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Abstract: X-ray diffraction assisted four-point bending method (XRDABM) enables to analyze the evolution of surface stress
with the strain during bending of specimens. This experimental methodology was used to characterize the stress-
strain behavior of two plasma nitriding steels, DIN 40 Cr Mn Mo 7 and DIN 32 Cr Mo V 13, with gradients of
mechanical properties across the surface layers, allowing the characterization of the in-depth evolution of the local
yield strength in the nitrided layer. The results show a significantly increase of the yield strength of the nitride
layers and a good agreement between the in-depth evolution of the yield strength and the XRD peak breadth for
the two nitrided steels.
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1. Introduction

The knowledge of the local yield strength and stress-strainbehavior of the surface treated steels, due to mechanical,thermal or thermo-chemical surface treatments, such as,e.g., shot-peening, quenching and nitriding, has a great rel-evance in several areas of mechanical engineering science.For example, to deeply study problems of fatigue, contactfatigue or wear, valid behavior laws for the surface-treatedmaterial layers are needed. Since in those damage mech-anisms the initial damage occurs, in general, at surfacenear regions, materials science and surface engineeringadvise the use of structural ductile steels, having its sur-face modified by coatings and/or surface treatments [1].

Surface hardening treatments can modify the chemicalcomposition, microstructure and mechanical properties ofsurface-near material’s regions, generating compressiveresidual stresses in the surface layer, which are beneficialrelatively to fatigue damage phenomena. Therefore, theelasto-plastic behavior of the material near the surfaceshould be completely different from that found for the bulkmaterial. The particular nature of these hardened lay-ers, which do not exist independently and are subjectedto residual stresses, does not allow the determination oftheir mechanical properties by the classical mechanicaltests, due to the difficulty of obtaining samples with ahomogeneous cross-section, representative of those layers.Several techniques have been proposed for evaluating themechanical properties of materials’ surfaces [2–10], beyond
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the traditional microhardness data and X-ray diffractionpeak width analysis, which qualitatively show the harden-ing or softening of the material’s surface layers [11]. In fact,X-rays analysis enables to study the in-depth variation ofdiffraction peak width. This value is related to the squareroot of the mean quadratic value of the distortion of thecrystalline lattice <ε2>1/2, which is directly proportionalto the microscopic residual stress (3rd order stresses) [12].It was observed that the dislocation density varies in depthaccording to the variation of X-ray diffraction peak width,i.e., the higher the diffraction peak width, the higher the dis-location density [13]. It means that X-ray diffraction peakwidth quantify the strain hardening attained by the surfacematerial. Micro-hardness measurements made along thecross-section of surface-treated specimens are an similarlyefficient way of characterizing the mechanical behavior oftheir surface layers, since hardness is a direct measureof the material’s strength and can be related to its yieldstrength [8].The method used in this work is a important and practicalapplication of X-rays analysis in this knowledge area [2].The local yield strength throughout the affected nitridedlayer was determined for two steels subjected to differentnitriding surface treatments. Local yield strength valuessignificantly increases from the bulk material till the ni-trided surface and a good agreement between the in-depthevolution of the yield strength and the XRD peak widthfor the two nitride steels was observed.
2. Description of the method (XRD-
ABM)

In the X-ray diffraction assisted by four-point bendingmethod (XRDABM) the surface treated specimens are sub-jected to monotonic bending using a purpose-built device[2]. Before the specimen is loaded, the initial residualstress state at specimen’s surface is determined by theXRD sin2 Ψ method [14]. The specimen is then subjectedto successive strain increments. For each strain increment,controlled by the electric strain gages attached to the ma-terial’s surface, the corresponding stress is determined byXRD. As X-rays only penetrate the material slightly, thedetermined stresses are characteristics of the specimen’ssurface. However, the stress determined by XRD corre-sponds to the sum of the applied bending stress and theresidual stress imposed by the nitriding treatment. In ad-dition, the strain determined by the strain gages dependsonly on the applied bending stress. Therefore, the mea-sured strains, εmeasured, have to be corrected to take intoaccount the initial elastic strain, εR (being εR = σRS
E ), i.e.,the strain corresponding to the existing residual stresses
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metallurgical solutions must be found. The choice of deep nitriding for high load and elevated 
temperature applications, instead of the carburizing process, can be justified by economical 
reasons and superior structural stability of the nitriding layer when heated [19]. As the plasma 
nitriding treatment is performed at relatively low temperature, the parts suffer little deformation 
during the process. Another advantage is the possibility to preserve a good toughness of the bulk 
steel, which allows its application in high rotation velocities. The nitrided steels employed in this 
work are shown in table 1.  

 

 

Figure 1 - Correction of the stress-strain curve due to the presence of residual stresses and 0.2% 
offset yield strength (σy) determination. 

 

Table 1: Chemical composition of the nitrided steels. 

 Chemical composition [% weight] 

Steel C Si Mn Ni Cr Mo V 

DIN 32 Cr Mo V 13 0.32 0.35 0.52 0.14 3.0 0.83 0.28 

DIN 40 Cr Mn Mo 7 0.4 - 1.5 - 1.9 0.2 - 

 

 

Figure 2 - Optical micrograph of cross-section (left) and SEM micrograph of the white layer 
surface (right), of DIN 32 Cr Mo V 13 plasma nitrided steel. 

Figure 1. Correction of the stress-strain curve due to the presence
of residual stresses and 0.2% offset yield strength (σy)
determination.

at the specimen’s surface (Fig. 1). This correction canbe made by using the following equation, where E is theYoung’s modulus:
εcorrected = εmeasured + σRS

E . (1)
It is therefore possible to determine a characteristic stress-strain curve for the treated material at the specimen’ssurface, enabling the local yield strength determination(Fig. 1). The in-depth evolution of the local yield strengthcan be determined after removing the upper layers witha non hardening procedure, such as electropolishing. Inthis case, for each evaluated depth, one specimen has tobe used.
3. Materials and Experimental Pro-
cedure
The nitride steels used in this work exhibit important prop-erties, particularly in terms of hardness, hot hardness,high toughness, contact fatigue life, wear and corrosionendurance. These sets of characteristics make it mainlysuitable for severe application conditions, namely, aero-nautic bearings [15], helicopter transmission gears [16],manufacturing parts submitted to important efforts [17, 18].These properties are difficult to obtain so appropriate andreliable metallurgical solutions must be found. The choiceof deep nitriding for high load and elevated temperatureapplications, instead of the carburizing process, can bejustified by economical reasons and superior structuralstability of the nitriding layer when heated [19]. As theplasma nitriding treatment is performed at relatively lowtemperature, the parts suffer little deformation during theprocess. Another advantage is the possibility to preservea good toughness of the bulk steel, which allows its ap-
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Figure 2. Optical micrograph of cross-section (left) and SEM micrograph of the white layer surface (right),
of DIN 32 Cr Mo V 13 plasma nitrided steel.

Table 1. Chemical composition of the nitrided steels.

Steel Chemical composition [% weight]C Si Mn Ni Cr Mo VDIN 32 Cr Mo V 13 0.32 0.35 0.52 0.14 3.0 0.83 0.28DIN 40 Cr Mn Mo 7 0.4 – 1.5 – 1.9 0.2 –
plication in high rotation velocities. The nitrided steelsemployed in this work are shown in Table 1.Fig. 2 left presents a characteristic optical micrograph ofthe cross-section of the nitrided specimens. DIN 32 Cr MoV 13 nitrided steel presents a white layer with a thicknessof 18 µm, and a diffusion zone with about 380 µm depth.The microstructure of the treated surface, obtained byscanning electronic microscope (SEM), is shown in Fig. 2right. The DIN 40 Cr Mn Mo 7 nitrided steel presents amicrostructure similar to that shown in Fig. 2. In this case,however, the thickness of its white layer is lower and equalto 15 µm, while the thickness of its diffusion zone is lowerand equal to 150 µm, respectively, when compared to theDIN 32 Cr Mo V 13 nitrided steel layers. In both cases,according to the X-ray diffraction results, the white layerpresents, mainly, γ′ (Fe4N ) and only traces of nitrides
ε (Fe2−3N) and the diffusion layer is formed by nitrideprecipitates in a nitrogen solid solution.
4. X-ray diffraction analysis
Stress determination was performed with a PROTO iXRDportable with Flexible Fiber Optics PSSD Detectors (Po-sition Sensitive Scintillation Detector) (Fig. 3). Latticedeformations of the {211} diffraction planes of the α-Fephase were measured using Cr Kα X-ray radiation, using
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X-ray diffraction analysis 

Stress determination was performed with a PROTO iXRD portable with Flexible Fiber Optics 
PSSD Detectors (Position Sensitive Scintillation Detector) (figure 3). Lattice deformations of the 
{211} diffraction planes of the α-Fe phase were measured using Cr Kα X-ray radiation, using a 
Ω goniometer. The stress was evaluated in the longitudinal direction of the samples, using 22 ψ 
angles, an acquisition time of 30 seconds by peak and ±2˚ oscillation in ψ. For the materials 
analyzed and considering the radiation used, the average penetration of the X-rays is about 5 µm. 
The strain in the surface of the samples was measured with Kyowa electric resistance strain 
gages, type KFG-2-120-C1-11 (figure 4), which can be used to measure strains up to about 5%, 
according to the producer specifications. 
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a goniometer. The stress was evaluated in the longitudinaldirection of the samples, using 22 Ψ angles, an acquisitiontime of 30 seconds by peak and ±2° oscillation in Ψ. Forthe materials analyzed and considering the radiation used,the average penetration of the X-rays is about 5 µm. Thestrain in the surface of the samples was measured withKyowa electric resistance strain gages, type KFG-2-120-C1-11 (Fig. 4), which can be used to measure strains upto about 5%, according to the producer specifications.
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Results and discussion 

In-depth residual stress profiles obtained by XRD in the two nitrided steels are shown in figure 5. 
A constant residual stress value of about -550 MPa in the first 200 μm is observed in 
DIN 32 Cr Mo V 13 nitrided steel, followed by a decrease of the compressive stresses up to a 
depth of 400 μm. The nitriding treatment of the DIN 40 Cr Mn Mo 7 steel develops compressive 
residual stresses which reach a maximum value of -600 MPa, at a depth of 90 μm, followed by a 
small decrease. The compressive residual stress affects a total thickness of 300 μm. 

 

 

Figure 5 – In-depth residual stress profile in the nitrided steels. 
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5. Results and discussion
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XRDABM methodology point out that the yield strength vs depth is different for both nitrided 
steels, showing clearly the differences between the two nitriding treatment conditions.  
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determination of the local yield strength across the treated layer. 
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150 µm approximately, after decreasing continuously andattained the bulk material value (~900 MPa). The appli-cation of the XRDABM methodology point out that theyield strength vs depth is different for both nitrided steels,showing clearly the differences between the two nitridingtreatment conditions.
6. Conclusions

The XRDABM method has been applied to DIN 40 Cr MnMo 7 and DIN 32 Cr Mo V 13 nitrided steels, with differentnitriding depths and residual stress distributions, allowingthe determination of the local yield strength across thetreated layer.
94

Author c
opy



L. Coelho, A.C. Batista, J.P. Nobre, M.J. Marques

The results showed an increase of the yield strength inthe nitride layers comparatively to the bulk material. Agood agreement between the in-depth yield strength andthe XRD peak breadth in the two steels was observed.The application of the XRDABM method point out thatthe yield strength vs depth is different for both nitridedsteels. This difference should be related to the differentparameters used during the two nitriding treatments.
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