

MSc Thesis in

Computer Science - Mobile Computing

Adaptive complex system modeling for realistic

modern ground warfare simulation analysis based

on evolutionary multi-objective meta-heuristic

techniques

Diogo Alexandre Breites de Campos Proença

MSc Thesis directed by Professor Silvio Priem Mendes of the School of Technology and

Management, Polytechnic Institute of Leiria and co-directed by Juan António Gomez-

Pulido of the University of Extremadura, Spain.

Leiria, 2011

This Page Intentionally Left Blank

II

To my family

III

This Page Intentionally Left Blank

IV

 Abstract

The battlefield is a harsh and inhuman environment, where deaths and destruction

take lead role. Through many millennia there was blood shed all over the world, people

who many time died in a battle that sometimes they didn‘t even care about.

Today, the battle field is very different, machines take most damage and there are

less casualties, this is because of the advancements made in the fields of aeronautics,

weaponry, nautical, vehicles, armor, and psychology.

Also there is another important party that throughout the last decades made a

special and decisive advantage to the side which is more advanced in this field, it is

intelligence and simulation. Intelligence today gives enormous advantage to one country as

you ―see and feel‖ the battlefield hundreds or thousands kilometers away. Then, with the

data provided by intelligence, countries can simulate the battle in order to deploy the most

efficient units into battle.

In this thesis we propose a warfare simulator analysis tool using a multi-objective

approach and artificial intelligence. Further on, the 1991 Gulf war scenario is used to

simulate and the results are presented and analyzed.

The approach used in this thesis is difficult to be used in games due to its

processing complexity and computing demands.

Keywords: Meta-heuristic, Warfare simulator, Multi-objective optimization, Artificial

intelligence, Evolutionary algorithms.

V

This Page Intentionally Left Blank

VI

Resumo

O campo de batalha é um meio adverso e inumano, onde a morte de seres humanos

e a destruição têm o papel principal. Desde há muito tempo que sangue é derramado por

todas as partes do globo, e muitos desses seres humanos morrem numa guerra que não é

sua e pela qual não têm o mínimo apreço.

Atualmente, o campo de batalha é muito diferente, as máquinas é que sofrem o

maior dano e há menos mortes. Isto deve-se aos avanços feitos nas áreas da aeronáutica, do

armamento, da náutica, dos veículos terrestres, da proteção e da psicologia.

Nas últimas décadas, a informação secreta e as simulações, também tem tido um

papel preponderante para as nações mais desenvolvidas. As informações secretas do campo

de batalha trazem uma grande vantagem para as nações uma vez que podem ―sentir‖ o

campo de batalha a centenas ou milhares de quilómetros de distância. Depois, com a

informação recolhida pelos serviços secretos, os corpos militares podem simular o campo

de batalha, para que deste modo possam mobilizar as unidades de combate mais eficientes

para a batalha em questão.

Nesta dissertação é proposto um simulador de guerra e uma ferramenta de análise

utilizando métodos de otimização multi-objectivo e inteligência artificial. A batalha da

guerra do golfo de 1991 é utilizada para simular e os resultados são posteriormente

apresentados e analisados.

Os métodos utilizados nesta dissertação dificilmente poderão ser utilizados em

jogos devido à sua complexidade de processamento e requisitos de computacionais.

Palavras-chave: Meta heurística, Simulador de combate, Otimização Multi-objectivo,

Inteligência artificial, Algoritmos evolucionários.

VII

This Page Intentionally Left Blank

VIII

List of figures

Fig. 1. US Deaths in Vietnam and Iraq [37] ... 2

Fig. 2. Terrain representations in highly aggregated constructive simulations [38]. 7

Fig. 3. Units case example ... 16

Fig. 4. The general scheme of an Evolutionary Algorithm as a flow-chart [46]. 23

Fig. 5. Typical progress of an EA illustrated in terms of population distribution [47]. 32

Fig. 6. Typical progress of an EA illustrated in terms of development of the best fitness (objective

function to be maximized) value within population in time [47]. .. 33

Fig. 7. Illustrating why heuristic initialization might not be worth. Level a show the best fitness in a

randomly initialized population, level belongs to heuristic initialization [47]. 34

Fig. 8. Illustrating why long runs might not be worth. X shows the progress in terms of fitness

increase in the first half of the run, Y belongs to the second half [47]. ... 34

Fig. 9. 1980's view on EA performance after Goldberg [58][47]. ... 35

Fig. 10. Illustration of Wright's adaptive landscape with two traits [47]. .. 37

Fig. 11. KMeans working example [62]... 46

Fig. 12. KMeans working example 2 [62].. 47

Fig. 13. MOEGWAO static model ... 49

Fig. 14. MOEGWAO Meta-heuristic logic overview .. 50

Fig. 15. Example of combat CRT mapping.. 58

Fig. 16. Desert Storm historical deployment [31] .. 70

Fig. 17. Unit Legend .. 72

Fig. 18. Configurations Explanation Map .. 73

Fig. 19. Comparison between units destroyed and targets destroyed... 82

Fig. 20. Comparison between targets destroyed and occupation zone fitness 83

Fig. 21. Time slots required by configuration .. 84

Fig. 22. Comparison between configurations regarding targets destroyed, targets deserted and units

destroyed .. 84

Fig. 23. Comparison between configurations regarding oilfield occupation 85

Fig. 24. Comparison between configurations regarding occupation zone 86

Fig. 25. Comparison between waypoint fitness and enemy fitness .. 86

Fig. 26. Comparison between weather region fitness and waypoint fitness 87

Fig. 27. Comparison between ammo fitness and supplies fitness .. 88

Fig. 28. Comparison between configurations regarding supplies spent per time slot (days) 89

Fig. 29. Comparison between configurations regarding ammo spent per time slot (days) 90

Fig. 30. Comparison between occupation zone fitness and oilfield fitness 91

file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298654
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298655
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298656
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298657
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298657
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298658
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298658
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298659
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298659
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298660
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298665
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion18September.docx%23_Toc304298669

IX

This Page Intentionally Left Blank

X

List of tables

Table 1. High-resolution constructive simulation systems. ... 6

Table 2. Highly aggregated constructive simulation systems. ... 8

Table 3. Canonical Complexity Classes ... 12

Table 4. NP Sub Classes .. 13

Table 5. List of well-known multi-objective EA ... 41

Table 6. CRT Table [30] .. 59

Table 7. Weather Region Penalty with adapted values from [30]. Values adapted for use with the

A-star algorithm. .. 60

Table 8. Main objectives to be analyzed .. 71

Table 9. Unit Sizes Legend .. 72

Table 10. Mechanized Unit Types Legend .. 72

Table 11. Non-Mechanized Unit Types Legend .. 72

Table 12. Map Legend ... 75

Table 13. Simulation Example ... 75

Table 14. Time slots required per configuration .. 92

Table 15. Enemy fitness per configuration .. 92

Table 16. Waypoint fitness per configuration .. 93

Table 17. Weather Region fitness per configuration .. 93

Table 18. Supplies fitness per configuration .. 93

Table 19. Ammo fitness per configuration ... 94

Table 20. Oilfield occupation fitness per configuration ... 94

Table 21. Occupation Zone fitness per configuration .. 94

Table 22. Targets destroyed per configuration ... 95

Table 23. Targets deserted per configuration ... 95

Table 24. Units destroyed per configuration .. 95

XI

This Page Intentionally Left Blank

XII

Code Listing

Listing 1. Pseudo-code of an EA general scheme .. 23

Listing 2. Procedure for finding the means ... 45

Listing 3. Pseudo-code of the attack builder operator .. 51

Listing 4. Pseudo-code of the group state machine operator.. 53

Listing 5. Pseudo-code of the group state machine operator (continued) .. 54

Listing 6. Pseudo-code of the group state machine operator (continued) .. 55

Listing 7. Pseudo-code of the movement operator ... 56

Listing 8. Pseudo-code of the ranking operator ... 57

Listing 9. Pseudo-code of the attack operator .. 58

file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045909
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045910
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045911
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045912
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045913
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045914
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045915
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045916
file:///C:/Users/Diogo/Dropbox/ThesisPreliminaryVersion16September.docx%23_Toc304045917

XIII

This Page Intentionally Left Blank

XIV

Acronyms

ATKIS Authoritative Topographic Cartographic Information System

AWAC Airborne early warning and control

C2 Command and Control Systems

CIA Central Intelligence Agency

CRT Combat Results Table

DHM Digital Height Model

DFAD Digital Feature Analysis Data

DTED Digital Terrain Elevation Data

DTEF Digital Terrain Elevation Format

EA Evolutionary Algorithm

EP Evolutionary Programming

ES Evolution Strategies

GA Genetic Algorithm

GeoTIFF Geographic Tagged Image File Format

GNP Gross National Product

GP Genetic Programming

NL Logarithmic Space

NP Non-deterministic polynomial Time

P Polynomial Time

PDF Probability distribution function

RAM Random-access machine

TM Turing machine

VMAP Vector Map

XV

This Page Intentionally Left Blank

XVI

Table of Contents

ABSTRACT .. IV

LIST OF FIGURES ... VIII

LIST OF TABLES ... X

CODE LISTING ... XII

ACRONYMS ... XIV

TABLE OF CONTENTS .. XVI

INTRODUCTION .. 1

1.1. WARFARE SCOPE ... 1
1.2. THESIS STRUCTURE .. 3

RELATED WORK ... 5

2.1. HIGH-RESOLUTION CONSTRUCTIVE SIMULATIONS .. 5
2.2. HIGHLY AGGREGATED CONSTRUCTIVE SIMULATIONS .. 7

APPROACH ... 9

3.1. DESIGN CHALLENGES AND CONSIDERATIONS ... 9
3.1.1. Problem Complexity .. 9
3.1.2. Multi-objective optimization ... 16

BACKGROUND CANONICAL MODELS ... 21

4.1. SUPPORTING PROCEDURES AND MECHANISMS ... 21
4.1.1. Evolutionary algorithms ... 21
4.1.2. Multi-objective evolutionary algorithms ... 39
4.1.3. A-star pathfinder algorithm .. 42
4.1.4. KMeans clustering algorithm .. 44

THE MOEGWAO META-HEURISTIC ... 49

5.1. ATTACK GROUP BUILDER OPERATOR ... 51
5.2. GROUP STATE MACHINE OPERATOR .. 53
5.3. MOVEMENT OPERATOR .. 56
5.4. RANKING OPERATOR .. 57
5.5. ATTACK OPERATOR .. 58
5.6. WEATHER REGIONS OPERATOR ... 60
5.7. PATH RELINK OPERATOR ... 61

PROBLEM INSTANCE .. 63

6.1 SIMULATION APPROACH... 63

EMPIRICAL SIMULATION RESULTS... 75

7.1. SIMULATION EXAMPLE ... 75

EMPIRICAL RESULT ANALYSIS MODELS .. 81

8.1. GENERAL EFFECTIVENESS MODEL ... 81
8.2. OPERATION ANALYSIS MODEL .. 86
8.3. LOGISTIC ANALYSIS MODEL ... 88

XVII

8.4. GENERAL OBJECTIVE MODEL ... 91
8.5. DETAILED OBJECTIVE ANALYSIS TABLES ... 91

CONCLUSIONS AND FUTURE WORK .. 97

9.1. CONCLUSIONS ... 97
9.2. FUTURE WORK ... 98

BIBLIOGRAPHY .. 101

XVIII

This Page Intentionally Left Blank

XIX

1

Introduction

1.1. Warfare Scope

Contemporary warfare paradigms and the complexity of operations introduce new

challenges for the decision-making and operational planning processes and operating

procedures of headquarters. Operational headquarters are often composite organizations made

up of international military staff augmented by governmental and nongovernmental, national

or international, organizations. This fact exacerbates new challenges introduced by the new

generation of warfare, which makes the training of headquarters more and more complex.

Emerging combat modeling and information technologies offer effective approaches that can

tackle the complexities of this task. Therefore, computer-assisted simulation exercises aim to

immerse the training audience in an environment as realistic as possible and to support

exercise planning and control personnel in such a way that they can steer the exercise process

toward the exercise objectives as effectively as possible. It has become the main tool for the

headquarter training.

With aim on Researchers, military strategists and analysts, this thesis introduces the

reader to Adaptive complex system modeling for realistic modern ground warfare simulation

analysis based on evolutionary multi-objective meta-heuristic techniques.

The term warfare simulation can be used to cover a wide spectrum of activities,

ranging from full scale field exercises to abstract computerized models that can proceed with

little or no human involvement. This thesis focuses on the computerized models with the

objective of being the most realistic a computer model can possibly be. The objective is to

provide the analyst or strategist a series of data which he will analyze and derive the best

option based on his expertise.

The military area is an area that benefits from the most detailed and realistic

simulations, due to enormous resources needed in war, both material and human. If a battle

2

can be to some extent predicted before it happens the troops will be more effective in reaching

their goals, there will be less casualties and the resources used will be optimized.

Figure 1 shows the difference between the Vietnam and Iraqui war regarding the

number of deaths.

Fig. 1. US Deaths in Vietnam and Iraq [37]

The main difference between these figures is due to intelligence and sophistication in

the battle field which reduced dramatically the number of deaths. So, as simulations begin to

become more and more realistic this figures tend to low even more as the parts involved in the

conflict go better prepared to combat with much more intelligence than ever before.

Due to the overwhelming nature of war planning, this thesis will focus on ground

warfare, and will not simulate supply, air warfare or marine operations. It will however take

into account the nature of the terrain the battle will evolve and the obstacles on site. In order

for this simulation to be the most realistic, the most reliable data must be provided. Also, the

approach used in this thesis is difficult to be used in games due to its processing complexity

and computing demands.

3

As with all subjects in the warfare paradigm, this thesis might bring some ethical

considerations because it will be widely spread over the internet and other mediums. Anyone

can read it, make use of it and even expand the model presented. Following this reasoning,

some terrorists, people or groups, might make use of it to plan attacks or learn how to think

like military corps. However, this is not the use intended for this thesis.

DISCLAIMER: We are not responsible for, and expressly disclaim all liability for, damages

of any kind arising out of use, reference to, or reliance on any information within this thesis.

Some of the content found in this thesis may be offensive to some people. We do not have

any affiliation with any future, present, or past political parties, military organization, or

religious orders.

To solve the problem presented, we are going to propose a meta-heuristic which will

make use of known algorithms and meta-heuristics, such as, evolutionary models, A-star

pathfinder, KMeans clustering algorithms, among others. Then, we will propose an analysis

framework, in order to simplify the analysis of the resulting data.

1.2. Thesis Structure

This thesis is divided into eight sections. First, it will begin by presenting some models

already being used by some military corps. The second section will demonstrate the approach

used to solve the problem; it will detail the problem complexity and multi-objective

optimization. Then, the third section will introduce the background canonical models used,

such as, the evolutionary, A-star and KMeans clustering algorithms. Next, the meta-heuristic

created as the proposed solution for this problem will be detailed and decomposed into

operators. In the fifth section the problem instance will be detailed, this thesis will use the

Gulf War of 1991 as the instance to solve. After introducing the instance of the problem, in

the seventh section, an example of a solution is given with the resulting maps. Then, in the

seventh section, the results achieved will be presented, discussed and an analysis model will

be presented. Finally, in the final section, some conclusions will be drawn and some future

work will be proposed as continuity for the approach proposed by this thesis.

5

Related Work

Warfare simulation is still one of the areas which is highly confidential and most time

hidden from public view. So, there isn‘t much information about the systems used by military

corps other than names and simple descriptions, this section will list some simulations from

two different categories, high-resolution constructive simulations and highly aggregated

constructive simulations. The list is far from being exhaustive. The aim is to provide a set of

examples to give insight in this area. As a final remark, the examples given in this section

only focus on the simulation aspect and are not an analysis tool with well defined metrics.

2.1. High-Resolution Constructive Simulations

High-resolution constructive simulations are typically for tactical levels starting from a

single troop up to several brigades. The terrain, weather, and entities are simulated detailed in

these models. Each weapon, individual soldier, and combat system can be a simulated entity.

Terrain modeling can be as detailed as centimeters, leaves of trees, and furniture in a room.

Engagements are modeled typically between entities. Computations can be done for each

single bullet shot by a troop.

As the level of detail increases, the more detailed data and the higher hardware capacities

(i.e., memory and computational power) are required. Hardware capacities introduce limits on

the size of simulation (i.e., the number of entities and the size of the simulation area).

Therefore, there is a trade-off between the level of detail and the size of a simulation. As the

hardware capacities increase, the limitations on the size of simulation disappears. For

example, a typical play box for a high resolution constructive simulation system used to be

200 kilometers x 200 kilometers a decade ago. Nowadays, there are high resolution

constructive simulation systems that can simulate as many as 50,000 entities in an area as

large as 2000 kilometers x 2000 kilometers [39].

6

Apart from the hardware constraint, the other factors like the level of planning and the

number of operators also affect the selection between a high-resolution or highly aggregated

simulations. The higher the level of detail a model has, the more manpower is required to run

the model because more details are needed in the commands.

Table 1. High-resolution constructive simulation systems.

Name/Service/Source

Nation

Terrain Play Box in

Kilometers

Entities Virtual Automated

Virtual Battle Space 2

(VBS2)/Joint/

Australia

Rapid terrain generation

from DTEP, shape and

imagery files. It can import

three-dimensional (3-D)

models (buildings,
vegetation, etc) from 3DS or

OpenFlight.

Up to 350x350

for DTED-1.

Up to 120x120

for DTED-2.

Up to 40x40 for

DTED-3.

More than 1000

artificial

intelligence (AI)
entities.

120-200 human

players.

Real-time
rendering and

highly accurate

3-D
representations

of objects,

forces, and
terrain.

Scripted semi-

automated

behavior.

Gefects Simulation

(GESI) or

Simulation four
Rahmenubungen

(SIRA)/Army with

air and maritime

entities/Germany

Uses TerraVista to read

many data formats, such as
digital terrain elevation data

(DTED), digital height

model (DHM), digital
feature analysis data

(DFAD), authoritative

topographic cartographic
information system

(ATKIS), and geographic

tagged image file format
(GEOTIFF).

Up to

2000x2000.
Up to 32,000. 3-D view of

terrain and
entities.

Artificial
intelligence to

create

autonomous
forces from

selected

entities.

Korp-Rahmenmodell

(KORA)/Army/

Germany
Interface formats are DTEF,

DFAD, and GEOTIFF.

Up to

1000x1000.
Not limited. No.

Behavior

agents.

SCIPIO/Army/France DTED-1, Vector map 0

(VMAP0)/VMAP1, Geo-
referenced maps or photos.

No limitations.

Currently used

in exercises with
a play box of

2000x2000.

No hard limitations.

Several thousand
entities or units.

No.

Semi-

automated

forces.

CATS-TCT/Army/

Sweden

DTED, VMAP,
Geo-referenced maps, or

photos.

No limitations.

Play box

enough to cover
a

brigade level

exercise.

No hard limitations.
As many entities as

can be in a brigade.

3-D viewer. No.

DEHOS/Navy/Turkey High resolution from
VMAP and shape data.

5 million square

nautical

miles.

No hard limitations.

More than 1000

naval entities.
No. No.

Joint Conflict and
Tactical Simulation

(JCATS)/Joint/US

Terrain generation from
DTED, shape and

imagery files.

4000x4000.

No hard limitations,

about 100,000
entities. Up to 10

sides.

No. No.

One Semi-automated

Forces (OneSAF)/

Joint/US

Very high resolution (1/

12,500). High-resolution
buildings (elevator shaft,

balcony, stair, etc.).

500x500.

Up to 25 sides.
Entities

up to brigade level.

In high resolution.
Up to 500 entities.

In

low resolution up to
5000 entities.

3-D viewer.

Enhanced

semi-

automated

force

behaviors.

7

2.2. Highly Aggregated Constructive Simulations

Examples for the highly aggregated constructive simulation systems are listed in table 2,

which is again far from being exhaustive.

The major difference visible to users between high-resolution and highly aggregated

simulation systems is the representation of the terrain and environment. In highly aggregated

systems, the play box is tessellated with either hexagons or squares, and each of these

hexagons or squares represents the following:

 Terrain characteristics (i.e., forest, ocean, desert, etc.)

 Mobility characteristics (i.e., good, bad, no mobility, etc.)

 Altitude or depth

Fig. 2. Terrain representations in highly aggregated constructive simulations [38].

Moreover, the sides of these hexagons or squares are used to introduce obstacles like

rivers, tank ditches, shores, minefields, and so on. For example, a river that can be an obstacle

for the unit mobility must follow the edges of these geometric shapes. This approach may not

look very realistic, and sometimes the results from simulation do not match with the maps and

the data in C2 systems. For example, the real location of the river may be several kilometers

different from a hexagon edge. Because the model uses the hexagon edge as an obstacle, a

unit may stuck somewhere that does not look realistic.

8

Table 2. Highly aggregated constructive simulation systems.

Name/Service/Source

Nation

Terrain Play Box in

Kilometers

Sides/Units Automated

WAGRAM/Army/France
DTED-1, VMAP0/VMAP1,

Geo-referenced maps, or photos.

No limitations.

Currently used in
exercises with a

play box of

2000x2000.

No hard limitations.
Several thousand

entities or units.

Semi-automated

forces.

ORQUE/Navy/France
DTED-1, VMAP0/VMAP1,

Geo-referenced maps, or photos.

No limitations.
Currently used in

exercises with a

play box of

2000x2000.

No hard limitations.

Several thousand

entities or units.

Semi-automated

forces.

Simulations Modell fur
ubungen Operativer Fuhrung

(SIMOF)/Army-Air/ Germany

Interface formats are DFAD and

GEOTIFF.

Up to 2500x2000. Not limited. No.

Air Land Interactive Conflict

Evaluation (ALICE)/
Airforce/Germany

DTED, DFAD, vector, and
scanned

maps.

4000x4000. Not limited. No.

CATS-TYR/Joint/Sweden

DTED, VMAP, Geo-referenced
maps, or

photos.

No limitations.
Play box enough to

cover a corps level

exercise.

No hard limitations.

As many entities as
can be in a brigade.

No.

Joint Operational Command
and Staff Training System

(JOCASTS)/Joint/UK

Hexagons. The size of hexagons

can be
changed.

Corps size

exercises.
No hard limitations.

No.

Joint Theater Level Simulation
(JTLS)/Joint/US

Hexagons. The size of hexagons
can be changed. The side length

can be as short as 1 kilometer.

However, when the side length is
less than 3 kilometers, the

performance of model depends on

the scenario and number of units
in the scenario.

4000x4000.

Up to 10 sides. As

many as 10,000 units

(no hard limit).

No.

9

Approach

This thesis will explore current, and introduce new techniques with the aim of

improving the reliability of warfare computer simulation. Such techniques can bring

significant advantages in numerous real life scenarios.

After reviewing the state-of-the-art, we reach the conclusion that none of solutions

addressed this matter in an efficient way. Also, there is not much information about them as

they are closed systems used by governments to simulate battlefield scenarios.

Accordingly, this thesis proposes a new simulation meta-heuristic based on an

evolutionary approach with the use of evolutionary algorithms. This meta-heuristic will

behave, much as possible, as the military would do in the battlefield. And mainly will be

opened to everyone.

3.1. Design challenges and considerations

Warfare simulation, while theoretically a very attractive proposition, faces additional

design and implementation hurdles when compared to other types of simulation. Thus, special

care must be taken when designing a meta-heuristic which purpose is to simulate the

battlefield.

3.1.1. Problem Complexity

Computational complexity is a branch of the theory of computation in theoretical

computer science and mathematics that focuses on classifying computational problems

according to their inherent difficulty. In this context, a computational problem is understood

10

to be a task that is in principle possible of being solved by a computer (which basically means

that the problem can be stated by a set of mathematical instructions). Informally, a

computational problem consists of problem instances and solutions to these problem

instances. For example, primality testing is the problem of determining whether a given

number is prime or not. The instances of this problem are natural numbers, and the solution to

an instance is yes or no based on whether the number is prime or not.

A problem is regarded as inherently difficult if its solution requires significant

resources, whatever the algorithm used. The theory formalizes this intuition, by introducing

mathematical models of computation to study these problems and quantifying the amount of

resources needed to solve them, such as time and storage. One of the roles of computational

complexity theory is to determine the practical limits on what computers can and cannot do.

Closely related fields in theoretical computer science are analysis of algorithms and

computability theory. A key distinction between analysis of algorithms and computational

complexity theory is that the former is devoted to analyzing the amount of resources needed

by a particular algorithm to solve a problem, whereas the latter asks a more general question

about all possible algorithms that could be used to solve the same problem. More precisely, it

tries to classify problems that can or cannot be solved with appropriately restricted resources.

In turn, imposing restrictions on the available resources is what distinguishes computational

complexity from computability theory: the latter theory asks what kind of problems can, in

principle, be solved algorithmically.

 Complexity classes

 What is a complexity class?

Typically, a complexity class is defined by (1) a model of computation, (2) a resource (or

collection of resources), and (3) a function known as the complexity bound for each resource

[40].

The models used to define complexity classes fall into two main categories: (1) machine-

based models, and (2) circuit-based models. Turing machines (TMs) and random-access

machines (RAMs) are the two principal families of machine models. There are different kinds

of (Turing) machines, such deterministic, non-deterministic, alternating, and oracle machines

which are out of the scope of this thesis.

11

When there is the necessity to model real computations, deterministic machines and

circuits are our closest links to reality. Then why consider the other kinds of machines? There

are two main reasons.

The most potent reason comes from the computational problems whose complexity we are

trying to understand. The most notorious examples are the hundreds of natural NP-complete

problems [1]. To the extent that we understand anything about the complexity of these

problems, it is because of the model of non-deterministic Turing machines. Non-deterministic

machines do not model physical computation devices, but they do model real computational

problems. There are many other examples where a particular model of computation has been

introduced in order to capture some well-known computational problem in a complexity class.

The second reason is related to the first. Our desire to understand real computational problems

has forced upon us a repertoire of models of computation and resource bounds. In order to

understand the relationships between these models and bounds, we combine and mix them

and attempt to discover their relative power. Consider, for example, non-determinism. By

considering the complements of languages accepted by non-deterministic machines,

researchers were naturally led to the notion of alternating machines. When alternating

machines and deterministic machines were compared, a surprising virtual identity of

deterministic space and alternating time emerged.

Subsequently, alternation was found to be a useful way to model efficient parallel

computation. This phenomenon, whereby models of computation are generalized and

modified in order to clarify their relative complexity, has occurred often through the brief

history of complexity theory, and has generated some of the most important new insights [41].

Other underlying principles in complexity theory emerge from the major theorems

showing relationships between complexity classes. These theorems fall into two broad

categories. Simulation theorems show that computations in one class can be simulated by

computations that meet the defining resource bounds of another class. The containment of

non-deterministic logarithmic space (NL) in polynomial time (P), and the equality of the class

P with alternating logarithmic space, are simulation theorems. Separation theorems show that

certain complexity classes are distinct.

12

Complexity theory currently has precious few of these. The main tool used in those

separation theorems we have is called diagonalization. This ties in to the general feeling in

computer science that lower bounds are hard to prove. Our current inability to separate many

complexity classes from each other is perhaps the greatest challenge posed by computational

complexity theory.

 Time and Space Complexity Classes

Fundamental time classes and fundamental space classes, given functions and :

1. is the class of languages decided by deterministic Turing machines of

time complexity ;

2. is the class of languages decided by non-deterministic Turing machines

of time complexity t(n);

3. is the class of languages decided by deterministic Turing machines of

space complexity ;

4. is the class of languages decided by non-deterministic Turing

machines of space complexity .

 Canonical Complexity Classes

 Table 3. Canonical Complexity Classes

Complexity class Time/Space class decomposition Class Name

 Deterministic log space

 Non-deterministic log space

 Polynomial time

 Non-deterministic polynomial

time Polynomial space

 Deterministic exponential time

 Non-deterministic exponential

time Exponential space

NP is the set of all decision problems for which the instances where the answer is

―yes‖ have efficiently verifiable proofs of the fact that the answer is indeed ―yes‖. More

13

precisely, these proofs have to be verifiable in polynomial time by a deterministic Turing

machine. In an equivalent formal definition, NP is the set of decision problems where the

―yes‖ instances can be recognized in polynomial time by a non-deterministic Turing machine.

The equivalence of the two definitions follows from the fact that an algorithm on such a non-

deterministic machine consists of two phases, the first of which consists of a guess about the

solution which is generated in a non-deterministic way, while the second consists of a

deterministic algorithm which verifies or rejects the guess as a valid solution to the problem

[2].

The complexity class P is contained in NP, but NP contains many important problems,

the hardest of which are called NP-complete problems, for which no polynomial-time

algorithms are known. The most important open question in complexity theory, the P = NP

problem, asks whether such algorithms actually exist for NP-complete, and by corollary, all

NP problems. It is widely believed that this is not the case [42].

As described before, the complexity class NP can be defined in terms of NTIME as

follows:

 (1)

The NP class has several sub classes, as presented in table 4.

Table 4. NP Sub Classes

NP sub classes

NP-Complete

NP-Hard

 NP-easy

 NP-equivalent

 Co-NP

 Co-NP-complete

14

 NP-Hard

NP-hard (non-deterministic polynomial-time hard), is a class of problems that are,

informally, ―at least as hard as the hardest problems in NP‖. A problem H is NP-hard if and

only if there is an NP-complete problem that is polynomial time Turing-reducible to (i.e.,

 TH). In other words, L can be solved in polynomial time by an oracle machine with an

oracle for . Informally, we can think of an algorithm that can call such an oracle machine as

a subroutine for solving , and solves in polynomial time, if the subroutine call takes only

one step to compute. NP-hard problems may be of any type: decision problems, search

problems, or optimization problems.

As consequences of definition (note that these are claims, not definitions) [43]:

 Problem is at least as hard as , because can be used to solve ;

 Since is NP-complete, and hence the hardest in class NP, also problem is at

least as hard as NP, but does not have to be in NP and hence does not have to be

a decision problem (even if it is a decision problem, it need not be in NP);

 Since NP-complete problems transform to each other by polynomial-time many-

one reduction (also called polynomial transformation), all NP-complete problems

can be solved in polynomial time by a reduction to , thus all problems in NP

reduce to ; note, however, that this involves combining two different

transformations: from NP-complete decision problems to NP-complete problem

by polynomial transformation, and from to H by polynomial Turing reduction;

 If there is a polynomial algorithm for any NP-hard problem, then there are

polynomial algorithms for all problems in NP, and hence ;

 If , then NP-hard problems have no solutions in polynomial time, while

 does not resolve whether the NP-hard problems can be solved in

polynomial time;

 If an optimization problem has an NP-complete decision version , then is

NP-hard.

A common mistake is to think that the NP in NP-hard stands for non-polynomial.

Although it is widely suspected that there are no polynomial-time algorithms for NP-hard

15

problems, this has never been proven. Moreover, the class NP also contains all problems

which can be solved in polynomial time.

The traditional lines of attack for NP-hard problems are the Following:

 Devising algorithms for finding exact solutions (they will work reasonably fast only

for relatively small problem sizes);

 Devising ―suboptimal‖ or heuristic algorithms, i.e., algorithms that deliver either

seemingly or probably good solutions, but which could not be proved to be optimal;

Such algorithms can be: genetic algorithms, tabu search, ant algorithms, among others.

 Finding special cases for the problem (―sub problems‖) for which either better or exact

algorithms are available.

 The Units Movement case

In this case the goal is to minimize the total movement cost between the targets having to

pass to each one of them; this case is similar to the traveling salesman problem. So, one wants

the best path which corresponds to a sequence of targets. In order to enumerate the set of

paths, first is chosen one target, then another one, and so on.

Number of different paths: If is the number of targets, then, at each step there can be

chosen between targets.

So,

Complexity: The complexity is . As expected, this approach leads to an

(hyper-)exponential algorithm. (the factorial function is hyper-exponential:

16

The best route is DACBE costing 185.

Complexity of verification: If a solution (i.e. a sequence of targets) is given, how long

is it to compute its cost?

Only one path to explore, with targets, so the complexity of verification is

linear: .

So, this case is in NP and is hard because it is an optimization problem with the

objective of finding the least-cost path through all the targets of a weighted map and the

decision problem (―given the cost and a number x, decide whether there is a path cheaper than

x‖) is NP-Complete. If there was a non-deterministic Turing machine, all the paths could be

explored in one go, with linear complexity.

Following this reasoning, the complexity of this optimization involves at least one NP-

hard problem making it NP-hard.

3.1.2. Multi-objective optimization

For multiple-objective problems, the objectives are generally conflicting, preventing

simultaneous optimization of each objective. Many, or even most, real engineering problems

Fig. 3. Units case example

17

actually do have multiple objectives, i.e., minimize cost, maximize performance, maximize

reliability, etc. These are difficult but realistic problems. EAs are a popular meta-heuristic that

is particularly well-suited for this class of problems. Traditional EAs are customized to

accommodate multi-objective problems by using specialized fitness functions and introducing

methods to promote solution diversity.

There are two general approaches to multiple-objective optimization. One is to combine

the individual objective functions into a single composite function or move all but one

objective to the constraint set. In the former case, determination of a single objective is

possible with methods such as utility theory, weighted sum method, etc., but the problem lies

in the proper selection of the weights or utility functions to characterize the decision-maker‘s

preferences.

In practice, it can be very difficult to precisely and accurately select these weights, even

for someone familiar with the problem domain. Compounding this drawback is that scaling

amongst objectives is needed and small perturbations in the weights can sometimes lead to

quite different solutions. In the latter case, the problem is that to move objectives to the

constraint set, a constraining value must be established for each of these former objectives.

This can be rather arbitrary. In both cases, an optimization method would return a

single solution rather than a set of solutions that can be examined for trade-offs [44]. For this

reason, decision-makers often prefer a set of good solutions considering the multiple

objectives.

The second general approach is to determine an entire Pareto optimal solution set or a

representative subset. A Pareto optimal set is a set of solutions that are non-dominated with

respect to each other. While moving from one Pareto solution to another, there is always a

certain amount of sacrifice in one objective(s) to achieve a certain amount of gain in the

other(s). Pareto optimal solution sets are often preferred to single solutions because they can

be practical when considering real-life problems since the final solution of the decision-maker

is always a trade-off. Pareto optimal sets can be of varied sizes, but the size of the Pareto set

usually increases with the increase in the number of objectives.

18

 Multi-objective optimization formulation

Consider a decision-maker who wishes to optimize objectives such that the objectives

are non-commensurable and the decision-maker has no clear preference of the objectives

relative to each other. Without loss of generality, all objectives are of the minimization type

— a minimization type objective can be converted to a maximization type by multiplying

negative one. A minimization multi-objective decision problem with objectives is defined

as follows:

Given an -dimensional decision variable vector in the solution space ,

find a vector that minimizes a given set of objective functions

 . The solution space is generally restricted by a series of

constraints, such as for , and bounds on the decision variables.

In many real-life problems, objectives under consideration conflict with each other.

Hence, optimizing with respect to a single objective often results in unacceptable results

with respect to the other objectives. Therefore, a perfect multi-objective solution that

simultaneously optimizes each objective function is almost impossible. A reasonable solution

to a multi-objective problem is to investigate a set of solutions, each of which satisfies the

objectives at an acceptable level without being dominated by any other solution.

If all objective functions are for minimization, a feasible solution is said to dominate

another feasible solution , if and only if, for and

 for least one objective function . A solution is said to be Pareto optimal if it is not

dominated by any other solution in the solution space. A Pareto optimal solution cannot be

improved with respect to any objective without worsening at least one other objective. The set

of all feasible non-dominated solutions in is referred to as the Pareto optimal set, and for a

given Pareto optimal set, the corresponding objective function values in the objective space

are called the Pareto front. For many problems, the number of Pareto optimal solutions is

enormous (perhaps infinite) [45].

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in

the Pareto optimal set. However, identifying the entire Pareto optimal set, for many multi-

objective problems, is practically impossible due to its size. In addition, for many problems,

19

especially for combinatorial optimization problems, proof of solution optimality is

computationally infeasible. Therefore, a practical approach to multi-objective optimization is

to investigate a set of solutions (the best-known Pareto set) that represent the Pareto optimal

set as well as possible. With these concerns in mind, a multi-objective optimization approach

should achieve the following three conflicting goals [3]:

1. The best-known Pareto front should be as close as possible to the true Pareto

front. Ideally, the best-known Pareto set should be a subset of the Pareto

optimal set;

2. Solutions in the best-known Pareto set should be uniformly distributed and

diverse over of the Pareto front in order to provide the decision-maker a true

picture of trade-offs;

3. The best-known Pareto front should capture the whole spectrum of the Pareto

front. This requires investigating solutions at the extreme ends of the objective

function space.

For a given computational time limit, the first goal is best served by focusing

(intensifying) the search on a particular region of the Pareto front. On the contrary, the second

goal demands the search effort to be uniformly distributed over the Pareto front. The third

goal aims at extending the Pareto front at both ends, exploring new extreme solutions.

21

Background Canonical Models

4.1. Supporting procedures and mechanisms

As stated before the problem which we are trying to solve with the meta-heuristic

described later in this thesis is somehow complex and demanding, so there are several well

known canonical models and algorithms used for solving the problem which are described in

this section. This section aims that the reader understands all the terms and algorithm

principles used throughout the thesis, although it is not exhaustive.

4.1.1. Evolutionary algorithms

 Aims of this section

The most important aim of this section is to describe what an Evolutionary Algorithm

(EA) is. This description is deliberately based on a unifying view presenting a general scheme

that forms the common basis of all Evolutionary Algorithm variants. The main components of

EAs are discussed, explaining their role and related issues of terminology. Further on the

general issues for EAs are discussed concerning their working. Finally, EAs are put into a

broader context and their relation is explained with other global optimization techniques.

 What is an Evolutionary Algorithm?

As the history of the field suggests there are many different variants of EAs. The

common underlying idea behind all these techniques is the same: given a population of

individuals the environmental pressure causes natural selection (survival of the fittest) and

22

this causes a rise in the fitness of the population. Given a quality function to be maximized we

can randomly create a set of candidate solutions, i.e., elements of the function's domain, and

apply the quality function as an abstract fitness measure - the higher the better. Based on this

fitness, some of the better candidates are chosen to seed the next generation by applying

recombination and/or mutation to them. Recombination is an operator applied to two or more

selected candidates (the so-called parents) and results one or more new candidates (the

children). Mutation is applied to one candidate and results in one new candidate.

Executing recombination and mutation leads to a set of new candidates (the offspring)

that compete - based on their fitness (and possibly age) - with the old ones for a place in the

next generation. This process can be iterated until a candidate with sufficient quality (a

solution) is found or a previously set computational limit is reached. In this process there are

two fundamental forces that form the basis of evolutionary systems.

 Variation operators (recombination and mutation) create the necessary diversity and

thereby facilitate novelty, while

 selection acts as a force pushing quality.

The combined application of variation and selection generally leads to improving fitness

values in consecutive populations. It is easy (although somewhat misleading) to see such a

process as if the evolution is optimizing, or at least ―approximating‖, by approaching optimal

values closer and closer over its course. Alternatively, evolution it is often seen as a process

of adaptation.

From this perspective, the fitness is not seen as an objective function to be optimized, but

as an expression of environmental requirements. Matching these requirements more closely

implies an increased viability, reflected in a higher number of offspring. The evolutionary

process makes the population adapt to the environment better and better.

Note that many components of such an evolutionary process are stochastic. During

selection fitter individuals have a higher chance to be selected than less fit ones, but typically

even the weak individuals have a chance to become a parent or to survive. For recombination

of individuals the choice of which pieces will be recombined is random. Similarly for

mutation, the pieces that will be mutated within a candidate solution, and the new pieces

23

replacing them, are chosen randomly. The general scheme of an EA can is given in listing 1 in

a pseudo-code fashion; figure 3 shows a diagram.

It is easy to see that this scheme falls in the category of generate-and-test algorithms. The

evaluation (fitness) function represents a heuristic estimation of solution quality and the

search process is driven by the variation and the selection operators. EAs posses a number of

features that can help to position them within in the family of generate-and-test methods:

 EAs are population based, i.e., they process a whole collection of candidate solutions

simultaneously;

 EAs mostly use recombination to mix information of more candidate solutions into a

new one;

 EAs are stochastic
1
.

1
 Stochastic refers to systems whose behavior is intrinsically non-deterministic. A stochastic process is one

whose behavior is non-deterministic, in that a system's subsequent state is determined both by the process's

predictable actions and by a random element.

BEGIN

 INITIALIZE population with random candidate solutions;

 EVALUATE each candidate;

 REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

 1 SELECT parents;

 2 RECOMBINE pairs of parents;

 3 MUTATE the resulting offspring;

 4 EVALUATE new candidates;

 5 SELECT individuals for the next generation;

 END REPEAT

END

Fig. 4. The general scheme of an Evolutionary Algorithm as a flow-chart [46].

Listing 1. Pseudo-code of an EA general scheme

24

The various dialects of evolutionary computing that were mentioned previously all

follow the general outlines in figure 4, and differ only in technical details. For instance, the

representation of a candidate solution is often used to characterize different streams.

Typically, the candidates are represented by (i.e., the data structure encoding a solution has

the form of) strings over a finite alphabet in Genetic Algorithms (GA), real-valued vectors in

Evolution Strategies (ES), finite state machines in classical Evolutionary Programming (EP)

and trees in Genetic Programming (GP). These differences have a mainly historical origin.

Technically, a given representation might be preferable over others if it matches the given

problem better, that is, it makes the encoding of candidate solutions easier or more natural.

For instance, for solving a satisfiability problem the straightforward choice is to use bit-

strings of length , where is the number of logical variables, hence the appropriate EA

would be a Genetic Algorithm.

For evolving a computer program that can play checkers, trees are well-suited (namely,

the parse trees of the syntactic expressions forming the programs), thus a GP approach is

likely. It is important to note that the recombination and mutation operators working on

candidates must match the given representation. Thus for instance in GP the recombination

operator works on trees, while in GAs it operates on strings. As opposed to variation

operators, selection takes only the fitness information into account, hence it works

independently from the actual representation. Differences in the commonly applied selection

mechanisms in each stream are therefore rather a tradition than a technical necessity.

 Components of Evolutionary Algorithms

In this section is discussed EAs in detail. EAs have a number of components, procedures

or operators that must be specified in order to define a particular EA. The most important

components, indicated by italics in listing 1, are:

 representation (definition of individuals);

 evaluation function (or fitness function);

 population;

 parent selection mechanism;

 variation operators, recombination and mutation;

25

 survivor selection mechanism (replacement).

Each of these components must be specified in order to define a particular EA.

Furthermore, to obtain a running algorithm the initialization procedure and a termination

condition must be also defined.

 Representation (Definition of Individuals)

The first step in defining an EA is to link the ―real world‖ to the ―EA world‖, that is to set

up a bridge between the original problem context and the problem solving space where

evolution will take place. Objects forming possible solutions within the original problem

context are referred to as phenotypes, their encoding, the individuals within the EA, are called

genotypes. The first design step is commonly called representation, as it amounts to

specifying a mapping from the phenotypes onto a set of genotypes that are said to represent

these phenotypes. For instance, given an optimization problem on integers, the given set of

integers would form the set of phenotypes. Then one could decide to represent them by their

binary code, hence 18 would be seen as a phenotype and 10010 as a genotype representing it.

It is important to understand that the phenotype space can be very different from the genotype

space, and that the whole evolutionary search takes place in the genotype space. A solution - a

good phenotype - is obtained by decoding the best genotype after termination. To this end, it

should hold that the (optimal) solution to the problem at hand - a phenotype - is represented in

the given genotype space.

The common EC terminology uses many synonyms for naming the elements of these two

spaces. On the side of the original problem context, candidate solution, phenotype, and

individual are used to denote points of the space of possible solutions. This space itself is

commonly called the phenotype space. On the side of the EA, genotype, chromosome, and

again individual can be used for points in the space where the evolutionary search will

actually take place. This space is often termed the genotype space. Also for the elements of

individuals there are many synonymous terms. A place-holder is commonly called a variable,

a locus (plural: loci), a position, or - in a biology oriented terminology - a gene. An object on

such a place can be called a value or an allele.

26

It should be noted that the word ―representation‖ is used in two slightly different ways.

Sometimes it stands for the mapping from the phenotype to the genotype space. In this sense

it is synonymous with encoding, i.e., one could mention binary representation or binary

encoding of candidate solutions [47]. The inverse mapping from genotypes to phenotypes is

usually called decoding and it is required that the representation be invertible: to each

genotype there has to be at most one corresponding phenotype. The word representation can

also be used in a slightly different sense, where the emphasis is not on the mapping itself, but

on the ―data structure‖ of the genotype space. This interpretation is behind speaking about

mutation operators for binary representation, for instance.

 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements to adapt to. It forms

the basis for selection, and thereby it facilitates improvements. More accurately, it defines

what improvement means. From the problem solving perspective, it represents the task to

solve in the evolutionary context. Technically, it is a function or procedure that assigns a

quality measure to genotypes. Typically, this function is composed from a quality measure in

the phenotype space and the inverse representation. To remain with the above example, if the

goal was to maximize on integers, the fitness of the genotype 10010 could be defined as

the square of its corresponding phenotype: .

The evaluation function is commonly called the fitness function in EC. This might cause a

counterintuitive terminology if the original problem requires minimization for fitness is

usually associated with maximization. Mathematically, however, it is trivial to change

minimization into maximization and vice versa.

Quite often, the original problem to be solved by an EA is an optimization problem. In

this case the name objective function is often used in the original problem context and the

evaluation (fitness) function can be identical to, or a simple transformation of, the given

objective function.

27

 Population

The role of the population is to hold (the representation of) possible solutions. A

population is a multiset
2
 of genotypes [48]. The population forms the unit of evolution.

Individuals are static objects not changing or adapting, it is the population that does. Given a

representation, defining a population can be as simple as specifying how many individuals are

in it, that is, setting the population size. In some sophisticated EAs a population has an

additional spatial structure, with a distance measure or a neighborhood relation. In such cases

the additional structure has to be defined as well to fully specify a population. As opposed to

variation operators that act on the one or two parent individuals, the selection operators

(parent selection and survivor selection) work at population level. In general, they take the

whole current population into account and choices are always made relative to what we have.

For instance, the best individual of the given population is chosen to seed the next generation,

or the worst individual of the given population is chosen to be replaced by a new one. In

almost all EA applications the population size is constant, not changing during the

evolutionary search.

The diversity of a population is a measure of the number of different solutions present. No

single measure for diversity exists, typically people might refer to the number of different

fitness values present, the number of different phenotypes present, or the number of different

genotypes. Other statistical measures, such as entropy, are also used. Note that only one

fitness value does not necessarily imply only one phenotype is present, and in turn only one

phenotype does not necessarily imply only one genotype. The reverse is however not true:

one genotype implies only one phenotype and fitness value.

 Parent Selection Mechanism

The role of parent selection or mating selection is to distinguish among individuals based

on their quality, in particular, to allow the better individuals to become parents of the next

generation. An individual is a parent if it has been selected to undergo variation in order to

create offspring. Together with the survivor selection mechanism, parent selection is

responsible for pushing quality improvements. In EC, parent selection is typically

probabilistic. Thus, high quality individuals get a higher chance to become parents than those

2
 A multiset is a set where multiple copies of an element are possible.

28

with low quality. Nevertheless, low quality individuals are often given a small, but positive

chance, otherwise the whole search could become too greedy and get stuck in a local

optimum.

 Variation Operators

The role of variation operators is to create new individuals from old ones. In the

corresponding phenotype space this amounts to generating new candidate solutions. From the

generate-and-test search perspective, variation operators perform the ―generate‖ step.

Variation operators in EC are divided into two types based on their arity
3
 [49].

 Mutation

A unary
4
 variation operator is commonly called mutation. It is applied to one genotype

and delivers a (slightly) modified mutant, the child or offspring of it. A mutation operator is

always stochastic: its output - the child - depends on the outcomes of a series of random

choices
5
. It should be noted that an arbitrary unary operator is not necessarily seen as

mutation. A problem specific heuristic operator acting on one individual could be termed as

mutation for being unary. However, in general mutation is supposed to cause a random,

unbiased change. For this reason it might be more appropriate not to call heuristic unary

operators mutation. The role of mutation in EC is different in various EC-dialects, for instance

in Genetic Programming it is often not used at all, in Genetic Algorithms it has traditionally

been seen as a background operator to fill the gene pool with ―fresh blood‖, while in

Evolutionary Programming it is the one and only variation operator doing the whole search

work.

It is worth noting that variation operators form the evolutionary implementation of the

elementary steps within the search space. Generating a child amounts to stepping to a new

point in this space. From this perspective, mutation has a theoretical role too: it can guarantee

that the space is connected. This is important since theorems stating that an EA will (given

3
 The arity of an operator is the number of objects that it takes as inputs.

4
 An operator is unary if it applies to one object as input.

5
 Usually these will consist of using a pseudo-random number generator to generate a series of values from some

given probability distribution. These can sometimes be referred as ―random drawings‖.

29

sufficient time) discover the global optimum of a given problem often rely on the property

that each genotype representing a possible solution can be reached by the variation operators

[55]. The simplest way to satisfy this condition is to allow the mutation operator to ―jump‖

everywhere, for example, by allowing that any allele can be mutated into any other allele with

a non-zero probability. However it should also be noted that many researchers feel these

proofs have limited practical importance, and many implementations of EAs do not in fact

possess this property.

 Recombination

A binary variation operator
6
 is called recombination or crossover. As the names

indicate such operator merges information from two parent genotypes into one or two

offspring genotypes. Similarly to mutation, recombination is a stochastic operator: the choice

of what parts of each parent are combined, and the way these parts are combined, depends on

random drawings.

Again, the role of recombination is different in EC dialects: in Genetic Programming it

is often the only variation operator, in Genetic Algorithms it is seen as the main search

operator, and in Evolutionary Programming it is never used. Recombination operators with a

higher arity (using more than two parents) are mathematically possible and easy to

implement, but have no biological equivalent. Perhaps this is why they are not commonly

used, although several studies indicate that they have positive effects on the evolution [56].

The principal behind recombination is simple - that by mating two individuals with

different but desirable features, we can produce an offspring which combines both of those

features. This principal has a strong supporting case - it is one which has been successfully

applied for millennia by breeders of plants and livestock, to produce species which give

higher yields or have other desirable features. EAs create a number of offspring by random

recombination, accept that some will have undesirable combinations of traits, most may be no

better or worse than their parents, and hope that some have improved characteristics.

Although the biology of the planet earth, (where with a very few exceptions lower organisms

reproduce asexually, and higher organisms reproduce sexually), suggests that recombination

6
 An operator is binary if it applies to two objects as input.

30

is the superior form of reproduction, recombination operators in EAs are usually applied

probabilistically, that is, with an existing chance of not being performed.

It is important to note that variation operators are representation dependent. That is,

for different representations different variation operators have to be defined. For example, if

genotypes are bit-strings, then inverting a 0 to a 1 (1 to a 0) can be used as a mutation

operator. However, if possible solutions are represented by tree-like structures another

mutation operator is required.

 Survivor Selection Mechanism (Replacement)

The role of survivor selection or environmental selection is to distinguish among

individuals based on their quality. In that it is similar to parent selection, but it is used in a

different stage of the evolutionary cycle. The survivor selection mechanism is called after

having created the offspring of the selected parents. As mentioned in the ―Population‖

section, in EC the population size is (almost always) constant, thus a choice has to be made on

which individuals will be allowed in the next generation. This decision is usually based on

their fitness values, favoring those with higher quality, although the concept of age is also

frequently used. As opposed to parent selection which is typically stochastic, survivor

selection is often deterministic, for instance ranking the unified multiset of parents and

offspring and selecting the top segment (fitness biased), or selecting only from the offspring

(age-biased).

Survivor selection is also often called replacement or replacement strategy. In many cases

the two terms can be used interchangeably. The choice between the two is thus often

arbitrary. A good reason to use the name survivor selection is to keep terminology consistent:

step 1 and step 5 in Figure 4 are both named selection, distinguished by an adjective. A

preference for using replacement can be motivated by the skewed proportion of the number of

individuals in the population and the number of newly created children. In particular, if the

number of children is very small with respect to the population size, i.e., 2 children and a

population of 100. In this case, the survivor selection step is as simple as to choose the two

old individuals that are to be deleted to make place for the new ones. In other words, it is

more efficient to declare that everybody survives unless deleted, and to choose whom to

31

replace. If the proportion is not skewed like this, i.e., 500 children made from a population of

100, then this is not an option, so using the term survivor selection is appropriate.

 Initialization

Initialization is kept simple in most EA applications: The first population is seeded by

randomly generated individuals. In principle, problem specific heuristics can be used in this

step aiming at an initial population with higher fitness. Whether this is worth the extra

computational effort or not is very much depending on the application at hand. There are,

however, some general observations concerning this issue based on the so-called anytime

behavior of EAs.

 Termination Condition

As for a suitable termination condition we can distinguish two cases. If the problem has a

known optimal fitness level, probably coming from a known optimum of the given objective

function, then reaching this level (perhaps only with a given precision > 0) should be used

as stopping condition.

However, EAs are stochastic and mostly there are no guarantees to reach an optimum,

hence this condition might never get satisfied and the algorithm may never stop. This requires

that this condition is extended with one that certainly stops the algorithm. Commonly used

options for this purpose are the following:

1. the maximally allowed CPU time elapses;

2. the total number of fitness evaluations reaches a given limit;

3. for a given period of time (i.e, for a number of generations or fitness evaluations), the

fitness improvement remains under a threshold value;

4. the population diversity drops under a given threshold.

The actual termination criterion in such cases is a disjunction: optimum value hit or

condition satisfied. If the problem does not have a known optimum, then we need no

disjunction, simply a condition from the above list or a similar one that is guaranteed to stop

32

the algorithm. Later on in the ―Working of an evolutionary algorithm‖ section the issue of

when to terminate an EA will be revisited.

 Example Applications

 The 8-Queens Problem [52]

 The Knapsack Problem [53 – 54]

 Working of an Evolutionary Algorithm

EAs have some rather general properties concerning their working. To illuminate how

an EA typically works we assume a one dimensional objective function to be maximized.

Figure 5 shows three stages of the evolutionary search, exhibiting how the individuals are

distributed in the beginning, somewhere halfway and at the end of the evolution. In the first

phase, directly after initialization, the individuals are randomly spread over the whole search

space, see figure 5, left. Already after a few generations this distribution changes: caused by

selection and variation operators the population abandons low fitness regions and starts to

―climb‖ the hills as shown in figure 5, middle. Yet later, (close to the end of the search, if the

termination condition is set appropriately), the whole population is concentrated around a few

peaks, where some of these peaks can be sub-optimal. In principle it is possible that the

population ―climbs the wrong hill‖ and all individuals are positioned around a local, but not

global optimum. Although there is no universally accepted definition of what the terms mean,

these distinct phases of search are often categorized in terms of exploration (the generation of

new individuals in as-yet untested regions of the search space), and exploitation (the

concentration of the search in the vicinity of known good solutions).

Fig. 5. Typical progress of an EA illustrated in terms of population distribution [47].

33

Evolutionary search processes are often referred to in terms of a trade-off between

exploration and exploitation, with too much of the former leading to inefficient search, and

too much of the latter leading to a propensity to focus the search too quickly for a good

discussion of these issues). Premature convergence is the well-known effect of losing

population diversity too quickly and getting trapped in a local optimum. This danger is

generally present in EAs; although there are techniques to prevent it.

The other effect we want to illustrate is the anytime behavior of EAs. This is shown by

plotting the development of the population's best fitness (objective function) value in time, see

figure 6. This curve is characteristic for EAs, showing rapid progress in the beginning and

flattening out later on. This is typical for many algorithms that work by iterative

improvements on the initial solution(s). The name ―any time‖ comes from the property that

the search can be stopped at any time, the algorithm will have some solution, be it suboptimal.

Based on this anytime curve some general observations can be made concerning

initialization and the termination condition for EAs. As for initialization, recall the question

from the ―initialization‖ section whether it is worth to put extra computational efforts into

applying some intelligent heuristics to seed the initial populations with better than random

individuals. In general, it could be said that the typical progress curve of an evolutionary

process makes it unnecessary. This is illustrated in figure 7. As the figure indicates, using

heuristic initialization can start the evolutionary search with a better population. However,

typically a few (in the figure:) generations are enough to reach this level, making the worth

of extra effort questionable.

Fig. 6. Typical progress of an EA illustrated in terms of development of the best fitness (objective function to

be maximized) value within population in time [47].

34

The anytime behavior also has some general indications regarding termination

conditions of EAs. In figure 8 the run is divided into two equally long sections, the first and

the second half. As the figure indicates, the progress in terms of fitness increase in the first

half of the run, , is significantly greater than the achievements in the second half, . This

provides a general suggestion that it might not be worth to allow very long runs: due to the

anytime behavior on EAs, efforts spent after a certain time (number of fitness evaluations)

may not result in better solution quality.

This review of EA behavior is closed with looking at EA performance from a global

perspective. That is, rather than observing one run of the algorithm, consider the performance

of EAs on a wide range of problems. Figure 9 shows the 80's view after Goldberg [58]. What

the figure indicates is that robust problem solvers - as EAs are claimed to be- show a roughly

even good performance over a wide range of problems. This performance pattern can be

compared to random search and to algorithms tailored to a specific problem type. EAs clearly

outperform random search. A problem tailored algorithm, however, performs much better

Fig. 7. Illustrating why heuristic initialization might not be worth. Level a show the best fitness

in a randomly initialized population, level belongs to heuristic initialization [47].

Fig. 8. Illustrating why long runs might not be worth. X shows the progress in terms of fitness

increase in the first half of the run, Y belongs to the second half [47].

35

than an EA, but only on that type of problem where it was designed for. As we move away

from this problem type to different problems, the problem specific algorithm quickly looses

performance. In this sense, EAs and problem specific algorithms form two antagonistic

extremes. This perception has played an important role in positioning EAs and stressing the

difference between evolutionary and random search, but it gradually changed in the 90's based

on new insights from practice as well as from theory. The contemporary view acknowledges

the possibility to combine the two extremes into a hybrid algorithm. As for theoretical

considerations, the No Free Lunch Theorem has shown that (under some conditions) no

black-box algorithm can outperform random walk when averaged over ―all‖ problems [57].

That is, showing the EA line always above that of random search is fundamentally incorrect.

 Evolutionary Computing and Global Optimization

There has been a steady increase in the complexity and size of problems that are desired

to be solved by computing methods and EAs are often used for problem optimization. Of

course EAs are not the only optimization technique known, and in this section is explained

where EAs fall into the general class of optimization methods, and why they are of increasing

interest.

In an ideal world, where the technology and algorithms were possessed that could

provide a provably optimal solution to any problem that could suitably pose to the system. In

fact, such algorithms exist: an exhaustive enumeration of all of the possible solutions to our

problem is clearly such an algorithm. For many problems that can be expressed in a suitably

mathematical formulation, much faster, exact techniques such as Branch and Bound Search

are well known. However, despite the rapid progress in computing technology, and even if

there is no halt to Moore's Law (which states that the available computing power doubles

Fig. 9. 1980's view on EA performance after Goldberg [58][47].

36

every one and a half year), it is a sad fact of life that all too often the types of problems posed

by users exceed in their demands the capacity of technology to answer them.

Decades of computer science research have taught that many ―real world‖ problems can

be reduced in their essence to well known abstract forms for which the number of potential

solutions grows exponentially with the number of variables considered. For example many

problems in transportation can be reduced to the well known ―Travelling Sales Person‖

problem, i.e., given a list of destinations, to construct the shortest tour that visits each

destination exactly once. If we have destinations, with symmetric distances between them,

the number of possible tours is given by

 , which is

exponential in . While exact methods whose time complexity scales linearly (or at least

polynomially) with the number of variables, exist for some of these problems, it is widely

accepted that for many types of problems often encountered, no such algorithms exist. Thus

despite the increase in computing power, beyond a certain size of problem the search for

provably optimal solutions must be abandoned and other methods looked for finding good

solutions.

The term Global Optimization will be used to refer to the process of attempting to find

the solution out of a set of possible solutions S which has the optimal value for some

fitness function . In other words, if trying to find the solution such that

 (here a maximization problem is assumed, the inequality is simply reversed for

minimization).

As noted above, a number of deterministic algorithms exist which if allowed to run to

completion are guaranteed to find . The simplest example is, of course, complete

enumeration of all the solutions in , which can take an exponentially long time as the number

of variables increases. A variety of other techniques exist (collectively known as Box

Decomposition) which are based on ordering the elements of into some kind of tree and

then reasoning about the quality of solutions in each branch in order to decide whether to

investigate its elements. Although methods such as Branch and Bound can sometimes make

very fast progress, in the worst case (due to searching in a suboptimal order) the time

complexity of the algorithms is still the same as complete enumeration.

37

After exact methods, a class of search methods is found, known as heuristics which

may be thought of as sets of rules for deciding which potential solution out of should next

be generated and tested. For some randomized heuristics, such as Simulated Annealing [59 –

60] and (certain variants of) EAs, convergence proofs do in fact exist, i.e., they are guaranteed

to find . Unfortunately these algorithms are fairly weak, in the sense that they will not

identify as being globally optimal, rather as simply the best solution seen so far.

An important class of heuristics is based on the idea of using operators that impose

some kind of structure onto the elements of , such that each point has associated with it a

set of neighbors . In figure 10 the variables (traits) and were taken to be real valued,

which imposes a natural structure on S.

Fig. 10. Illustration of Wright's adaptive landscape with two traits [47].

The reader should note that for many types of problem where each variable takes one of

a finite set of values (so-called Combinatorial Optimization) there are many possible

neighborhood structures. As an example of how the landscape ―seen‖ by a local search

algorithm depends on its neighborhood structure, the reader might wish to consider what a

chess board would look like if we re-ordered it so that squares which are possible next moves

for a knight are adjacent to each other. Note that by its definition, the global optimum, will

always be fitter than all of its neighbors under any neighborhood structure.

38

So-called Local Search algorithms [59] (and their many variants) work by taking a

starting solution , and then searching the candidate solutions in for one that

performs better than . If such a solution exists, then this is accepted as the new incumbent

solution and the search proceeds by examining the candidate solutions in . Eventually

this process will lead to the identification of a local optimum: a solution which is superior to

all those in its neighborhood. Such algorithms (often referred to as Hill Climbers for

maximization problems) have been well studied over the decades, and have the advantage that

they are often quick to identify a good solutions to the problem (which is in fact sometimes all

that is required in practical applications). However, the downside is that frequently problems

will exhibit numerous local optima, some of which may be significantly worse than the global

optimum, and no guarantees can be offered in the quality of solution found. A number of

methods have been proposed to get around this problem by changing the search landscape,

either by reordering it through a change of neighborhood function (i.e., Variable

Neighborhood Search [61]) or by temporally assigning low fitness to already seen good

solutions (i.e., Tabu Search). However the theoretical basis behind these algorithms is still

very much in gestation.

There are a number of features of EAs which distinguish them from Local Search

algorithms, relating principally to their use of a population. It is the population which

provides the algorithm with a means of defining a non-uniform probability distribution

function (p.d.f.) governing the generation of new points from . This p.d.f. reflects possible

interactions between points in the population, arising from the recombination of partial

solutions from two (or more) members of the population (parents). This contrasts with the

globally uniform distribution of blind random search, or the locally uniform distribution used

by many other stochastic algorithms such as simulated annealing and various hill-climbing

algorithms.

The ability of EAs to maintain a diverse set of points not only provides a means of

escaping from one local optimum: it provides a means of coping with large and discontinuous

search spaces, and if several copies of a solution can be maintained, provides a natural and

robust way of dealing with problems where there is noise or uncertainty associated with the

assignment of a fitness score to a candidate solution.

39

4.1.2. Multi-objective evolutionary algorithms

Being a population-based approach, EAs are well suited to solve multi-objective

optimization problems [50]. A generic single-objective EA can be modified to find a set of

multiple non-dominated solutions in a single run. The ability of EA to simultaneously search

different regions of a solution space makes it possible to find a diverse set of solutions for

difficult problems with non-convex, discontinuous, and multi-modal solutions spaces. The

recombination operator of EAs may exploit structures of good solutions with respect to

different objectives to create new non-dominated solutions in unexplored parts of the Pareto

front. In addition, most multi-objective EAs do not require the user to prioritize, scale, or

weigh objectives. Therefore, EAs have been the most popular heuristic approach to multi-

objective design and optimization problems. Jones et al. [4] reported that 90% of the

approaches to multi-objective optimization aimed to approximate the true Pareto front for the

underlying problem. A majority of these used a meta-heuristic technique, and 70% of all

meta-heuristics approaches were based on evolutionary approaches.

The first multi-objective EA, called vector evaluated EA (or VEGA), was proposed by

Schaffer [5]. Afterwards, several multi-objective EAs were developed including:

 Multi-objective Genetic Algorithm (MOGA) [6];

 Niched Pareto Genetic Algorithm (NPGA) [7];

 Weight-based Genetic Algorithm (WBGA) [8];

 Random Weighted Genetic Algorithm (RWGA)[9];

 Non-dominated Sorting Genetic Algorithm (NSGA) [10];

 Strength Pareto Evolutionary Algorithm (SPEA) [11];

 improved SPEA (SPEA2) [12];

 Pareto-Archived Evolution Strategy (PAES) [13];

 Pareto Envelope-based Selection Algorithm (PESA) [14];

 Region-based Selection in Evolutionary Multi-objective Optimization (PESA-II) [15];

 Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) [16];

 Multi-objective Evolutionary Algorithm (MEA) [17];

 Micro-GA [18];

 Rank-Density Based Genetic Algorithm (RDGA) [19];

40

 Dynamic Multi-objective Evolutionary Algorithm (DMOEA) [20].

Note that although there are many variations of multi-objective EA in the literature, these

cited EA are well-known and credible algorithms that have been used in many applications

and their performances were tested in several comparative studies. Several survey papers

[1,11,21–27] have been published on evolutionary multi-objective optimization. Coello lists

more than 2000 references in his website [28]. Generally, multi-objective GA differ based on

their fitness assignment procedure, elitism, or diversification approaches. In table 5,

highlights of the well-known multi-objective with their advantages and disadvantages are

given. Is also important to note that although several of the state-of-the-art algorithms exist as

cited above, many researchers that applied multi-objective EA to their problems have

preferred to design their own customized algorithms by adapting strategies from various

multi-objective EA. This observation is a motivation for introducing the components of multi-

objective EA rather than focusing on several algorithms [51].

41

Table 5. List of well-known multi-objective EA

Algorithm Fitness assignment
Diversity

mechanism
Elitism

External

population
Advantages Disadvantages

VEGA [5]

Each subpopulation

is evaluated with

respect to a

different objective

No No No

First MOGA

Straightforward

implementation

Tend converge to

the extreme of

each objective

MOGA [6] Pareto ranking

Fitness

sharing by

niching

No No
Simple extension of

single objective GA

Usually slow

convergence

Problems related

to niche size

parameter

WBGA [8]

Weighted average

of normalized

objectives

Niching.

Predefined

weights

No No
Simple extension of

single objective GA

Difficulties in

non-convex

objective function

space

NPGA [7]

No fitness

assignment,

tournament

selection

Niche count as

tiebreaker in

tournament

selection

No No

Very simple

selection process

with tournament

selection

Problems related

to niche size

parameter

Extra parameter

for tournament

selection

RWGA [9]

Weighted average

of normalized

objectives

Randomly

assigned

weights

Yes Yes
Efficient and easy

implemention

Difficulties in

non-convex

objective function

space

PESA [14]
No fitness

assignment

Cell-based

density
Pure elitist Yes

Easy to implement.

Computationally

efficient

Performance

depends on cell

sizes

Prior information

needed about

objective space

PAES [28]

Pareto dominance is

used to replace a

parent if offspring

dominates

Cell-based

density as tie

breaker

between

offspring and

parent

Yes Yes

Random mutation

hill climbing

strategy

Easy to implement

Computationally

efficient

Not a population

based approach.

Performance

depends on cell

sizes

NSGA [10]

Ranking based on

non-domination

sorting

Fitness

sharing by

niching

No No Fast convergence

Problems related

to niche size

parameter

NSGA-II [29]

Ranking based on

non-domination

sorting

Crowding

distance
Yes No

Single parameter

(N)

Well tested

Efficient

Crowding

distance. Works in

objective space

only

 (Continued)

42

Algorithm Fitness assignment
Diversity

mechanism
Elitism

External

population
Advantages Disadvantages

SPEA [11]

Ranking based on

the external archive

of non-dominated

solutions

Clustering to

truncate

external

population

Yes Yes

Well tested

No parameter for

clustering

Complex

clustering for

algorithm

SPEA-2 [12]
Strength of

dominators

Density based

on the -th

nearest

neighbor

Yes Yes

Improved SPEA

Make sure extreme

points are preserved

Computationally

expensive fitness

and density

calculation

RDGA [19]

The problem

reduced to bi-

objective problem

with solution rank

and density as

objectives

Forbidden

region

cellbased

density

Yes Yes

Dynamic cell

update

Robust with respect

to the number of

objectives

More difficult to

implement than

others

DMOEA [20] Cell-based ranking

Forbidden

region

cellbased

density

Yes (implicitly) No

Includes efficient

techniques to update

cell densities

Adaptive

approaches to set

GA parameters

More difficult to

implement than

others

After analyzing the components of several EA multi-objective algorithms, we reached

the conclusion that they do not fit the problem instance which we are trying to solve in this

thesis. This is due to fact that the problem instance is a special case of multi-objective

optimization, named many-objective optimization. Many-objective optimization problems are

those who have more than 2 or 3 objectives, and the problem depicted in this thesis is clearly

a problem in which we can find dozens of concurrent objectives. So, some very known multi-

objective evolutionary algorithms, such as, NSGA-II and SPEA are very difficult to apply to

this problem [63].

4.1.3. A-star pathfinder algorithm

To find the safest and fastest path to the enemy while avoiding obstacles a A-star

pathfinder algorithm variant is used. This algorithm returns the path to the enemy in a grid

avoiding any obstacles in the way. The A-star is one of the algorithms with the purpose of

finding a solution to a problem that involves state transitions, they are called path finding

algorithms.

43

These algorithms have special impact in problems which have a vast number of

solutions for each state or in problems with a large number of states until the target is reached.

The A-star algorithm finds, in each state, the following possible states, making an

estimate of the remaining distance to the target (H), and chooses the one that provides the

largest progress with the lowest cost to continue testing.

This algorithm implements this principle through the use of three lists:

1. An open list, which contains all the states that were reached but were not tested;

2. A closed list, which contains the evaluated states;

3. A successors list, built at each iteration with the following states of the element in test.

In short, the A-star algorithm works in this way:

 Add the initial state to the open list

 While the open list has elements and the list is not transferred to the closed list

o Search for the element with the lowest total cost (F)

o Move to closed list

o Search for successors

o For each successor

 If it is an obstacle or is in the closed list, ignore

 If not

 If it is not present in the open list, set the parent as the current

node and calculate F,G and H

 If it is in the open list, calculate again G (Total cost for the

current path) if it is less than the previous value replace the

parent node, G and F value

The A-star algorithm, for its simplicity and bearing on the problem was nominated as a

―help‖ agent to find the shortest and most reliable path to the target. This becomes strikingly

useful in cases where the direction of the target is contrary to the direction that the units have

to go to find it.

44

4.1.4. KMeans clustering algorithm

To use the A-star algorithm for finding the best path to the target, first there is the need

to define a point where the unit or units are. When there is only one unit, the point is the unit

itself, but when several units are involved, we need to find a point in the grid which is, as

much as possible, the nearest to all the units, named centroid. For this we use the KMeans

Clustering algorithm.

KMeans (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that

solve the well known clustering problem. The procedure follows a simple and easy way to

classify a given data set through a certain number of clusters (assume clusters) fixed a

priori. The main idea is to define centroids, one for each cluster. These centroids should be

placed in a cunning way because of different location causes different result. So, the better

choice is to place them as much as possible far away from each other. The next step is to take

each point belonging to a given data set and associate it to the nearest centroid. When no point

is pending, the first step is completed and an early grouping is done. At this point we need to

recalculate new centroids as barycenters of the clusters resulting from the previous step.

After we have these new centroids, a new binding has to be done between the same data set

points and the nearest new centroid. A loop has been generated. As a result of this loop we

may notice that the centroids change their location step by step until no more changes are

done. In other words centroids do not move any more. Finally, this algorithm aims at

minimizing an objective function, in this case a squared error function. The objective function

 (2)

where

is a chosen distance measure between a data point

 and the cluster

centre , is an indicator of the distance of the n data points from their respective cluster

centers.

The algorithm is composed of the following steps:

45

Although it can be proved that the procedure will always terminate, the KMeans

algorithm does not necessarily find the most optimal configuration, corresponding to the

global objective function minimum. The algorithm is also significantly sensitive to the initial

randomly selected cluster centers. The KMeans algorithm can be run multiple times to reduce

this effect.

KMeans is a simple algorithm that has been adapted to many problem domains. As it will

be demonstrated, it is a good candidate for extension to work with fuzzy feature vectors.

 An example

Suppose that there is sample feature vectors all from the same class, and is

known that they fall into compact clusters, . Let be the mean of the vectors in

cluster . If the clusters are well separated, a minimum-distance classifier can be used to

separate them. That is, is in cluster if is the minimum of all the distances.

This suggests the following procedure for finding the means:

1. Place points into the space represented by the objects that are

being clustered. These points represent initial group centroids;

2. Assign each object to the group that has the closest centroid;

3. When all objects have been assigned, recalculate the positions of

the centroids;

4. Repeat Steps 2 and 3 until the centroids no longer move. This

produces a separation of the objects into groups from which the

metric to be minimized can be calculated.

 Make initial guesses for the means

 Until there are no changes in any mean

o Use the estimated means to classify the samples into clusters

o For from 1 to

 Replace with the mean of all of the samples for cluster

o End For

 End Until

Listing 2. Procedure for finding the means

46

In figure 11 is an example showing how the means and move into the centers

of two clusters.

Fig. 11. KMeans working example [62].

 Remarks

This is a simple version of the KMeans procedure. It can be viewed as a greedy

algorithm for partitioning the samples into clusters so as to minimize the sum of the

squared distances to the cluster centers. It does have some weaknesses:

 The way to initialize the means was not specified. One popular way to start is to

randomly choose of the samples;

 The results produced depend on the initial values for the means, and it frequently

happens that suboptimal partitions are found. The standard solution is to try a number

of different starting points;

 It can happen that the set of samples closest to is empty, so that cannot be

updated. This is an annoyance that must be handled in an implementation;

 The results depend on the metric used to measure . A popular solution is to

normalize each variable by its standard deviation, though this is not always desirable;

 The results depend on the value of .

This last problem is particularly troublesome, since we often have no way of knowing

how many clusters exist. In the example shown above, the same algorithm applied to the same

data produces the following 3-means clustering. Is it better or worse than the 2-means

clustering?

47

Fig. 12. KMeans working example 2 [62].

Unfortunately there is no general theoretical solution to find the optimal number of

clusters for any given data set. A simple approach is to compare the results of multiple runs

with different classes and choose the best one according to a given criterion (for instance

the Schwarz Criterion), but special care must be taken because increasing results in smaller

error function values by definition, but also an increasing risk of overfitting.

In this special case the is one, as only one cluster of the dataset provided is needed,

which will be the start and end for the A-star algorithm.

49

The MOEGWAO meta-heuristic

This section will focus on the MOEGWAO (Multi-objective Evolutionary Ground

Warfare Adaptive Optimizer) meta-heuristic itself, decomposing it into operators for

simplicity and ease of perception. In this section the user will see how the meta-heuristics and

algorithms described in the section above will be integrated in the model proposed.

MOEGWAO

 CRT Table

 Movement operator

 Attack operator

Problem scenario:

 Map

 Units

 Targets

 Weather Regions

 Secondary objectives

(Oilfields, occupation

zones,…)

 Termination conditions

 Military doctrine

 Primary Objectives +

fitness metrics

Algoritmic Control

parameters

 K (Kmeans)

 N (A-star)

 Others...

Simulation solutions

Input

Output

Input

Input

Input

Fig. 13. MOEGWAO static model

50

Figure 13 shows the static model of MOEGWAO and depicts all the input parameters.

There are 5 main groups of input parameters, the military doctrine and primary objectives for

the simulation, then another group which consists of the CRT table, movement and attack

operators adapted to the military specialist needs. Then the scenario specific parameters, with

all the units and targets involved as well as the map, any secondary objectives and termination

conditions. Finally, we input the algoritmic control parameters. Which are specific controls,

such as the in the KMeans clustering algorithm or other specific parameters for fine tuning.

The logic overview of the meta-heuristic is detailed in the figure 14.

Start

Attack Group

Builder Operator

Group State

Machine Operator

Path Relinking

Operator

Movement Operator

Attack Operator

Ranking Operator

Weather Regions

Operator

End

If any termination condition is met

Termination Condition

False

True

Fig. 14. MOEGWAO Meta-heuristic logic overview

51

The meta-heuristic begins by forming the attack groups, then the group state machine

begins operating. It moves the attack groups throughout the map and simulates the combat

between the units and the targets using the attack operator. Then the results are ranked using

the ranking operator. This operator also uses the weather region operator in order to calculate

the weather region fitness. This terminates a time slot of the simulation. In the end of the time

slot, the termination condition is evaluated. If it returns true, the simulation ends but if it

return false, then a new time slot is simulated. In the end of the whole simulation we apply the

path relinking operator to gather more diversity in the results. And this ends the meta-

heuristic operation.

5.1. Attack group builder operator

First, the attack groups are formed using the steps in listing 3. In this operator we use a

control parameter, as the number of centroids or K in the KMeans clustering algorithm

operator terminology is 1.

WHILE there are units available and targets not locked

 GET the available target with the lowest x and highest y position

 GET the available targets with visibility radius greater or equal to the distance

to the main target

 GET nearest unit from the main target

 WHILE units power less or equal to targets power and there are units available

 GET nearest available/eligible unit from main unit

 END WHILE

 IF units power less or equal to targets power THEN

 SET group state to ‘MovingToTarget’

 END IF

 ELSE

 SET group state to ‘Attacking’

 END ELSE

 GET targets centroid using KMeans

 GET units centroid using KMeans

 GET path from the units centroid to the targets centroid using the A-star variant

 GET random points from the path

 SET noise/entropy on the path

END WHILE

Listing 3. Pseudo-code of the attack builder operator

52

The formed group can be in one of these nine states:

 Idle

This state occurs when a group which was attacking destroyed all its targets. In this state a

group can move to the ―Help other group‖ state if there are other groups in the ―Awaiting near

target‖ state, move to ―Attacking‖ or ―Moving to the target‖ if there isn‘t any groups in the

―Awaiting near target‖ state but there are targets which are idle (not being attacked), if there

aren‘t any targets left it will find the nearest occupation zone and occupy it.

 Attacking

This group will move to its targets and destroy them.

 Moving to target

If in a certain attack group there are no more units available and the attack power is not

enough to destroy the targets the group will be on ―Moving to target‖ state. This group will

move to the target but stay out of its visibility radius. When it reaches the target its state will

change to ―Awaiting near target‖.

 Help other group

This state occurs when a group has destroyed its targets and there is other group in the

―Awaiting near target‖ state. This group will move to that other group.

 Awaiting near target

In this state the group will stay on hold waiting for other group to back up. When another

group in the ―Help other group‖ state reaches it will change to ―Attacking‖ state if the

combined power of the two has enough power to destroy the targets or will stay in the

―Awaiting near target‖ state if it hasn‘t the attacking power needed to destroy the targets.

 Destroyed

This state occurs when a group engaged its targets and was destroyed in the battle. This

group and its units will not be used again in the simulation.

 Disposed

53

This state occurs when a group in the ―Help other group‖ state reaches its destination.

This group and the group which it is backing up combine in one group, and the group which

was on the ―Help other group‖ state changes to ―Disposed‖ which means is it will be no

longer considered.

 Moving to occupy

 When a group which was on ―Idle‖ is moving towards an occupation zone.

 Occupying

When a group which state was ―Moving to occupy‖ reaches the occupation zone and

stays there occupying the zone.

5.2. Group state machine operator

With groups formed, the simulation begins with steps depicted in Listing 4, 5 and 6.

Here another control parameter is used, the termination condition can be defined according to

the need of the military specialist who is using the simulator.

WHILE termination condition is not met DO

 FOR each attack group

 IF group state is idle

 IF there is a group in the awaiting near target state

 SET attack group state as help other group

 SET destination

 END IF

ELSE IF exist targets not locked by other group

 SET target

 IF there is enough attacking power to destroy the target

 IF attacking power is more than required to destroy the target

 CREATE another group the remaining units in the idle state

 END IF

 ELSE

Listing 4. Pseudo-code of the group state machine operator

54

SET group state Attacking

 END ELSE

END IF

ELSE

 SET group state Moving to target

 END ELSE

 END IF

 ELSE

 GET the occupation zone with the least units

 SET attack group state Moving to occupy

 END ELSE

 END IF

 IF group state is attacking

 IF group state is near the target

 Simulate combat using the CRT Table

 IF group wins the battle

 SET group state to Idle

 END IF

 ELSE

 Destroy group and its units

 END ELSE

 END IF

 ELSE

 Move to target

 END ELSE

 END IF

 ELSE IF group state is Moving to target

 IF the group is near the targets visibility zone

 SET group state Awaiting near target

 END IF

 ELSE

 Continue moving to target

 END ELSE

state is Awaiting near target

 Await for other group

Listing 5. Pseudo-code of the group state machine operator (continued)

55

END ELSE IF

ELSE IF group state is Awaiting near target

 Await for other group

END ELSE IF

 IF group state is Help other group

 IF other group is near enough

 Combine the two groups

 IF there is enough power to destroy the target

 SET group state Attacking

 ELSE

 SET group state Awaiting near target

 END IF

 ELSE

 Keep moving to the other group

 END ELSE

 END ELSE IF

 IF group state is Moving to occupy

 IF group reached destination

 SET group state Occupying

 END IF

 ELSE

 Keep moving to destination

 END ELSE

 END ELSE IF

 ELSE IF group state is Occpupying

 IF there are groups awaiting near target and no other groups

available or there still exist targets not locked and no units available

 SET group state idle

 END IF

 ELSE

 Keep occupying

 END ELSE

 END ELSE IF

END FOR

END WHILE

Listing 6. Pseudo-code of the group state machine operator (continued)

56

5.3. Movement operator

After the groups state is refreshed, the movement operator is used, if necessary using

the steps in the listing 7.

FOR each group

 IF group is still moving

 GET all possible destinations for the group

 END IF

 ELSE

 GET actual position

 END ELSE

END FOR

Combine all possible movements between the groups until the maximum of movements defined

is reached

Create a solution for each combination

FOR each combination

 GET fitness values

END FOR

Rank solutions

Select the defined quantity of non dominated solutions

Select a few random dominated solutions, if they exist

Listing 7. Pseudo-code of the movement operator

57

5.4. Ranking operator

For ranking solutions the ranking operator is used as depicted in the listing 8.

The meta-heuristic makes use on many objectives simultaneously extensively, although

the objectives being used are those described by the fitness values above, it is not limited to

these values and more objectives can be added at any time.

FOR each solution

Calculate enemy distance fitness (using Euclidean/Manhattan formula)

Calculate waypoint fitness (distance to the nearest waypoint)

Calculate weather region fitness

Calculate supplies fitness (supplies used in this time slot)

Calculate ammo fitness (ammo used on this time slot)

Calculate oilfield fitness (oilfields conquered until this time slot)

Calculate occupation zone fitness (occupation zones being occupied during this time

slot with no targets in them)

END FOR

FOR each solution

 Check if there is another solution which is better in all fitness values

 IF exists one better solution

 SET solution as dominated

 END IF

 ELSE

 SET solution as non dominated

 END ELSE

END FOR

Listing 8. Pseudo-code of the ranking operator

58

5.5. Attack operator

The CRT table is a table used in combat simulation to simulate the combat between two

parties. It contains the combat result taking into consideration the attack power of the group

and a random number which is named die roll. In this model the CRT table is used as an input

parameter, which makes part of the military doctrine.

The attack factor is calculated using the steps depicted in listing 9.

If there was a group with attack power of 9 and a target with attack power of 1:

Combat factor 1 = units

power / targets power = 9/1 =

9

Combat factor 2 = 1 Final combat factor is “9-1”
Random number between 1

and 6 = 2

Fig. 15. Example of combat CRT mapping

IF the group units power is higher than the targets power

 SET combat factor 1 as (units power / targets power)

 SET combat factor 2 as 1

END IF

ELSE IF the group units power is lower than the targets power

 SET combat factor 2 as (targets power / units power)

 SET combat factor 1 as 1

END ELSE IF

ELSE

 SET combat factor 1 and 2 as 1

END ELSE

 Listing 9. Pseudo-code of the attack operator

59

 Table 6. CRT Table [30]

 Combat factors

1-3 1-2 1-1 2-1 3-1 4-1 5-1 6-1 7-1 8-1 9-1

D
ie

 R
o

ll

1 3/0 2/0 2/1 1/1 1/2 1/1 1/2 1/3 0/3 0/4 0/DS

2 2/0 2/1 1/1 1/2 1/1 1/2 1/3 0/3 0/4 0/5 0/DS

3 2/0 1/1 1/2 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/DS

4 1/0 1/2 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/4 0/DS

5 1/0 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/4 0/5 0/DS

6 1/1 1/2 1/3 0/3 0/4 0/5 0/3 0/4 0/5 0/4 0/DS

Using table 6, the result of the combat would bet 0/DS, which means the attacker loses

0 units and the defender surrenders (DS) meaning all targets are destroyed, if there was a

value instead of DS it would be the targets that were destroyed. This is the table which will be

used for the simulation.

Most of the CRT tables also include a retreat value, used for the defender to move a

few steps away from battle, but that value will not be used in this simulation. The value will

not be used because according to a well-known and respected military magazine named

‗Command‘ [30]:

“Our analysis of high-speed, low-drag, 1990s, operational-level combat has led us to

conclude such things (at the time/ space scale, anyway) don’t really happen any longer. That

is, on the modern, ultra-high intensity battlefield, a brigade-sized unit’s destiny is pretty much

determined by the way it enters the battlefield. Firepower has become so overwhelming in

effect and precise in direction, units simply don’t have the opportunity to perform functional

tactical/operational battlefield retreats as in days of yore. More than ever before, combat has

become a matter only of the death of soldiers and the destruction of equipment. Direct, brutal

and savage.”

60

5.6. Weather regions operator

The weather regions are areas in the map where the terrain or weather is different from

most of the map, they can have adverse conditions or better conditions than in most of the

map.

There are various types of weather regions as detailed in table 7.

 Table 7. Weather Region Penalty with adapted values from [30]. Values adapted for use with the A-star algorithm.

Terrain Type Mech Penalty Non Mech Penalty

Clear 10 10

Rough 40 20

Inundated P (Movement prohibited) 30

Dunes 20 20

Wadi 20 10

Escarpment P P

River P P

Stream 20 10

Lake P P

Sea P P

Fair-weather 10 10

Road 20 20

Road (Paved) 1 1

Multi-lane highway 1 1

Village 1 1

Town 1 1

Oilfield 1 1

City 1 1

Airfield 1 1

Fortification 30 20

Heavy Fortification 40 30

A lower value means that it is the most efficient path, but if it means much more

distance than a path with a higher value, a path with higher value might be taken into

consideration. These values are used by the A-star variant to find the best route to the targets

while trying to avoid these areas, and will be used further on to calculate the weather region

fitness.

61

5.7. Path Relink Operator

After getting the non-dominated results a path relink operator was used to get even

more variation in the final solutions, this operator tries to create more solutions from the final

solutions by combining, for example, the first time slot of solution A and the following time

slots of solution B. This mechanism is very important to maximize variability in the

population. However, this mechanism doesn‘t work backwards to recreate, for example the

movements of a given group from time X to the beginning of the simulation.

63

Problem Instance

In this section we present the simulation background and history. For this simulation

we use the 1991 Gulf War also known as Desert Storm. For understanding the whole problem

instance used it is essential to study the factors that led to war, as well as the map of the

region in which the war took place and the units deployed in conjunction with the units

characterization, such as, armament. The atmospheric conditions and the way they affect units

is also crucial, these are incorporated in the model as weather regions. Also, the main and

secondary military objectives are important in order to calculate the fitness values for a

solution.

6.1 Simulation Approach

The Gulf War was perhaps the most efficient war in American History, at least when

considering the cost in American lives. It proved that U.S. technology and U.S. military

doctrine is a potent force when applied to the world stage. Years after the war's end there are

disagreements about whether the U.S. was justified in waging war against Iraq and over

whether the war was prosecuted far enough.

 Factors that Led to the Iraqi Invasion of Kuwait [31]

Any discussion of the Gulf War must begin with the nation of Iraq. It once was a part of

the Ottoman Empire, then a British protectorate, then a kingdom and finally a totalitarian

state. Saddam Hussein became "President" in 1979 and maintained power through ruthless

purges (including even members of his family). The country was also beset by internal strife.

In the north the Kurds yearned for independence and in the south, the Shi'ites looked to Iran.

The state and the army grew over time to consume most of the GNP. Today, the military

alone takes up 35 percent of every dollar earned.

64

Saddam's expansion of the state's military apparatus was frightening to his neighbors. His

investment in nuclear, chemical and biological weapons and corresponding delivery systems

even prompted a 1981 attack by Israel in an effort to set back his weapons development

program. With the expansion of his military, Saddam attempted to gain hegemony over the

Persian Gulf Region. In the 1980's he fought a long, bitter struggle with Iran.

As a result of the war with Iran and the heavy investment in arms and training, the Iraqi

military became the dominant force in the region. Led by the Republican Guard it could

formidably challenge any of its neighbors. The price of keeping this force active was

exorbitant. Iraq borrowed heavily from its oil producing neighbors. The debt coupled with

continued investments brought on a 40 percent inflation rate and a stagnant standard of living.

Although Iraq had considerable oil reserves of its own, revenues were not sufficient to

meet the demands of its creditors. This problem was exacerbated in 1990 when Kuwait and

other oil states began to lower oil prices and increase production beyond agreed upon levels.

Iraq was forced to follow suit or lose even more revenues. To make matters worse, Iraq

suspected the Kuwaiti's were drilling diagonally from their side of the border to tap Iraqi oil

reserves.

Thus Saddam Hussein was now in a precarious position, it was getting more and more

difficult to maintain his military power (which he needed to keep down internal opposition as

well as to keep up national prestige). He seemed there was an expeditious solution to his

problems, a solution involving a foreign adventure.

Saddam Hussein found himself in a tight spot and a quick takeover of Kuwait, his

neighbor to the south seemed like a good solution to his problems.

Kuwait was a small country that, like Iraq, had once been part of the Ottoman Empire,

then a British Protectorate. When that small country had been granted its independence, its

borders had been set in an arbitrary manner, the borders are not readily defensible and the

population is not necessarily cohesive. The country was ruled by an Emir of the al-Sabah

family.

Like much of the Persian Gulf region, most of the country's revenues derived from the oil

industry. The population was small, about 1.9 million, and its military was not a factor in

regional politics.

65

Kuwait was in many ways an irritant to Saddam Hussein in Iraq. Besides lowering oil

prices (thus cutting into Iraqi oil revenues), Kuwait had committed the unforgivable sin of

loaning Iraq considerable sums during the Iran/Iraq war. Iraq claimed to have saved the entire

region from the Iranian steam roller in the 1980's and deserved special consideration

amounting to renegotiating or even cancelling the debt. Kuwait refused.

During late July of 1990 Saddam built up his military forces on the border with Kuwait.

At 1:00 a.m. on 02 August, three Iraqi divisions of the elite Republican Guard rolled over the

border. Resistance was nearly non-existent. The Guard reached the outskirts of the capital,

Kuwait City, a mere four and a half hours later. The frontal assault was supported by an

airborne special forces division attack directly on Kuwait City itself.

Saddam proclaimed his annexation of Kuwait, built up his forces, and waited to see what

the world would say and do about his fait a compli.

 The Saudi Invitation

The Middle East is a region of complex politics involving family ties between rulers,

religious strife, socio-economic differences, and human personality. In spite of its often

unstable nature, most of the world was shocked by the Iraqi invasion of Kuwait. Iraq justified

the move primarily on the grounds that Kuwait was once a part of Iraq and should be again.

Of course, it was also a power play by Iraq, an effort to annex some of the worlds richest oil

fields. (Between Iraq and Kuwait Saddam now controlled about 20 percent of the worlds oil

reserves.)

Once the Republican Guard had secured all of the strategic points in the country, it moved

to the Kuwait/Saudi border. Of course, the Saudis were alarmed. It was not in their interests to

have a beefed up Iraq to their north; the new build up, containing one of the elite forces in the

region, was ominous. Iraq was sending more and more troops streaming into Kuwait, by

August 6 there were nearly eleven combat divisions. Intelligence analysts at the time

understood that Iraq had enough troops in the area to roll over Saudi Arabia nearly as easily

as they had done to Kuwait.

King Fahd of Saudi Arabia recognized his situation as dire and immediately requested aid

from his most powerful friend and ally, the United States [32]. President Bush promptly

ordered the deployment of U.S. ground and air forces to Saudi territory. U.S. Navy ships were

66

also deployed to the region. So began the operation to defend Saudi Arabia that would be

called "Desert Shield".

 US Interests in the Gulf War [36]

The response in the United States to Saddam Hussein's moves was first shock and then

dismay. Strategist, statesmen and the general public quickly came to understand that the

United States had significant interests in making certain that Saudi Arabia was not conquered

by Saddam's juggernaut. Having rolled over Kuwait, Saddam already controlled over 20

percent of the world's oil reserves. Saudi Arabia contained an additional 20 percent. Since the

world economy was primarily driven by fossil fuels, what Saddam could do with these

resources could easily be imagined.

Besides economic factors affecting the daily lives of every American there were other

considerations, perhaps even more weighty. Iraq, in its invasion of Kuwait had perpetrated

many atrocities on the Kuwaiti people, from summary executions, to wholesale confiscation

of movable property, to the torture and degradation of individuals. Such crimes could not be

ignored, and Americans had every reason to expect that this kind of behavior would continue

and even accelerate should Iraqi forces move into Saudi Arabia.

Further, Iraq had been vigorous in developing weapons of mass destruction. CIA and

other intelligent experts estimated that the Iraqi's were on the brink of developing a nuclear

capability and likely had a biological weapon's capability. There was no question that they

had chemical weapons. More ominously, they showed no compunction about using their

chemical weapons. They had even done so on villages within their own boundaries in order to

put down the Kurdish independence movement.

Economic sanctions had failed to keep Saddam from committing atrocities, they had

failed to keep him from developing weapons of mass destruction, they had failed to keep him

from invading Kuwait. A majority of Americans understood that military force was not only

justified, but absolutely necessary.

 Build Up of Forces

Saddam Hussein's move into Iraq was so alarming that it galvanized most of the nations in

the region to send troops to Saudi Arabia to help oppose the Iraqi build up. The United

67

Nations had looked askance at Iraqi behavior for some time. At this juncture, the United

Nations felt compelled to condemn Iraq and to request an immediate withdrawal of troops

from Kuwait. The United Nations would eventually authorize allied use of force in order to

forcibly expel Iraq from Kuwait.

General H (Stormin') Norman Schwarzkopf was sent by President Bush, to Saudi Arabia

to take command of US forces and defacto command of all the forces in the region [34]. (The

Saudis insisted on at least the appearance of joint control.) Sent to the General, via land, sea

and air was the best that the United States could provide including the XVIII Airborne Corps

(24th Mechanized Infantry Division, 101st Airborne Division, and the 82nd Airborne

Division), plus the 1st Marine Division. In time, the United States would send over 500,000

personnel to the region. Other allies, Britain, France, Egypt, Syria even the UAE sent

contingents. The force took on an international complexion, with United States leadership.

The build-up was prosecuted as rapidly as possible. Schwarzkopf feared that the Iraqi's

would launch an invasion before a proper defense could be constructed. Strategists

hypothesize that if Hussein had ordered his troops into Saudi Arabia within a few days of his

conquest of Kuwait, there would have been little to stop him from rolling into Riyadh.

Saddam hesitated and this hesitation proved his undoing. For it was not until coalition forces

had deployed that he decided to test their metal.

On 30 January 1991 the 15th Iraqi Mechanized Infantry Brigade attacked across the

border a small town, Al-Khafji, in Saudi Arabia. The attack was swiftly repulsed; it served

only to dissuade any wavering allies from any notions that Saddam would be willing to be

satisfied with merely taking Kuwait. He would indeed aggrandize all his fellow Arabs.

Operation Desert Shield was meant to defend Saudi Arabia, but in January of 1991

President Bush, advised by Collin Powell and the Joint Chiefs of Staff determined to go on

the offensive and take the war to the Iraqis.

 Air War - Operation Desert Storm

As is usual in modern war, the first objective of the allied force in Saudi Arabia was to

gain air superiority. Air superiority gives a military force the ability to indiscriminately attack

enemy targets, disrupt enemy lines of supply, to conduct recon, and, of course denies the

enemy the ability to do all of these things himself.

68

The air campaign against Iraq was launched 16 January 1991, the day after the United

Nations deadline for Iraqi withdrawal from Kuwait expired. Saddam was given every

opportunity to conclude the stand off peacefully, but US/Iraqi talks in Geneva were

inconclusive, at best [33].

The magnitude and the power of the air attack was a shock to all concerned. The initial

attack swept away much of Iraq's ability to defend against further air assaults. Radar

installations were attacked by helicopters, F-117's were sent to the Iraqi capital of Baghdad to

destroy command and control centers, air bases and hangars were bombed. U.S. Navy

bombers and Tomahawk missiles wreaked havoc on all aspects of Iraqi air defense. The air

campaign was conducted not just by the United States, but the Saudi, British, French, Italian,

as well as various Arab Air Forces.

The Allied air campaign was thorough and devastating. Realizing that traditional anti-air

defense was futile the Iraqis took to psychological methods that included using human

hostages as shields for prime targets. They placed their aircraft near ancient historic sites and

holy places, knowing the allies would be reticent to attack where there might be significant

"collateral damage".

In an effort to demonstrate their own air offensive capability, on 24 January the Iraqis

attempted to mount a strike against the major Saudi oil refinery in Abqaiq. Two Mirage F-1

fighters laden with incendiary bombs and two MiG-23s (along as fighter cover) took off from

bases in Iraq. They were spotted by US AWACs, and two Royal Saudi Air Force F-15s were

sent to intercept. When the Saudis appeared the Iraqi MiGs turned tail, but the Mirages

pressed on. Captain Iyad Al-Shamrani, one of the Saudi pilots maneuvered his jet behind the

Mirages and shot down both aircraft. After this episode, the Iraqis made no more air efforts of

their own, only sending most of their jets to Iran in hopes that they might someday get their

air force back. (Iran never returned the jets.)

With Iraqi air defense effectively neutralized, the Allied Air Forces proceeded to pound

the Iraqi divisions arrayed in Kuwait and Southern Iraq. Utilizing fuel bombs, cluster bombs,

armor piercing guided bombs, missiles and various other ordinance, Allied forces degraded

Iraqi ability to fight on the ground. Attacks by B-52 bombers were noted to be especially

terrible; entire regiments, brigades and divisions were effectively crushed in a few minute air

raid by these powerful though dated bombers.

69

By late February the Coalition forces were ready to kick off the ground campaign...

 The Ground War - Operation Desert Storm

There is much argument today about the Ground War phase of the Gulf War. Air

advocates claim that the massive yet precise air war in fact defeated the Iraqi forces in Kuwait

and that the ground campaign was merely "the great prisoner roundup". Conventional

thought, however, recognizes that without forces on the ground it is impossible to hold

territory, and engage the enemy on an individual level.

On 24 February 1991 the much feared Marine Divisions kicked off the ground campaign

with a thrust into the heart of the Iraqi forces in central Kuwait [35]. The Saudi and Muslim

Joint Forces - East attacked up the Kuwaiti coast line. Meanwhile the U.S. 18th Airborne

Corps and the French 6th Armored Division, making good use of their high speed and

mobility, rushed into Iraq on the far left.

These initial attacks rolled over Iraqi positions and on the 25th of February were followed

up with the US VII Corps with the US 1st Infantry Division and the British 7th Armored

Division attached.

In effect General Schwarzkopf had designed a strategy based on US doctrine which relied

heavily on the flanking maneuver. (The flanking maneuver is a classic and reliable method of

creating local superiority of power at a vulnerable point in the enemies line of battle.) Allied

Forces occupied Iraqi front line forces while more mobile units encircles the enemy on the

left, effectively cutting lines of supply and avenues of retreat. The movement proved to be

highly effective and resistance by even battle hardened Iraqi units proved remarkably light.

The ground assault by the allies precipitated a general rout on the part of Iraqi forces

positioned in Kuwait. There was basically only one highway out of Kuwait and that was the

four lane desert highway that lead from Kuwait City to the Al Jahra' pass. As Iraqi resistance

deteriorated the highway became jammed with every nature of vehicle laden with plunder

from the Iraqi sack of Kuwait City. This highway was bombed, and thousands of fleeing

Iraqis were killed and wounded.

70

Scenes of destruction of this "Highway of Death" were flashed by news services around

the world. Eventually the mood in the Arab countries within the coalition became one of

empathy for their brother Arabs on the highway - men they did not want to kill unnecessarily.

 As coalition forces moved to completely cut off this last avenue of retreat, Allied

leaders, including George Bush and Collin Powell determined that the Allied objective had

been all but accomplished. The Iraqis had been turned out of their Kuwaiti conquest. On 28

February President Bush ordered the cessation of offensive military operations before the

"Highway of Death" could be completely closed off. While the Iraqis and the Allies

negotiated, the remaining Iraqi forces, including intact units of the elite Iraqi Republican

Guard streamed out of Kuwait.

 Historical Deployment

Fig. 16. Desert Storm historical deployment [31]

71

The results presented in the next section are based on 30 simulations per configuration

(these configurations will be detailed further on this section). The map dimensions are 2448 x

1392 pixels, there are 76 units and 70 Targets to destroy. After getting the final solutions the

dominated solutions are removed from the final set and then the path relink operator is

applied to generate more diversity to the solutions. The combats are simulated using the CRT

table described previously. The weather region penalties are those described previously. There

are 25 Oilfields to occupy and 4 occupation zones. The main objectives of this simulation are

those described in table 8.

 Table 8. Main objectives to be analyzed

For easy understating of the maps used in the simulation example in the next section,

the map legends are those detailed by the tables 9, 10 and 11 and also figure 17.

Objectives

Occupation zones occupied

Oilfields occupied

Time Slots (days) required for the simulation

Targets Destroyed

Targets Deserted

Units Destroyed

Ammo consumed

Supplies Used

Efficiency of the units movement

72

Fig. 17. Unit Legend

 Table 9. Unit Sizes Legend

Unit Sizes

XX Division

X Brigade

III Regiment

II Battalion

 Table 10. Mechanized Unit Types Legend

Mechanized Unit Types

Armor or Tank

Armored Cavalry

Mech Infantry

Motorized Infantry

Motorized Marines

Motorized Special Operations

Wheeled Infantry

Wheeled Airborne Infantry

Wheeled Marines

Wheeled Special Operations

Self-Propelled Artillery

Wheeled Artillery

Armored Car

Combined Arms

Tracked Anti-Tank

Attack Helicopters

Motorized Anti-Tank

 Table 11. Non-Mechanized Unit Types Legend

Non-Mechanized Unit Types

Infantry

Mountain Infantry

Airmobile Infantry

Special Operations

Marines

73

Fig. 18. Configurations Explanation Map

 Initialization control parameter

To create the graphs depicted in the next section were used 7 different configurations,

which belong to the group of control parameters. These are referred as ―configs‖ in the

graphs. These ―configs‖ are nothing more than the method used to originally create the first

population in order for the simulation to begin, in the initialization step of the EA. These

configurations begin by selecting the targets from the specified side of the map, as illustrated

in the figure 18.

75

Empirical Simulation Results

This section will begin by giving an example of a solution in table 13, with maps

showing the progress through time until the termination condition is met (all targets are

destroyed). A solution is a complete simulation of the problem instance, with several time

slots until the termination condition is met. The legend for the map is depicted in table 12.

Then we will present some graphs and propose an analysis framework, in the next section, in

order to analyze the operation of the meta-heuristic.

7.1. Simulation example

Table 12. Map Legend

 Map Legend

Occupied Zone

Combat

Target

 Attacking Group

Table 13. Simulation Example7

TS:0 – Initial deploy

TS: 1 – UD:0 – TD:0 – TDes:0

7
 TS: Time slot, UD: Units Destroyed, TD: Targets Destroyed, TDes: Targets Deserted, OZ: Occupation Zones

76

TS: 2 – UD:0 – TD:1 – TDes:0

TS: 3 – UD:1 – TD:8 – TDes:0

TS: 4 – UD:5 – TD:17 – TDes:0

TS: 5 – UD:8 – TD:21 – TDes:0

TS: 6 – UD:11 – TD:24 – TDes:1

TS: 7 – UD:11 – TD:26 – TDes:1

TS: 8 – UD:11 – TD:27 – TDes:1

TS: 9 – UD:11 – TD:27 – TDes:1

77

TS: 10 – UD:13 – TD:28 – TDes:2

TS: 11 – UD:13 – TD:29 – TDes:2

TS: 12 – UD:13 – TD:20 – TDes:2

TS: 13 – UD:13 – TD:31 – TDes:2

TS: 14 – UD:13 – TD:32 – TDes:2

TS: 15 – UD:16 – TD:35 – TDes:2

TS: 16 – UD:16 – TD:35 – TDes:2

TS: 17 – UD:16 – TD:37 – TDes:2

78

TS: 18 – UD:16 – TD:42 – TDes:2

TS: 19 – UD:16 – TD:42 – TDes:2

TS: 20 – UD:22 – TD:45 – TDes:2

TS: 21 – UD:22 – TD:49 – TDes:3

TS: 22 – UD:22 – TD:50 – TDes:3

TS: 23 – UD:22 – TD:50 – TDes:3

TS: 24 – UD:22 – TD:51 – TDes:3

TS: 25 – UD:22 – TD:55 – TDes:3

79

TS: 26 – UD:22 – TD:55 – TDes:3

TS: 27 – UD:22 – TD:57 – TDes:3 – OZ: 1

TS: 28 – UD:22 – TD:64 – TDes:3 – OZ: 2

TS: 29 – UD:25 – TD:66 – TDes:3 – OZ: 2

TS: 30 – UD:25 – TD:66 – TDes:3 – OZ: 7

TS: 31 – UD:25 – TD:67 – TDes:3 – OZ: 8

In table 13, in the time slot (TS) 1 we can see the initial historical deploy. From TS 1

to TS 4 the units begin flanking the targets. Then, from TS 5 to TS 26, the units engage in

close combat with the targets, in order to achieve the primary and secondary military

objectives. From TS 27 until the end of the simulation, the units begin to occupy the

occupation zones. The oilfields occupied are not depicted in this table, but they are included

in the analysis results.

81

Empirical Result Analysis Models

Most known problems only have two objectives, as stated in the ―Background

canonical models‖ section. Although the scenario depicted in this thesis has clearly more than

2 objectives. The warfare scenario has a multitude of objectives to be taken into account in

order to calculate the best set of solutions for the problem. Following this reasoning, is of

extreme importance, the creation of an analysis framework, in order to allow the specialist to

analyze the data with relative ease. In this thesis we propose an analysis model based on the

scenario of warfare. Our framework proposes four integrated models, the general

effectiveness model, the operation analysis model, the logistic analysis model and the general

objective model, which will be depicted in this section.

8.1. General Effectiveness Model

The general effectiveness model compares the units/targets destroyed between themselves

or with primary or secondary military objectives. It can also be used to see if the model

reaches the primary and secondary objectives throughout the time slots and between control

parameters, for fine tuning.

82

 Without control parameters

Fig. 19. Comparison between units destroyed and targets destroyed

In the figure 19, we can see that there is a high variety of results. With the data

presented here a military strategist could derive the best solution regarding the percentage of

targets destroyed and units destroyed. Although there is no correlation between these two

variables. We could choose a solution from here according to our objective, if we want a

solution that provides the most targets destroyed and less units destroyed, or if want the most

targets destroyed without taking into consideration the units destroyed and even if we want a

solution where most units are not destroyed not regarding the targets destroyed. This

decisions can only be made by a specialist in the area and must take into account the maps of

the solutions he wishes, because although he has the final solution and is the best one

according to his expectation, there might be some undesirable movements or decisions

through the simulation which he does not approve.

0

10

20

30

40

50

60

84 86 88 90 92 94 96 98 100

U
n

it
s

D
e

st
ro

ye
d

 (
%

)

Targets Destroyed (%)

83

Fig. 20. Comparison between targets destroyed and occupation zone fitness

In the figure 20 we can correlate the percentage of targets destroyed and the

occupation zones occupied. We can reach the conclusion that the occupation zones become

occupied later in the simulation when most targets are destroyed. This can mean that units are

well organized and are being all used throughout the simulation, only becoming available to

occupy the occupation zones later when there are less targets still in battle. Higher occupation

zone fitness means that the zones become occupied earlier than the ones with lower fitness

values.

 With control parameters (fine tuning)

In the figure 21 we can assert that there are some configurations that are better than

others in regard to the time slots required. If a lower value is good or not, is up to the

specialist because a configuration which took less time slots might have more casualties.

Also, some unit group movements might not be the most adequate regarding the expectations

of the specialist. It sometimes is a matter of trade-off between objectives.

84

86

88

90

92

94

96

98

100

0 500 1000 1500 2000 2500 3000

Ta
rg

e
ts

 D
e

st
ro

ye
d

 (
%

)

Occupation Zone Fitness

84

 Fig. 21. Time slots required by configuration

Analyzing figure 22, we can see some variation in the values between configurations.

If the main objective was to have the fewer casualties possible, the best configuration would

be the seventh. On the other hand, if the objective was for the targets to desert instead of

engaging in combat then the best would be the fourth. Again, as has been stated throughout

this section it is always a trade-off between objectives which has to be made by specialist in

this area with the aid of these figures and also the maps.

Fig. 22. Comparison between configurations regarding targets destroyed, targets deserted and units destroyed

0

5

10

15

20

25

30

35

40

45

Ti
m

e
 S

lo
ts

 R
e

q
u

ir
e

d
 (

D
ay

s)
 Config 1

Config 2

Config 3

Config 4

Config 5

Config 6

Config 7

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

P
e

rc
e

n
ta

ge

Configs

T. Destroyed

T. Deserted

U. Destroyed

85

In the figure 23 we can see the evolution of the occupation of oilfields. For example,

the fifth configuration is the one that has an early spike, which means that most oilfields are

occupied right in the beginning of the simulation. On the other hand, the seventh

configuration has a late evolution, which means that the oilfields are occupied later in the

simulation.

Fig. 23. Comparison between configurations regarding oilfield occupation

In the figure 24 we can see the evolution of the occupation of occupation zones. For

example, the seventh configuration is the one that rises early, which means that occupation

zones are being occupied right in the beginning of the simulation, however it is also the one

with lowest final occupation zone fitness, that can mean that although it is the first to have

occupation zones occupied it is also the last one to occupy all of them. On the other hand, the

sixth configuration has a late evolution, which means that the occupation zones are occupied

later in the simulation. The fourth configuration has a sharp decline due to one or more groups

which were attacking a target were destroyed in battle and no other units were available. So,

some of the units that were occupying an occupation zone were obliged to engage those

targets.

0

5

10

15

20

25

1 6 11 16 21 26 31 36 41 46 51 56

Time Slot

Oilfield Occupation

Config 1

Config 2

Config 3

Config 4

Config 5

Config 6

Config 7

86

Fig. 24. Comparison between configurations regarding occupation zone

8.2. Operation Analysis Model

This model compares fitness values that show the effectiveness of the model in terms of

operation, in order to verify if the units are following the right path to target and are going in

the right direction to reach the primary and secondary military objectives.

Fig. 25. Comparison between waypoint fitness and enemy fitness

0

5

10

15

20

1 6 11 16 21 26 31 36 41 46 51 56

Time Slot

Occupation Zones

Config 1

Config 2

Config 3

Config 4

Config 5

Config 6

Config 7

0

5000

10000

15000

20000

25000

0 10000 20000 30000 40000 50000 60000 70000

W
ay

p
o

in
t

Fi
tn

e
ss

Enemy Fitness

87

In the figure 25 we can take many conclusions. We can correlate the enemy fitness

(distance to the target) and the waypoint fitness (distance to the nearest waypoint in the path

to the target). If a unit group is very distant to the target the enemy fitness will be higher, but

if the waypoint fitness is high means that the group might be too distant from the best path to

the target. If the enemy and waypoint fitness are low, that means that the group is near the

target and following the best path to it.

Fig. 26. Comparison between weather region fitness and waypoint fitness

In the figure 26 we can correlate the weather region fitness and the waypoint fitness.

The waypoint fitness can be higher if a unit group encounters a weather zone, this means that

the group must, in some cases, go around the weather zone to reach the target and that makes

the group deviate from the best path to the target. A lower waypoint and weather region

fitness means that the group did not find any or few weather regions throughout the

simulation which made it deviate from the best path to target.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5000 10000 15000 20000 25000

W
e

at
h

e
r

R
e

gi
o

n
 F

it
n

e
ss

Waypoint Fitness

88

8.3. Logistic Analysis Model

This model helps the analyst to gather data to assert to what level the supplies and ammo

being deployed in battle are being used in the most effective way. It can also be used to see

how the model makes use of the supplies and ammo throughout the time slots and between

control parameters, for fine tuning.

 Without control parameters

Fig. 27. Comparison between ammo fitness and supplies fitness

In figure 27 we can correlate the supplies fitness with the ammo fitness. When the ammo

fitness is higher logically the supplies fitness is also higher because if a unit is attacking, it is

also using supplies. With this graph we can also verify the effectiveness of the model, because

we can reach the conclusion that the units are generally engaging in combat while consuming

supplies, and are not by any means only consuming supplies without engaging in combat.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000 5000 6000 7000 8000

A
m

m
o

 F
it

n
e

ss

Supplies Fitness

89

 With control parameters (fine tuning)

In the figure 28 we can see the consumption of supplies throughout the time slots of

the simulation; we can see when supplies are most and less used. This data can be used by a

specialist to optimize supplies consumption and deployment.

Fig. 28. Comparison between configurations regarding supplies spent per time slot (days)

90

In the figure 29 we can see the consumption of ammo throughout the time slots of the

simulation; we can see when ammo is most and less used. This data can be used by a

specialist to optimize ammo consumption and deployment. He can also assert when there are

the most units attacking.

Fig. 29. Comparison between configurations regarding ammo spent per time slot (days)

91

8.4. General Objective Model

This model compares primary and secondary military objectives between themselves,

for example, to assert if they are correlated or not. This is, to check if one influences the other.

Fig. 30. Comparison between occupation zone fitness and oilfield fitness

In figure 30 we can reach the conclusion that the occupation zones fitness is generally

higher when the oilfield fitness is too. That means that the occupation zones become occupied

after the oilfields become occupied. A higher oilfield fitness means that the oilfields were

occupied early in the simulation, a lower one can mean that the oilfields were occupied later

in the simulation or weren‘t even occupied depending on the value achieved.

8.5. Detailed Objective Analysis Tables

In the tables 14 - 24 it is presented the maximum, the minimum, the mean and the

standard deviation for each objective per configuration. These results must be analyzed by the

specialist in conjunction with the maps of the simulations and the graphs in figures 19 -30,

because the data presented might not mean anything without the proper background. A higher

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000

O
cc

u
p

at
io

n
 Z

o
n

e
s

Fi
tn

e
ss

Oilfield Fitness

92

standard deviation value means that the solutions achieved have more variation that the ones

with a lower value.

Time Slots required

 Table 14. Time slots required per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 28

39

31,257143

2,7706921

2 27

40

32,72222

3,396167

3 28

54

35,41667

6,038649

4 26

56

35,22222

7,775

5 31

48

39,48276

4,680264

6 25

41

31,30556

3,340155

7 28

48

37,125

4,601291

Example analysis for table 14: Regarding the Minimum value, we can verify that

configuration 6 is the best one, because we want to minimize the time slots required by the

simulation. But when comparing the maximum value, the best configuration is number 1. So,

to reach the right option we have to compare the mean and standard deviation of these two

configurations. Configuration 1 has a lower mean compared with configuration 6, which

means that the majority of the results of this configuration are lower than those of

configuration 6. This can also be verified by the standard variation values. If a configuration

has a lower standard deviation, this means that most values are near to the mean value, so

there is not much variation in the values. In conclusion, if our sole objective was to minimize

the time slots required, the best solution would be number 1.

The analysis made for table 14 can be made for tables 15 – 24, having in consideration

if the objective is to minimize or maximize the fitness values.

Enemy Fitness

 Table 15. Enemy fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 1981

21034

11432,54

5858,338

2 2420

25847

13474,25

7077,388

3 4338

48296

24679,17

12400,88

4 3087

60970

22529,47

13617,09

5 4822

57040

26126,1

15333,48

6 2241

21063

11422,47

5873,089

7 3204

50373

22255,59

12299,37

93

Waypoint Fitness

 Table 16. Waypoint fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 432

6286

3167

1692,441

2 529

6325

3303,028

1723,988

3 611

7956

4314,028

2226,595

4 470

16343

5822,611

3622,506

5 680

20285

6224,966

4826,864

6 481

6542

3225,639

1720,118

7 604

14139

7037,406

4193,981

Weather Region Fitness

 Table 17. Weather Region fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 423

4102

2172,714

1080,241

2 328

4123

2155,333

1134,605

3 347

3280

1813,472

934,5971

4 322

3378

1799,083

931,5269

5 418

4053

1971,448

1106,419

6 363

3987

2113,778

1105,438

7 400

4334

2236,875

1216,486

Supplies Fitness

 Table 18. Supplies fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 3386

4754

3965,257

327,2832

2 3484

4926

4122,833

314,6799

3 3582

6600

4470,222

625,455

4 3464

7190

4490,389

852,7628

5 3830

6128

4751,931

508,4531

6 3414

4898

3955,889

343,2485

7 3602

5934

4728,125

486,0272

94

Ammo Fitness

 Table 19. Ammo fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 8465

11885

9913,143

818,208

2 8710

12315

10307,08

786,6997

3 8955

16500

11175,56

1563,637

4 8660

17975

11225,97

2131,907

5 9575

15320

11879,83

1271,133

6 8535

12245

9889,722

858,1213

7 9005

14835

11820,31

1215,068

Oilfield Occupation Fitness

 Table 20. Oilfield occupation fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 447

4626

2501,6

1236,983

2 420

4916

2582,639

1376,286

3 602

6274

3334,583

1683,001

4 510

7095

3261,083

1749,742

5 656

7169

3336,034

1917,496

6 442

4693

2447,167

1294,874

7 357

5485

2687,188

1450,745

Occupation Zone Fitness

 Table 21. Occupation Zone fitness per configuration

Config Minimum Maximum Mean Standard

deviation (σ)

1 41

723

303,0286

163,6146

2 40

764

319,9444

191,3889

3 39

1343

636,9167

315,8748

4 63

2466

691,9444

544,515

5 132

1919

895,5172

530,0706

6 33

610

299,9722

175,4687

7 80

1485

748,2813

392,8262

95

Targets Destroyed

 Table 22. Targets destroyed per configuration

Config Minimum (%) Maximum (%) Mean (%) Standard

deviation (σ)

1 85,71429

98,57143

93,63265

3,521576

2 85,71429

100

93,73016

3,388619

3 85,71429

100

93,05556

2,957614

4 85,71429

97,14286

92,53968

2,975926

5 87,14286

98,57143

93,39901

3,125654

6 85,71429

100

93,37302

3,54998

7 87,14286

100

94,55357

2,911043

Targets Deserted

 Table 23. Targets deserted per configuration

Config Minimum (%) Maximum (%) Mean (%) Standard

deviation (σ)

1 1,428571

14,28571

6,367347

3,521576

2 0

14,28571

6,269841

3,388619

3 0

14,28571

6,944444

2,957614

4 2,857143

14,28571

7,460317

2,975926

5 1,428571

12,85714

6,600985

3,125654

6 0

14,28571

6,626984

3,54998

7 0

12,85714

5,446429

2,911043

Units Destroyed

 Table 24. Units destroyed per configuration

Config Minimum (%) Maximum (%) Mean (%) Standard

deviation (σ)

1 10,52632

42,10526

26,69173

7,400383

2 13,15789

40,78947

27,99708

6,806101

3 14,47368

44,73684

27,11988

7,046799

4 10,52632

48,68421

25,40205

7,972446

5 5,263158

47,36842

30,26316

7,999904

6 9,210526

42,10526

27,77778

7,941975

7 14,47368

42,10526

23,47862

5,829977

In conclusion, we can conclude that, with the numbers of tables returned, the analysis

for this problem is quite complex. This complexity is an important issue in many-objective

optimization problems, because it can lead to a difficult analysis of the results.

97

Conclusions and future work

9.1. Conclusions

 Warfare simulations are widely recognized to be a fundamental part of a country‘s

modern and future warfare arsenal and tend to become more realistic in years to come. In this

thesis we made an overview of an approach using multi-objective optimization and EAs to

solve this problem. As research proof no one before took this approach to the field of warfare

simulation, to much of our knowledge.

 The results are promising for the use of these techniques in this field, although it still

misses a lot of important warfare situations and tactical procedures, it is a starting point for

those who are interested in this area.

 As discussed earlier, the problem depicted in this thesis is a many-objective

optimization problem, which makes it very difficult to use with global search methods (i.e.

Genetic Algorithms), as these would generate a lot of invalid solutions.

 Also, this problem instance requires that the solutions are presented in a very restrict

temporal sequence, which contains many dependencies and restrictions, due to the primary

and secondary military objectives.

 In conclusion, the main contributions of this thesis are:

 Multi-objective meta-heuristic proposal, focused on this specific problem

(Warfare), although it can be used in other problems with a similar

mathematical model;

 An analysis framework, this problem is a many-objective optimization

problem which has many objectives. So, an analysis framework is of extreme

importance to ease the task of analyzing the solutions achieved.

98

9.2. Future work

As future work, the following procedures would help the performance of the approach of this

thesis:

 Backwards path relinking

In addition to the path relinking method used, it would be great to create all backward

movements of one group in order to create more solutions and generate more diversity in the

solutions.

 Multi-core/Multi-processor optimization

With the use of threading, the heuristics would become much more efficient and the

execute time would decrease drastically.

 GPU/FPGA acceleration

Following the multi-core or multi-processor optimization, it would be great if the meta-

heuristic proposed could be executed by GPU‘s and possibly applied to games.

 Logistics network

The introduction of a logistics network would bring more realistic results, assigning an

ammo and supply value to each unit, and spending them during the simulation would create

the necessity of special units to supply these units or supply points. Together with the

necessity of a better scheduling plan for engaging in combats. For example, if a target is 5

days away but only has 2 days of supply it could not engage this target.

 Simulate with military systems in order to find areas of improvement

Use one or more solutions to simulate on a real military simulator and get a military

specialist so that he can challenge the solution achieved. Then use the results of this exercise

to find areas of improvement in the meta-heuristic.

99

 Study analysis tools for direct comparizon of more than two objectives

The analysis models depicted in this thesis only make use of two objectives

simultaneously, although they can be used for more than two objectives. So, if we could find

a tool to analyze more than two objectives, ideally many as there is, we could reach many

other conclusions with the results achieved that we could not reach with only two objectives.

From this thesis resulted a scientific paper intitlued ―Realistic ground warfare simulation

analysis framework based on evolutionary multi-objective meta-heuristic techniques‖.

101

Bibliography

[1] Garey M, Johnson. Computers and Intractability: A guide to the theory of NP-

Completeness, 1998.

[2] Alsuwaiyel MH. Algorithms: Design Techniques and Analysis. USA, World Scientific

Publishing Company, 1998

[3] Ziztler E, Deb K, Thiele L. Comparison of multi-objective evolutionary algorithms:

Empirical results. Evol Comput 2000, vol. 8, issue 2, pp.173-95.

[4] Jones DF, Mirrazavi SK, Tamiz M. Multi-objective meta-heuristics: an overview of the

current state-of-the-art. Eur J Oper Res 2002, vol. 137, issue 1, pp.1-9.

[5] Schaffer JD. Multiple objective optimization with vector evaluated genetic algorithms. In:

Proceedings of the international conference on genetic algorithm and their applications, 1985.

[6] Fonseca CM, Fleming PJ. Multi-objective genetic algorithms. In: IEE colloquium on

‗Genetic Algorithms for Control Systems Engineering‘ (Digest No. 1993/130), 28 May 1993.

London, UK: IEE; 1993.

[7] Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multi-objective

optimization. In: Proceedings of the first IEEE conference on evolutionary computation. IEEE

world congress on computational intelligence, 27–29 June, 1994. Orlando, FL, USA: IEEE;

1994.

[8] Hajela P, lin C-y. Genetic search strategies in multicriterion optimal design. Struct

Optimization 1992.

102

[9] Murata T, Ishibuchi H. MOGA: multi-objective genetic algorithms. In: Proceedings of the

1995 IEEE international conference on evolutionary computation, 29 November–1 December,

1995. Perth, WA, Australia: IEEE; 1995.

[10] Srinivas N, Deb K. Multi-objective optimization using non-dominated sorting in genetic

algorithms. J Evol Comput 1994, vol. 2, issue 3, pp. 221-48.

[11] Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study

and the strength Pareto approach. IEEE Trans Evol Comput 1999, vol. 3, issue 4, pp.257-71.

[12] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary

algorithm. Swiss Federal Institute Techonology: Zurich, Switzerland; 2001.

[13] Knowles JD, Corne DW. Approximating the non-dominated front using the Pareto

archived evolution strategy. Evol Comput 2000, vol. 8, issue 2, pp.149-72.

[14] Corne DW, Knowles JD, Oates MJ. The Pareto envelope-based selection algorithm for

multi-objective optimization. In: Proceedings of sixth international conference on parallel

problem solving from Nature, 18–20 September, 2000. Paris, France: Springer; 2000.

[15] Corne D, Jerram NR, Knowles J, Oates J. PESA-II: region-based selection in

evolutionary multi-objective optimization. In: Proceedings of the genetic and evolutionary

computation conference (GECCO- 2001), San Francisco, CA, 2001.

[16] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic

algorithm: NSGA-II. IEEE Trans Evol Comput 2002, vol. 6, issue 2, pp.182-97.

[17] Sarker R, Liang K-H, Newton C. A new multi-objective evolutionary algorithm. Eur J

Oper Res 2002, vol. 140, issue 1, pp.12-23.

[18] Coello CAC, Pulido GT. A micro-genetic algorithm for multi-objective optimization. In:

Evolutionary multi-criterion optimization. First international conference, EMO 2001, 7–9

March, 2001. Zurich, Switzerland: Springer; 2001.

103

[19] Lu H, Yen GG. Rank-density-based multi-objective genetic algorithm and benchmark

test function study. IEEE Trans Evol Comput 2003, vol. 7, issue 4, pp.325-43.

[20] Yen GG, Lu H. Dynamic multi-objective evolutionary algorithm: adaptive cell-based

rank and density estimation. IEEE Trans Evol Comput 2003, vol. 7, issue 3, pp.253-74.

[21] Coello CAC. A comprehensive survey of evolutionary-based multi-objective

optimization techniques. Knowl Inform Syst 1999, vol. 1, issue 3, pp.269-308.

[22] Coello CAC. An updated survey of evolutionary multi-objective optimization

techniques: state of the art and future trends. In:Proceedings of the 1999 congress on

evolutionary computation-CEC99, 6–9 July 1999. Washington, DC, USA: IEEE.

[23] Coello CAC. An updated survey of GA-based multi-objective optimization techniques.

ACM Comput Surv 2000, vol. 32, issue 2, pp.109-43.

[24] Fonseca CM, Fleming PJ. Genetic algorithms for multi-objective optimization:

formulation, discussion and generalization. In: Proceeding of the ICGA-93: fifth international

conference on genetic algorithms, 17–22 July 1993. Urbana-Champaign, IL, USA: Morgan

Kaufmann; 1993.

[25] Fonseca CM, Fleming PJ. Multi-objective optimization and multiple constraint handling

with evolutionary algorithms. I. A unified formulation. IEEE Trans Syst Man Cybern A 1998,

vol. 28, issue 1, pp.26-37.

[26] Jensen MT. Reducing the run-time complexity of multi-objective EAs:The NSGA-II and

other algorithms. IEEE Trans Evol Comput 2003, vol. 7, issue 5, pp.503-15.

[27] Xiujuan L, Zhongke S. Overview of multi-objective optimization methods. J Syst Eng

Electron 2004, vo. 15, issue 2, pp.142-6.

[28] Knowles J, Corne D. The Pareto archived evolution strategy: a new baseline algorithm

for Pareto multi-objective optimisation. In: Proceedings of the 1999 congress on evolutionary

computation- CEC99, 6–9 July 1999. Washington, DC, USA: IEEE; 1999.

104

[29] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting genetic

algorithm for multi-objective optimization: NSGA-II. In: Proceedings of sixth international

conference on parallel problem solving from nature, 18–20 September, 2000. Paris,

France: Springer; 2000.

[30] XTR Coorp. Command Magazine: Desert Storm, Issue 13, November-December, 1991.

[31] Wikipedia. Gulf War, http://en.wikipedia.org/wiki/Gulf_War, retrieved 10 September

2011.

[32] In Depth Info. The Gulf War, http://www.indepthinfo.com/iraq/, retrived 10 Sepetmber

2011

[33] The History Channel. Persian Gulf War, http://www.history.com/topics/persian-gulf-war,

retrieved 10 September 2011

[34] Chadwick Frank. Gulf War Fact Book. USA, GDW Inc., 1991.

[35] Mesko Jim. Ground War Desert Storm. USA, Squadron/Signal Publications Inc., 1991.

[36] Finlan Alastair. Essential Histories The Gulf War 1991. England, Osprey Publishing

Ltd., 2003.

[37] Lies.com. US Deaths in Vietnam and Iraq by Month,

http://www.lies.com/wp/2003/10/20/us-deaths-in-vietnam-and-iraq-by-month/, retrieved 10

September 2011.

[38] Çayirci Erdal, Marincic Dusan. Computer Assisted Exercises and Training. USA, John

Wiley & Sons Inc., 2009

[39] Carter Lee F., Komer Chad. Interactive Networked Battlefield Simulation Training

Technologies. L-3 Communications Systems West.

[40] Allender Eric, Loui Michael, Regan Kenneth. Complexity Classes.

[41] Stroppa Nicolas. Algorithms & Complexity – Complexity Classes. Dublin, Dublin City

University, 2006.

105

[42] Rothe Jörg, Roos Magnus. Introduction to Computational Complexity. Germany, Institut

für Informatik – Heinrich-Heine-Universität Düsseldorf, 2010.

[43] Bridge Derek. Theory of Computation – Lecture 33: Np-Hard and NP-Complete

Problems. England, University College Cork, 2003.

[44] Zitzler Eckart, Laumanns Marco, Bleuler Stefan. A tutorial on evolutionary multi-

objective optimization. Switzerlnd, Swiss Federal Institute of Technology.

[45] CUED Divison A. Multi-objective Optimization. England, University of Cambridge,

2011.

[46] Eiben A. E., Smith J.E.. Introduction to Evolutionary Computing. USA, Springer –

Natural Computing Series, 2007.

[47] Alba Enrique, Cotta Carlos. Evolutionary Algorithms. Spain, Universidad de Málaga,

2004.

[48] Jones Gareth. Genetic and Evolutionary Algorithms. UK, University of Sheffield.

[49] Konak Abdullah, Coit David W., Smith Alice E.. Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering & System Safety, 2006.

[50] Zitzler Eckart, Thiele Lothar. Multi-objective Evolutionary Algorithms: A Comparative

Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary

Computation, vol. 3, issue 4, 1999.

[51] Zitzler Eckart, Thiele Lothar, Deb Kalyanmoy. Comparison of Multi-objective

Evolutionary Algorithms: Empirical Results. USA, Massachusetts Institute of Technology,

2000.

[52] Leslie Martin. The eight queens problem – a neural network approach. USA, The

university of Arizona, 2009.

[53] Chekuri Chandra. The Knapsack Problem. USA, University of Illinois, 2009.

[54] Electronic Systems Group. Lecture 13: The Knapsack Problem. Netherlands, Technishe

Universiteit Eindhoven, 2011.

106

[55] A.E. Eiben, E.H.L. Aarts, K.M. Vanttee. Global Convergence of Genetic Algorithms: a

Markov chain analysis. In: Schwefel, Männer, pp.4-12.

[56] A.E. Eiben. Multiparent Recombination. In: Bäck et Al., Chap. 33.7., pp.289-307.

[57] D.H. Wolpert, W.G. Macready. No free lunch theorems for optimization. IEEE

Transactions on evolutionary computation, vol. 1, issue 1, pp.67-82, 1997.

[58] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley, 1989.

[59] E.H.L. Aarts, J. Korst. Simulated Annealing and Boltzmann Machines. Wiley,

Chichester, UK, 1989.

[60] S. Kirk Patrick, C. Gelatt, M. Vecchi. Optimization by simulated annealing. Science,

220, pp.671-680, 1983.

[61] F. Glover. Tabu search and adaptive memory programming – advances, applications and

challenges. In: R.S. Barr, R.V. Helgason, J.L. Kennington, Eds., Interfaces in computer

science and operations research. Kluwer Academic Publishers, Norwell, MA, 1996, pp.1-75.

[62] Matteo Matteucci. A Tutorial on Clustering Algorithms - K-Means Clustering,

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html, retrieved 10

September 2011.

[63] Ishibuchi Hisao, Tsukamoto Noritaka, Nojima Yusuke. Evolutionary Many-Objective

Optimization. USA, 3rd International Workshop on Genetic and Evolving Systems, March

issue, pp.1-6, 2008.

