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Instituto Politécnico de Leiria Morro do Lena, Portugal
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Abstract. We verify through numerical simulations that the influence
of the update dynamics on the evolution of cooperation in the Snow-
drift game is closely related to the number of strategy exchanges be-
tween agents. The results show that strategy exchanges contribute to
the destruction of compact clusters favorable to cooperator agents. In
general, strategy exchanges decrease as the synchrony rate decreases.
This explains why smaller synchrony rates are beneficial to cooperators
in situations where a large number of exchanges occur with synchronous
updating. On the other hand, this is coherent with the fact that the
Snowdrift game is completely insensitive to the synchrony rate when the
replicator dynamics transition rule is used: there are almost no strategy
exchanges when this rule is used.
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1 Introduction

The existence of cooperation in nature has been challenging to explain since,
from an evolutionary point of view, this type of behavior is apparently less
advantageous than a selfish one [12]. This problem is also of central importance in
social sciences [1] and especially on the development and maintenance of artificial
societies [11], where it is relevant to study how cooperation may be promoted and
sustained. Evolutionary games are models used to study these phenomena. In
these models, a population of agents interacts during several time steps through
a given game which is used as a metaphor for the type of interaction that is being
studied. The underlying structure that defines who interacts with whom is called
the interaction topology. After each interaction session, some or all the agents,
depending on the update method used, have the possibility of changing their
strategies. The strategy update process is modeled using a so called transition
rule that emulates the fact that agents tend to adapt their behavior to the
context in which they live by imitating the most successful agents they know. It
can also be interpreted as the selection step of an evolutionary process in which
the least successful strategies tend to be replaced by the most successful ones.



In the research areas of dynamical systems and evolution of cooperation, syn-
chronous updating has been the most used update method: at each time step,
all the elements of the system are updated at exactly the same time. This prac-
tice has been widely questioned, the argument being that perfect synchronism is
absent from the real world [8][9]. The most common alternative to synchronous
updating is sequential updating, which is an extreme case of asynchronism: at
each time step, exactly one element is updated. It has been shown that the
level of cooperation achieved and the dynamics of these models, can be signif-
icantly affected if such an asynchronous updating is used. Previous studies on
the Prisoner’s Dilemma game, played on regular lattices under the best-neighbor
transition rule, reported that synchronous updating supports more cooperators
than sequential updating [8][9]. The results are the same for the Snowdrift game
played under the same conditions [13]. When this game is played using the
proportional rule (see Section 2) it was found that sequential updating favors
cooperation [13]. In our work with both games [2][3][5] we confirmed the results
of previous works but also found that asynchronous updating is detrimental for
cooperation for very small noise values only, especially for regular networks. We
also showed that the influence of the update dynamics depends mainly on the
noise present in the strategy update process [4]: asynchronism becomes increas-
ingly beneficial to cooperators as the noise level grows up to a certain value.
Finally, it was found that both games are insensitive to the update dynamics
when the replicator dynamics rule is used [6][13]. However, we showed that this
rule becomes sensitive to the synchrony rate if agents are allowed to imitate less
successful agents, which is equivalent to raising the noise level [4].

Here, we verify the idea suggested by Tomassini et al. [13] that strategy
exchanges between agents are the reason why sequential updating supports more
cooperators than synchronous updating when a proportional transition rule is
used. In Section 2, the model used in the simulations is described. In Section 3,
we show and discuss the results of the simulations in order to verify this idea.
Finally, in Section 4, some conclusions are drawn and future work is advanced.

2 The Model and Simulations Setup

We use a model very similar to [13]. The Snowdrift (SD) game, also known as
Hawk-Dove, is a two-player game where there is a task which takes a cost c to
be completed and which pays a benefit b > c to each player, regardless of their
participation in the task completion. If both cooperate (C), they divide the cost,
which results in a payoff of b − c

2 to each; If only one cooperates, it receives
a payoff of b − c, while the defecting agent (D) receives b. If none cooperates,
both receive nothing. Given these conditions, it follows that the best action
depends on the opponent’s decision: the best thing to do is to take the opposite
action the opponent takes. As is common practice, we set c = 1 which leads to
a cost-to-benefit ratio of mutual cooperation r = 1/(2b− 1), 0 ≤ r ≤ 1.

At each time step, agents first play a one round game with all their neighbors.
After this, each agent updates its strategy with probability α using a transition



rule (see below). The update is done synchronously by all the agents selected
to engage in the update process. The α parameter represents the synchrony
rate and is the same for all agents. It allows us to cover all the space between
synchronous and sequential updating: α = 1 models synchronism; as α → 1

n ,
where n is the population size, the model approaches sequential updating.

Small-world networks (SWNs) [14] are used as interaction topologies as in
[13]: first a toroidal regular 2D grid is built so that each node is linked to its 8
surrounding neighbors; then, with probability φ, each link is replaced by another
one linking two randomly selected nodes. Self, repeated links or disconnected
graphs are not allowed. These networks have the property that, even for very
small φ values, the average path length is much smaller than in a regular network,
maintaining a high clustering coefficient. Both these properties are commonly
observed in real social systems. As φ → 1, we get random networks with both
small average path lengths and clustering coefficients.

Two different transition rules are used to model the strategy update process:
the generalized proportional (GP) [10] and the replicator dynamics (RD) [7]. Let
Gx be the average payoff earned by agent x, Nx be the set of neighbors of x and
cx be equal to 1 if x’s strategy is C and 0 otherwise. According with the GP
rule, the probability that an agent x adopts C as its next strategy is

pC(x,K) =

∑
i∈Nx∪x ci(Gi)

1
K∑

i∈Nx∪x(Gi)
1
K

, (1)

where K ∈ ]0,+∞[ is the noise present in the strategy update process. Noise
is the possibility that an agent imitates strategies other than the one used by
its most successful neighbor. K → 0 corresponds to the best-neighbor rule in
which x always adopts its best neighbor’s strategy. With K = 1 we have a linear
proportional rule. Finally, for K → +∞ we have random drift where payoffs play
no role in the decision process. Usually, the interval K ∈]0, 1] is used.

According to the RD rule, the updating agent x imitates a randomly chosen
neighbor y with probability Gy−Gx

b if Gy−Gx > 0. Here, b is the largest possible
payoff difference between two players in a one shot game. Notice that in this rule
agents do not imitate neighbors with lower payoffs.

All the simulations were performed with populations of 50 × 50 = 2500
agents, randomly initialized with 50% of Cs and 50% of Ds. When the system
is running synchronously, i.e., when α = 1, we let it first run during a period of
900 iterations which, we confirmed, is enough to pass the transient period of the
evolutionary process. After this, we let the system run for 100 more iterations
and, at the end, we take as output the average proportion of cooperators, ρC ,
and the average number of strategy exchanges during this period. Simulations
where α 6= 1 are setup so that the number of individual updates is approximately
the same as in the α = 1 case. Each run is a combination of r (SD game), φ
(SWNs), K (only for the GP rule) and α. For each tested combination, 30 runs
were made and the average of these runs is taken as the output.



3 Strategy Exchanges and Cooperation

Tomassini et al. [13] suggested that, when the proportional rule (K = 1) is used,
synchronous updating leads to less cooperation than sequential updating because
in the former case agents may exchange their strategies, which is not possible in
the last case. However, the authors did not verify this idea, which is the purpose
of this paper. This idea raises some questions that are not answered by the
authors. The first one is concerned with the transition rule: it is true that both
the best-neighbor (K = 0) and the replicator dynamics rules do not allow direct
strategy exchanges between two connected agents as the proportional rule does.
That is, two agents x and y cannot infect each other simultaneously. However,
it is possible that they exchange strategies indirectly: x can be infected by an
agent a having the same strategy as y while y is infected by another agent b
having the same strategy as x. It is not obvious also that strategy exchanges are
disadvantageous for cooperators. After a strategy exchange, be it direct or not,
the number of cooperators and defectors remains the same. This means that we
must verify if there is a relation between the number of strategy exchanges and
the final proportion of cooperators and, if it exists, we need to verify if there
is a cause-effect relation between the two aspects. Finally, if we conclude that
strategy exchanges negatively affect cooperation, one must try to explain why it
is so.

We first measure the average number of strategy exchanges, as a function
of α. This average is taken over periods of 1

α time steps so that the number of
individual updates considered is approximately the same as for the synchronous
case (α = 1). The observed result is a strategy exchange decrease as α decreases
(Fig. 1(a) shows an example). Exceptions to this result happen almost exclusively
for small noise levels (K = 0 and K = 1

100 ) when the GP rule is used: for some
r values the number of strategy exchanges for α = 0.5 is larger than for α = 1
(Fig. 1(b)). In these situations, the smaller number of strategy exchanges for
α = 1 is due to cyclic dynamics in the asymptotic phase, resulting from the
deterministic nature of the model (synchronous and best-neighbor rule). Even
so, for the most part of these situations ρC is larger for α = 1 than for α = 0.5.
For larger K values, the number of strategy exchanges is larger for α = 0.5 than
for α = 1 only in rare cases. This happens when, for α = 1, the system converges
to uniform populations of Ds, where no exchanges can occur (ex: r = 0.9 in Fig.
1(a)).

Figs. 1(a) and (b) also exemplify how the number of strategy exchanges
vary with K for the GP rule (K values used: 0, 1

100 ,
1
10 ,

1
8 ,

1
6 ,

1
4 ,

1
2 , 1): strategy

exchanges grow with K, specially for α = 1. Only results for φ = 0.05 are
shown but this pattern arises for all the tested topologies (φ values used: 0,
0.01, 0.05, 0.1, 1). On the other hand, we verified that there are almost no
strategy exchanges when the RD rule is used: the maximum number of strategy
exchanges never exceeds 4 during each 1

α period no matter the α value used.
We recall that, when the GP rule is used, smaller α values are more beneficial
for cooperators as K grows (see Section 1). We also recall that the game is
completely insensitive to α when the RD rule is used. This suggests that there



(a) (b)

Fig. 1. Number of strategy exchanges and ρC (insert) as a function of α, when the
game is played on SWNs (φ = 0.05) using the GP rule. (a) K = 1, (b) K = 0.

is indeed a close relation between the number of strategy exchanges and how
the model reacts to α changes. In other words, the larger the difference between
the number of strategy exchanges occurring under synchronous and sequential
updating, the larger is the difference between the level of cooperation achieved
with synchronous updating (less cooperation) and sequential updating (more
cooperation). However, this result does not allow us to establish a cause-effect
relation between the number of strategy exchanges and the proportion of Cs
since strategy exchanges are just a consequence of the input parameters.

In order to verify the effect of strategy exchanges on the level of cooperation,
we did the following experiment: on each time step, either a randomly chosen
agent is updated with probability 1−p using the transition rule or two randomly
chosen neighbor agents exchange their strategies with probability p. We note that
no strategy exchanges can occur as a result of the utilization of the transition
rule since only one agent is selected. This means that, when p = 0, this is a
sequential system. Fig. 2(a) and (b) exemplify the effect of strategy exchanges
on the level of cooperation, respectively for the GP and RD rules, when the game
is played on regular networks. For reasons of space only these two examples are
shown but the results are similar no matter the noise level (only GP rule) and the
interaction topology used. Results for p = 1 are not shown also because in this
regime we have random drift, where payoffs do not influence the dynamics, and
the cooperation level always converges around 0.5, which is the initial proportion
of cooperators. The results are the following: when the game is played under
the GP rule, the proportion, ρC , of Cs decreases as the probability of strategy
exchanges increases. On the other hand, when the RD rule is used, the game is
almost insensitive to p.

The difference between these two behaviors can be understood if we look at
the spatial patterns formed by the agents during the evolutionary process. Fig.



(a) (b)

Fig. 2. Proportion of cooperators, ρC , as a function of p when the game is played on
regular networks (φ = 0) using (a) the GP rule (K = 1) and (b) the RD rule.

3 shows two examples of asymptotic spatial patterns achieved with the GP rule,
for p = 0 and p = 0.9. When no strategy exchanges are allowed, C agents or-
ganize into more compact clusters. This is a well known phenomena: structured
populations allow C agents to form clusters so that they interact mainly with
each other, thus protecting themselves from exploration by D agents. This is
important to understand how strategy exchanges influence the level of coopera-
tion. A strategy exchange between a C and a D in the fringe of a cluster pushes
the C away from the other Cs. At the same time, it introduces a D inside the
cluster or, at least, it contributes to more irregular cluster frontiers, which is also
detrimental for cooperators [10]. This can be seen in Fig. 3(b) where there are
more isolated C agents and more filament-like clusters. The situation is different
when the RD rule is used: C agents organize into filament-like clusters and this
pattern does not change when strategy exchanges are introduced (Fig. 4). That
is, when the RD rule is used, agents do not organize into compact clusters even
when there are no strategy exchanges. This means that when strategy exchanges
are introduced, there are no compact clusters to destroy and that is the reason
why both the spatial patterns and ρC are not affected.

4 Conclusion and Future Work

We verified the idea from Tomassini et al. [13] that, when the Snowdrift game
is played under the proportional transition rule (K = 1), sequential updating
supports more cooperators than synchronous updating because in the last case
strategy exchanges may occur, which is not possible in the former case. The
results of the simulations, put together, are a strong evidence that this idea is
correct. We saw that strategy exchanges are detrimental to the evolution of coop-
eration because they destroy compact clusters of agents when these exist, which
is disadvantageous for cooperators. The results show that, when the generalized



(a) (b)

Fig. 3. Typical asymptotic patterns when the game (r = 0.6) is played on regular
networks (φ = 0) using the GP rule (K = 1). (a) p = 0, ρC = 0.4692; (b) p = 0.9,
ρC = 0.3636. Colors: black for cooperators and white for defectors.

(a) (b)

Fig. 4. As in Fig. 3 but for the RD rule and r = 0.4. (a) ρC = 0.4668; (b) ρC = 0.4788.

proportional transition rule is used, the number of strategy exchanges grows con-
siderably as the noise level gets larger, mainly for synchronous updating. This
explains why smaller synchrony rates increasingly favor cooperation as the noise
level grows. On the other hand, when the replicator dynamics rule is used, there
are almost no strategy exchanges, which explains why this rule is completely in-
sensitive to the synchrony rate of the system. The way how evolutionary games
depend on the update dynamics has already been reported in other works, in-
cluding ours, but this work, complementing the work by Tomassini et al., offers
an explanation for how they react to changes in this parameter. The results pre-
sented in this paper are also in line with the one achieved in our previous work
that the sensitivity of evolutionary games depends mainly on the noise level
present in the strategy update process [4]. This is important because it means
that, in order to build less sensitive artificial societies, special care should be



taken in the design of strategy update processes and agents’ perception skills,
namely by trying to avoid less successful agents to be imitated.

In future developments of this work we will verify this result with the Pris-
oner’s Dilemma game. The way this game reacts to synchrony rate changes is
similar to Snowdrift. It is, however, more sensitive than the Snowdrift when the
GP rule is used, which turns it a good candidate for the task of verifying how
general this result is.
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