showing how the means    and    move into the centers 

of two clusters.  

 

Fig. 11. KMeans working example [62]. 

 Remarks 

This is a simple version of the KMeans procedure. It can be viewed as a greedy 

algorithm for partitioning the   samples into   clusters so as to minimize the sum of the 

squared distances to the cluster centers. It does have some weaknesses: 

 The way to initialize the means was not specified. One popular way to start is to 

randomly choose   of the samples; 

 The results produced depend on the initial values for the means, and it frequently 

happens that suboptimal partitions are found. The standard solution is to try a number 

of different starting points; 

 It can happen that the set of samples closest to    is empty, so that    cannot be 

updated. This is an annoyance that must be handled in an implementation; 

 The results depend on the metric used to measure        . A popular solution is to 

normalize each variable by its standard deviation, though this is not always desirable; 

 The results depend on the value of  . 

This last problem is particularly troublesome, since we often have no way of knowing 

how many clusters exist. In the example shown above, the same algorithm applied to the same 

data produces the following 3-means clustering. Is it better or worse than the 2-means 

clustering? 
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Fig. 12. KMeans working example 2 [62]. 

 

Unfortunately there is no general theoretical solution to find the optimal number of 

clusters for any given data set. A simple approach is to compare the results of multiple runs 

with different   classes and choose the best one according to a given criterion (for instance 

the Schwarz Criterion), but special care must be taken because increasing   results in smaller 

error function values by definition, but also an increasing risk of overfitting. 

In this special case the   is one, as only one cluster of the dataset provided is needed, 

which will be the start and end for the A-star algorithm. 
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The MOEGWAO meta-heuristic 

 

This section will focus on the MOEGWAO (Multi-objective Evolutionary Ground 

Warfare Adaptive Optimizer) meta-heuristic itself, decomposing it into operators for 

simplicity and ease of perception. In this section the user will see how the meta-heuristics and 

algorithms described in the section above will be integrated in the model proposed.  

MOEGWAO

 CRT Table

 Movement operator

 Attack operator

Problem scenario:

 Map

 Units

 Targets

 Weather Regions

 Secondary objectives 

(Oilfields, occupation 

zones,…)

 Termination conditions

 Military doctrine

 Primary Objectives + 

fitness metrics

Algoritmic Control 

parameters

 K (Kmeans)

 N (A-star)

 Others...

Simulation solutions

Input

Output

Input

Input

Input

 

Fig. 13. MOEGWAO static model 
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Figure 13 shows the static model of MOEGWAO and depicts all the input parameters. 

There are 5 main groups of input parameters, the military doctrine and primary objectives for 

the simulation, then another group which consists of the CRT table, movement and attack 

operators adapted to the military specialist needs. Then the scenario specific parameters, with 

all the units and targets involved as well as the map, any secondary objectives and termination 

conditions. Finally, we input the algoritmic control parameters. Which are specific controls, 

such as the   in the KMeans clustering algorithm or other specific parameters for fine tuning. 

The logic overview of the meta-heuristic is detailed in the figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start

Attack Group 

Builder Operator

Group State 

Machine Operator

Path Relinking 

Operator

Movement Operator

Attack Operator

Ranking Operator

Weather Regions 

Operator

End

If any termination condition is met

Termination Condition

False

True

Fig. 14. MOEGWAO Meta-heuristic logic overview 
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The meta-heuristic begins by forming the attack groups, then the group state machine 

begins operating. It moves the attack groups throughout the map and simulates the combat 

between the units and the targets using the attack operator. Then the results are ranked using 

the ranking operator. This operator also uses the weather region operator in order to calculate 

the weather region fitness. This terminates a time slot of the simulation. In the end of the time 

slot, the termination condition is evaluated. If it returns true, the simulation ends but if it 

return false, then a new time slot is simulated. In the end of the whole simulation we apply the 

path relinking operator to gather more diversity in the results. And this ends the meta-

heuristic operation.   

5.1. Attack group builder operator 

 

First, the attack groups are formed using the steps in listing 3. In this operator we use a 

control parameter, as the number of centroids or K in the KMeans clustering algorithm 

operator terminology is 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WHILE there are units available and targets not locked 

 GET the available target with the lowest x and highest y position 

 GET the available targets with visibility radius greater or equal to the distance 

to the main target 

 GET nearest unit from the main target 

 WHILE units power less or equal to targets power and there are units available  

  GET nearest available/eligible unit from main unit 

 END WHILE 

 IF units power less or equal to targets power THEN 

  SET group state to ‘MovingToTarget’ 

 END IF 

 ELSE 

  SET group state to ‘Attacking’ 

 END ELSE 

 GET targets centroid using KMeans 

 GET units centroid using KMeans 

 GET path from the units centroid to the targets centroid using the A-star variant 

 GET random points from the path 

 SET noise/entropy on the path 

END WHILE 

Listing 3. Pseudo-code of the attack builder operator 
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The formed group can be in one of these nine states: 

 Idle 

This state occurs when a group which was attacking destroyed all its targets. In this state a 

group can move to the ―Help other group‖ state if there are other groups in the ―Awaiting near 

target‖ state, move to ―Attacking‖ or ―Moving to the target‖ if there isn‘t any groups in the 

―Awaiting near target‖ state but there are targets which are idle (not being attacked), if there 

aren‘t any targets left it will find the nearest occupation zone and occupy it. 

 Attacking 

This group will move to its targets and destroy them. 

 Moving to target 

If in a certain attack group there are no more units available and the attack power is not 

enough to destroy the targets the group will be on ―Moving to target‖ state. This group will 

move to the target but stay out of its visibility radius. When it reaches the target its state will 

change to ―Awaiting near target‖. 

 Help other group 

This state occurs when a group has destroyed its targets and there is other group in the 

―Awaiting near target‖ state. This group will move to that other group. 

 Awaiting near target 

In this state the group will stay on hold waiting for other group to back up. When another 

group in the ―Help other group‖ state reaches it will change to ―Attacking‖ state if the 

combined power of the two has enough power to destroy the targets or will stay in the 

―Awaiting near target‖ state if it hasn‘t the attacking power needed to destroy the targets. 

 Destroyed 

This state occurs when a group engaged its targets and was destroyed in the battle. This 

group and its units will not be used again in the simulation. 

 Disposed 
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This state occurs when a group in the ―Help other group‖ state reaches its destination. 

This group and the group which it is backing up combine in one group, and the group which 

was on the ―Help other group‖ state changes to ―Disposed‖ which means is it will be no 

longer considered. 

 Moving to occupy 

      When a group which was on ―Idle‖ is moving towards an occupation zone. 

 Occupying 

When a group which state was ―Moving to occupy‖ reaches the occupation zone and 

stays there occupying the zone. 

 

5.2. Group state machine operator 

With groups formed, the simulation begins with steps depicted in Listing 4, 5 and 6. 

Here another control parameter is used, the termination condition can be defined according to 

the need of the military specialist who is using the simulator. 

 

 

 

     

WHILE termination condition is not met DO 

 FOR each attack group 

  IF group state is idle 

   IF there is a group in the awaiting near target state 

    SET attack group state as help other group 

    SET destination 

   END IF 

ELSE IF exist targets not locked by other group 

     SET target 

     IF there is enough attacking power to destroy the target 

        IF attacking power is more than required to destroy the target 

           CREATE another group the remaining units in the idle state 

        END IF 

         ELSE 

  

    

 

Listing 4. Pseudo-code of the group state machine operator 
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SET group state Attacking 

        END ELSE 

END IF 

ELSE 

      SET group state Moving to target 

   END ELSE 

   END IF 

   ELSE 

    GET the occupation zone with the least units 

    SET attack group state Moving to occupy 

   END ELSE 

  END IF 

  IF group state is attacking 

   IF group state is near the target 

    Simulate combat using the CRT Table 

    IF group wins the battle 

     SET group state to Idle 

    END IF 

    ELSE 

     Destroy group and its units 

    END ELSE 

   END IF 

   ELSE 

    Move to target 

   END ELSE 

  END IF 

  ELSE IF group state is Moving to target 

   IF the group is near the targets visibility zone 

    SET group state Awaiting near target 

   END IF 

   ELSE 

    Continue moving to target 

   END ELSE 

   

state is Awaiting near target 

   Await for other group 

   

Listing 5. Pseudo-code of the group state machine operator (continued) 
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END ELSE IF   

ELSE IF group state is Awaiting near target 

   Await for other group 

END ELSE IF 

  IF group state is Help other group 

   IF other group is near enough 

    Combine the two groups 

    IF there is enough power to destroy the target 

     SET group state Attacking 

    ELSE 

     SET group state Awaiting near target 

   END IF 

   ELSE 

    Keep moving to the other group 

   END ELSE 

  END ELSE IF 

  IF group state is Moving to occupy 

   IF group reached destination 

    SET group state Occupying 

   END IF 

   ELSE 

    Keep moving to destination 

   END ELSE 

  END ELSE IF 

  ELSE IF group state is Occpupying 

   IF there are groups awaiting near target and no other groups 

available or there still exist targets not locked and no units available 

    SET group state idle 

   END IF 

   ELSE 

    Keep occupying 

   END ELSE 

  END ELSE IF 

END FOR 

END WHILE 

 
Listing 6. Pseudo-code of the group state machine operator (continued) 
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5.3. Movement operator 

 

After the groups state is refreshed, the movement operator is used, if necessary using 

the steps in the listing 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOR each group 

 IF group is still moving 

  GET all possible destinations for the group 

 END IF 

 ELSE 

  GET actual position 

 END ELSE 

END FOR 

Combine all possible movements between the groups until the maximum of movements defined 

is reached 

Create a solution for each combination 

FOR each combination 

 GET fitness values 

END FOR 

Rank solutions 

Select the defined quantity of non dominated solutions 

Select a few random dominated solutions, if they exist 

   
Listing 7. Pseudo-code of the movement operator 
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5.4. Ranking operator 

 

For ranking solutions the ranking operator is used as depicted in the listing 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The meta-heuristic makes use on many objectives simultaneously extensively, although 

the objectives being used are those described by the fitness values above, it is not limited to 

these values and more objectives can be added at any time. 

 

 

 

 

FOR each solution 

Calculate enemy distance fitness (using Euclidean/Manhattan formula) 

Calculate waypoint fitness (distance to the nearest waypoint) 

Calculate weather region fitness 

Calculate supplies fitness (supplies used in this time slot) 

Calculate ammo fitness (ammo used on this time slot) 

Calculate oilfield fitness (oilfields conquered until this time slot) 

Calculate occupation zone fitness (occupation zones being occupied during this time 

slot with no targets in them) 

END FOR 

FOR each solution 

 Check if there is another solution which is better in all fitness values 

 IF exists one better solution 

  SET solution as dominated 

 END IF 

 ELSE 

  SET solution as non dominated 

 END ELSE 

END FOR 

   
Listing 8. Pseudo-code of the ranking operator 
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5.5. Attack operator 

 

The CRT table is a table used in combat simulation to simulate the combat between two 

parties. It contains the combat result taking into consideration the attack power of the group 

and a random number which is named die roll. In this model the CRT table is used as an input 

parameter, which makes part of the military doctrine. 

 

The attack factor is calculated using the steps depicted in listing 9. 

 

 

 

 

 

 

 

 

 

 

 

If there was a group with attack power of 9 and a target with attack power of 1: 

 

Combat factor 1 = units 

power / targets power = 9/1 = 

9

Combat factor 2 = 1 Final combat factor is “9-1”
Random number between 1 

and 6 = 2

 

Fig. 15. Example of combat CRT mapping 

 

 

IF the group units power is higher than the targets power 

 SET combat factor 1 as (units power / targets power) 

 SET combat factor 2 as 1 

END IF 

ELSE IF the group units power is lower than the targets power 

 SET combat factor 2 as (targets power / units power) 

 SET combat factor 1 as 1 

END ELSE IF 

ELSE 

 SET combat factor 1 and 2 as 1 

END ELSE 

   Listing 9. Pseudo-code of the attack operator 
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    Table 6. CRT Table [30] 

  Combat factors 

  
1-3 1-2 1-1 2-1 3-1 4-1 5-1 6-1 7-1 8-1 9-1 

D
ie

 R
o

ll
 

1 3/0 2/0 2/1 1/1 1/2 1/1 1/2 1/3 0/3 0/4 0/DS 

2 2/0 2/1 1/1 1/2 1/1 1/2 1/3 0/3 0/4 0/5 0/DS 

3 2/0 1/1 1/2 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/DS 

4 1/0 1/2 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/4 0/DS 

5 1/0 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/4 0/5 0/DS 

6 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/4 0/5 0/4 0/DS 

 

 

Using table 6, the result of the combat would bet 0/DS, which means the attacker loses 

0 units and the defender surrenders (DS) meaning all targets are destroyed, if there was a 

value instead of DS it would be the targets that were destroyed. This is the table which will be 

used for the simulation. 

 

Most of the CRT tables also include a retreat value, used for the defender to move a 

few steps away from battle, but that value will not be used in this simulation. The value will 

not be used because according to a well-known and respected military magazine named 

‗Command‘ [30]: 

 

“Our analysis of high-speed, low-drag, 1990s, operational-level combat has led us to 

conclude such things (at the time/ space scale, anyway) don’t really happen any longer. That 

is, on the modern, ultra-high intensity battlefield, a brigade-sized unit’s destiny is pretty much 

determined by the way it enters the battlefield. Firepower has become so overwhelming in 

effect and precise in direction, units simply don’t have the opportunity to perform functional 

tactical/operational battlefield retreats as in days of yore. More than ever before, combat has 

become a matter only of the death of soldiers and the destruction of equipment. Direct, brutal 

and savage.” 
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5.6. Weather regions operator 

 

The weather regions are areas in the map where the terrain or weather is different from 

most of the map, they can have adverse conditions or better conditions than in most of the 

map. 

There are various types of weather regions as detailed in table 7. 

    Table 7. Weather Region Penalty with adapted values from [30]. Values adapted for use with the A-star algorithm. 

Terrain Type Mech Penalty Non Mech Penalty 

Clear 10 10 

Rough 40 20 

Inundated P (Movement prohibited) 30 

Dunes 20 20 

Wadi 20 10 

Escarpment P P 

River P P 

Stream 20 10 

Lake P P 

Sea P P 

Fair-weather 10 10 

Road 20 20 

Road (Paved) 1 1 

Multi-lane highway 1 1 

Village 1 1 

Town 1 1 

Oilfield 1 1 

City 1 1 

Airfield 1 1 

Fortification 30 20 

Heavy Fortification 40 30 

 

A lower value means that it is the most efficient path, but if it means much more 

distance than a path with a higher value, a path with higher value might be taken into 

consideration. These values are used by the A-star variant to find the best route to the targets 

while trying to avoid these areas, and will be used further on to calculate the weather region 

fitness. 
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5.7. Path Relink Operator 

 

After getting the non-dominated results a path relink operator was used to get even 

more variation in the final solutions, this operator tries to create more solutions from the final 

solutions by combining, for example, the first time slot of solution A and the following time 

slots of solution B. This mechanism is very important to maximize variability in the 

population. However, this mechanism doesn‘t work backwards to recreate, for example the 

movements of a given group from time X to the beginning of the simulation. 
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Problem Instance 

 

In this section we present the simulation background and history. For this simulation 

we use the 1991 Gulf War also known as Desert Storm. For understanding the whole problem 

instance used it is essential to study the factors that led to war, as well as the map of the 

region in which the war took place and the units deployed in conjunction with the units 

characterization, such as, armament. The atmospheric conditions and the way they affect units 

is also crucial, these are incorporated in the model as weather regions. Also, the main and 

secondary military objectives are important in order to calculate the fitness values for a 

solution. 

 

6.1     Simulation Approach 

 

The Gulf War was perhaps the most efficient war in American History, at least when 

considering the cost in American lives. It proved that U.S. technology and U.S. military 

doctrine is a potent force when applied to the world stage. Years after the war's end there are 

disagreements about whether the U.S. was justified in waging war against Iraq and over 

whether the war was prosecuted far enough.  

 Factors that Led to the Iraqi Invasion of Kuwait [31] 

Any discussion of the Gulf War must begin with the nation of Iraq. It once was a part of 

the Ottoman Empire, then a British protectorate, then a kingdom and finally a totalitarian 

state. Saddam Hussein became "President" in 1979 and maintained power through ruthless 

purges (including even members of his family). The country was also beset by internal strife. 

In the north the Kurds yearned for independence and in the south, the Shi'ites looked to Iran. 

The state and the army grew over time to consume most of the GNP. Today, the military 

alone takes up 35 percent of every dollar earned.  
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Saddam's expansion of the state's military apparatus was frightening to his neighbors. His 

investment in nuclear, chemical and biological weapons and corresponding delivery systems 

even prompted a 1981 attack by Israel in an effort to set back his weapons development 

program. With the expansion of his military, Saddam attempted to gain hegemony over the 

Persian Gulf Region. In the 1980's he fought a long, bitter struggle with Iran.  

As a result of the war with Iran and the heavy investment in arms and training, the Iraqi 

military became the dominant force in the region. Led by the Republican Guard it could 

formidably challenge any of its neighbors. The price of keeping this force active was 

exorbitant. Iraq borrowed heavily from its oil producing neighbors. The debt coupled with 

continued investments brought on a 40 percent inflation rate and a stagnant standard of living.  

Although Iraq had considerable oil reserves of its own, revenues were not sufficient to 

meet the demands of its creditors. This problem was exacerbated in 1990 when Kuwait and 

other oil states began to lower oil prices and increase production beyond agreed upon levels. 

Iraq was forced to follow suit or lose even more revenues. To make matters worse, Iraq 

suspected the Kuwaiti's were drilling diagonally from their side of the border to tap Iraqi oil 

reserves. 

Thus Saddam Hussein was now in a precarious position, it was getting more and more 

difficult to maintain his military power (which he needed to keep down internal opposition as 

well as to keep up national prestige). He seemed there was an expeditious solution to his 

problems, a solution involving a foreign adventure.  

Saddam Hussein found himself in a tight spot and a quick takeover of Kuwait, his 

neighbor to the south seemed like a good solution to his problems.  

Kuwait was a small country that, like Iraq, had once been part of the Ottoman Empire, 

then a British Protectorate. When that small country had been granted its independence, its 

borders had been set in an arbitrary manner, the borders are not readily defensible and the 

population is not necessarily cohesive. The country was ruled by an Emir of the al-Sabah 

family.  

Like much of the Persian Gulf region, most of the country's revenues derived from the oil 

industry. The population was small, about 1.9 million, and its military was not a factor in 

regional politics.  
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Kuwait was in many ways an irritant to Saddam Hussein in Iraq. Besides lowering oil 

prices (thus cutting into Iraqi oil revenues), Kuwait had committed the unforgivable sin of 

loaning Iraq considerable sums during the Iran/Iraq war. Iraq claimed to have saved the entire 

region from the Iranian steam roller in the 1980's and deserved special consideration 

amounting to renegotiating or even cancelling the debt. Kuwait refused.  

During late July of 1990 Saddam built up his military forces on the border with Kuwait. 

At 1:00 a.m. on 02 August, three Iraqi divisions of the elite Republican Guard rolled over the 

border. Resistance was nearly non-existent. The Guard reached the outskirts of the capital, 

Kuwait City, a mere four and a half hours later. The frontal assault was supported by an 

airborne special forces division attack directly on Kuwait City itself. 

Saddam proclaimed his annexation of Kuwait, built up his forces, and waited to see what 

the world would say and do about his fait a compli.  

 The Saudi Invitation 

The Middle East is a region of complex politics involving family ties between rulers, 

religious strife, socio-economic differences, and human personality. In spite of its often 

unstable nature, most of the world was shocked by the Iraqi invasion of Kuwait. Iraq justified 

the move primarily on the grounds that Kuwait was once a part of Iraq and should be again. 

Of course, it was also a power play by Iraq, an effort to annex some of the worlds richest oil 

fields. (Between Iraq and Kuwait Saddam now controlled about 20 percent of the worlds oil 

reserves.)  

Once the Republican Guard had secured all of the strategic points in the country, it moved 

to the Kuwait/Saudi border. Of course, the Saudis were alarmed. It was not in their interests to 

have a beefed up Iraq to their north; the new build up, containing one of the elite forces in the 

region, was ominous. Iraq was sending more and more troops streaming into Kuwait, by 

August 6 there were nearly eleven combat divisions. Intelligence analysts at the time 

understood that Iraq had enough troops in the area to roll over Saudi Arabia nearly as easily 

as they had done to Kuwait.  

King Fahd of Saudi Arabia recognized his situation as dire and immediately requested aid 

from his most powerful friend and ally, the United States [32]. President Bush promptly 

ordered the deployment of U.S. ground and air forces to Saudi territory. U.S. Navy ships were 
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also deployed to the region. So began the operation to defend Saudi Arabia that would be 

called "Desert Shield".  

 US Interests in the Gulf War [36] 

The response in the United States to Saddam Hussein's moves was first shock and then 

dismay. Strategist, statesmen and the general public quickly came to understand that the 

United States had significant interests in making certain that Saudi Arabia was not conquered 

by Saddam's juggernaut. Having rolled over Kuwait, Saddam already controlled over 20 

percent of the world's oil reserves. Saudi Arabia contained an additional 20 percent. Since the 

world economy was primarily driven by fossil fuels, what Saddam could do with these 

resources could easily be imagined.  

Besides economic factors affecting the daily lives of every American there were other 

considerations, perhaps even more weighty. Iraq, in its invasion of Kuwait had perpetrated 

many atrocities on the Kuwaiti people, from summary executions, to wholesale confiscation 

of movable property, to the torture and degradation of individuals. Such crimes could not be 

ignored, and Americans had every reason to expect that this kind of behavior would continue 

and even accelerate should Iraqi forces move into Saudi Arabia.  

Further, Iraq had been vigorous in developing weapons of mass destruction. CIA and 

other intelligent experts estimated that the Iraqi's were on the brink of developing a nuclear 

capability and likely had a biological weapon's capability. There was no question that they 

had chemical weapons. More ominously, they showed no compunction about using their 

chemical weapons. They had even done so on villages within their own boundaries in order to 

put down the Kurdish independence movement.  

Economic sanctions had failed to keep Saddam from committing atrocities, they had 

failed to keep him from developing weapons of mass destruction, they had failed to keep him 

from invading Kuwait. A majority of Americans understood that military force was not only 

justified, but absolutely necessary.  

 Build Up of Forces 

Saddam Hussein's move into Iraq was so alarming that it galvanized most of the nations in 

the region to send troops to Saudi Arabia to help oppose the Iraqi build up. The United 
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Nations had looked askance at Iraqi behavior for some time. At this juncture, the United 

Nations felt compelled to condemn Iraq and to request an immediate withdrawal of troops 

from Kuwait. The United Nations would eventually authorize allied use of force in order to 

forcibly expel Iraq from Kuwait.  

General H (Stormin') Norman Schwarzkopf was sent by President Bush, to Saudi Arabia 

to take command of US forces and defacto command of all the forces in the region [34]. (The 

Saudis insisted on at least the appearance of joint control.) Sent to the General, via land, sea 

and air was the best that the United States could provide including the XVIII Airborne Corps 

(24th Mechanized Infantry Division, 101st Airborne Division, and the 82nd Airborne 

Division), plus the 1st Marine Division. In time, the United States would send over 500,000 

personnel to the region. Other allies, Britain, France, Egypt, Syria even the UAE sent 

contingents. The force took on an international complexion, with United States leadership.  

The build-up was prosecuted as rapidly as possible. Schwarzkopf feared that the Iraqi's 

would launch an invasion before a proper defense could be constructed. Strategists 

hypothesize that if Hussein had ordered his troops into Saudi Arabia within a few days of his 

conquest of Kuwait, there would have been little to stop him from rolling into Riyadh. 

Saddam hesitated and this hesitation proved his undoing. For it was not until coalition forces 

had deployed that he decided to test their metal.  

On 30 January 1991 the 15th Iraqi Mechanized Infantry Brigade attacked across the 

border a small town, Al-Khafji, in Saudi Arabia. The attack was swiftly repulsed; it served 

only to dissuade any wavering allies from any notions that Saddam would be willing to be 

satisfied with merely taking Kuwait. He would indeed aggrandize all his fellow Arabs.  

Operation Desert Shield was meant to defend Saudi Arabia, but in January of 1991 

President Bush, advised by Collin Powell and the Joint Chiefs of Staff determined to go on 

the offensive and take the war to the Iraqis.  

 Air War - Operation Desert Storm 

As is usual in modern war, the first objective of the allied force in Saudi Arabia was to 

gain air superiority. Air superiority gives a military force the ability to indiscriminately attack 

enemy targets, disrupt enemy lines of supply, to conduct recon, and, of course denies the 

enemy the ability to do all of these things himself.  
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The air campaign against Iraq was launched 16 January 1991, the day after the United 

Nations deadline for Iraqi withdrawal from Kuwait expired. Saddam was given every 

opportunity to conclude the stand off peacefully, but US/Iraqi talks in Geneva were 

inconclusive, at best [33].  

The magnitude and the power of the air attack was a shock to all concerned. The initial 

attack swept away much of Iraq's ability to defend against further air assaults. Radar 

installations were attacked by helicopters, F-117's were sent to the Iraqi capital of Baghdad to 

destroy command and control centers, air bases and hangars were bombed. U.S. Navy 

bombers and Tomahawk missiles wreaked havoc on all aspects of Iraqi air defense. The air 

campaign was conducted not just by the United States, but the Saudi, British, French, Italian, 

as well as various Arab Air Forces.  

The Allied air campaign was thorough and devastating. Realizing that traditional anti-air 

defense was futile the Iraqis took to psychological methods that included using human 

hostages as shields for prime targets. They placed their aircraft near ancient historic sites and 

holy places, knowing the allies would be reticent to attack where there might be significant 

"collateral damage".  

In an effort to demonstrate their own air offensive capability, on 24 January the Iraqis 

attempted to mount a strike against the major Saudi oil refinery in Abqaiq. Two Mirage F-1 

fighters laden with incendiary bombs and two MiG-23s (along as fighter cover) took off from 

bases in Iraq. They were spotted by US AWACs, and two Royal Saudi Air Force F-15s were 

sent to intercept. When the Saudis appeared the Iraqi MiGs turned tail, but the Mirages 

pressed on. Captain Iyad Al-Shamrani, one of the Saudi pilots maneuvered his jet behind the 

Mirages and shot down both aircraft. After this episode, the Iraqis made no more air efforts of 

their own, only sending most of their jets to Iran in hopes that they might someday get their 

air force back. (Iran never returned the jets.)  

With Iraqi air defense effectively neutralized, the Allied Air Forces proceeded to pound 

the Iraqi divisions arrayed in Kuwait and Southern Iraq. Utilizing fuel bombs, cluster bombs, 

armor piercing guided bombs, missiles and various other ordinance, Allied forces degraded 

Iraqi ability to fight on the ground. Attacks by B-52 bombers were noted to be especially 

terrible; entire regiments, brigades and divisions were effectively crushed in a few minute air 

raid by these powerful though dated bombers.  
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By late February the Coalition forces were ready to kick off the ground campaign...  

 The Ground War - Operation Desert Storm 

There is much argument today about the Ground War phase of the Gulf War. Air 

advocates claim that the massive yet precise air war in fact defeated the Iraqi forces in Kuwait 

and that the ground campaign was merely "the great prisoner roundup". Conventional 

thought, however, recognizes that without forces on the ground it is impossible to hold 

territory, and engage the enemy on an individual level.  

On 24 February 1991 the much feared Marine Divisions kicked off the ground campaign 

with a thrust into the heart of the Iraqi forces in central Kuwait [35]. The Saudi and Muslim 

Joint Forces - East attacked up the Kuwaiti coast line. Meanwhile the U.S. 18th Airborne 

Corps and the French 6th Armored Division, making good use of their high speed and 

mobility, rushed into Iraq on the far left. 

These initial attacks rolled over Iraqi positions and on the 25th of February were followed 

up with the US VII Corps with the US 1st Infantry Division and the British 7th Armored 

Division attached.  

In effect General Schwarzkopf had designed a strategy based on US doctrine which relied 

heavily on the flanking maneuver. (The flanking maneuver is a classic and reliable method of 

creating local superiority of power at a vulnerable point in the enemies line of battle.) Allied 

Forces occupied Iraqi front line forces while more mobile units encircles the enemy on the 

left, effectively cutting lines of supply and avenues of retreat. The movement proved to be 

highly effective and resistance by even battle hardened Iraqi units proved remarkably light.  

The ground assault by the allies precipitated a general rout on the part of Iraqi forces 

positioned in Kuwait. There was basically only one highway out of Kuwait and that was the 

four lane desert highway that lead from Kuwait City to the Al Jahra' pass. As Iraqi resistance 

deteriorated the highway became jammed with every nature of vehicle laden with plunder 

from the Iraqi sack of Kuwait City. This highway was bombed, and thousands of fleeing 

Iraqis were killed and wounded.  
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Scenes of destruction of this "Highway of Death" were flashed by news services around 

the world. Eventually the mood in the Arab countries within the coalition became one of 

empathy for their brother Arabs on the highway - men they did not want to kill unnecessarily.  

 As coalition forces moved to completely cut off this last avenue of retreat, Allied 

leaders, including George Bush and Collin Powell determined that the Allied objective had 

been all but accomplished. The Iraqis had been turned out of their Kuwaiti conquest. On 28 

February President Bush ordered the cessation of offensive military operations before the 

"Highway of Death" could be completely closed off. While the Iraqis and the Allies 

negotiated, the remaining Iraqi forces, including intact units of the elite Iraqi Republican 

Guard streamed out of Kuwait.  

 Historical Deployment 

 

Fig. 16. Desert Storm historical deployment [31] 
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The results presented in the next section  are based on 30 simulations per configuration 

(these configurations will be detailed further on this section). The map dimensions are 2448 x 

1392 pixels, there are 76 units and 70 Targets to destroy. After getting the final solutions the 

dominated solutions are removed from the final set and then the path relink operator is 

applied to generate more diversity to the solutions. The combats are simulated using the CRT 

table described previously. The weather region penalties are those described previously. There 

are 25 Oilfields to occupy and 4 occupation zones. The main objectives of this simulation are 

those described in table 8. 

 

 Table 8. Main objectives to be analyzed 

 

 

 

 

 
For easy understating of the maps used in the simulation example in the next section, 

the map legends are those detailed by the tables 9, 10 and 11 and also figure 17.

Objectives 

Occupation zones occupied 

Oilfields occupied 

Time Slots (days) required for the simulation 

Targets Destroyed 

Targets Deserted 

Units Destroyed 

Ammo consumed 

Supplies Used 

Efficiency of the units movement 
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Fig. 17. Unit Legend 

 

    Table 9. Unit Sizes Legend 

Unit Sizes 

XX Division 

X Brigade 

III Regiment 

II Battalion 

 

    Table 10. Mechanized Unit Types Legend 

Mechanized Unit Types 

 
Armor or Tank 

 
Armored Cavalry 

 
Mech Infantry 

 
Motorized Infantry 

 
Motorized Marines 

 
Motorized Special Operations 

 
Wheeled Infantry 

 
Wheeled Airborne Infantry 

 
Wheeled Marines 

 

Wheeled Special Operations 

 
Self-Propelled Artillery 

 
Wheeled Artillery 

 
Armored Car 

 
Combined Arms 

 
Tracked Anti-Tank 

 
Attack Helicopters 

 
Motorized Anti-Tank 

 

 

      

 

 

      Table 11. Non-Mechanized Unit Types Legend 

Non-Mechanized Unit Types 

 
Infantry 

 
Mountain Infantry 

 
Airmobile Infantry 

 
Special Operations 

 
Marines 
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Fig. 18. Configurations Explanation Map 

 

 Initialization control parameter 

 

To create the graphs depicted in the next section were used 7 different configurations, 

which belong to the group of control parameters. These are referred as ―configs‖ in the 

graphs. These ―configs‖ are nothing more than the method used to originally create the first 

population in order for the simulation to begin, in the initialization step of the EA. These 

configurations begin by selecting the targets from the specified side of the map, as illustrated 

in the figure 18.  
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Empirical Simulation Results 

 

This section will begin by giving an example of a solution in table 13, with maps 

showing the progress through time until the termination condition is met (all targets are 

destroyed). A solution is a complete simulation of the problem instance, with several time 

slots until the termination condition is met. The legend for the map is depicted in table 12. 

Then we will present some graphs and propose an analysis framework, in the next section, in 

order to analyze the operation of the meta-heuristic.  

 

7.1. Simulation example 

Table 12. Map Legend 

 Map Legend 

 

Occupied Zone 

 

Combat 

 

Target 

 Attacking Group 

 

Table 13. Simulation Example7 

 

TS:0 – Initial deploy 

 

TS: 1 – UD:0 – TD:0 – TDes:0 

                                                           
7
 TS: Time slot, UD: Units Destroyed, TD: Targets Destroyed, TDes: Targets Deserted, OZ: Occupation Zones 
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TS: 2 – UD:0 – TD:1 – TDes:0 

 

TS: 3 – UD:1 – TD:8 – TDes:0 

 

TS: 4 – UD:5 – TD:17 – TDes:0 

 

TS: 5 – UD:8 – TD:21 – TDes:0 

 

TS: 6 – UD:11 – TD:24 – TDes:1 

 

TS: 7 – UD:11 – TD:26 – TDes:1 

 

TS: 8 – UD:11 – TD:27 – TDes:1 

 

TS: 9 – UD:11 – TD:27 – TDes:1 
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TS: 10 – UD:13 – TD:28 – TDes:2 

 

TS: 11 – UD:13 – TD:29 – TDes:2 

 

TS: 12 – UD:13 – TD:20 – TDes:2 

 

TS: 13 – UD:13 – TD:31 – TDes:2 

 

TS: 14 – UD:13 – TD:32 – TDes:2 

 

TS: 15 – UD:16 – TD:35 – TDes:2 

 

TS: 16 – UD:16 – TD:35 – TDes:2 

 

TS: 17 – UD:16 – TD:37 – TDes:2 
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TS: 18 – UD:16 – TD:42 – TDes:2 

 

TS: 19 – UD:16 – TD:42 – TDes:2 

 

TS: 20 – UD:22 – TD:45 – TDes:2 

 

TS: 21 – UD:22 – TD:49 – TDes:3 

 

TS: 22 – UD:22 – TD:50 – TDes:3 

 

TS: 23 – UD:22 – TD:50 – TDes:3 

 

TS: 24 – UD:22 – TD:51 – TDes:3 

 

TS: 25 – UD:22 – TD:55 – TDes:3 
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TS: 26 – UD:22 – TD:55 – TDes:3 

 

TS: 27 – UD:22 – TD:57 – TDes:3 – OZ: 1 

 

TS: 28 – UD:22 – TD:64 – TDes:3 – OZ: 2 

 

TS: 29 – UD:25 – TD:66 – TDes:3 – OZ: 2 

 

TS: 30 – UD:25 – TD:66 – TDes:3 – OZ: 7 

 

TS: 31 – UD:25 – TD:67 – TDes:3 – OZ: 8 

 

In table 13, in the time slot (TS) 1 we can see the initial historical deploy. From TS 1 

to TS 4 the units begin flanking the targets. Then, from TS 5 to TS 26, the units engage in 

close combat with the targets, in order to achieve the primary and secondary military 

objectives. From TS 27 until the end of the simulation, the units begin to occupy the 

occupation zones. The oilfields occupied are not depicted in this table, but they are included 

in the analysis results. 
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Empirical Result Analysis Models 

 

Most known problems only have two objectives, as stated in the ―Background 

canonical models‖ section. Although the scenario depicted in this thesis has clearly more than 

2 objectives. The warfare scenario has a multitude of objectives to be taken into account in 

order to calculate the best set of solutions for the problem. Following this reasoning, is of 

extreme importance, the creation of an analysis framework, in order to allow the specialist to 

analyze the data with relative ease. In this thesis we propose an analysis model based on the 

scenario of warfare. Our framework proposes four integrated models, the general 

effectiveness model, the operation analysis model, the logistic analysis model and the general 

objective model, which will be depicted in this section. 

 

8.1. General Effectiveness Model 

 

The general effectiveness model compares the units/targets destroyed between themselves 

or with primary or secondary military objectives. It can also be used to see if the model 

reaches the primary and secondary objectives throughout the time slots and between control 

parameters, for fine tuning. 
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 Without control parameters 

 

 

 

Fig. 19. Comparison between units destroyed and targets destroyed 

 

In the figure 19, we can see that there is a high variety of results. With the data 

presented here a military strategist could derive the best solution regarding the percentage of 

targets destroyed and units destroyed. Although there is no correlation between these two 

variables. We could choose a solution from here according to our objective, if we want a 

solution that provides the most targets destroyed and less units destroyed, or if want the most 

targets destroyed without taking into consideration the units destroyed and even if we want a 

solution where most units are not destroyed not regarding the targets destroyed. This 

decisions can only be made by a specialist in the area and must take into account the maps of 

the solutions he wishes, because although he has the final solution and is the best one 

according to his expectation, there might be some undesirable movements or decisions 

through the simulation which he does not approve.  
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Fig. 20. Comparison between targets destroyed and occupation zone fitness 

 

In the figure 20 we can correlate the percentage of targets destroyed and the 

occupation zones occupied. We can reach the conclusion that the occupation zones become 

occupied later in the simulation when most targets are destroyed. This can mean that units are 

well organized and are being all used throughout the simulation, only becoming available to 

occupy the occupation zones later when there are less targets still in battle. Higher occupation 

zone fitness means that the zones become occupied earlier than the ones with lower fitness 

values. 

 

 With control parameters (fine tuning) 

 

In the figure 21 we can assert that there are some configurations that are better than 

others in regard to the time slots required. If a lower value is good or not, is up to the 

specialist because a configuration which took less time slots might have more casualties. 

Also, some unit group movements might not be the most adequate regarding the expectations 

of the specialist. It sometimes is a matter of trade-off between objectives.  
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 Fig. 21. Time slots required by configuration  

 

Analyzing figure 22, we can see some variation in the values between configurations. 

If the main objective was to have the fewer casualties possible, the best configuration would 

be the seventh. On the other hand, if the objective was for the targets to desert instead of 

engaging in combat then the best would be the fourth. Again, as has been stated throughout 

this section it is always a trade-off between objectives which has to be made by specialist in 

this area with the aid of these figures and also the maps. 

 

 

Fig. 22. Comparison between configurations regarding targets destroyed, targets deserted and units destroyed 
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In the figure 23 we can see the evolution of the occupation of oilfields. For example, 

the fifth configuration is the one that has an early spike, which means that most oilfields are 

occupied right in the beginning of the simulation. On the other hand, the seventh 

configuration has a late evolution, which means that the oilfields are occupied later in the 

simulation. 

 

 

Fig. 23. Comparison between configurations regarding oilfield occupation 

 

In the figure 24 we can see the evolution of the occupation of occupation zones. For 

example, the seventh configuration is the one that rises early, which means that occupation 

zones are being occupied right in the beginning of the simulation, however it is also the one 

with lowest final occupation zone fitness, that can mean that although it is the first to have 

occupation zones occupied it is also the last one to occupy all of them. On the other hand, the 

sixth configuration has a late evolution, which means that the occupation zones are occupied 

later in the simulation. The fourth configuration has a sharp decline due to one or more groups 

which were attacking a target were destroyed in battle and no other units were available. So, 

some of the units that were occupying an occupation zone were obliged to engage those 

targets. 
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Fig. 24. Comparison between configurations regarding occupation zone 

 

 

8.2. Operation Analysis Model 

 

This model compares fitness values that show the effectiveness of the model in terms of 

operation, in order to verify if the units are following the right path to target and are going in 

the right direction to reach the primary and secondary military objectives. 

 

 

Fig. 25. Comparison between waypoint fitness and enemy fitness 
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In the figure 25 we can take many conclusions. We can correlate the enemy fitness 

(distance to the target) and the waypoint fitness (distance to the nearest waypoint in the path 

to the target). If a unit group is very distant to the target the enemy fitness will be higher, but 

if the waypoint fitness is high means that the group might be too distant from the best path to 

the target. If the enemy and waypoint fitness are low, that means that the group is near the 

target and following the best path to it.  

 

 

Fig. 26. Comparison between weather region fitness and waypoint fitness 

 

In the figure 26 we can correlate the weather region fitness and the waypoint fitness. 

The waypoint fitness can be higher if a unit group encounters a weather zone, this means that 

the group must, in some cases, go around the weather zone to reach the target and that makes 

the group deviate from the best path to the target. A lower waypoint and weather region 

fitness means that the group did not find any or few weather regions throughout the 

simulation which made it deviate from the best path to target.  
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8.3. Logistic Analysis Model 

 

This model helps the analyst to gather data to assert to what level the supplies and ammo 

being deployed in battle are being used in the most effective way. It can also be used to see 

how the model makes use of the supplies and ammo throughout the time slots and between 

control parameters, for fine tuning. 

 

 Without control parameters 

 

 

Fig. 27. Comparison between ammo fitness and supplies fitness 

 

In figure 27 we can correlate the supplies fitness with the ammo fitness. When the ammo 

fitness is higher logically the supplies fitness is also higher because if a unit is attacking, it is 

also using supplies. With this graph we can also verify the effectiveness of the model, because 

we can reach the conclusion that the units are generally engaging in combat while consuming 

supplies, and are not by any means only consuming supplies without engaging in combat. 
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 With control parameters (fine tuning) 

In the figure 28 we can see the consumption of supplies throughout the time slots of 

the simulation; we can see when supplies are most and less used. This data can be used by a 

specialist to optimize supplies consumption and deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28. Comparison between configurations regarding supplies spent per time slot (days) 
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In the figure 29 we can see the consumption of ammo throughout the time slots of the 

simulation; we can see when ammo is most and less used. This data can be used by a 

specialist to optimize ammo consumption and deployment. He can also assert when there are 

the most units attacking. 

 

 

Fig. 29. Comparison between configurations regarding ammo spent per time slot (days) 
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8.4. General Objective Model 

 

This model compares primary and secondary military objectives between themselves, 

for example, to assert if they are correlated or not. This is, to check if one influences the other. 

 

 

Fig. 30. Comparison between occupation zone fitness and oilfield fitness 

 

In figure 30 we can reach the conclusion that the occupation zones fitness is generally 

higher when the oilfield fitness is too. That means that the occupation zones become occupied 

after the oilfields become occupied. A higher oilfield fitness means that the oilfields were 

occupied early in the simulation, a lower one can mean that the oilfields were occupied later 

in the simulation or weren‘t even occupied depending on the value achieved.  

 

8.5.      Detailed Objective Analysis Tables 

 

In the tables 14 - 24 it is presented the maximum, the minimum, the mean and the 

standard deviation for each objective per configuration. These results must be analyzed by the 

specialist in conjunction with the maps of the simulations and the graphs in figures 19 -30, 

because the data presented might not mean anything without the proper background. A higher 
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standard deviation value means that the solutions achieved have more variation that the ones 

with a lower value. 

Time Slots required 

  Table 14. Time slots required per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 28 

 

39 

 

31,257143 

 

2,7706921 

 
2 27 

 

40 

 

32,72222 

 

3,396167 

 
3 28 

 

54 

 

35,41667 

 

6,038649 

 
4 26 

 

56 

 

35,22222 

 

7,775 

 
5 31 

 

48 

 

39,48276 

 

4,680264 

 
6 25 

 

41 

 

31,30556 

 

3,340155 

 
7 28 

 

48 

 

37,125 

 

4,601291 

 
 

Example analysis for table 14: Regarding the Minimum value, we can verify that 

configuration 6 is the best one, because we want to minimize the time slots required by the 

simulation. But when comparing the maximum value, the best configuration is number 1. So, 

to reach the right option we have to compare the mean and standard deviation of these two 

configurations. Configuration 1 has a lower mean compared with configuration 6, which 

means that the majority of the results of this configuration are lower than those of 

configuration 6. This can also be verified by the standard variation values. If a configuration 

has a lower standard deviation, this means that most values are near to the mean value, so 

there is not much variation in the values. In conclusion, if our sole objective was to minimize 

the time slots required, the best solution would be number 1. 

The analysis made for table 14 can be made for tables 15 – 24, having in consideration 

if the objective is to minimize or maximize the fitness values.  

Enemy Fitness 

  Table 15. Enemy fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 1981 

 

21034 

 

11432,54 

 

5858,338 

 
2 2420 

 

25847 

 

13474,25 

 

7077,388 

 
3 4338 

 

48296 

 

24679,17 

 

12400,88 

 
4 3087 

 

60970 

 

22529,47 

 

13617,09 

 
5 4822 

 

57040 

 

26126,1 

 

15333,48 

 
6 2241 

 

21063 

 

11422,47 

 

5873,089 

 
7 3204 

 

50373 

 

22255,59 

 

12299,37 
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Waypoint Fitness 

  Table 16. Waypoint fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 432 

 

6286 

 

3167 

 

1692,441 

 
2 529 

 

6325 

 

3303,028 

 

1723,988 

 
3 611 

 

7956 

 

4314,028 

 

2226,595 

 
4 470 

 

16343 

 

5822,611 

 

3622,506 

 
5 680 

 

20285 

 

6224,966 

 

4826,864 

 
6 481 

 

6542 

 

3225,639 

 

1720,118 

 
7 604 

 

14139 

 

7037,406 

 

4193,981 

 
 

Weather Region Fitness 

  Table 17. Weather Region fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 423 

 

4102 

 

2172,714 

 

1080,241 

 
2 328 

 

4123 

 

2155,333 

 

1134,605 

 
3 347 

 

3280 

 

1813,472 

 

934,5971 

 
4 322 

 

3378 

 

1799,083 

 

931,5269 

 
5 418 

 

4053 

 

1971,448 

 

1106,419 

 
6 363 

 

3987 

 

2113,778 

 

1105,438 

 
7 400 

 

4334 

 

2236,875 

 

1216,486 

 
 

Supplies Fitness 

  Table 18. Supplies fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 3386 

 

4754 

 

3965,257 

 

327,2832 

 
2 3484 

 

4926 

 

4122,833 

 

314,6799 

 
3 3582 

 

6600 

 

4470,222 

 

625,455 

 
4 3464 

 

7190 

 

4490,389 

 

852,7628 

 
5 3830 

 

6128 

 

4751,931 

 

508,4531 

 
6 3414 

 

4898 

 

3955,889 

 

343,2485 

 
7 3602 

 

5934 

 

4728,125 

 

486,0272 
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Ammo Fitness 

  Table 19. Ammo fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 8465 

 

11885 

 

9913,143 

 

818,208 

 
2 8710 

 

12315 

 

10307,08 

 

786,6997 

 
3 8955 

 

16500 

 

11175,56 

 

1563,637 

 
4 8660 

 

17975 

 

11225,97 

 

2131,907 

 
5 9575 

 

15320 

 

11879,83 

 

1271,133 

 
6 8535 

 

12245 

 

9889,722 

 

858,1213 

 
7 9005 

 

14835 

 

11820,31 

 

1215,068 

 
 

Oilfield Occupation Fitness 

  Table 20. Oilfield occupation fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 447 

 

4626 

 

2501,6 

 

1236,983 

 
2 420 

 

4916 

 

2582,639 

 

1376,286 

 
3 602 

 

6274 

 

3334,583 

 

1683,001 

 
4 510 

 

7095 

 

3261,083 

 

1749,742 

 
5 656 

 

7169 

 

3336,034 

 

1917,496 

 
6 442 

 

4693 

 

2447,167 

 

1294,874 

 
7 357 

 

5485 

 

2687,188 

 

1450,745 

 
 

Occupation Zone Fitness 

  Table 21. Occupation Zone fitness per configuration 

Config Minimum Maximum Mean Standard 

deviation (σ) 

1 41 

 

723 

 

303,0286 

 

163,6146 

 
2 40 

 

764 

 

319,9444 

 

191,3889 

 
3 39 

 

1343 

 

636,9167 

 

315,8748 

 
4 63 

 

2466 

 

691,9444 

 

544,515 

 
5 132 

 

1919 

 

895,5172 

 

530,0706 

 
6 33 

 

610 

 

299,9722 

 

175,4687 

 
7 80 

 

1485 

 

748,2813 

 

392,8262 
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Targets Destroyed 

  Table 22. Targets destroyed per configuration 

Config Minimum (%) Maximum (%) Mean (%) Standard 

deviation (σ) 

1 85,71429 

 

98,57143 

 

93,63265 

 

3,521576 

 
2 85,71429 

 

100 

 

93,73016 

 

3,388619 

 
3 85,71429 

 

100 

 

93,05556 

 

2,957614 

 
4 85,71429 

 

97,14286 

 

92,53968 

 

2,975926 

 
5 87,14286 

 

98,57143 

 

93,39901 

 

3,125654 

 
6 85,71429 

 

100 

 

93,37302 

 

3,54998 

 
7 87,14286 

 

100 

 

94,55357 

 

2,911043 

 
 

Targets Deserted 

  Table 23. Targets deserted per configuration 

Config Minimum (%) Maximum (%) Mean (%) Standard 

deviation (σ) 

1 1,428571 

 

14,28571 

 

6,367347 

 

3,521576 

 
2 0 

 

14,28571 

 

6,269841 

 

3,388619 

 
3 0 

 

14,28571 

 

6,944444 

 

2,957614 

 
4 2,857143 

 

14,28571 

 

7,460317 

 

2,975926 

 
5 1,428571 

 

12,85714 

 

6,600985 

 

3,125654 

 
6 0 

 

14,28571 

 

6,626984 

 

3,54998 

 
7 0 

 

12,85714 

 

5,446429 

 

2,911043 

 
 

Units Destroyed 

  Table 24. Units destroyed per configuration 

Config Minimum (%) Maximum (%) Mean (%) Standard 

deviation (σ) 

1 10,52632 

 

42,10526 

 

26,69173 

 

7,400383 

 
2 13,15789 

 

40,78947 

 

27,99708 

 

6,806101 

 
3 14,47368 

 

44,73684 

 

27,11988 

 

7,046799 

 
4 10,52632 

 

48,68421 

 

25,40205 

 

7,972446 

 
5 5,263158 

 

47,36842 

 

30,26316 

 

7,999904 

 
6 9,210526 

 

42,10526 

 

27,77778 

 

7,941975 

 
7 14,47368 

 

42,10526 

 

23,47862 

 

5,829977 

 
 

In conclusion, we can conclude that, with the numbers of tables returned, the analysis 

for this problem is quite complex. This complexity is an important issue in many-objective 

optimization problems, because it can lead to a difficult analysis of the results. 
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Conclusions and future work 

 

9.1. Conclusions 

 

 Warfare simulations are widely recognized to be a fundamental part of a country‘s 

modern and future warfare arsenal and tend to become more realistic in years to come. In this 

thesis we made an overview of an approach using multi-objective optimization and EAs to 

solve this problem. As research proof no one before took this approach to the field of warfare 

simulation, to much of our knowledge. 

 

 The results are promising for the use of these techniques in this field, although it still 

misses a lot of important warfare situations and tactical procedures, it is a starting point for 

those who are interested in this area. 

 

 As discussed earlier, the problem depicted in this thesis is a many-objective 

optimization problem, which makes it very difficult to use with global search methods (i.e. 

Genetic Algorithms), as these would generate a lot of invalid solutions. 

 

 Also, this problem instance requires that the solutions are presented in a very restrict 

temporal sequence, which contains many dependencies and restrictions, due to the primary 

and secondary military objectives. 

  

 In conclusion, the main contributions of this thesis are: 

 Multi-objective meta-heuristic proposal, focused on this specific problem 

(Warfare), although it can be used in other problems with a similar 

mathematical model; 

 An analysis framework, this problem is a many-objective optimization 

problem which has many objectives. So, an analysis framework is of extreme 

importance to ease the task of analyzing the solutions achieved.  
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9.2. Future work 

 

As future work, the following procedures would help the performance of the approach of this 

thesis: 

 

 Backwards path relinking 

 

In addition to the path relinking method used, it would be great to create all backward 

movements of one group in order to create more solutions and generate more diversity in the 

solutions.  

 

 Multi-core/Multi-processor optimization 

 

With the use of threading, the heuristics would become much more efficient and the 

execute time would decrease drastically. 

 

 GPU/FPGA acceleration 

 

Following the multi-core or multi-processor optimization, it would be great if the meta-

heuristic proposed could be executed by GPU‘s and possibly applied to games. 

 

 Logistics network 

 

The introduction of a logistics network would bring more realistic results, assigning an 

ammo and supply value to each unit, and spending them during the simulation would create 

the necessity of special units to supply these units or supply points. Together with the 

necessity of a better scheduling plan for engaging in combats. For example, if a target is 5 

days away but only has 2 days of supply it could not engage this target. 

 

 Simulate with military systems in order to find areas of improvement 

 

Use one or more solutions to simulate on a real military simulator and get a military 

specialist so that he can challenge the solution achieved. Then use the results of this exercise 

to find areas of improvement in the meta-heuristic. 
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 Study analysis tools for direct comparizon of more than two objectives 

 

The analysis models depicted in this thesis only make use of two objectives 

simultaneously, although they can be used for more than two objectives. So, if we could find 

a tool to analyze more than two objectives, ideally many as there is, we could reach many 

other conclusions with the results achieved that we could not reach with only two objectives. 

  

From this thesis resulted a scientific paper intitlued ―Realistic ground warfare simulation 

analysis framework based on evolutionary multi-objective meta-heuristic techniques‖.
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