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Abstract. We address the problem of finding the appropriate agents
to interact with in n-player games. In our model an agent only requires
knowledge about the payoff and identification of its partners. This in-
formation is used to update a probability distribution over candidate
partners. As such, our model is applicable in any situation, be it a co-
operative dilemma or a game where a Nash Equilibrium is equal to a
Pareto Optimal profile.

1 Introduction

Reputation management [5, 4], partner punishment [4], partner selection [2, 10],
network structure [12, 8] are models put forward to explain or analyse the preva-
lence of cooperative agents in games where a dilemma is present. However, the
extensibility of such approaches to any game is often not discussed, as the pro-
posed solution only applies to a specific game [2, 9, 1].

As we use Game Theory to model the interactions between agents, our model
makes direct use of the payoffs of a game in order to select the cooperative
partners. The model consists of a probability vector maintained by each agent
where each position represents the probability of selecting an agent as a partner
to play a game. With this approach we are able to apply our model to any
situation capable of being described as a game, with partner identification.

Since the agent has to find the best partner, the algorithm can be compared to
a Cournot adjustment process [6] were players iteratively adjust their strategies
to their partner responses. In this paper, an agent strategy remains constant but
it adjusts its preferences towards more profitable or cooperative partners. Similar
approaches to partner selection have been tackled in [2, 10] but they focused on
a specific game such as Prisoner’s Dilemma (PD). Here we study the problem of
partner selection in n-player games. In this case, the assessment of responsibility
for the outcome is more difficult to make, due to increased uncertainty of having
n− 1 partners instead of a single one.

2 Definitions

Game Theory is a tool to model interaction between agents. To this end, we
consider that a population P of agents interacts accordingly to the rules of some



n-player game G. The game describes the strategies available to players and
the payoffs they obtain as a function of the strategies used. The game has a n-
dimensions strategy space S = S1×S2×. . .×Sn where agents can draw a strategy
s ∈ Si to play a game. The vector s = (s1, . . . sn) represents a strategy profile
of the n players involved in the game. The game also has n payoff functions,
ui : S→ R, with i ∈ {1, 2, . . . , n}. The payoff functions are bounded and belong
to R. Let u be the lowest payoff and u be the highest payoff in game G.

We aim at reaching a position where cooperative agents only interact between
themselves. As cooperative agents we define those that form a strategy profile
that maximises the average payoff of the players. We define the payoff obtained
by such Pareto Optimal profile as follows:

uP = max
s

∑
i

ui(s)
n

.

For example, in a Public Good Game a cooperative agent is one that contributes
to the common good, and in the Common Pool Resource game a cooperative
agent does not over exploit the resource (see [7] for a specification of these
games).

3 Model Description

A population P of agents is represented by a directed simple graph where a vertex
represents an agent α and wα,β is the label of an edge from α to β representing
the probability of agent α interacting with β:

wα,β ≥ 0,∑
β

wα,β = 1.

3.1 Update policy

The edge weight update policy for agent α is a function defined as follows:

wt+1
α,β = ζ(wtα,β , uα)

where wtα,β is the edge weight before the game in which agent α participated,
uα is the payoff of the agent in the game. Index β varies through all neighbours
of α.

The main focus of the work presented in this paper is the analysis of an
update policy that meets the following two conditions:

Cooperative aggregation – Cooperative agents are mostly connected to each
other. If α and the set of its cooperative neighbours B are part of a Pareto
Optimal profile, then in the limit the sum of the probability of selecting only
βC ∈ B should be 1:∑

βC∈B

lim
t→∞

wtα,βC
= 1 B = {β : uα(. . . , sβ , . . .) = uP }. (1)



Stability – The update policy must be robust in order to resist perturbations
in the population and to be applicable to any n-player game. In the long run
and in the absence of perturbations, weights must stabilise:

lim
t→∞

(wt+1
α,β − w

t
α,β) = 0. (2)

The edge weight update policy function is divided in two cases depending on
whether an agent played the game with agent α or not.

Agent β played the game. A simple policy is to multiply the old weight by a
factor that is inversely proportional to the distance between payoff u obtained by
agent α and the Pareto Optimal payoff uP if u is lower than uP . If it is higher or
equal, the edge weight remains the same. The rationale being there is no motive
to decrease the probability of selecting the current partners. The definition is:

wt+1
α,β =

wtα,β
u− u
uP − u

u < uP

wtα,β u ≥ uP .
(3)

This rule by itself does not guarantee the condition in equation (1). Only
combined with the rule for the case of agents that were not selected we achieve
it. Regarding stability, this rule will keep weights unchanged if the payoff is
greater or equal than uP . Otherwise they will tend to zero as in the first case
wtα,β is multiplied by a factor always less than 1. Either way, equation (2) is met.

Agent γ did not play the game. As we have just seen, the multiplicative
factor used for agents that played the game implies that the weight of all agents
that played will either stay the same or decrease. If they decrease, the differ-
ence must be distributed among the other edge weights. A simple solution is to
distribute it equally:

wt+1
α,γ = wtα,γ +

s

x
(4)

where s is the sum of the differences of all link values, egressing node α, updated
in the previous case,

s =
∑
β

(wt+1
α,β − w

t
α,β)

and variable x is the number of neighbours of agent α that did not play.
This policy explores alternative partners if u < uP , since the probability of

selecting others in the next game round is increased.
Equation (4) combined with equation (3) are able to achieve the condition

expressed by equation (1). If a cooperative agent selects an uncooperative, the
corresponding weight will decrease towards zero. The difference is distributed
among the weights of players that were not selected. However, the weight of a
second uncooperative partner also increases, but not by much. If this second
partner is selected, its weight is reduced and distributed among all the partners.
The point is that, in the long run, weights of uncooperative agents decrease while
weights of cooperative agents will absorb the distributed differences.



3.2 Credit assignment problem

In 2-player games an agent only has one partner. Therefore, the payoff it obtains
in a game only depends on its strategy and the strategy of its partner (both fixed,
but not necessarily identical). In these games, any player does not have doubts
on the quality of its partner. In games with more than two players the situation
is different.

In this type of games, there may be partners that the agent should favour
instead of others. However, the payoff is not sufficient to establish a differentiated
edge update policy. Recall that we have assumed that an agent only knows the
payoff it obtains, besides the knowledge of who are its partners. We propose the
following procedure:

In the first game, the agent selects n− 1 partners randomly, plays the game,
but does not apply the update policy. In the following games, the agent randomly
replaces one partner and keeps the remaining n − 2 partners. It observes the
payoff obtained in game t and compares with the payoff obtained in game t− 1.
Let βt−1 be the partner that was selected in game t − 1 and βt the partner
that replaced it. Since the agent has only changed one partner, it can compare
the payoffs and see which should be favoured. The weight of the link to the
agent which provided less payoff is updated using equation (3), weights of kept
partners remain unchanged, and weights of remaining neighbours are updated
using equation (4).

The drawback of this proposal is that it can only be applied by agent α
in games where it selects its partners. The data obtained in games where it is
selected by other agents (to play the game), cannot be used by this procedure. In
order to use this data we need a more sophisticated agent, that is not analysed
in this paper. However, in the next section, we show the usefulness of the simpler
approach just described.

4 Experimental Analysis

The purpose of the experiments reported in this paper is to assess the con-
vergence profile of cooperative agents selecting only their equals. To this end,
simulations with different proportions and quantities of game strategies were
performed.

4.1 The Game

The model presented in the previous section was tested with the Public Good
Provision game [7]. The number of players ranged from 3 to 8. For results in
2-player games please refer to [11].

The Public Good Provision game is generally used to model situations where
a group of persons has to contribute for a common good [3, 13]. The more people
contribute, the greater is the average payoff. However, contribution is costly, so
shirking is the rational choice, provided there are at least some players who
contribute to the good.



In the Public Good Provision game, an agent that contributes to the good,
incurs in a cost c. The good is worth w. Let x be the proportion of agents that
provides the good. The payoff of an agent that provides the good is wx− c while
agents that defect get wx. The game has a single iteration. The strategy used by
agents is probabilistic and is defined by parameter pp which is the probability
to provide the good.

4.2 The Population

Regarding the agents, different strategies were used, which can be roughly clas-
sified in how cooperative they are:

S1 A cooperative strategy that always provides the good, (pp = 1.0).
S2, S3 Two strategies that provide with probabilities 0.7 and 0.3, respectively.
S4 One uncooperative strategy that does not provide the good, (pp = 0.0).

The number of strategies of each type varied in {8, 16, 32}. Total population
varied in {32, 40, 48, . . . , 128}. Moreover, we also performed simulations without
strategies S2 and S3 thus having only deterministic strategies. This allows us to
study convergence for different proportions and quantities of cooperative strate-
gies. Initial edge weight was set to 1/(|P| − 1) so that every player had the same
chance of being selected.

Each simulation consisted of 1,000 rounds of games, except for one case where
we ran 10,000 rounds, to test convergence. In each round all agents played at
least one game, since the following steps were performed per round for every
agent: select n − 1 partners proportionally to the edge weights, play the game,
update the edge weights of the agent that selected partners.

4.3 Results

We have plotted the average probability of agents with strategy pp = 1.0 to se-
lect agents from the four strategies. The plots also show the standard deviation.
Unless mentioned, the plots were taken at the 1,000th round. Figure 1 shows sim-
ulations with only deterministic strategies. Figure 2 shows the results organised
by number of cooperative strategies, while figure 3 shows the results organised
by number of players in a game. Both latter figures refer to simulations with all
four types of strategies.

In all figures we plot an average taken over all possible population sizes and
compositions. In figures 1 and 2 we also average results over all game configura-
tions (3 to 8 players).

5 Discussion

In the absence of stochastic strategies, results show that cooperative agents al-
most always select their equals as partners independently of the conditions. From
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Fig. 1. Results from simulations with only deterministic strategies. Vertical axis rep-
resents the probability of strategy (1.0) choosing a strategy in the horizontal axis.
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(a) 8 agents with strategy (1.0).
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(b) 8 agents with strategy (1.0). Edge
weights taken at the 10, 000th round.
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(c) 16 agents with strategy (1.0).
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(d) 32 agents with strategy (1.0).

Fig. 2. Simulation results per number of cooperative strategies. Vertical axis represents
the probability of strategy (1.0) choosing a strategy in the horizontal axis.
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(a) 3-player game.
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(b) 8-player game.

Fig. 3. Simulation results per number of players in game. Vertical axis represents the
probability of strategy (1.0) choosing a strategy in the horizontal axis.



figure 1 we can observe that the average is high (for choosing (1.0) strategies)
while the standard deviation is small.

In the presence of stochastic strategies S2 and S3 results change substan-
tially. The number of cooperators influences convergence: the more cooperators,
the faster is convergence. We notice higher probability of cooperators selecting
their equals for larger numbers of cooperators (compare figures 2(a), 2(c) and
2(d)).

One would expect that stochastic strategies would induce instability in con-
vergence. Suppose we have partners (β1, β2) at round t. Both are stochastic and
have provided in this round. If β1 is replaced by a cooperative agent (always
provides) and in the next round β2 does not contribute, then this fact will be
imputed to the cooperative agent. However, if we increase the number of rounds
to 10,000, the plots obtained are nearly identical as can be seen by comparing
figures 2(a) and 2(b), probabilities computed at the 1, 000th and 10,000th rounds,
respectively. This means that probabilities have converged to a stable situation
by iteration 1,000.

The number of players in a game also influences convergence (see figures 3(a)
and 3(b) that refer to 3 and 8 players, respectively). The higher is this number,
the longer it takes for agents with (1.0) strategy to only select themselves as
partners of interaction.

Notice that in spite of averaging a large number of simulations with different
parameters (varying population size and composition, and also the number of
players, for cases of figures 2 and 3), standard deviation is always small. We can
infer that all these parameter values, except the number of cooperative agents,
do not influence significantly the results.

6 Future Work

The model we have shown will be analysed in an evolutionary setting where
strategies are replaced by some selection policy. Other network structures, be-
sides the panmictic used in this paper, will also be considered.

Stochastic strategies impair convergence of deterministic cooperative strate-
gies, when their number is low. Further analysis of their impact will be carried.
The algorithm we have presented in section 3.2 can be modified in order to dis-
tinguish deterministic from stochastic strategies. One avenue of researching this
is instead of changing one partner per round, keep the same partners when the
payoff is equal or higher than uP , and only change partners when the payoff is
lower.
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