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ABSTRACT 
Siva Sankar Kannan: Modelling of crowdsourced Wi-Fi fingerprint data 
Master of Science Thesis 
Tampere University 
Automation Engineering (MSc) 
June 2024 

 
 
The lack of and/or the unreliability of GPS signals indoors poses unique challenges with 

accurate indoor navigation. This thesis proposes an idea that aims to addresses these challenges 
by leveraging Wi-Fi fingerprinting to augment Pedestrian Dead Reckoning (PDR) based Inertial 
Navigation Systems (INS).  

Wi-Fi fingerprinting involves the collection of Wi-Fi signal strengths from multiple access 
points, which are then used to model the relationship between fingerprint dissimilarity and real-
world distances. Wi-Fi fingerprint data can be modelled through crowdsourced Wi-Fi fingerprint 
data. This model is crucial for enhancing indoor navigation accuracy where GPS data is 
unavailable. The research introduces a sophisticated approach using Weighted Least Squares 
regression with linear scaling weights to refine the estimation process. The Wi-Fi fingerprint model 
is used to filter out unreliable PDR data, considerably improving the location estimation accuracy. 
It employs a dual-model approach that allows utilisation of known reference points such as GPS 
fixes when available or Bluetooth beacons as indoor landmarks to further enhance the reliability 
of the navigation system.  

A weighted algorithm prioritizing data points based on their estimated reliability, effectively 
reducing the influence of poor-quality data on the overall system performance is used. This 
method shows a marked improvement in positioning accuracy, thus demonstrating the feasibility 
and effectiveness of integrating Wi-Fi fingerprinting with traditional inertial navigation methods.  

The findings showcase the potential of using Wi-Fi fingerprint modelling as a powerful 
augmenting technology for PDR-based INS (Inertial Navigation System), offering improvements 
over existing methods, particularly in complex indoor environments. The research also lays the 
groundwork for future advancements in indoor navigation technologies, opening avenues for 
more reliable and accurate indoor positioning solutions that can operate without GPS. 
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Fi fingerprint data to improve the accuracy and reliance of the indoor navigation 

system. 

The main motivation for the study stems from the practical troubles and 

tribulations relating to indoor navigation, be it in the form of finding the right 

classroom at a new building at school, or the right store in a mall. The limitations 

of the current indoor navigation technologies, often struggling to provide 

consistent and accurate results, stem from the nature of the complex dynamics 

in an indoor environment. By taking advantage of crowdsourced data and 

statistical modelling techniques, the thesis proposes a novel approach in refining 

the estimation capabilities of the indoor navigation system. 

Throughout the research process, I had the privilege of working under the 

invaluable guidance and support of my supervisors and professors, Robert Piché 
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to the progress of the research. An additional thanks to Simo for his unparalleled 
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financial support from HERE maps, which funded the research project along with 

the necessary tools and support needed to progress the project. I am also 

indebted to the University for the continuous support with the software and the 

computational power that aided in the quick resolution of the research.  

Additionally, A special thanks to my managers and co-workers at Trimble who 

always had my back and helped keep up the motivation when things were rough 

and helped alleviate the stress to finally rack up and finish the document. 
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Finally, the undying moral support and endless motivation from my friends and 

family set the bedrock for my perseverance through the academic pursuit of 

Masters. 

This thesis reflects my academic journey through Tampere University and lays 

the foundational groundwork for future research in the field of indoor navigational 

systems. I hope that my work will inspire further research and innovations and 

contribute towards the development of a more robust indoor navigational system. 

Sincerely yours, 

Siva Sankar Kannan. 
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1 INTRODUCTION 

This section intends to introduce the research and give some context behind the 

research. It lays the groundwork for the scope of the research while outlining the 

research question and explains the order of steps that were taken in getting to 

the final research conclusion. 

To preface the introduction, indoor navigation has been getting increasingly 

essential, and given the prevalence of Wi-Fi in most public spaces and buildings, 

a Wi-Fi supported indoor navigation becomes a quintessential landmark in the 

field of indoor navigation (Davidson et al, 2017). In this study, we seek to explore 

the efficacy of indoor navigation using Wi-Fi fingerprint, and Pedestrian Dead 

Reckoning data.  

The main question that the study attempts to challenge is ‘How effective is a Wi-

Fi supported indoor navigation system in accurately representing the user’s 

location’, especially in complex indoor environments. Through the course of the 

study, we aim to not only assess the current capabilities of the Wi-Fi assisted 

navigation, but also present the groundwork for future enhancements, for 

instance, Wi-Fi Round-Trip-Time (RTT) technology, or Bluetooth beacons for 

more precise location estimations (Perez-Navarro A et al, 2022). However, it is 

to be noted that while Wi-Fi RTT does offer promising improvements, it is outside 

the scope of this study, and is rather an avenue for future research. 

The Thesis aims to explore the viability and effectiveness of a Wi-Fi assisted 

indoor navigation system, leveraging the precision of high-end Inertial 

Measurement Unit (IMU) for obtaining high-accuracy location data. The accuracy 

of this data is crucial for evaluating the system’s performance. By combining 

Pedestrian Dead Reckoning (PDR) data (A localized positioning method that 

utilizes Inertial sensors like Accelerometers, Gyroscopes, etc.) and Wi-Fi 

Fingerprint data (A collection of the Wi-Fi Access Points and their corresponding 

signal strengths) collected from a standard smartphone, the study compares the 

navigational efficacy against the precise reference data. This analysis is pivotal 

in determining the potential enhancements that Wi-Fi could bring about in the 

field of indoor navigation systems. A model is proposed which would serve as the 
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basis for crowdsourced Wi-Fi fingerprint distance estimation, which is then in turn 

used to assist in estimating the coordinates in an indoor navigation application. 

A critical component to the methodology is the application of Least-Squares 

Regression, a statistical method, to determine the mathematical correlation 

between the Wi-Fi signal strength dissimilarities to their corresponding real-world 

distances (K. He, Y. Zhang et al, 2015). Integrating these advanced techniques 

together results in a comprehensive assessment of Wi-Fi’s capability in 

augmenting indoor navigation systems.  

To brief the idea behind the thesis, Pedestrian Dead Reckoning based location 

estimation in indoor navigation suffers from its downsides of accumulating error 

and needing re-calibration (X. Liu et al, 2022). The study aims to estimate the 

efficacy of using Wi-Fi fingerprint data to get a better estimate of the indoor 

coordinates. 

The process plan of the thesis can be split into 5 key parts.  

1. Methodology  

2. Data collection 

3. Data processing  

4. Location estimation 

5. Comparison 

Here’s a small introduction on the process plan before delving into them deep in 

the further chapters later in the thesis. 

1.1 Methodology 

The primary technique that is used in the study is ‘Least-Squares Regression’; it 

is a statistical method that works well in overdetermined situations (Chapra et al, 

2010). It is used in two different stages, the first is in determining the 

mathematical relationship between Wi-Fi fingerprint dissimilarities and their real-

world geometric distances. The second stage is to use the distance information 

between timestamps in the recording, to find the cartesian coordinates of the 

timestamps. The second processing method that is used in this study is using 

Newton’s Laws of motion, along with filtering algorithms to estimate distances 
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from Pedestrian Dead Reckoning (PDR) data. For the purposes of this study, this 

processing was done with the help of HERE maps. 

For the first stage, data is collected by walking around the campus in Tampere 

University, whilst recording the Wi-Fi signal strengths of all the Access Points 

reachable on the phone at the given time and location. Access Points (AP) here 

are essentially Wi-Fi routers that transmit Wi-Fi signals. This will be explained in 

more detail in the later parts of the thesis. The recorded data is then used along 

with the information of the distance travelled between recordings, to estimate the 

relation between the dissimilarity of Wi-Fi signal strengths at two timestamps and 

the real-world distance between the two timestamps.  

For the second stage, a set of distances recorded between timestamps, is used 

with Least-Squares Regression to estimate the position in cartesian coordinates. 

The distances recorded here in this dataset is the displacement between two 

timestamps. This is then cross referenced against the reference data to evaluate 

the efficacy of using Wi-Fi in indoor navigation use case. 

1.2 Data Collection 

Data collection was done with the help of two devices. The ‘MTw XSENS’ Inertial-

Measurement-Unit (IMU) sensor which is a high-accuracy sensor to record the 

Inertial information, such as the Linear Acceleration in 3D space and the Angular 

acceleration in the 3 axes. The second device that was used was a Sony Xperia 

X, and android phone, which was used to record the Wi-Fi fingerprint data along 

with the Inertial information (same as the MTw XSENS sensor). There were two 

different data collection segments. The initial segment was to identify 

mathematical correlation between Wi-Fi signal strength dissimilarities and their 

corresponding real-world distances. And the second segment being the actual 

test segment which compares the results against each other. Both the segments 

were recorded simultaneously. The data collection methodology is like that 

proposed by (Zhuang et al, 2015) which uses a dedicated IMU (Inertial 

Measurement Unit) and the smartphone for measuring the Wi-Fi fingerprint data 

and the PDR (Pedestrian Dead Reckoning) data.  

For the first segment, only the smartphone was used to record the Wi-Fi 

fingerprint data. This recording was done with the help of a smartphone app which 
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recorded the fingerprint data and then allowed it to be exported to a file. As for 

the location and distance, a straight corridor was chosen with a fixed length. 

Walking through the corridor at a constant pace and inferring the data allows us 

to get a hold of the approximate distance/location at any given point in time. Since 

the recording was done with known distances being covered, it wasn’t necessary 

to record high-accuracy inertial data from the main sensor.  

The second segment uses the combination of both the MTw XSENS sensor and 

the smartphone. Both being strapped to the chest of the user, while walking 

through corridors in Tampere University. The recording was done in short bursts 

to avoid the accumulation of error from inertial measurements. And both the 

devices were synchronized with a GPS clock to ensure easy and automatic 

alignment of the datasets. The full reasoning and data collection would be 

detailed later in the study. 

1.3 Data processing 

Before the collected data can be used to validate the efficacy and possibility of 

using Wi-Fi, it needs to be processed. This section will also house the information 

on modelling the mathematical correlation between Wi-Fi signal strength 

dissimilarities and their real-world distances. This is done in MATLAB by 

calculating the pair-wise distance between the Access Points and their respective 

Received Signal Strength (RSS) values. Pair-wise distance in this context is the 

dissimilarity between each pair of Wi-Fi access points in the dataset. The next 

step is to map this RSS dissimilarity to the real-world distances. This is done by 

fitting a curve to find the mathematical correlation between them, giving us a way 

to estimate the approximate distance from Wi-Fi RSS dissimilarities. 

The second set of processing comes from preparing the Inertial Data collected 

from the Inertial Measurement Units (IMUs) so that it can be used for reference 

data. This processing employs filtering to filter out unnecessary data, noise, and 

other unwanted aspects of the inertial data, while accounting for the error that is 

inherent to Inertial sensors. Then, Newton’s laws of motion are employed to 

estimate the distance between different timestamps. For the purposes of this 

study, this was done with the help of HERE maps, who were responsible for 

converting the Pedestrian Dead Reckoning (PDR) data into a distance map. The 
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same is done for the PDR data from the smartphone. With these done, the pair-

wise distance map can be now used to estimate the location at the different 

timestamps in real-world cartesian coordinates. 

1.4 Location Estimation 

Since we have processed the data to have pair-wise distance between a lot of 

points, we have an overdetermined system, which is to say, we have a lot more 

equations than variables. To estimate the location in cartesian coordinates, we 

assume the start point as the origin, and then use Least-Squares Regression to 

minimize the Squares Residual error and find the coordinates that would best 

suite the data that we have. This is done for both the reference data and the data 

from the phone.  

For the reference data, we have multiple points in our dataset where the location 

is already known, such as the start of a corridor or an end of a corridor. These 

points of data are marked as ‘known’ points. This is helpful in making sure our 

reference is as accurate as possible. And to use this while determining the 

coordinates for the timestamps, we employ a weighted Least-Squared 

Regression where the known coordinates are marked with maximum weight, 

giving us a reliable coordinate set for reference.  

For the observed/test data, the same is performed with both Inertial (Pedestrian 

Dead Reckoning, PDR) data and the distance estimates from the Wi-Fi 

fingerprints. By careful selection of fingerprint pairs and filtering out fingerprint 

pairs from their Wi-Fi fingerprint dissimilarities and adding weights to fine-tune 

the model; a good estimate for the coordinates is determined (Vilaseca, D et al, 

2013) (Zhuang. Y et al, 2015). 

Another aspect of the study was to also check the possibility of augmenting this 

accuracy even further. This was done by assigning some of the coordinates as 

‘known’ points, much like in the case of the reference data. This is done to mimic 

having known points of interest in a place such as a mall, or having additional 

supportive elements such as Bluetooth beacons which would stand out as 

landmarks. Estimating distance using methods such as Wi-Fi RTT (Round Trip 

Time) to have a high accuracy distance estimation is not part of this study but is 

a good place to expand the study on. This thesis serves as an enabler for future 
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studies pertaining to other technologies that might augment the accuracy even 

further. 

1.5 Comparison and inference 

All the mathematical modelling, distance estimation and location estimation are 

done through the software called MATLAB (Mathworks, 2024). Licensing of which 

was provided by Tampere University. The way data is stored in the software, and 

modelled will be explained in more detail later in the study. The way the data is 

compared, and inference is drawn is done through graphs that are plotted with 

the help of MATLAB. 

To ensure clarity and consistency, the representation of the reference 

coordinates, obtained from the high-end IMU sensors are marked with a blue 

circle in the graphs. While the estimated/observed values derived from the 

smartphone data (combination of Wi-Fi fingerprint data and the PDR data) are 

marked with a red asterisk. Given different configurations, we compare the 

proximity of the coordinate results from the phone against the reference values 

from the high-end IMU sensors. All distances showcased in the graphs are in 

meters unless explicitly stated otherwise. 

While the graphs seek to present a visual understanding of how accurate the 

estimated values are, it is necessary to note that the quantitative analysis of the 

standard deviation and mean error is crucial in determining the system’s 

performance. These statistical metrics provide a way of evaluating the real-world 

implications of the indoor navigation system. Given the practical use-case, such 

as a mall or public buildings, achieving sub-meter accuracy isn’t paramount. The 

main goal of the study is to shine light on the possibility of a powerful indoor 

navigation system assisted by Wi-Fi fingerprint data, while enabling further 

research and studies. 

In summary, the primary research problem the thesis aims to address is the 

effectiveness of using crowdsourced Wi-Fi fingerprint data to augment Pedestrian 

Dead Reckoning (PDR) based Indoor Navigational Systems. Specifically, the 

research investigates whether this combined approach provides tangible 

improvements in positioning accuracy within GPS-lacking indoor environments. 

The findings of this study are expected to highlight the potential enhancements 
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that Wi-Fi fingerprinting can bring to indoor navigation, offering a foundation for 

future advancements in this field. 
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2 LITERATURE REVIEW 

In this section, other research and progresses made by other researchers are 

noted, along with the dictation of the novel approach that is introduced by this 

paper. Indoor navigation is a problem that is as old as time itself, having been a 

highly contested market to introduce an effective and efficient navigation system 

that works indoors, not just for public places such as malls, but also for places 

like warehouses. Some of the popular technologies that often take the call for 

research are Inertial measurement units on mobile phones, various wireless 

technologies such as Wi-Fi, Ultra-Wide band, Bluetooth, and to some level, even 

NFC (Near Field Communication). This section aims to provide a bigger context 

by incorporating a comparative analysis with the current methodologies to 

highlight the novelty showcased in the paper. 

Indoor navigation has a lot of innate limitations, being a closed and often highly 

packed system where wireless technologies that are typically used for navigation 

fail, as expressed by this study from (Avi Matza et al, 2012) designing an indoor 

navigation system from a practical perspective. The study explores the issues 

that are present in an indoor navigation system composed of cellular mobile 

technology, namely Galileo Satellite Navigation with off the shelf GPS modules. 

The study concludes with an algorithm that achieves a navigational accuracy of 

a few meters.  

In Literature (Abusara, 2015), the poor performance of GPS indoors is noted and 

alternative methods for indoor navigation are explored. Some of the methods 

include ‘Pedestrian Dead Reckoning’, ‘Fingerprint based localization’ and 

‘Trilateration’. The proposed hybrid method in the study (Lu et al., 2016) 

showcases the efficiency improvement towards indoor navigation using a hybrid 

method which combines multiple technologies to cover up the downsides of the 

different approaches towards indoor navigation.  

A trilateration-based solution works exactly like a conventional GPS system, 

which uses 3 or more Wi-Fi signals to find the location of the person. The 

downside to this approach is that Wi-Fi signal strength is prone to a lot of noise 

and/or error by nature and requires that we know the position of the Wi-Fi nodes 



17 
 

beforehand for it to work. Therefore, it is unusable in places where one does not 

have the node locations. Such an approach reaches room level accuracy as 

shown by (Chen, Zhang and Xue, 2018). 

A study done by (Moghtadaiee and Dempster, 2014) showcased a fingerprint-

based approach that used a K-nearest neighbour approach for indoor localization 

using FM (Frequency modulation radio waves) as an alternative to Wi-Fi based 

positioning system. This approach also added a signal strength compensation to 

account for the fluctuations and clustering to reduce errors. The combination of 

the K-nearest neighbours and Bayesian probability working simultaneously 

showcased a significant improvement towards indoor localization. While novel in 

its approach, the use of FM signals for indoor positioning isn’t readily available 

as a standard compared to Wi-Fi which can be found in all mobile phones and 

poses as a challenge for integration and adoption. 

Striving toward accuracy in indoor positioning using Wi-Fi, the TRIPS (time-

reversal indoor positioning system) algorithm was proposed by (Wu, 2014). This 

approach assumes channel reciprocity and channel stationarity (forward and 

backward links of the channel are highly correlated and the channel impulse 

response should be stationary for at least one probing-and-transmission phase). 

While the above method focused on mitigating residual timing and frequency 

synchronization error, requires devices to support multiple frequency bands and 

which support sophisticated Wi-Fi hardware that are also capable of capturing 

detailed channel information. The dependence on the availability of the 

bandwidth also adds an additional layer of complexity. While showing promising 

results, the reliance on sophisticated hardware and setup makes this another 

approach that’s limited by the existing hardware in standard public buildings, and 

consumer devices.  

Pedestrian Dead Reckoning (PDR) takes advantage of the additional inertial 

sensors that are readily available in smartphones to estimate the relative and 

absolute position of a target by analysing the acceleration and direction data. 

Step sizes, lengths and directions are the prime estimates using this data; but 

magnetometer and gyroscope data can be added to make PDR give reliable 

estimates of position over short periods, provided the initial position estimate is 

available. The error accumulation and the mitigation methodologies are studied 
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in the study by (Ehad A, et al, 2013) whereby a self-resetting algorithm is 

proposed that aims to minimize the error accumulation in indoor navigation 

systems involving vehicles. While showcasing promising results, doesn’t directly 

address pedestrian tracking for indoor navigation and is aimed at vehicles in a 

2D space without any rotations or turns as a proof of concept.  

Other hybrid approaches involving multiple sensors commonly involve the use of 

Bluetooth based beacons which serve as an anchor to reset the calibration of the 

PDR sensors and thereby minimize the accumulated error and improve the 

position estimation accuracy. The study by (Adam Satan, 2018) uses Bluetooth 

beacons placed at known locations to present an indoor navigation algorithm that 

works with the radio waves from Bluetooth transmission. Similar to other studies, 

this study shows shining results, however, is again limited with needing a dense 

network of Bluetooth beacons for comprehensive coverage, which is both costly 

and labour intensive to setup and maintain. 

The proposed UILoc (Unsupervised Indoor Localization) by (Zhang Yi, et all, 

2018) approach is another Hybrid localization approach which uses a PDR 

module to estimate the concurrent locations after an initial location has been set. 

The PDR system consists of: A ‘particle filter’ (PF) module which aims to reduce 

the error in the estimation of step length and direction; a reliable model which 

uses landmarks to correct the location for the PDR system; and a database 

building model which combines all the previous modules to estimate an accurate 

initial position for the PDR system.  

An experiment of walking around a floor which resembles a typical office building 

was conducted and the proposed system was tested against existing methods. 

iBeacons (landmarks for the reliable model) were placed in a uniformly distributed 

pattern around the floor to have a comprehensive coverage of the floor. The test 

results show that UILoc has a mean error of as low as 1.11 m. These results 

suggest that the system is a viable low-cost solution to the localization problem.  

This thesis aims to study the use of a crowdsourced Wi-Fi model that can be 

added on to the PDR based indoor navigation system, with beacons for reference 

position, for position estimation. An experiment is done with ‘known’ locations 

uniformly placed throughout the testing area as the premise. And then a 
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comparative analysis is done to verify the feasibility of using Wi-Fi to improve 

indoor navigation systems at low cost and maintenance, without requiring 

extensive pre-mapping of the floor or having to understand the floor plan 

beforehand. 
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3 METHODOLOGY 

3.1 Least-Squares Regression 

Least-Squares Regression (LSR) is a statistical method for modelling and 

analysing the relationship between variables, particularly useful in 

overdetermined system (Chapra S C et al, 2010). To break this down, an 

overdetermined system is one where the number of observations exceeds the 

number of unknowns, thereby enabling us to derive a model that best represents 

the system. This is done by minimizing the sum of the squares of the residuals 

from the equations, as suggested by the name – least squares. A residual is 

essentially the difference between the observed value and the estimated value 

from the fitting the model. This model is iteratively improved until we end up with 

a value that has the least residual squared. 

𝑎𝑟𝑔 𝑚𝑖𝑛 ∑(𝑅𝑖
2)

𝑛

𝑖 = 1

  

Equation 1 - Least-Squares Regression 

Where 𝑛 is the number of observations, and  

𝑅𝑖 = (𝑑𝑜 − 𝑑𝑒) 

Equation 2 - Least-Squares Residual 

Where 𝑑𝑜 is the observed data and 𝑑𝑒 is the estimated data.  

𝑑𝑒 =   𝑓(𝑥 )  

Here, ‘𝑓(𝑥 )’ is a function of the coordinates, that represents the 

distance/dissimilarity between the coordinates. The full model along with how 

distance/dissimilarity is calculated will be detailed later in the specific sections. 

In simple terms, Least-Squares regression attempts to find a line that would best 

represent a set of data points. For example, imagine trying to plot down the 

number of crops yielded on a graph against the amount of fertilizer used. Least-

Squares regression would help us draw a line that best represents this dataset. 

The key part here is the ‘over-deterministic’ nature of this system. We are trying 

to identify the correlation between the number of crops yielded with respect to the 
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amount of fertilizer used, so a straight line. A linear line has 2 unknowns, namely, 

the slope and the intercept. But on the other hand, we have 100s of observations 

that we have plotted down in the graph, thus making it an ‘over-deterministic’ 

system. The benefit of having such a system is that it improves the accuracy and 

reliability of the system.  

Residuals as already mentioned are the differences between the observed value 

(datapoints in the graph) and the estimated value (the value that is predicted by 

our linear line). Minimizing the overall residuals ensures that our model is as close 

as possible to the originally observed data. In the case of Least-Squares 

regression, we aim to minimize the sum of the squares of these differences to 

find the best fitting line/curve. 

Having established a mathematical relationship between the Wi-Fi fingerprint 

dissimilarity and the real-world distance through Least-Squares Regression, the 

model can be used to predict future values within the system; to estimate the real-

world distance from Wi-Fi fingerprint dissimilarity data, and vice versa (Evennou 

F et al, 2006).  

For the purposes of this thesis, the use of Least-Squares Regression comes in 

two stages (Zhuang, Y. et al, 2015). The first stage where we try to find a 

correlation between the dissimilarities of Wi-Fi signal strengths from two 

timestamps and the real-world distances between the two Access Points. The 

second stage is to use Least-Squares regression to determine the correlation 

between the real-world distance between two points and their real-world 

coordinates/locations. The process of how this is done will be explained in the 

following sections. 

3.1.1 Application within the thesis 

In this study, given the number of observations for the dissimilarities in 

fingerprints at different timestamps far exceeds the number of actual timestamps, 

we can formulate a model that represents the mathematical relationship between 

the Wi-Fi fingerprint dissimilarity with their respective real-world Euclidean 

distances (Li W et al, 2015). To briefly touch upon the number of observations, 

essentially, for each timestamp that we record the Wi-Fi fingerprint data at, we 
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have Wi-Fi signal strengths of all the available Wi-Fi access points at that 

location. Given this information, we can find the dissimilarity of the Wi-Fi 

fingerprints between any two timestamp locations. For the sake of convenience, 

the data-recording that is captured at the timestamps will be referred to as 

‘observations’ in this thesis. The second set of use comes in the form of 

estimating the cartesian coordinates (location) of these observations using the 

distance between the observations.  

3.1.2 Wi-Fi fingerprint dissimilarity to Euclidean distance 
modelling 

The Wi-Fi fingerprint dataset that is recorded has the Wi-Fi RSS (Received Signal 

Strength) values for all the Access Points (Wireless routers that serve as a Wi-Fi 

transmitter) that are within range of the location. In a general case, in a public 

space such as a mall, it is typical to have quite a lot of Wi-Fi APs (Access Points) 

within range, and not all the APs are generally within range. So, to ensure a 

proper Wi-Fi fingerprint dissimilarity is established, the dataset has to be pre-

processed to allow us to calculate the differences between the different RSS 

values.  

Within the software MATLAB, all the information is stored in the form of a ‘Matrix’. 

A Matrix is a mathematical data-representation system where we have multi-

dimension arrays holding the data-points. In case of a 2-dimensional array it 

would be synonymous to something like a table; where we have the data-points 

organized under a set of rows and columns. As for the data from the study, a Wi-

Fi fingerprint would be the array of all the RSS values from every Access Point 

within range. And the dataset would be a matrix with the Wi-Fi fingerprint data for 

each timestamp in the data recording.  

Fingerprint Euclidean distance estimation. 

Euclidean distance is the distance between two points in the Euclidean space. 

And since the height of the location is not of concern, the coordinate system in 

2D plane is sufficient. The distance between two points in the 2D Euclidean space 

can be calculated with the Euclidean distance formula. 
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1,2 = √(𝑥1 − 𝑥2)2  + (𝑦1 − 𝑦2)2    

Equation 3 - Euclidean Distance in two dimensions 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒1,2 represents the distance between the coordinates at timestamps 1 and 

2, and 𝑥1 , 𝑥2, 𝑦1 and 𝑦2 are the x-coordinate and y-coordinate values at the 

timestamps 1 and 2 respectively. 

To calculate the pair-wise distance between the different 

timestamps/observations, the function pdist from MATLAB was used. This 

calculates the pair-wise Euclidean distance between each pair in the dataset. 

Wi-Fi fingerprint Dissimilarity 

For the purposes of this study, we define the ‘dissimilarity’ between Wi-Fi 

fingerprints as the pair-wise distance/dissimilarity between the two Wi-Fi 

fingerprints. The pair-wise dissimilarity here is defined as the average dissimilarity 

of the RSS values between two Access Points at two different timestamps, and 

can be defined as follows, 

𝑑𝐹1 ,𝐹2 = √∑(𝑅𝑆𝑆𝑖,1 − 𝑅𝑆𝑆𝑖,2)
2

𝑛

𝑖 = 1

2

 

Equation 4 - Wi-Fi fingerprint dissimilarity definition 

 Where 𝑑𝐹1,𝐹2  is the dissimilarity between the fingerprints 𝐹1 and 𝐹2 which 

are the Wi-Fi fingerprint values at timestamp 1 and 2 respectively. 𝑛 represents 

the total number of access points and 𝑖 is the 𝑖 − 𝑡ℎ access point. And 𝑅𝑆𝑆𝑖,1 and 

𝑅𝑆𝑆𝑖,2 represent the RSS (Received Signal Strength) values of the 𝑖 − 𝑡ℎ access 

point at timestamps 1 and 2 respectively. For each fingerprint pair, the RSS 

values from the Access Points are only considered when there is an RSS value 

from both the fingerprint locations.  

The equation is a modified version of the Euclidean distance formula, where the 

different access points serve as anecdotes to the different axes that are 

computed in the distance formula. To calculate this in MATLAB, like in the 

Euclidean distance case the in-built function of pdist is used, which returns an 

array of the pair-wise distances between the pairs of fingerprints in the dataset.  
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The output from the function pdist is a shortened or condensed version of the 

pair-wise distances. Since the distance between two points is the same 

whichever direction, we look at it, the information regarding distance between 

points 1 and 2, and points 2 and 1 are just stored once in the array. However, for 

compatibility and better visualization we convert this to a full matrix using the 

function squareform from MATLAB. This converts the pair-wise distance array 

from pdist into a matrix that contains the pair-wise distance between the different 

data pairs.  

Now that all the data has been collected and processed for curve fitting, the next 

step is to choose the type of curve with which the data is fit. A quadratic curve 

was selected in this example to better capture the spread of the points in the 

graph.  

 

Figure 1 Quadratic fit for Wi-Fi dissimilarity vs distance. 

Having collected the real-world distance between the different points and having 

calculated the dissimilarity between the said points, a curve fit can be made 

between them. For the study, a linear fit with a lower limit of 0 since the scalar 

distance between two points cannot be negative. 

The curve fit used in this study is given by the equation, 

𝑓(𝑥) = 𝑚𝑎𝑥(0 ,𝑚 ⋅ 𝑥 + 𝑐) 

Equation 5 Distance Dissimilarity fit equation 
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Where 𝑓(𝑥) represents the distance estimate between two fingerprint pairs. 

Where the equation  𝑚 ⋅ 𝑥 + 𝑐 denotes the line fit, of slope m and intercept c. The 

function follows the slope for the distance estimate while maintaining a lower limit 

of 0. This is done to ensure that the dissimilarity estimate is kept positive. 

Fitting a curve over the whole dataset yields a graph like this, 

 

Figure 2 Least-Squares fit over Wi-Fi fingerprint dissimilarity and Real-World Euclidean Distance. 

The fit model can then be used to interpret the distance estimate from a pair of 

Wi-Fi fingerprints. The data from Inertial sensors such as accelerometers and 

gyroscopes are recorded along with the RSS data at proper timestamps. This 

distance estimate for the distance between two fingerprint pairs is then 

augmented with data from the Inertial Sensors on the phone (PDR). When 

augmenting the distance estimate from the curve fit with the distance estimate 

from the Inertial Sensors, an individual set of weights is added to each fingerprint 

data. The different types of weights that were added and their effects will be 

discussed further in the study.  

3.1.3 Cartesian coordinates estimation 

With the mathematical model correlating the Wi-Fi fingerprint dissimilarity and 

Euclidean distance devised, the next step is to use Least-Squares Regression to 

Figure  SEQ Figure \* ARABIC 2.      Curve 
fitting of Wi-Fi fingerprint data 
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map the pairwise distance values to specific coordinates in the cartesian system. 

Assuming that the information on some coordinates is available, for instance the 

starting location, or some landmark location. The process is designed in such a 

way that this is accounted for. To allow for known locations and coordinate points, 

the Least-Squares based regression is split into two parts. The first set would 

account for the known values, while the second would be the distance estimation 

using PDR (Pedestrian Dead Reckoning) and Wi-Fi fingerprint data.  

The coordinates in the 2D Euclidean space can be represented in vector form as 

shown below, 

𝑥 =  [𝑥1, 𝑦1 …𝑥𝑛, 𝑦𝑛]
𝑇 

Equation 6 - Estimated Coordinates vector in MATLAB 

Here 𝑥 represents a vector (of size 2n by 1) which contains the coordinates (𝑥1, 𝑦1, 

…𝑥𝑛 , 𝑦𝑛) and n represents the number of fingerprints. These coordinates 

represent the corresponding x and y coordinates of the fingerprint (𝑥1, 𝑦1 

represent the x and y coordinates of the first fingerprint, etc). 

The objective right now is to estimate and figure out the coordinate values (𝑥) 

given all the information that is available. To allow for leveraging known 

points/coordinates, the first model can be modelled as  

𝐴1𝑥  =  𝑏1
⃑⃑  ⃑ 

Equation 7 – System Equation for known coordinates model. 

Where 𝐴1 is a design matrix of size 2n by 2n (n is the number of fingerprints) that 

defines which points that are known, and 𝑏1
⃑⃑  ⃑  is the observation vector of length 

2n which holds the known coordinate values.  

The second part of the model uses the information based on distance between 

fingerprints to find estimate the coordinate values. To recall equation 3, the 

Euclidean distance between two fingerprints can be defined as such following the 

Euclidean distance formula. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2  

+ (𝑦𝑖 − 𝑦𝑗)
2 
   

Where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 represents the magnitude of the distance between a pair of 

fingerprints (i, j), the x and y coordinates of those fingerprints are represented by 
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𝑥𝑖 , 𝑦𝑖 and 𝑥𝑗 , 𝑦𝑗 respectively. This distance equation can be further simplified to 

make it easier for computation by taking vectors into use as shown below, 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗 =  √(𝑥𝑖 − 𝑥𝑗)(�⃗�𝑖 − 𝑥𝑗)′ 

Equation 8 - Simplified Euclidean distance equation 

Here, the distance between the fingerprints i and j can be defined as the dot 

product of the vector (𝑥𝑖 − 𝑥𝑗) with itself, where 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 are the cartesian 

coordinates of the fingerprints at positions i and j respectively. (𝑥𝑖 − 𝑥𝑗)
′ is used 

to denote a transpose of the vector, which is done to enable multiplication 

between the two vectors. The distance estimates are obtained from a 

combination of PDR data and the Wi-Fi fingerprint dissimilarity information as 

shown in the previous section.  

𝐴2𝑥  =  𝑓(𝑥 )  =  𝑏2  = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑗   

Equation 9 – System Equation for distance model. 

Equation (7) can then be written as shown in Equation (8) where 𝑏2 is the 

observation vector of the distance between the fingerprints i and j, and 𝐴2 is the 

design matrix that corresponds to the distance model. 

Given the two equations (6) and (8), Least-Squares regression can be employed 

to minimize the residuals in them to estimate the coordinates of the fingerprints 𝑥 

like shown here, 

𝑅1 =  𝑏1
⃑⃑  ⃑ −  𝐴1𝑥  

𝑅2 =  𝑏2 −  𝑓(𝑥 ) 
Equation 10 Residual equations 

Here, 𝑅1, 𝑅2 are the residuals from the two equations (6) and (8) that define the 

model chosen to estimate the indoor coordinates using Wi-Fi fingerprint data and 

PDR information.  

The objective of using Least-Squares regression is to minimize the residuals by 

iteratively modifying the variables. This is done by starting with an initial guess 

for the variables (𝑥), and then observing the difference between the observed 

values (𝑏1
⃑⃑  ⃑) and (𝑏2) against the model estimates (𝐴1. 𝑥) and (𝑓(𝑥 )) respectively, 

and then adjusting the coordinate estimates (𝑥) iteratively. For the sake of 
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simplicity, the standard starting value of 0 is chosen for all the coordinates in 𝑥. 

A new set of guesses for the values of the coordinates are set to find the new 

residuals. And this is repeated until the residuals are reduced.  

Least-Squares Regression is done through MATLAB, which also allows for 

weights to be assigned, allowing for even more nuanced control over the model. 

Incorporating weights into the model gives more control by adjusting the 

importance of certain residuals based on confidence levels, data reliability etc 

(MATLAB, 2024).  This is important in making sure that the known values have 

strong weight so that the information such as the starting location or known 

landmarks are used effectively. 

3.1.4 Proof of concept – One-dimensional case 

To demonstrate the credibility of the proposed algorithm, let’s simulate a small 

dataset and then estimate the coordinates of the simulated points. Let the 

coordinates of the points be (1, 2, 3, 4 𝑎𝑛𝑑 5). To recall the least-squares model, 

the equations (6) and (8), 

𝐴1𝑥  =  𝑏1
⃑⃑  ⃑ 

𝐴2𝑥  =  𝑏2 

Combining these two equations, we get 

[
𝐴1

𝐴2
] 𝑥 = [𝑏1

⃑⃑  ⃑

𝑏2

] 

Equation 11 Least-Squares Regression Model 

In-case of the demo where there’s only one dimension, the distance function can 

be written as, 

𝑓(𝑥1,2 )  =  |𝑥1 − 𝑥2| 

Where 𝑓(𝑥1,2 ) represents the distance between the coordinates 𝑥1 and 𝑥2. 
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⟹ 𝐴2𝑥 =  𝑓(𝑥 )   =  

[
 
 
 
 
 

|𝑥1 − 𝑥2|

|𝑥1 − 𝑥3|
.

|𝑥2 − 𝑥3|
.

|𝑥𝑛−1 − 𝑥𝑛|]
 
 
 
 
 

 

Equation 12 DEMO 1D distance equation 

Here, 𝑓(𝑥 ) is the pair-wise distance between the coordinate pairs of the vector 

𝑥 and n is the number of coordinates in the coordinate vector. 

Let’s define the vector 𝑥 as the vector holding all the coordinate values that we 

want to estimate with Least-Squares Regression, 

𝑥 =

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

 

Equation 13 DEMO x vector 

For the sake of this study, let’s assume that the starting coordinate value is 

known, then following the model that defines the coordinates in equation (6), we 

get, 

𝑏1
⃑⃑  ⃑ = [1] 

Equation 14 DEMO b1 vector 

𝐴1 = [1 0 0 0 0] 

Equation 15 DEMO A1 Matrix 

Given that we know the distances between each point, which is kept at a constant 

1, and this being a rudimentary case, the distance vector 𝑏1could be simplified to 

hold only the distance between each consecutive point. 

𝑏2  =   [

1
1
1
1

]   

Equation 16 DEMO b2 vector 

Therefore, the matrix 𝐴2 must be constructed in such a way that we are able to 

define the function that estimates the distance between consecutive points. This 
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can be done by assigning the main diagonal to the value of -1 and then the 

elements above it with the value of 1. As shown by the matrix 𝐴2 here, 

𝐴2  =   [

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

] 

Equation 17 DEMO A2 Matrix 

Substituting the matrices and vectors 𝐴1, 𝐴2 and 𝑏1, 𝑏2and 𝑥 into equation (11), 

the final model would be, 

 

[
 
 
 
 
1 0 0 0 0

−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1]

 
 
 
 

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

 =  

[
 
 
 
 
1
1
1
1
1]
 
 
 
 

 

Solving this with Least-Squares Regression in MATLAB, we get, 

𝑥 =  

[
 
 
 
 
1
2
3
4
5]
 
 
 
 

 

Which is the initial set of coordinates that we started out with. The estimate 

coordinates can be plotted against the original coordinates as seen in the 

following graph, 

 
Figure 3 DEMO Actual vs Estimated Coordinates plot. 

In case of more complex scenarios, all the information that is available should be 

used. For example, in case the coordinates of the points are assumed to be, (1, 

2, 1, 2, 1) instead of the one in the DEMO, (1, 2, 3, 4, 5), then the full set of 
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distances from the pair-wise distance equation might need to be calculated as 

shown in equation (12) for accurate estimation. 

3.1.5 Weighted-Least-Squares-Regression 

With the Least-Squares Regression method demonstrated for the one-

dimensional case, the next step is to ensure that weights are adjusted to make 

sure that information with different confidence levels are accounted for (Z Zeng 

et al, 2020). In the model that is chosen for the study, there are two elements. 

The first element poses the direct coordinate values, and the second element 

being the model formed through distance estimates between fingerprints. Since 

the first part of the model is defined in such a way to enable having known 

coordinates, values from the first part of the model would need to be assigned 

100% confidence levels.   

In this study however, getting the perfect blend of weights was not prioritized as 

the main goal of the study is to study the viability and efficacy of using Wi-Fi RSS 

value supported in-door navigation system. However, a weight system is 

implemented in such a way that Wi-Fi fingerprint RSS dissimilarities and the PDR 

distance information between two fingerprints that are of high values get a lower 

weight, compared to less dissimilar Fingerprints, or closer points.  

To account for the two models in the Least-Squares model, two types of weights 

are added to the model. A uniform weight of 1 is set for the known coordinate 

values from part one of the model, and a variable weight is chosen for the Wi-Fi 

fingerprint dissimilarity model. A linear scaled variable weight is chosen for the 

weights of Wi-Fi fingerprint weights. A comparison between the linear system for 

weights and the quadratic system of weights was also done to establish a crude 

estimation of how effective a linear weight system works in case of the Wi-Fi 

fingerprint dissimilarity weights in the Least-Squares model. 
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Weights Explanation 

To recall the residual equations (9), 

𝑅1 =  𝑏1
⃑⃑  ⃑ −  𝐴1𝑥  

𝑅2 =  𝑏2 −  𝑓(𝑥 ) 

 

The goal of LSR is to minimize the sum of the squares of these Residuals, a 

weight can be added to the equation to better control the effectiveness of each of 

the residuals. As mentioned before, the first part of the model is given a uniform 

weight of 1, while the second part of the model is given a linear scale variable 

weight. Adding weights would make the equations as follows, 

𝑊1𝑅1 =  𝑊1(𝑏1
⃑⃑  ⃑ −  𝐴1𝑥) 

𝑊2𝑅2 = 𝑊2( 𝑏2 −  𝑓(𝑥 )) 

Equation 18 Weighted Least-Squares Equations. 

Where 𝑊1and 𝑊2 represent the arbitrary weights that were selected for the model. 

The values for the weights are selected through empirical data of running 

simulations in MATLAB. 

𝑊1 = 𝑜𝑛𝑒𝑠(𝑛𝑢𝑚𝑒𝑙(𝑏1), 1); 

 

The equation above is the MATLAB code that was used to represent the weights 

for the known coordinates. ‘ones’ is an in-built function in MATLAB that allows us 

to make a matrix of 1s of the size provided. ‘numel’ is the in-built function that 

provides the length of the matrix that was given as the argument to the function. 

In this case, this returns a vector of 1s of the length of the matrix 𝑏1, which is the 

list of the known coordinates. 

𝑊2 = 𝑚 ⋅  𝑏2 +  𝑐;  

 

And the above equation represents the weights for the model representing the 

distance/dissimilarity between Wi-Fi fingerprint pairs. This follows the model of a 

linear system with a slope (m) and intercept (c), with b2 being the observed 

dissimilarity/distance values.  
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Weights Demo 

To demonstrate the importance of having weights and to serve as a proof of 

concept, the following graphs were made both with the same data, but one having 

a weighted Least-Squares Regression while the other doesn’t. The data used in 

this section is the same data that was collected as in the main dataset for this 

thesis. It was recorded using Xperia X as the mobile device to grab PDR 

information and Wi-Fi fingerprint data. And an XSENS mTW IMU to collect the 

more precise PDR information to serve as the reference data. The data collected 

is from the corridors intersecting the ‘Sähkötalo’ and ‘Rakennustalo’ buildings on 

the second floor in Tampere University. This will be explained in more detail later 

33 in the data collection section of the thesis. The information given in both cases 

are all the actual expected coordinates and Wi-Fi fingerprint dissimilarities for 

every pair of fingerprints. The expected resulting behaviour is that every 

fingerprint coordinate estimate is correct. Given that the expected coordinates 

are given as an input, the output should be the same. 
 

 
Figure 4 Coordinates estimation without weights. 

In the previous figure (5), a Least-Squares estimate was made without weights, 

as seen above. Even with the known coordinates already provided in the dataset, 

the results have a mean error of over 5 meters. Now to add weights into the 

equation. As mentioned before a uniform weight of one is added for the first 

model, and a linear scale weight is added to the second model. 
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Figure 5 Coordinates estimation with weights. 

As seen in the figure above, with weights added, the information from the known 

coordinate values is given 100% confidence and the result is as expected, with 

all the estimates being the correct estimates. 

 

Final Least-Squares Equation 

Finally, the Least-Squares algorithm is employed to estimate the coordinates and 

distances by minimizing the weighted sum of the squared residuals. 

𝑊1𝑅1 =  𝑊1(𝑏1
⃑⃑  ⃑ −  𝐴1𝑥) 

𝑊2𝑅2 = 𝑊2( 𝑏2 −  𝑓(𝑥 )) 

Re-calling the Weights equations (18), the idea is to find the argument which 

minimises the Regression from the two equations. This can be formulated as, 

𝑥 =    arg𝑚𝑖𝑛 ‖
𝑊1(𝑏1

⃑⃑  ⃑ −  𝐴1𝑥)

𝑊2(𝑏2 −  𝑓(𝑥 ))
‖

2

2

 

Equation 19 Least-Squares Regression Equation 

This allows for incorporating weights to adjust the influence of different residuals 

based on the confidence levels and data reliability. 
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3.1.6 Initial Estimate selection 
A key part of Least-Squares regression is the initial estimate selection. To 

mitigate the risk of poor convergence, which could lead to suboptimal estimation 

results, the known points are employed as initial estimates for simplicity and 

reliability. However, utilizing the general area of the building could also serve as 

a robust estimate, closely approximating the dataset's spatial median. Using the 

origin (0,0) as an initial estimate, however, is to be avoided due to its potentially 

poor convergence outcomes. Although not explicitly demonstrated in this study, 

an alternative approach could involve averaging the coordinates of the Access 

Points within the building. This is theoretically sound as it positions the initial 

estimate at a central point relative to the spatial distribution of the dataset, thereby 

enhancing the likelihood of achieving more accurate regression outcomes. 

3.2 Filtering the dataset 

The downside of both PDR based distance estimation and that of Wi-Fi fingerprint 

dissimilarity is that they both are prone to low accuracy in their own ways. PDR 

information accumulates error over time and is not very accurate over long 

distances. Especially in the case of using a mobile PDR data where the user 

might not have a controlled position of the phone, leading to even more errors 

being added over time. This will be explained in more detail later in the thesis. 

Wi-Fi fingerprints on the other hand are susceptible to obstacles and lose their 

signal strength over heavily. This would lead to cases where the Wi-Fi access 

points are close in geometry, but due to the interference from other signals and/or 

the obstacles in between, it loses its signal strength. These pseudo-weak signals 

pose for more noisy data to be added to the model. To make good use of the data 

without adding too much noise, it is necessary to not only choose the weights 

carefully as shown in the previous chapter, but also to only use reliable 

information. Not all the information from the Wi-Fi fingerprint pair-wise 

dissimilarity information is equally useful. In this chapter, an algorithm to make 

the best out of this situation is presented and tested.  

Wi-Fi fingerprint dissimilarity is used here to anchor and filter out the fingerprints 

that were too dissimilar from each other. To do so, a threshold is set, relative to 

the highest dissimilarity between Wi-Fi fingerprint pairs in the dataset. And all the 
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fingerprint pairs that are more dissimilar than this threshold is eliminated from the 

dataset. This method theoretically would mitigate the issue of poor or unreliable 

information from skewing the estimation results.  

 

3.3 Data collection 

● Wi-Fi - The common name for the set of protocols used for local area 

networking and internet access. Wi-Fi typically uses the 2.4 gigahertz 

and 5 gigahertz frequency bands. These bands can further be divided 

into multiple channels (IEEE, 2021). Networks can share channels but 

only one transmitter can locally transmit on a channel at any moment in 

time. Wi-Fi works best for line-of-sight use, the strength of the signal 

decays with distance and obstacles. 
● Wi-Fi Fingerprint data – Wi-Fi Fingerprint data is the data that holds 

information about the Wi-Fi signal strengths of every access point that 

is visible or detectable at any given location. Access points are routers 

or Wi-Fi bridges that emit Wi-Fi signals across the building. The 

collection of the strength of the Wi-Fi signals from each access point at 

the place of measurement together is the Wi-Fi fingerprint data.  
The objective of collecting the Wireless signal strength data is to provide 

input data for the algorithm that is tested and proposed in this thesis. 

The algorithm proposed requires distance estimates between the point 

of measurement and the sources (Access points). The Wi-Fi signal 

strength measured in decibels is used as the distance from the point of 

measurement and the source in the study. 

● PDR Data – PDR (Pedestrian Dead Reckoning) data is the method by 

which previously known location and the inertial information 

(Acceleration and Orientation) are used to estimate the current location 

of the person/sensor/device. The speed and direction at which the 

object is moving is used to estimate the position of the object after a 

certain amount of time has passed. To calculate the Dead Reckoning, 

we require the inertial information (Acceleration and Orientation) of the 

device. This can be measured using Accelerometers and Gyroscopes. 
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While a person that has the sensors moves and changes direction, the 

inertial sensors capture the acceleration and orientation of each step. 

This however is affected by slight deviations in measurement. Be it 

sensor inaccuracy, human gait irregularity (Walking pattern), or even 

environmental factors might introduce an error in the dead reckoning. 

Since each new step relies on the results from the previous step for the 

new location, over time, the error accumulates and inevitably drifts off 

from the actual location. Therefore, PDR information is measured in 

shorter time frames. This ensures that a recalibration of location data is 

done during each measurement frame, minimizing the impact of the 

error accumulated throughout. 

3.3.1 Location 
The Wi-Fi fingerprint data that is being used in this thesis was collected primarily 

on the campus of Tampere University, Hervanta campus. The readings of Wi-Fi 

fingerprints were recorded along the corridors intersecting the ‘Sähkötalo’ and 

‘Rakennustalo’ buildings on the second floor.  
 

3.3.2 Collection tools and method 
To gather fingerprint data (A Wi-Fi fingerprint is the list of all the Wi-Fi access 

points along with their signal strengths at any given time and location), an Android 

phone (LG Nexus) along with an in-house Android application provided by HERE 

Technologies was used. The application tracks the Wi-Fi access points list, with 

their corresponding signal strengths, the GPS values, and the sensor values, 

namely Accelerometer and Gyroscope () measurements were recorded. As for 

reference values, an IoT (Internet of Things) system (Minnowboard) with an MTw 

(XSENS) Inertial measurement unit was used. The objective of this setup was to 

collect more accurate reference values for the inertial data (Accelerometer and 

Gyroscope) 
 

 

● Accelerometer – An accelerometer is a sensor that measures the relative 

acceleration. Relative acceleration is the relative acceleration while 
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assuming the sensor is at rest. The acceleration of the system around the 

sensor, with the sensor being the point of reference; the sensor is at rest. 

Such a frame of reference is also called a ‘rest frame’. Typical 

accelerometers that are used in mobile phones are MEMS 

(Microelectromechanical systems) accelerometers. They are small 

electromechanical devices that can be embedded in an electrical system. 

Accelerometers of such type of function by having a mass that is 

suspended in between two capacitor plates; and the deflection of the 

mass, which results in a variation in the capacitance is then used to 

calculate the acceleration of the module. Such accelerometers measure 

the acceleration in one axis. Therefore, to compensate for the lack of 

acceleration data on the other axis, a three-axis accelerometer is used. A 

three-axis accelerometer is nothing but a combination of three 

accelerometers embedded together, each measuring the acceleration in 

one of the axes. Hence, giving the acceleration of the sensor in the three 

axes (x, y and z axes). 
● Gyroscope – A gyroscope is a sensor that measures the angular 

momentum. In other words, the gyroscope measures the speed at which 

the sensor is rotating or spinning about a given axis. The gyroscopes that 

are embedded within a smartphone are MEMS (Microelectromechanical 

systems) gyroscopes. These gyroscopes, sometimes referred to as gyro 

meters, are miniature versions of the prominent types of gyroscopes. One 

common type of gyroscope that can be found embedded in IMUs and in 

smartphone sensor modules is a piezo-electric gyroscope. Piezoelectric 

gyroscopes have a piezoelectric mass that vibrates, and then the deviation 

caused by the Coriolis effect is measured. Coriolis effect is the deviation 

of an object from its trajectory that is caused by the presence of an angular 

rotation in the system. Like the embedded accelerometers mentioned 

above, this measures the angular momentum in one axis. Therefore 3 

different gyroscope modules are coupled together to gather the angular 

momentum in the three axes (x y and z axes). 
● GPS Receiver – A GPS (Global Positioning System) receiver is a device 

that receives the transmission that is sent by GPS satellites around the 

globe. Though it originated with military applications in mind, it has since 
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been widely used for civilian purposes. GPS receivers depend on data 

from a constellation of satellites to determine the current position. Each 

satellite in the constellation has an atomic clock (synchronised with other 

satellites and ground station clocks). Given the constant speed of radio 

waves, the time delay between transmission from satellites. 
 

● IMU – An Inertial measurement unit (IMU) is used to detect linear 

acceleration with a combination of accelerometers and rate of rotation with 

a (or more) gyroscope. It can also include a magnetometer (like in aircraft 

navigation applications) for heading reference. Usually, the IMU has 

accelerometers, magnetometers, and gyroscopes for each of the pitch, roll 

and yaw axes. A magnetometer essentially provides a sense of direction 

about the earth’s magnetic north. The combination of the three sensors 

makes IMU a comprehensive suite when it comes to motion detection and 

navigation. 
 

● Wi-Fi Receiver – A Wi-Fi (Wireless Fidelity) receiver is a device that is 

designed to detect and decode signals that are transmitted through Wi-Fi. 

It operates within the Radio frequency spectrum, typically at 2.4GHz or 

5GHz, providing a wireless network for data exchange between devices 

and network systems. It consists of an antenna and a receiver, the antenna 

is responsible for capturing the radio waves transmitted by routers or 

Access Points, and then the receiver itself is responsible for converting 

this analogue data into digital information which can then be used for 

various network/data tasks. This ubiquitous sensor which is present in 

almost all mobile devices in the modern world, presents a great way to 

augment the accuracy of position determination. This can be achieved by 

querying information such as the MAC address and the signal strength of 

the wi-fi signal in each receiver. 
 

Data collection was done in small portions. The application was switched on to 

start recording, held in hand at a steady height while taking a short straight walk 

along the corridors between the buildings Sahkötalo and Rakennustalo. Walking 

speed was maintained at a steady speed as well, without any sudden increase 
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or decrease in speed. The reason for having a steady phone and walking straight 

lines at a steady pace is to have a way to deduce reference data. This will be 

explained shortly in the reference data section. Measurement frequency was 4 

Hertz, or to say each parameter was measured and stored 4 times every second. 

 

The gold standard used as a reference for this research work was the readout 

from the MTw XSENS IMU. This sensor has a dual GNSS antenna, and MEMS 

sensors and utilizes Kalman filtering to provide accurate position, velocity, and 

orientation measurements. 

3.3.3 Collected data preparation. 
The collected data is grouped into two different parts. The first is the Wi-Fi 

fingerprint part which encloses the Access Points list with the signal strengths (in 

dB) for those access points for the location at a given time, and then the PDR 

(Pedestrian Dead Reckoning) data which consists of the sensor data in from the 

mobile phone. This includes the data that is parsed from the accelerometer and 

Gyroscope.  

 
● Wi-Fi fingerprint data – Synchronized to the device clock settings, this 

measurement consists of the Wi-Fi Access points that are visible at the 

location combined with the signal strength of the same. A matrix is then 

made with all the different access points that were discovered throughout 

the course of the measurement as the rows and the number of 

measurements that were taken as the columns are made. For the access 

points that did not have a signal strength strong enough to be detected for 

a given time and location, the signal strength is set to NaN (Not a number) 

through MATLAB.  

● Pedestrian Dead Reckoning data – Also synchronized with the clock, the 

idea behind collecting the accelerometer data and the Gyroscope data 

was to use the acceleration information in the direction of walking to 

integrate and find the distance between two different time stamps. 

Although Newton’s laws can be used to estimate the distance between two 

points of measurement, the accuracy of the estimated distance is not 
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reliable for longer distances. Which is also the reason for not having longer 

measurements. 

3.4 Reference Data and Observed Data 

A reliable set of data that can be used to cross-check the validity of an experiment 

is vital in understanding the extent to which the experiment is a success. 

Therefore, it is crucial to have a dataset that is reliable and has the most accurate 

measurement possible to cross-check the data that is measured through other 

sources in the experiment. For the experiments and the study, measurements 

from an MTw XSENS IMU were used as the base standard for reference data. 

The high precision of this sensor would be monumental towards establishing a 

robust standard for the reference data to validate the experiments of this study. 

 

The experiment had a meticulous setup to provide accurate measurements for 

the study. It was conducted by walking at a steady pace over the short, straight 

corridors. Such a controlled setup helps minimize the variables that could 

otherwise compromise the integrity of the measurements. Choosing to record in 

short bursts instead of long stretches allows us to mitigate the issues of error/drift 

build-up in IMU sensor data. By maintaining a straight path, we ensure a single 

primary direction, avoiding potential errors and complexities raised by the 

changes to the movement direction. Furthermore, the start and end points of the 

recording were carefully chosen to be identifiable real-world positions, such as 

the start and end of a hallway, hence providing a reliable frame of reference to 

calibrate the data while also serving as great anchor points for reference. A 

consistent speed was maintained, to minimize abrupt changes to acceleration. 

This was done so that the location data at any time could then be interpolated by 

using Newton's laws of motion with fewer complications.  

 

During the measurement, apart from the Inertial data from the MTw XSENS IMU 

sensor (serving as reference), the Wi-Fi fingerprint and PDR data from a mobile 

phone (serving as the object for the experiment), the distance walked in the 

corridors and the time it took to walk from one end to another were also 

simultaneously recorded. This comprehensive strategy allows us to collect a 
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multifaceted dataset, at the same time, eliminating differences from having to 

record them individually. Hence maintaining a strong integrity. 

 

Additionally, to ensure the timestamps are synchronized and the different devices 

are in the same temporal framework, a GPS clock was employed to serve as a 

common frame of reference for time. This also gives us the benefit of then 

systematically synchronizing all the measurements from the various devices with 

different recording frequencies without much difficulty. The use of GPS time 

(being independent of the devices themselves) obviates the need for manually 

stitching together the different measurement sets. 

 

The resulting dataset comprises of the reference data from the MTw XSENS IMU 

sensor, the PDR and Wi-Fi fingerprint data from the mobile phone and manually 

marked anchor points of reference, along with the distance between said anchor 

points. This robust dataset will serve as the foundation to validate the experiment 

effectively and accurately. However, before we can compare the reference and 

experiment data, they need to be processed and interpolated. This will be further 

explained in the following sections. 

3.4.1 PDR Data interpolation  
In simple terms, Newton’s laws of motion can be used to estimate the distance 

covered between two timestamps. We calculate the velocity first and then the 

distance. These can be done with the following equations of motion from Newton. 

 

𝑣 =  𝑢 +  𝑎 ⋅ 𝛥𝑡 

𝑠 =  𝑢 ∗ 𝛥𝑡 + 
1

2
⋅ 𝑎 ⋅ 𝛥𝑡2 

where 𝑣 represents the final velocity vector, 𝑢 represents the initial velocity vector, 

𝑎 is the acceleration vector, 𝑠 is the displacement and 𝛥𝑡 is the time. 

Given that we have the acceleration information for the different timestamps, we 

can estimate the velocities for the different timestamps as well, with the initial 

velocity being 0. And then the displacement to find the distance between the two 

timestamps in question. As a demonstration, let’s look at how this is done for a 

demo case in a single dimension, for an object starting from rest. So, the initial 



43 
 

velocity is 0, has an acceleration of 2 units per square second, and a timeframe 

of 0.1 seconds. 

 

𝑢 =  0, 𝑎 =  2, 𝛥𝑡 =  0.1𝑠 

 

Applying this to the displacement equation, we can find the displacement in the 

timeframe, which is the distance covered between the timestamps. 

 

𝑠 = 0 ∗ 0.1 +
1

2
⋅ 2 ⋅ 0.12  = 0.01 𝑢𝑛𝑖𝑡𝑠  

 

In a 3D space, we have different accelerations for the different axes. And we are 

not interested in all the different axes, just the directions that we are walking in. 

 

However, for this thesis, the algorithm, and the interpolation of the IMU inertial 

data to distance were provided by HERE maps.  
 

3.4.2 Reference Data 
The process of compiling the reference data from the MTw XSENS IMU sensor 

can be categorized into a few key steps. The idea is to convert the raw Inertial 

data from the IMU sensors into useful real-world coordinates for each timestamp, 

which would then act as the reference location for said timestamp. 

1. Collecting the Inertial Data - As mentioned earlier in 3.5, the reference data 

was collected using the MTw XSENS IMU sensor while walking a straight 

line, in short bursts. The employment of short bursts for recording helps 

minimize error accumulation and maintain high accuracy. They are 

marked with GPS timestamps for seamless and precise synchronization. 

This provides us with the necessary Inertial data, such as the linear 

acceleration in the different axes and the angular momentum for the 

different axes, stamped with GPS timestamps. 

2. Pre-processing, calculating the Geometric distances - This is the crucial 

step that determines the accuracy of the estimated coordinates. The first 

step is pre-processing the data. This entails correcting the data for sensor 
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drift, filtering out noise, aligning the data, etc to ensure high accuracy. 

Then it can be processed further to get the distance estimates between 

timestamps. Again, as mentioned in the section above, IMU (PDR) data is 

interpolated with Newton’s laws of motion to provide us with the distance 

estimates between time stamps. This was graciously provided by HERE 

maps, and we are left with an array of distances against time stamps. The 

distance estimates are for the distance travelled between the two 

consecutive timestamps. 

3. Transforming into real-world coordinates using Least Squares Regression 

- Using an array of distance estimates, Least-Squares regression is 

applied to accurately interpolate the distances to real-world coordinates in 

the 2D plane. The detailed explanation can be seen in Section 3.1. In 

short, it is a statistical approach to determine precise coordinates by 

minimizing the sum of squares of the differences between the observed 

and estimated values.  

4. Compilation of the Final Reference Dataset - The final reference 

coordinates consist of the estimated coordinates from the Least-Squares 

Regression coupled with the precisely measured start and end points of 

the measurements. These points serve as anchor points having 

predetermined locations which help improve the overall accuracy of the 

dataset. 
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4 COORDINATES ESTIMATION AND COMPARISON 

Assumptions and Crowdsourcing 

Over the course of the thesis and the experiments that have been conducted in 

this study, the Wi-Fi frequency band that is used is limited to the 2.4 GHz 

frequency band. This is done to limit the variables that affect measurements. 

Having multiple different bands of Wi-Fi would add an extra layer of complexity in 

the modelling of Wi-Fi to real-world standardized distance metrics. Different 

bands of Wi-Fi propagate differently, leading to a change in the Wi-Fi dissimilarity 

to real-world distance calculation. To simplify and not have another variable in 

the mix, a singular band of 2.4 GHz was chosen because of its more common 

availability and widespread support for a lot of devices. Another reason for 

selecting 2.4 GHz is its higher range compared to the 5 GHz band at the 

commercial scale. 2.4 GHz having a higher wavelength also means that it can 

penetrate obstacles better, ensuring a longer range, while also providing the 

added benefit of performing better in indoor scenarios which have a lot of 

obstacles such as objects, furniture, people, etc. 

As mentioned earlier in chapter (3.3) about collected data, PDR data is prone to 

error build-up over time. To recall, IMU sensors are prone to deviations from 

sensor inaccuracies, human gait movements or even environmental factors. 

These then affect the distance estimation for that time segment. And since the 

new location estimate depends on the prior estimate, the error propagates to the 

next, growing exponentially. To circumvent this issue, the data could be used to 

estimate the distances in shorter or smaller bursts rather than over longer lengths. 

By doing so the overall error that is accumulated is reduced. Since the recording 

is done in parts, the end points of the recording serve as an anchor to recalibrate 

against. Thereby making the recording as clean as possible. In practice, however 

this needs to be mitigated by other means. Some of the common ways that this 

is accomplished are using Bluetooth beacons, which serve as an anchor point to 

course correct indoor navigation. The study assumes the availability of a sparse 

setup of Bluetooth beacons across the floor to server as a low-cost solution to 

serve as anchor points.  
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The model proposed in the study must be created through crowdsourcing for 

each building to have the expected accuracy suggested in this study. Since Wi-

Fi fingerprint dissimilarities are modelled against real world Euclidean distances, 

and the signal strength of Wi-Fi access points are heavily affected by obstacles, 

having crowdsourced data for a building would potentially achieve better results 

than the model used in the study.  Crowdsourcing of data is the process of many 

people contributing towards the growth of a particular dataset. Typically, the data 

from the users of a service is compiled to form a big dataset, which is often out 

of reach for a single individual or a small team to compile on their own. This could 

be of the form of data being collected consensually in the form of walking around 

the building and marking different places, while recording the Wi-Fi signal 

strength in of all the access points and the PDR information in the process. Like 

how it was described earlier in the study. After the data is collected, it has to be 

processed and modelled to correlate the Wi-Fi fingerprint dissimilarity against the 

real-world Euclidean distances. Once the model is prepared, it can be used to 

estimate the dissimilarity between fingerprints, which can then be used to assist 

in PDR information as explained in the study. In this thesis, however, the 

assumption is that such a crowdsourced dataset already exists and that known 

locations of a few data points (for instance Bluetooth beacons or certain shops in 

a mall) are identifiable.  
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Coordinate Estimation and Comparison 

In this section, a comparative analysis is done for the positioning algorithm with 

and without the aid of Wi-Fi to note the improvement, if any, brought in by using 

Wi-Fi to assist in indoor positioning. All the tests are done with multiple points in 

the dataset being marked as known points to simulate the availability of Bluetooth 

beacons or manually adding landmarks. All the graphs will have a red circle 

marking the original location of the data point, and a blue asterisk to mark the 

estimated point through the study. A line linking both the estimated point and the 

original data point is added to help visualize which data point pertains to which 

actual location. A mean error and a standard deviation are also added to each 

figure to understand the efficacy of the estimation. The mean distance between 

consecutive datapoints is around 3 meters.  

 

The first step is identifying the ideal type of weight for the dataset and the 

parameters for the weights model. This is done through a comparison of two 

models, particularly, the Quadratic model and the Linear model. For the purposes 

of this thesis, finding the best theoretically possible weights was not of priority, as 

much as finding a feasible and reliable way of modelling the crowdsourced 

fingerprint data.  

 

Weights selection. 

The weights for the Wi-Fi fingerprint pairs can be determined from the dissimilarity 

values of the Wi-Fi fingerprint pairs. Two types of scaled weight systems were 

tested, namely a linear scaling weights system and a Quadratic scaling weights 

system. The two weight systems follow the equations, 

𝑊 = 𝑎 ⋅ 𝑥2 + 𝑏 ⋅ 𝑥 +  𝑐 
Equation 20 Quadratic Weights equation. 

𝑊 =  𝑚 ⋅ 𝑥 +  𝑐 
Equation 21 Linear Weights equation. 

Where W is the weight given to the fingerprint pair, and a, b, c, m, and x are 

empirical values that were derived from testing to have the best weights for the 

proposed model. For the purposes of clarity, the values m and c will be referred 
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to as the slope and intercept in the study; since they are the slope and intercept 

in the linear equation defined by them. 

To check how effective Quadratic scaled weights are compared to linear scaled 

weights, the estimated coordinates are plotted against the actual data of the 

coordinates. The mean error and standard deviation can then be used to estimate 

the efficacy of the selected weights. This can then be done iteratively to find a 

good weight for the model with empirical evidence to back it up. For the sake of 

simplicity and reproducibility, the known coordinates are retained at a limited 

quantity. In the test cases to follow, every 4th coordinate value is set as the original 

value to provide a good base of reference. 

 
Figure 6 Linear Scaling weights Demo. 

The picture above shows that the mean error and standard deviation and mean 

error and standard deviation of 3.15 meters and 2.6 meters respectively. This is 

lower than the mean and standard deviation of 5.09 meters and 3.95 meters as 

seen from the figure (3) where no weights were added. The improvement in the 

mean error and standard deviation with weights, while using fewer known points 

given to the model showcases the importance of weights and the effect it has in 

the estimation of the coordinates. For the plot above, the linear scaling weight 

has a slope of 1 and an intercept of 2.  
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Verification against Quadratic scaling weights. 

To verify the validation of using Linear Scaling, a small test was done using a 

Quadratic scaling weight to see its performance against the Linear scaling 

weights. The Quadratic scaling weights follow the same principle as the basic 

Quadratic equation with three variables.  

 
Figure 7 Quadratic Scaling Weights Demo. 

As seen from the graph above the mean error and the Standard deviation for the 

Quadratic scaled weights are 4.59 meters and 4.42 meters respectively. They are 

less accurate when compared to Linear scaling weights which come up to 3.87 

meters and 3.62 meters respectively. 

Looking back at the equation used for the Quadratic Scaling, 

𝑊 = 𝑎 ⋅ 𝑥2 + 𝑏 ⋅ 𝑥 +  𝑐 

 

Where the values for a, b and c are 0.3, 3 and 1 respectively. The values for the 

Quadratic equation were selected the same way as the Linear Scaled weights 

equation, in an iterative manner, minimizing for the lowest mean error and 

standard deviation. 
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Linear Weights slope and intercept selection. 

To find out the best set of weights for the Linear Scaled weights, the slope and 

intercept values were iterated and the whole coordinate estimation was done, to 

find the values for which the mean error and standard deviation is the lowest. This 

can be visualized with a 3D plot for the slope vs intercept vs mean error/standard 

deviation. 

For the purposes of the test, the slope multipliers were iterated from 1 to 10, and 

the intercept values were iterated from -10 to 10. The mean error and standard 

deviation were calculated for each pair of intercept and slope values and then 

plotted in a three-dimensional surface plot as shown below. 
 

 

 
Figure 8 Surface plot for Mean Error. 

The surface plot is shown from the z-axis, along with coloured notes to better 

visualize the Mean error for different values of Slope and Intercepts for the weight 

equation. From the graph it is evident that the slope and intercept with the lowest 

mean error is marked by a slope of 1 and an intercept of 2. To help visualize this 

further, another angle for the surface plot is plotted.  
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Figure 9 Surface plot for Mean error 2. 

Combining the two angles of the surface plot, the optimal weights for the model 

can be seen more clearly. The ideal slope and intercept for the chosen linear 

scaled weights equation is 1 and 2 respectively. 

 

The second is to identify the ideal threshold to filter out less reliable 

distance/dissimilarity data. To identify the ideal threshold for the model, two tests 

are devised. One test is done with just the PDR information for positioning, and 

the other is a PDR-based positioning but with some of the points filtered out with 

the help of Wi-Fi fingerprint dissimilarities. 

As with the other demo tests in the thesis, this is done with the help of limiting the 

information in the dataset and then plotting the estimation results, calculating the 

mean error and standard deviation. In the figure below, the estimation was done 

with just the PDR information and no support from Wi-Fi fingerprint information. 

For the DEMO, every 4th fingerprint’s coordinate is set as a known coordinate 

value for reference, and to help recalibrate the PDR information.  
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Figure 10 PDR information based indoor positioning. 

The mean error while using just the PDR information in this environment turned 

out to be 3.1467 meters. Filtering out some of the fingerprint pair distance 

information in the dataset by setting a threshold based off the Wi-Fi fingerprint 

dissimilarity, the results show a considerable improvement in estimation 

accuracy.  

 
Figure 11 Wi-Fi assisted PDR based indoor navigation. 

Using Wi-Fi fingerprint dissimilarity information to filter out potentially unreliable 

information results in a significant boost to the accuracy of the estimation as can 

be seen from the figure above. This image uses the best threshold that was 
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determined for this dataset. And selecting the best threshold is done iteratively 

like the other sections. Calculating the mean error and standard deviations for 

different thresholds and finding out the best threshold for minimum mean error 

and standard deviation. 

Like in the previous section, this test setup is also done with every 4th point as a 

known coordinate value. Then, the coordinate values are estimated for different 

thresholds iteratively. With the coordinate estimates, the mean error and standard 

deviation for the estimates can then be calculated and plotted in a graph to find 

out the best/ideal threshold for this dataset.  

 
Figure 12 Mean error and Standard deviation at different distance thresholds. 

The graph above shows the relation between setting a threshold to the mean 

error and standard deviation. To calculate the threshold, an arbitrary number is 

iteratively incremented from 0.35 to 1, and then multiplied with the maximum 

dissimilarity from the pair-wise distance matrix. Then each dissimilarity in the pair-

wise distance matrix is compared against the threshold and any dissimilarity that 

is higher than the threshold is filtered out.  

As noticed from the graph, setting a threshold to withhold and filter out the data 

from weaker Wi-Fi signals that result in bigger Wi-Fi fingerprint dissimilarities 

improves the accuracy and reliability of the estimates significantly. The best 

threshold for this model was found to be 45%. The mean error at the given 

threshold was 2.1978 meters with a standard deviation of 1.9797 meters. 
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4.1 Coordinates estimation with PDR information only 

To set a baseline, the coordinates estimation is done through using only PDR 

information, assisted by Bluetooth beacons in a complicated environment filled 

with multiple turns and crossings. The first part is done with just PDR information, 

and no added weights or filtering of data. All the data that is available is used 

directly for the estimation. 

 
Figure 13 PDR only estimation - no weights/filtering. 

As noticed from the image, the points although forming a cohesive set of lines, 

the lack of weights to anchor the points to relevant points in the floor has thrown 

the points out of joint. Now adding the weights back into the model to make sure 

that known points and landmarks are recognized, the mean error should reduce 

considerably, and the estimation would be more in line with the original data. 
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Figure 14 PDR only estimation - With weights. 

Having added weights to give more weight to the known coordinates allows the 

data to be anchored to the actual data points. The Mean error has reduced 

considerable from over 10 meters to just over 3 meters. However, with this 

approach, there’s still information from datapoints that are too far away interfering 

with the final estimation. Adding a threshold to filter out information so that only 

the datapoints that are closer to each other are considered for the estimation, we 

get the following. 

 
Figure 15 PDR only estimation - With weights and data filtering. 
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In the graph above, apart from the weights, a filtering was done to only use the 

data from points that are close to each other. In this case, the information that 

was used is the pairwise distance information between points that are no more 

than 2 timestamps away. Thereby limiting the distance between the datapoints 

and reducing the effects of drift from PDR data. As noted above, the mean error 

shows a significant improvement over the prior estimation where only weights 

were used to estimate the coordinates. 

4.2 Coordinates estimation using Wi-Fi fingerprint data only. 

This section aims to showcase the estimation quality if only Wi-Fi fingerprint data 

was used to estimate the coordinates. The Wi-Fi fingerprint data is first modelled 

to represent the mathematical relationship between the Wi-Fi fingerprint 

dissimilarity and the real-world Euclidean distances. And this information is then 

used to estimate the distance between the fingerprints, which in-turn is used to 

estimate the coordinates of the fingerprints. 

 
Figure 16 Wi-Fi Only estimation with no weights/filtering. 

Using just the Wi-Fi information the mean error from the estimation is 

considerably lower than just using PDR information. However, the error 

magnitude it is still far away from the accuracy that is provided by adding weights 

and filtering to PDR information. 
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Figure 17 Wi-Fi Only estimation with weights. 

Adding weights to the model to anchor the known points in the original position, 

the mean error reduces substantially, but is not as accurate as PDR based indoor 

positioning with weights. The Wi-Fi fingerprint dissimilarity information used in 

this also includes weak Wi-Fi signals which are unreliable. Filtering them out like 

mentioned before in the methodologies section should give better estimation 

result. 

 
Figure 18 Wi-Fi Only estimation with weights and filtering. 

Filtering out the unreliable data from the Wi-Fi fingerprint dissimilarity pairs, the 

mean error in estimation reduces again. From these graphs in the case of using 

Wi-Fi only for estimation, the estimation isn’t as accurate as using only PDR for 
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information. But the main objective of the study is to use Wi-Fi to help with the 

accuracy of PDR based estimation. As noticed from the figure 17, Wi-Fi based 

estimation, even without anchoring with known points provides better results 

compared to using just PDR information without any anchors.  

4.3 Coordinates estimation with PDR and Wi-Fi fingerprint data 

For the final section, all the information that is available is used. Both the 

information about the Wi-Fi fingerprint dissimilarities and the Euclidean distances 

from PDR are used to estimate the coordinates. The distance information from 

PDR is used as the base for estimation, while the Wi-Fi dissimilarities are used 

to filter out the PDR data to support the estimation.  

 
Figure 19 Wi-Fi + PDR with no weights. 

Using Wi-Fi fingerprint dissimilarity information to filter out some of the data from 

the PDR information, the estimation marks a substantial improvement over the 

estimation from just using the PDR information without weights. Compared the 

figure (16), where PDR information with weights and filtering, using Wi-Fi to add 

on to the PDR information provides a slight improvement, even without adding 

weights to known points and landmarks. 
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Figure 20 Wi-Fi + PDR with weights. 

 
Adding weights to the regression for known points, the mean error is minimized 

even more, with an average mean error less than 2 meters.  

 

4.4 Analysis of different scenarios 

The results from the different scenarios can be summarized in a table like in the 

table shown below, 

 

Method of estimation Mean error Standard deviation 
PDR only without weights/filtering 10.0143 m 5.097 m 

PDR only with weights 3.1467 m 2.602 m 

PDR only with weights and filtering 2.1653 m 2.564 m 

Wi-Fi only without weights/filtering 7.5489 m 4.2453 m 

Wi-Fi only with weights 4.1095 m 3.8607 m 

Wi-Fi only with weights and filtering 3.7228 m 3.5579 m 

PDR + Wi-Fi without weights 2.1124 m 2.3614 m 

PDR + Wi-Fi with weights 1.9189 m 2.335 m 
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PDR only estimation  

The high error and variability indicate the significant impact of drift error in PDR-

based estimation. Without any anchoring, the cumulative drift leads to substantial 

inaccuracies, making this approach highly unreliable in complex environments for 

the purposes of accurate navigation. Introducing weights significantly reduces the 

mean error and standard deviation. Anchoring to known coordinates mitigates the 

drift effect by providing reference points that correct the cumulative errors, 

enhancing both accuracy and consistency. Finally, further improvement is 

achieved by filtering out unreliable data. This approach ensures that only high 

quality, closely related data points are used. The combination of weights and 

filtering provides a robust enhancement for using PDR data alone.  

The performance of PDR based estimation will be used as a baseline to evaluate 

the efficacy and improvements brought in by the modelled crowdsource Wi-Fi 

fingerprint data.  

Wi-Fi only estimation 

Wi-Fi only estimation without anchoring is more accurate than PDR due to the 

absence of drift. However, the variability in signal strength due to environmental 

factors still results in considerable errors and inconsistencies. Adding weights 

improves the accuracy and consistency by leveraging known coordinates as 

anchors. This helps in reducing the impact of variable Wi-Fi signal strengths, 

though it still doesn't outperform PDR with weights due to the inherent 

inconsistencies in Wi-Fi signal strengths. And finally, filtering out unreliable data 

points further refines the accuracy, but again the inherent inconsistencies with 

the Wi-Fi signal strengths and unreliability due to external and environmental 

factors limit it to be less accurate than PDR based estimation with proper 

anchoring and filtering. The results show improvement but highlight the potential 

for a hybrid approach to showcase the better navigation system.  

PDR + Wi-Fi estimation  

Adding to the strengths of both forms of estimation, even without weights to 

anchor the known coordinates, the hybrid approach outperforms the individual 

performances of both PDR and Wi-Fi based estimation. The nature of the two 

datatypes used which complement each other help form the robust hybrid system 

with improve accuracy. The addition of weights to the combined approach yields 

better results yet. The PDR data benefits from Wi-Fi’s lack of drift, while Wi-Fi 
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data is stabilized by the more consistent distance estimations from PDR. Using 

Wi-Fi to filter out and use only the most reliable data from PDR shows promising 

results with indoor navigation, while anchoring with known points refines the 

accuracy to create a hybrid system that showcases the benefits of having Wi-Fi 

to augment the PDR based estimation in a practical sense. 

 

Method of estimation Mean error Percentage change against PDR 
PDR only estimation 2.1653 m 0 % (baseline) 

Wi-Fi only estimation 3.7228 m + 71.93 % 

PDR + Wi-Fi estimation 1.9189 m -11.3795 % 

 

From the experiment, and the results, a hybrid approach where modelled 

crowdsource Wi-Fi fingerprint data is used to augment the PDR based approach 

shows promise of viability with an improvement of about 11.38% less mean error. 
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5 FUTURE STUDIES AND EXTENSION 

5.1 Status of the project and future studies 

The status of the project is that a model modelling the mathematical relationship 

between Wi-Fi fingerprint dissimilarity and Euclidean distance to aid in the overall 

accuracy and reliability of a PDR based indoor navigation system. It works on the 

premise that there exists the infrastructure to provide known locations, such as 

Bluetooth beacons placed sparsely across the floor. It employs the distance 

estimation from Wi-Fi fingerprints as a way to identify the best dataset for location 

estimation.  

However, additional new technologies such as Wi-Fi RTT (Wi-Fi Round Trip 

Time) pave the way for a better estimation of Wi-Fi fingerprint dissimilarity and 

could potentially improve upon the benefits of adding Wi-Fi fingerprint data to the 

indoor navigation system. Wi-Fi RTT promises great indoor accuracy with regards 

to localization and distance estimation between the receiver and the access point. 

It works by employing the concept of Time-of-Flight (ToF) and the Round-Trip-

Time to provide an accurate measure of the distance between the receiver (Often 

a smartphone) and the transmitter (Often an access point). This could potentially 

allow for a much better model for Wi-Fi fingerprint dissimilarity and to Euclidean 

distance and could potentially increase the accuracy of the estimates even 

further. 

5.2 Limitations 

● Interference from bigger crowds and the spatial constraints by the mall 

construction and design. 

● Dependent on Bluetooth beacons or other forms of reference anchor 

points to be viable. 

● Wi-Fi signals could be weak and in which case, become unreliable. 

● Requires pre-made model specific to the building/floor to be accurate. 
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6 CONCLUSIONS 

The thesis presents a novel approach towards mitigating some of the issues 

pertaining to indoor navigation with PDR data. It harnesses the power of a 

crowdsourced Wi-Fi fingerprint data to refine the location estimates in complex 

indoor environments. The model takes advantage of the Wi-Fi fingerprint data to 

filter out the PDR information which results in better overall location estimation. 

The findings from the study affirm that using modelled crowdsourced Wi-Fi 

fingerprint data does improve the accuracy of the navigation system. The hybrid 

approach showed a remarkable 11.38% reduction in mean error with regards to 

the coordinates estimation in the experiments from the thesis, compared against 

using PDR information alone. This research lays the foundation for further 

advancements in indoor navigation technologies, emphasizing the potential of 

Wi-Fi fingerprint modelling as a powerful augmentation technique for PDR-based 

indoor navigation systems. 
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7 APPENDIX  

7.1 MATLAB Code 

7.1.1 Least-Squares fit for Wi-Fi fingerprint to Euclidean 
Distance 

% Calculate the pairwise Euclidean distances between all fingerprint points 
euclideanDist = pdist(FPCluster); 
 
% Calculate the maximum Euclidean distance to use as a boundary  
dlim = ceil(max(euclideanDist)); 
 
% Define the fitting function,  
% This ensures that the function never goes below X(1) and  
% scales linearly with X(2) and X(3) as slope and intercept. (line fit) 
Func = @(X, euclideanDist) max(X(1), X(2) + X(3) * euclideanDist); 
 
% Initial guesses for the parameters in X; setting these as zeros as a  
% starting point for optimization. 
X0 = [0, 0, 0]; 
 
% Set lower bounds for the parameters: no lower bound for X(1),  
% no upper bound for X(2), no lower bound for X(3) 
lb = [0, -inf, 0]; 
 
% Set upper bounds for the parameters: the minimum real distance  
% as upper bound for X(1), no bounds for X(2), inf for X(3) 
ub = [min(realDist), 0, inf]; 
 
% Perform least squares curve fit 
X = lsqcurvefit(Func, X0, euclideanDist, realDist, lb, ub); 
 
% Apply the fitting function to the Euclidean distances with the 
% optimized parameters to get Wi-Fi dissimilarities 
Wdist = squareform(Func(X, euclideanDist)); 
 

7.1.2 Data filtering and populating model matrices and vectors 
% Identify indices of distance pairs below the threshold 
% Filtering too dissimilar fingerprint pairs,  
temp = 0.45; 
distthreshold = temp * max(Wdist(:)); 
neighb = find(Wdist < distthreshold); 
 
% Convert linear indices to subscripts for accessing elements in the PDR 
distance matrix 
[I, J] = ind2sub(size(pdrdist), neighb); 
 
% Filter to ensure unique pairs (I > J) 
selectind = I > J; 
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I = I(selectind); 
J = J(selectind); 
 
% Initialize model matrices A1 and A2 for least squares regression 
A1 = zeros(2 * nkFP, 2 * window); 
b1 = zeros(2 * nkFP, 1); 
b2 = pdrdist(sub2ind(size(pdrdist), I, J)); 
 
% Populate A1 and b1 with known point coordinates 
for ii = knownPoints 
    A1((2 * ii) - 1, 2 * (ii) - 1) = 1; 
    b1((2 * ii) - 1, 1) = latlon_enu_test((ii), 1); 
    A1((2 * ii), 2 * (ii)) = 1; 
    b1((2 * ii), 1) = latlon_enu_test((ii), 2); 
end 
 
% Setup matrix A2 for x and y coordinates 
A2 = zeros(2 * numel(I), 2 * nkFP); 
A2(sub2ind(size(A2), (1:numel(I))', (2 * I(:)) - 1)) = 1; 
A2(sub2ind(size(A2), (1:numel(I))', (2 * J(:)) - 1)) = -1; 
A2(sub2ind(size(A2), (numel(I) + (1:numel(I)))', 2 * I(:))) = 1; 
A2(sub2ind(size(A2), (numel(I) + (1:numel(I)))', 2 * J(:))) = -1; 
 

7.1.3 Weighted Least-Squares  
% Define the weighted least squares function 
% initialize slope and intercept for the weights equation 
slope = 3; 
intercept = 2; 
% Define the weights matrix 
W = inv(diag([ones(numel(b1), 1); slope * b2 + intercept]));   
% Setup the least squares function  
lsqFun_w = @(x, A1, b1, A2, b2, W) W * [b1 - A1 * x; b2 - sqrt([eye(size(A2, 
1) / 2), eye(size(A2, 1) / 2)] * ((A2 * x).^2))]; 
 
% Prepare initial estimate for least squares regression 
x0 = b1; 
x0_ = A2\sqrt([eye(size(A2, 1) / 2), eye(size(A2, 1) / 2)]\(b2.^2)); 
x0(b1 == 0) = x0_(b1 == 0); 
 
% Configure options for nonlinear least squares solver 
options = optimoptions('lsqnonlin', 'MaxFunctionEvaluations', 8000); 
 
% Perform the weighted least squares regression 
[xest, ~] = lsqnonlin(@(x) lsqFun_w(x, A1, b1, A2, b2, W), x0, [], [], 
options); 
 

7.1.4 Error calculation and plotting 
% Calculate the error metrics 
error = sqrt((latlon_enu_test(1:window, 1) - xest(1:2:end)).^2 + ... 
    (latlon_enu_test(1:window, 2) - xest(2:2:end)).^2); 
meanError = mean(error); 
deviation = std(error); 
variance = var(error); 
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% Plot the original data points and the estimates 
figure; 
hold on; 
plot(latlon_enu_test(1:window, 1), latlon_enu_test(1:window, 2), 'ro'); 
plot(xest(1:2:end), xest(2:2:end), 'b*'); 
plot([latlon_enu_test(1:window, 1), xest(1:2:end)]', ... 
    [latlon_enu_test(1:window, 2), xest(2:2:end)]', 'k-'); 
% Make the plot prettier and add error information 
grid on; 
grid minor; 
legend('Data', 'Estimate', 'Location', 'Best'); 
title(['Mean error: ', num2str(meanError), 'm, Standard Deviation: ', ... 
    num2str(deviation) 'm.']); 
hold off; 
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