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Abstract
Unmanned aerial vehicle (UAV) swarms have gained significant attention for their potential applications in various fields. The

effective coordination and control of UAV swarms require the development of robust mathematical models that can capture
their complex dynamics. The paper introduces mathematical models and relevant paradigms based on the design and analysis
of self-organizing swarms of UAVs. The logical and technological construction of the model relies on the theorems developed
by authors for obtaining full information exchange during the swarm quasi-random walk. The suggested rotor-router model
interprets the discrete-time walk accompanied by the deterministic evolution of configurations of rotors randomly placed on
the vertices of the swarm graph. The recommended optimal and fault-tolerant gossip/broadcast schemes support the resilience
of swarm to internal failures and external attacks, and cryptographic protocols approve the security. The proposed cloud
network topology serves as the implementation framework for the model, encompassing various connectivity options to
ensure the expected behavior of the UAV swarms.
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1. Introduction
Unmanned aerial vehicle (UAV) swarms, integral to di-

verse applications (Zhou et al. 2020), excel in meeting high-
demand and mission-specific goals. Their efficiency, flex-
ibility, stability, and minimal resource consumption out-
perform traditional methods. Tailored for specific mis-
sions, UAVs offer distinct features. Advantages of swarms
include resilience to disruptions, ease of device removal
or replenishment, and accelerated mission performance
through parallelized operations. The self-organizing abil-
ity of swarms enhances adaptability in dynamic environ-
ments.

A comparative analysis of UAVs as aerial robots is available
in Tahir et al. (2019), describing key characteristics and ap-
plication areas. The work also presents the swarms’ control
mechanisms and management. UAV swarms can be repre-
sented as self-organized systems that rely on decentralized
decision-making and coordination among agents to operate
effectively (Campion et al. 2018). Swarm intelligence lever-
ages advanced computing and artificial intelligence technolo-
gies to facilitate efficient communication and coordination
among agents, promoting collective decision-making to cope
with uncertainty and challenges (Babaoglu et al. 2002). In that
context, each UAV in a swarm acts as a separate agent embed-
ded with algorithms addressing individual and group behav-
ior (Sneyd et al. 2001).

Information exchange is critical for effectively operating
self-configurable swarms and unified decision-making based
on accumulated knowledge. The ability of UAV swarms to ac-
complish a prescribed mission is influenced by critical factors
such as autonomy, built-in awareness, and resiliency in adapt-
ing to new actors or losing group members (Bai et al. 2020).
These factors highlight the importance of mathematical mod-
eling and swarm intelligence-based optimization algorithms
for effective swarm management (Chen et al. 2019).

Furthermore, utilizing cloud technologies, virtual envi-
ronments, and computing resources is essential to justify
the scalability and efficient management of self-organizing
UAV swarms. These resources enable the development
of optimally distributed software–hardware cloud manage-
ment systems that deploy multi-agent modeling and swarm
intelligence-driven algorithms to enhance the coordination
and operation of UAV swarms (Ziquan et al. 2022).

The paper aims to introduce a cloud-based mathematical
model designed explicitly for self-organizing UAV swarms.
The proposed platform simplifies the deployment of UAV
swarms, allowing them to adapt and self-organize in real-
time, even when facing changing environmental condi-
tions. The remainder of this paper is organized as follows.
Section 2 provides a review of related works in this field. The
mathematical models that underlie the construction of self-
organizing UAV swarms are described in Section 3, followed
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by a detailed presentation of the suggested cloud platform in
Section 4. Finally, Section 5 provides the conclusion of this
paper.

2. State of the art and related work
The design and operational management of UAV swarms

is a rapidly evolving field. The large spectrum of potential
applications of multi-agent robotic systems motivates intro-
ducing new approaches and solutions, each applicable to per-
forming specific mission-oriented tasks. Examining the con-
struction of swarm intelligence reveals that the development
of practical self-organizing systems for real-world applica-
tions benefits from incorporating robust and efficient solu-
tions from closely related fields while exhibiting peculiar-
ity in approaches and deployment. However, independent of
swarms’ mission, the methodology for constructing swarms
suggests fulfilling mandatory requirements. These include
multi-agency collaboration, self-organization, control-based
strategies, resilience against physical or logical disruptions,
secure cloud deployment for swarms, equitable resource dis-
tribution, verification of UAV membership, and the develop-
ment of mathematical models underpinning these concepts.

In a notable study by Bellur and Narendra (2006), peer-to-
peer (P2P) systems are defined as decentralized, large-scale,
and highly dynamic, similar to complex adaptive systems
(CAS) in biological and social sciences. The authors propose a
P2P solution based on multi-agent and evolutionary program-
ming borrowed from CAS, in which adaptive agents traverse
the network, interact with nodes, and cooperate to solve com-
plex problems.

In Picard and Glize (2006), the authors propose a co-
operative self-organization approach for artificial systems,
where cooperative agents can modify their interactions au-
tonomously. The authors stress the importance of behav-
ioral specifications and a middleware layer that dynamically
binds system components at runtime, thus ensuring neces-
sary functionality and dynamic reconfiguration of the sys-
tem.

The studies (Engelbrecht 2006) introduce mathematical
models and new computational paradigms of swarm intel-
ligence, covering function optimization, optimal route find-
ing, scheduling, structural optimization, and data analysis.
In Abdenebaoui et al. (2015), the authors model UAV swarms
with decentralized processing and control. Here, the pro-
cesses run simultaneously and autonomously with proper co-
ordination. The proposed model is proved to be resistant to
the swarm dynamic reconfiguration when the peers join or
leave the network.

Construction of UAVs optimal paths (Ali and Zhangang
2021) over undirected connected graphs is suggested in Ali
and Zhangang(2021), where the distance, obstacle avoidance,
and terrain/radar parameters are taken into account. The
time delays for P2P information communication is deter-
mined by the state equation of the system. In the UAV swarm
balanced clustering method, presented in Brust et al. (2021),
the cluster head stands for the entry point. Basic messages
sent from the head to its branches trigger them to accept
an additional child or discard the current child. UAVs within

the swarm periodically scan the surroundings by using a
circular transmission range. A solution to the problem of
the swarm leader-followers’ relationship is given in Ali et al.
(2018). The required formation is implemented over the un-
derlying graph. The swarm communication network is imple-
mented as a weighted matrix, where an introduced general
equation determines the flight trajectories of the peers. To
solve the swarm path planning problem where the surveyed
area is modeled as an undirected weighted graph, Monwar
et al. (2018) proposed covering all the available inspection
points through the union of all trajectories (modeled as a tree
to avoid cycles). Initially, the proposed path planning algo-
rithm sorts all UAVs to their available energy in an ascending
order. Another approach to solving the swarm path planning
problem is given in Shafiq et al. (2015), where the authors de-
veloped a bio-inspired strategy for UAVs’ routing algorithm
over a regular mesh topology with all the edges of the same
length. The UAVs are prearranged in different and nonover-
lapped colonies with a hierarchy in each colony with an in-
dividual leader UAV and its followers. The best path is found
based on the combination of Max-Min, colony optimization
and Vicsek algorithms.

A solution to the swarm path-planning problem with op-
timizing multiple objectives simultaneously can be found in
Millar et al. (2023). The proposed approach utilizes a multi-
objective reinforcement learning algorithm, also Bayesian be-
lief network approach is used to determine risk indicators.
The resultant analysis is weighted through the analytic hier-
archy process ranking model. Swarm communication capac-
ity maximization approach using mixed-integer nonlinear
programming is given in Javed et al. (2023). An outer approx-
imation algorithm has been suggested to mitigate to achieve
near-optimal solutions with reduced convergence time and
complexity compared with exhaustive search.

Self-organization, also called spontaneous order in the so-
cial sciences, is a process where some form of overall order
arises from local interactions between parts of an initially
disordered system (Bak et al. 1987). The process can be spon-
taneous when sufficient energy is available, without the need
of control by any external agent. It is often triggered by seem-
ingly random fluctuations, amplified by positive feedback.
The resulting organization is wholly decentralized over all
system components. As such, the organization is typically ro-
bust and able to survive or self-repair substantial perturba-
tion.

A narrower, still very closed concept related to self-
organization is the phenomenon of self-ordering of systems.
Complex dynamic systems are often self-organizing, and de-
pending on the specified leading groups of properties, they
are also called self-regulating, self-adjusting, self-learning, or
self-algorithmizable systems.

The Abelian sandpile model (Dhar 1990) is the simplest and
analytically tractable model of self-organized criticality. The
Abelian group structure and the established one-to-one cor-
respondence between the recurrent states of sandpile model
and spanning trees of the underlying graph allows an exact
calculation of many of its properties. In Ruelle (2021) a de-
tailed overview of the known results about height probabil-
ities and spacial correlation functions of the model is pre-
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sented. In parallel, the research also focuses on the rotor-
router model (Priezzhev et al. 1996), where a one-to-one cor-
respondence between the defined recurrent states and the
graph spanning trees is observed.

Description of our swarm algorithms and models devel-
oped based on our obtained results are given below. The dis-
tinguishing characteristic of our approach against the exist-
ing solutions is that it meets all the classical requirements
imposed on self-organizing systems. In contrast, the current
implementations address swarm construction and manage-
ment specifically. Based on the analysis of available solutions,
and to best meet the requirements for UAV swarms’ construc-
tion, we suggest developing and implementing an optimally
distributed software–hardware cloud system aimed at opera-
tional management of self-organizing UAV swarms with the
following characteristics:

� UAVs are loaded with basic schemes of information full
exchange (gossip/broadcast models) to enable construct-
ing swarms of logically linked UAVs with required mini-
mum characteristics (minimum time, calls, and channels).
Based on our analytically approved theorems and formulas
(Hovnanyan et al. 2013a, 2014a, 2017), multi-agent model-
ing algorithms have been designed to measure UAV mission
performance (displacement, imaging, and information ex-
change).

� The methods and algorithms for developing optimal fault-
tolerant schemes of information full exchange and con-
structing multi-agent decentralized, self-organizing sys-
tems have been adapted. During the information (captured
image or images) full exchange between UAVs, probable
communication failures (due to external factors such as
landscape obstacles, buildings, structures, mountains, etc.)
are neutralized using fault-tolerance schemes and algo-
rithms. The results of our research in this area are sum-
marized in Hovnanyan et al. (2013b, 2014b, 2013c). In the
event of a single UAV crash, the swarm is dynamically re-
configured with an adequate structure that meets the opti-
mal conditions and ensures mission continuity.

� The UAVs carry out dynamic area imaging during their
quasi-random walk (rotor-router model) and perform a
complete and reliable exchange of images via an en-
crypted internal radio communication. According to the
Eulerian walk rotor-router model, the UAVs move in quasi-
random trajectories in the sub-areas prescribed by individ-
ual “road maps”. Several of our theoretical results in this
area (Poghosyan and Priezzhev 2014; Papoyan et al. 2015,
2016a, 2016b) are applied in the development of approv-
able algorithms to bypass static barriers. The developed
algorithms loaded into UAVs guide navigation (shootings)
along the allocated spatial network’s permissible edges and
provide collision avoidance. Work distribution among the
UAVs is done automatically. In order to increase the qual-
ity of the area’s complete image and to reduce the swarm
overall flight time, the swarm can be replenished with the
required number of UAVs.

� The embedded confidential computing algorithms ensure
the swarm data and communication security, strong iden-

tification and authentication of the UAVs within the swarm
during the flight.

� Due to the resource-limited nature of UAVs, uniform dis-
tribution of the computing power is achieved through gos-
siping algorithms allowing communication solely between
the logically linked UAVs.

In our approach, the UAV actions within the swarm are
formed according to the network graph downloaded from
the virtual cloud server. The nodes on the graph have one ar-
row each. The swarm UAVs all perform the same operation:
transition from a node to a current unvisited neighbor node.
The UAV reaching a node rotates that node arrow towards
the next neighboring node and moves there. The flight tra-
jectories are formed dynamically during the swarm opera-
tion and depend on the actual number of UAVs within the
swarm (once replenishment or removal is done), and do not
depend on the UAVs’ flight speed and the fact that the status
of the UAVs may change over time to the striking mode, and,
at the end of the mission, the UAVs may rejoin the swarm and
continue to follow the current trajectory. Together, the UAV
trajectories form an Eulerian circuit, while shooting along
all the graph’s directed edges is performed exactly once. It is
worthwhile to note that gossip schemes are implemented ac-
cording to the principle of rotors. Each UAV calls a logically
linked current neighbor that has not been called/visited yet
without authenticating that neighbor. During the calls, only
the sender’s membership is authenticated. Moreover, in the
case of k-tolerance failures, the calls are cyclically repeated k
times.

Considering the operational management of swarms in
hostile or dangerous environments, the UAVs within the
swarm may change the predefined trajectories, update and
exchange session keys, etc., or detect hostile nonmembers.
Among other cybersecurity concerns, the latter is essential
as outsiders may bypass the swarm network and, once im-
personated, may try to destroy the swarm cooperative flight.

To solve this problem, we developed algorithms for ver-
ifying the swarm membership during the flight. For this
purpose, mechanisms for identification and strong authen-
tication of individual UAVs have been designed based on
lightweight, secure multi-party computations (MPC) (Maurer
2002; Damgard and Ishai 2005;Canetti 2023). AES-256 is em-
bedded within the UAV hardware to encrypt the captured im-
ages, shared secret tokens, session keys, and authentication
data. Membership verification is performed using the swarm
encrypted blockchain (Wang et al. 2020), where colmputa-
tionally heavy proof of work is replaced by an MPC on the em-
bedded Knödel Graph isomorphism. At the fabrication and
registration stage, each UAV is assigned a unique identifier
registered within the blockchain, a tamper-proof storage en-
suring the swarm UAVs reliable distributed authentication.
With every UAV replenishment or removal, the blockchain
gets updated.

While the blockchain guarantees the tamper-proof of on-
chain data, the encrypted state of the blockchain makes
it useless for outsiders. The encrypted identity information
stored in the blockchain is verified for the swarm members.
The UAVs exchange tokens confidentially computed on the
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individual hardware during the flight. The UAVs do not ex-
change the original secrets, which may leak significant in-
formation, but exchange and verify the MPC encrypted re-
sults over the original secret. These computations’ results
are distinct as they are performed over UAVs’ unique iden-
tifiers, which are computationally concealed. This prevents
outsiders from mimicking the exchanged data. Also, out-
siders cannot generate legitimate tokens as they are unaware
of the embedded graph, predefined isomorphism, and em-
bedded confidential computing.

3. Mathematical models underlying the
construction of self-organizing
swarms of UAVs

To design self-organizing swarms of UAVs for optimal tar-
geting task performance, we use a rotor-router model intro-
duced in Priezzhev et al. (1996) and relevant mathematical
preliminaries to facilitate full information exchange (Cooper
et al. 2010).

Consider a directed graph (digraph) G = (V, E) with a set of
vertices V = V(G) and a set of directed edges E = E(G). We as-
sume that there are no self-loops (edges that connect a vertex
to itself ) or multiple edges (two or more edges with both the
same tail vertex and the same head vertex) in G. If for each
edge directed from v to w, there is also a corresponding edge
directed from w to v, we call the graph G bidirected. In other
words, every edge in a bidirected graph has its opposite edge.
A bidirected graph can be obtained from undirected graph
by replacing each of its edges with two directed edges, one in
each direction. A spanning subgraph G ′ of a bidirected graph
G is a digraph with the set of vertices V(G ′) = V(G) and a set of
edges E(G ′)⊆E(G).

A path of length n from vertex a ∈ V to b ∈ V is a sequence
of distinct vertices v1, v2, …, vn + 1 such that vi and vi + 1 are
connected by an edge ei ∈ E, i = 1, 2, …, n, v1 = a, vn + 1 = b.
The path becomes a cycle if a = b. A shortest possible cycle has
length 2 and consists of two adjacent vertices v1, v2, which are
connected by a pair of edges from v1 to v2 and back. We call
such cycles dimers by analogy with lattice dimers covering
two neighboring vertices. A cycle formed by more than two
edges is called contour.

An Eulerian circuit on a finite digraph is a walk that starts
and ends on the same vertex and visits each directed edge
exactly once. If such a walk exists, the digraph is called Eule-
rian. A digraph is strongly connected if for any two distinct
vertices v, w there are paths from v to w and from w to v. A
strongly connected digraph G = (V, E) is Eulerian if and only if
for each vertex v ∈ V in-degree and out-degree of v are equal.
Particularly, one-component bidirected graph is Eulerian.

The rotor-router model is defined as follows. Consider an
arbitrary connected digraph G = (V, E). Denote the number of
outgoing edges (out-degree) from the vertex v ∈ V by dv. The
total number of edges of G is |E| = ∑

v ∈ Vdv. Each vertex v ∈
V is associated with a rotor, which is directed along one of
the outgoing edges from v. The rotor directions at the vertex
v are specified by an integer variable αv, which takes values
from 0 ≤ αv ≤ dv − 1 for dv � 1.

The set ρ = {αv| v ∈ V, 0 ≤ αv ≤ dv − 1} defines the rotor con-
figuration. Starting with an arbitrary rotor configuration, one
drops a chip to a vertex of G chosen at random. At each time
step the chip arriving at a vertex v, first changes the rotor di-
rection from αv to (αv + 1) mod dv, and then moves one step
along the new rotor direction from v to the corresponding
neighboring vertex.

Figure 1 illustrates three steps of the rotor walk on a square
lattice.

The rotor configuration ρ can be considered as a spanning
subgraph of G (ρ⊂G) with the set of vertices V(ρ) = V(G) and
the set of directed edges E(ρ)⊂E(G) coinciding with the rotors.
The state of the system at any moment of time is given by the
pair (ρ, v) of the rotor configuration ρ and the position of the
chip v ∈ V. A vertex v ∈ V is called a sink if its out-degree dv =
0. In the absence of sinks, i.e., when each vertex has at least
one outgoing edge, the motion of the chip does not stop.

If iterating the rotor-router operation from the state (ρ, v)
eventually leads back to (ρ, v) we say that (ρ, v) is recurrent;
transient otherwise. According to Priezzhev et al. (1996), the
rotor-router walk started from an arbitrary initial state (ρ, v)
on a finite Eulerian graph, passes transient states and enters
into a recurrent state continuing the motion in the limiting
cycle, which is an Eulerian circuit of the graph. A rigorous
and self-contained survey of the rotor-router model is given
in Holroyd et al. (2008).

A connected spanning subgraph of a digraph G, in which
every vertex has one outgoing edge contains exactly one cy-
cle. The state (ρ, v) is called unicycle if the set of edges E(ρ) con-
tains a unique directed cycle and v lies on this cycle (Holroyd
et al. 2008; Poghosyan and Priezzhev 2014). Then, two basic
properties of the rotor-router model on the Eulerian graphs
can be formulated in terms of unicycles.

Theorem 1. (Holroyd et al. 2008). Let G be a strongly con-
nected digraph. Then a single-chip-rotor state (ρ, v) on G is
recurrent if and only if it is a unicycle.

The rotor states that are not unicycles are transient. In con-
trast to recurrent states, they appear at the initial stage of
evolution up to the moment when the system enters into the
Eulerian circuit.

Theorem 2. (Holroyd et al. 2008). Let G be an Eulerian di-
graph with m edges. Let (ρ, v) be a unicycle in G. If one iter-
ates the rotor-router operation m times starting from (ρ, v),
the chip traverses an Eulerian circuit of G, each rotor makes
one full turn, and the state of the system returns to (ρ, v).

A theorem on reversibility of loops at the recurrent state
reads:

Theorem 3. (Holroyd et al. 2008; Poghosyan and Priezzhev
2014). Let G be a bidirected planar graph with the outgoing
edges at each vertex ordered clockwise. Let (ρ, v) be a unicy-
cle on G with the cycle C oriented clockwise. After the rotor-
router walk makes some number of steps, each rotor internal
to C has performed a full rotation, each rotor external to C
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Fig. 1. Circles denote the lattice sites. (a) The particle is originally in the filled circle where the arrow is directed “up”. (b) The
chip rotates the arrow clockwise and moves right. (c) The next clockwise rotation sends the chip down. (d) The last position of
the chip is in the lower right corner.

has not moved, and each rotor on C has performed a partial
rotation so that C is now oriented anti-clockwise.

Consider a bidirected contour C = (v1, v2, …, vn) in a digraph
G = (V, E), that is a contour in which the vertices vi and vi + 1

are connected by two edges, one in each direction, 1 ≤ i ≤
n, where the n-periodicity is assumed, i.e., vi ± n ≡ vi. Let e+

i
and e−

i+1 are directed edges connecting vi to vi + 1 and vi + 1 to
vi, respectively. Here, the n-periodicity is also assumed, i.e.,
e+

i±n ≡ e+
i and e−

i±n ≡ e−
i . The superscripts at e−

i and e+
i are in-

troduced to denote the negative and positive directions at vi

with respect to the contour C, respectively. Given the rotor-
router model defined on G, we say that the bidirected contour
C obeys the domino ordering if for each rotor at vi, 1 ≤ i ≤ n
there exists a direction α�

vi
such that the rotor α�

vi
points from

vi to vi − 1 and α�
vi

+ 1 points from vi to vi + 1. The directions
α�

v1
, ..., α�

vn
are called negative with respect to C, whereas the

directions α�
v1

+ 1, ..., α�
vn

+ 1 are called positive, respectively.
A weak reversibility is introduced in Papoyan et al. (2015)

for rotor-router walks, which start from transient state. In
contrast to the case with recurrent initial state, here, after
the initial contour is reversed, some rotors inside the contour
may not perform a full rotation.

Theorem 4. (Papoyan et al. 2015; Papoyan et al. 2016a). Given
an arbitrary finite Eulerian digraph G, let C = (v1, …, vn) be a
bidirected contour obeying domino ordering. Let the rotor-
router walk starts at the vertex vn from an initial rotor con-
figuration with positive directions of all rotors at vi (i = 1, 2,
…, n). Then, after some number of steps, the walk produces
a configuration with negative directions α�

v1
, · · · , α�

vn
. The mo-

ments ti (i = 1, 2, …, n), when the directions α�
vi

are reached,
are ordered as follows: 0 < tn < tn − 1 < ··· < t2 < t1 ≤ |E|.

However, two reversibility properties are still retained: the
walk enters and leaves the contour from the same vertex,
and the orientation of rotors on the contour is reversed. If
we use the Abelian property of rotor-router walk (Priezzhev
et al. 1996), we can generalize the weak and strong reversibil-
ity properties for multi-particle walk:

Theorem 5. Given an arbitrary finite Eulerian digraph G, let
C = (v1, …, vn) be a bidirected contour obeying domino or-
dering. Let k < n rotor-router particles start their motion at

contour vertices v1, …, vn, so that there is no more than one
particle at one vertex. Denote these vertices as vS1 , ..., vSk . As-
sume that the rotors vi, (i = 1, 2, ..., n) at the contour C initially
have positive directions. During the multi-particle walk, if a
particle arrives at one of the vertices vSj , (j = 1, 2, .., k) with
negative directed rotor at that vertex, that particle stops its
motion. Then, after some number of steps, regardless of the
order in which the particles move, the walk produces a con-
figuration with negative directions α∗

v1
, .., α∗

vn
. Moreover, all

vertices vS1 , .., vSk will be occupied by one particle each.
Assuming the initial rotor-router configuration is recur-

rent, namely, there are no other cycles except C, each rotor
internal to C will perform a full rotation at the end of the
walk.

Proof. The configuration, in which all particles are located at
contour vertices with negative directions can be interpreted
as a stable state, since the next step will cause particles to
leave the system. The Abelian property of rotor-router walk
for the graph G is as follows: Let τ 0, τ 1, …, τ n is a sequence of
rotor-router configurations of G, each of which is a successor
of the one before, so that τ n is stable. If τ0, τ

′
1, ..., τ

′
m is another

such sequence, then m ≤ n. If in addition τ ′
m is stable, then m =

n and τn = τ ′
n, and for each vertex w, the number of times the

rotor at w changes its direction is the same for both histories.
Let us create two sequences of configurations. In the first

sequence, allow only the first particle to move until it reaches
a stable state, specifically, the initial vertex with a negative
direction of the rotor at that vertex. According to Theorem 4,
all vertices on the contour will have negative directions at the
end of the motion. In the second sequence, let us consider an
arbitrary sequence of particle jumps, which stops when the
system reaches a stable state. From the Abelian property, the
final states of both sequences are the same.

Algorithms for UAV motions are developed based on the
aforementioned theorems, the interpretation of which is
given below. The image of the surveyed area is displayed
on the user’s screen, then a finite square lattice with closed
boundary conditions is allocated over that image. For sim-
plicity, it is assumed that the outgoing edges at each vertex
are ordered clockwise. The rotors at vertices of the lattice are
oriented to form a unicycle with clockwise contour along the
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boundary edges. Notice that this contour obeys domino or-
dering. According to the Theorem 2, if a chip UAV starts its
motion from any boundary vertex, it will move in an Eule-
rian circuit. According to the Theorem 3, the UAV will pass
through all the vertices and will perform full rotation of their
rotors. At the end of the motion, the UAV returns to the start-
ing point, and the contour turns counterclockwise.

Now let random orientations for the rotors at internal ver-
tices be chosen, which is a transient state of the system (The-
orem 1). After quite long UAV motion, a recurrent state is
formed (i.e., unicycle), and at this moment all internal cycles
are eliminated, according to the Theorem 1. During this mo-
tion, the outer contour changes its orientation from clock-
wise to anticlockwise and vice versa several times (Theorem
4). The iterations of reversing the outer contour stop after the
UAV has visited all the vertices and returns to initial vertex.
The graph becomes unicycle, so the subsequent trajectory of
the UAV motion forms an Eulerian circuit (Theorem 2 and
Theorem 3). Once the internal cycles are eliminated, the user
places the required number of UAVs on the boundary vertices,
i.e., the contour of the unicycle, so that each vertex receives
at most one UAV.

According to the Theorem 5, the UAVs together will do the
same work as a single UAV would do, if they stop their motion
at the boundary vertices with rotors oriented anticlockwise.
Therefore, each of them will traverse a part of an Eulerian
circuit, and together they will form a full Eulerian circuit. It
should be noted that, since we have the Abelian property, the
motion speeds of the UAVs are not important: some UAVs may
stop the motion later while the others – sooner. In any case,
the UAVs will return to the starting points, not necessarily to
their own which is the case for a single UAV (Theorem 5).

This motion behavior is programmed and uploaded into
the UAVs’ memory. All the UAVs operate according to the
same loaded graph map. At every time step the UAV rotates
the rotors of all the other UAVs in its map, it makes the others
move and moves itself with them. Depending on their speed
and individual map state, the UAVs may actually be in com-
pletely different vertices compared to their own map. In any
case, the Eulerian circuit is preserved.

During the motion, if after each time step, the UAVs in-
form each other whether they have managed to reach the
target vertex or not, then the trajectories of the UAVs can be
changed. However, the group’s mission will be accomplished
and the UAVs’ trajectories together will form an Eulerian cir-
cuit. In the event of a UAV crash, the latter’s task is trans-
ferred to the first UAV that first completed its task, so it moves
to the vertex of the crashed UAV and continues performing
its task.

Aimed at uniform distribution of the tasks, a UAV that has
completed its task may start from a boundary vertex that
was not visited yet. It is equivalent to assuming that an ini-
tially crashed UAV was located on that boundary vertex. Sim-
ilarly, during the operation, the swarm can be replenished
with UAVs that will be launched from unvisited boundary
vertices.

The number of simultaneous UAV encounters at each ver-
tex is equal to the number of edges adjacent to those vertices.
This makes it easier to solve the collision avoidance problem

by considering each vertex as a stopover area for four UAVs, or
by flying individual UAVs at different heights, or with curvi-
linear trajectories from vertex to vertex. Other technical so-
lutions may also be introduced.

It is worth to note that this UAV swarm motion scheme is
valid and applicable also for arbitrary connected planar bidi-
rected graphs instead of square lattices. The vertices in the
graph, which correspond to the obstacles observed during
low-altitude flights on the image of the surveyed area, can be
removed along with their incident edges, meanwhile preserv-
ing the connectivity of the graph. If necessary, new vertices
and new edges can be added while maintaining planarity of
the graph. After such transformations, the reversibility theo-
rems (Theorem 3, 4, and 5) remain valid.

Development of decentralized and self-organizing swarms
of logically linked UAVs involves the design of optimal and
fault-tolerant schemes (gossip/broadcast models) enabling dy-
namic snapshotting and full exchange of captured images
of surveilled areas during the swarm quasi-random walk
(rotor-router model). The construction is given below regard-
ing essential definitions, concepts, and mathematical models
(Poghosyan et al. 2023).

The gossip problem posed decades ago is formulated as
follows: each of the n participants within the group possesses
distinct information. The goal is to distribute all n messages
among all n participants via phone calls. During each phone
call, two participants exchange their current messages. The
minimum number of required calls is a well-known: τ =
2n − 4, n > 4. The problem can be presented in the form
of a weighted graph, the vertices of which correspond to
the participants, and the weights of the edges indicate the
moment of time when the communication among peers took
place. Compared to existing solutions, in our models, the
communication between any two vertices (peers) occurs in-
stantaneously and requires a single time step. However, these
results raised other related issues, particularly, concerning
information full exchange among peers with minimum
number of channels, minimum number of calls, minimum
time, and simultaneous minimization of these parameters.

The involvement of k-fault tolerant gossip graphs allowed
us to generalize the gossip problem for at most k arbitrary
failures of calls. Note that in case of call failure, no infor-
mation exchange takes place. The next problem was to de-
termine the minimum number of calls that would ensure k-
fault-tolerance between n participants, τ (n, k). This problem
is still open. Up to date, only upper or lower bounds exist for
τ (n, k):

τ (n, k) ≤ n
2

log2n + nk
2

(1)

for n being a power of 2, and τ (n, k) ≤ 2n
⌊
log2n

⌋ + n
⌈

k−1
2

⌉
,

otherwise.
A gossip scheme (a sequence of calls between n nodes) can

be represented by an undirected edge-labeled graph G = (V, E),
|V| = n. The vertices V and edges E of the graph G correspond
to nodes and calls between nodes in the gossip scheme, cor-
respondingly. Such graphs may have multiple edges, but no
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loops. Edge numbering (labels) of G is a mapping tG: E(G) →
Z+, where the weight tG(e) for an e ∈ E(G) represents the mo-
ment of time when the corresponding call took place.

Definition 1. Two weighted graphs, G and H, are called iso-
morphic, if there exists a one-to-one correspondent mapping
between the set of their nodes, f: V(G) → V(H), such that any
two vertices u and v are adjacent in the {v, w} ∈ G⇔{f(v), f(w)}
∈ H, and tG(u, v) = tH(f(u), f(v)).

Definition 2. Operation of Local Interchange. Let Ev(G) de-
notes the set of edges incident to the given vertex v. Given
an edge e and a vertex v incident with e, the following two
subsets of the Ev(G) are constructed, as follows:

P+
v (e, G) =

{
e

′ ∈ Ev (G) |tG e
′

> tG (e)(2)

P−
v (e, G) =

{
e

′ ∈ Ev (G) |tG e
′

< tG (e)(3)

The sets of edges P−
v (e, G) and P+

v (e, G) correspond to the
calls made by node v before and after the moment tG(e) re-
spectively.

Definition 3. The “permute greater labeled edges operation”
P+(e) on a selected edge e

′ ∈ Ev (G) connecting vertices u and
v is called the modification of G, resulting in permutation of
edges incident to e as follows:

Eu
(
P+ (e) G = P−

u (e, G) ∪ P+
v (e, G)(4)

Ev
(
P+ (e) G = P−

v (e, G) ∪ P+
u (e, G)(5)

Definition 4. The “permute lesser labeled edges operation”
P−(e), on an edge e connecting vertices u and v is defined ac-
cordingly, as follows:

Eu
(
P− (e) G = P+

u (e, G) ∪ P−
v (e, G)(6)

Ev
(
P− (e) G = P+

v (e, G) ∪ P−
u (e, G)(7)

The operators P− and P+ are called “local interchange op-
erators”.

The following theorem is known from gossip graphs the-
ory, which plays crucial role in construction of minimal gos-
sip schemes:

Theorem 6. (Hovnanyan et al. 2013a, 2014a; Hovnanyan
2018) The result of the application of the operators of local
interchange on a complete gossip graph is also a complete
gossip graph.

There is an open question formulated in our papers
(Hovnanyan et al. 2013a, 2014a; Hovnanyan 2018), which
aims to generalize the above theorem to k-tollerant graphs:
What are the sufficient and necessary conditions imposed on
the graph structure for applying local interchange operators

on a k-tolerant gossip graph so as not to affect the fault toler-
ance level of the graph? We also used the local interchange
method for constructing fault-tolerant gossip schemes based
on Knödel graphs.

Definition 5. A Knödel graph with n � 2 vertices (n is even)
and 1 ≤ � ≤ �log2n
 degrees is denoted by W�, n, where ver-
tices are pairs of type (i, j) , i = 1, 2; 0 ≤ j ≤ n

2 − 1. For each of j
and l, 0 ≤ j ≤ n

2 − 1, l = 1, ..,�, there exists an edge weighted
l between (1, j) and

(
2, j + 2l − 1 − 1mod n

2

)
nodes.

Although justified partially in Hovnanyan (2018), it allowed
us to introduce hypotheses on the estimate of the mini-
mum number of calls and time steps for fault-tolerant gos-
sip schemes. Benefitting from the symmetry of Knödel graph,
these hypotheses have been verified experimentally for vari-
ous (even quite large) number of vertices. Experimental verifi-
cations are carried out using our developed software package,
the Graph Plotter (Hovnanyan et al. 2013c). The Graph Plot-
ter aims to simulate any “gossip” scheme and obtain ad hoc
topologies that will optimally meet the requirements, as well
as to experimentally confirm their fully gossiping nature and
the level of fault-tolerance. In order to obtain k-fault-tolerant
gossip scheme, cyclic iteration of additional k time steps are
proposed. An example of constructing a 1-fault tolerant gos-
sip graph is given in the Fig. 2.

Additionally, the construction described in this sec-
tion holds �log2n� + k upper bound on the minimum possi-
ble time of complete fault-tolerant gossiping. Considering the
fact that this result was shown to be a lower bound as well
(see Haddad et al. (1987) and Gargano (1992)), we can claim
(as a corollary from the above hypothesis) that the minimum
time required to complete k-fault-tolerant gossiping is as fol-
lows:

T (n, k) = log2n
⌉ + k, if n is even(8)

A brief interpretation of the algorithms developed for UAV
swarms based on the above results is given below. During the
walk of logically connected peers on the gossip graph, the ex-
change of the following information is carried out: authen-
tication keys, encrypted captured images, and notification
about successful completion of transition from one node to
another. In situations where connections are broken (result-
ing in unsuccessful message reception), the Knödel graph is
automatically generated with new dimensions. Additionally,
there is an increase in the number of time steps for informa-
tion exchange. Communications may be disrupted not only
by obstacles, but also when the two peers are in a distance
exceeding the capacity of the radio channel. The situation
is addressed by applying the interchange P+ operator, which
will order a new connection. Obviously, provision of a higher
fault-tolerance implies performing a larger number of itera-
tions for exchanging information.

The above constructions enable the development of de-
rived models for NOHO gossip graphs, minimal gossip
graphs, fault-tolerant gossip graphs, and fault-tolerant gossip
graphs over Knödel graphs.
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Fig. 2. Iterative construction of the k-fault-tolerant graph.

Definition 6. An edge-permuted Knödel graph with n �
2 vertices (n is even) and 1 ≤ � ≤ �log2n
 degrees is
denoted by M�, n(p), where vertices are pairs (i, j) with i
= 1, 2 and 0 ≤ j ≤ n

2 − 1. For each of the j and l = 1,
2, … , �, there exists l-weighted edge between (1, j) and(
2,

(
j + 2p+l−1 − 1

)
mod (n/2)

)
vertices, where p = 0, … , �

− 1 is an integer parameter of the graph.

Theorem 7. Hovnanyan (2018) The graph

G = M�log2n
,n (p) + M1,n (p)(9)

is a complete gossip graph for any n �= 2k and p = 0, … , � −
1. This graph is not isomorphic to the graph W�log2n
,n + W1,n

except for n = 2k − 2 even though both are gossip graphs.

The above information dissemination and full exchange
models provide the required level of fault tolerance. Taking
into account the resource-constraint nature of the swarm,
lightweight cryptographic algorithms, and protocols have
been embedded, which ensure encryption of captured data,
as well as provision of data integrity during the information
full exchange.

4. Cloud platform
The cloud platform consists of a self-organized UAV-based

computing area, a cloud computing environment, and QT
service layers (refer to Fig. 3). The computing environment
utilizes resources from the Armenian research cloud in-

frastructure (Cloud 2023; Petrosyan and Astsatryan 2022).
The Armenian research cloud is built upon the OpenStack
and Kubernetes platforms, ensuring robust and scalable
performance. OpenStack primarily provides infrastructure
as a service capability, managing virtualized resources like
computing, storage, and networking. On the other hand, Ku-
bernetes is a container orchestration platform that focuses
on automating containerized applications’ deployment,
scaling, and management. cloud-based mathematical models
for self-organizing swarms of UAVs is a customized platform
that seamlessly leverages both OpenStack and Kubernetes
environments. This tailored approach ensures the utiliza-
tion of the strengths of both infrastructure paradigms,
delivering the requisite flexibility, scalability, and efficiency
for our specific applications. The platform encompasses
proprietary software codes integrated with third-party tools
and libraries. We incorporate OpenDroneMap, a powerful
open-source software tool for processing aerial imagery, into
our platform. This addition enhances the capabilities of our
cloud-based mathematical models, allowing for advanced
image processing, 3D reconstruction, and geospatial analysis
within the context of UAV swarm operations.

The UAV-based computing area utilizes a network of low-
cost Raspberry Pi-equipped UAVs to collect and transfer data
to a ground station via Wi-Fi or cellular networks. The col-
lected data received from the UAV cameras is transferred
to the ground station in real time. The UAVs communicate
through decentralized gossip protocols, eliminating the need
for a central control node. Cloud computing has gained trac-
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Fig. 3. Cloud platform.

tion in UAV image-processing tasks due to its computational
resources and storage capacity. The proposed cloud-based
mathematical models for self-organizing swarms of UAVs con-
sist of client and server components.

The QT service layer is responsible for user interaction with
the proposed cloud platform. It provides tools and function-
alities to visualize, configure, and manage the self-organized
UAV swarm. The UAV map configurator is a critical tool for
creating and modifying maps for the UAV swarm’s navigation
and task performance. It enables users to define obstacles,
points of interest, and flight paths and optimize the swarm’s
behavior. The parameter gossip system enables communica-
tion and coordination between the UAV swarm, allowing it to
operate as a cohesive unit. Additionally, the QT service layer
provides visualizations and analytics for users to monitor and
understand the UAV swarm’s behavior, track its movement,
observe its interactions with the environment, and analyze
its performance. The QT service layer uses the Internet TCP
protocol for secure communication with virtual servers in
the cloud infrastructure, utilizing security encryption tech-
niques to protect data transfer from malicious attacks.

The proposed cloud platform incorporates several modules
and algorithms to support the self-organized UAV swarm.
These modules and algorithms work together seamlessly to
provide users with a powerful and efficient computing plat-
form for managing and controlling the UAV swarm.

The UAV map graph module allows users to create and
manage maps for the UAV swarm’s navigation and task com-
pletion. This module reads a JSON file with the client’s UAV
map specifications, generates a graph representing the map
with nodes and edges, and removes any cycles to avoid infi-

nite loops. The Drone Map Processor verifies that the graph
meets all the client’s specifications, including clear paths
between starting and ending positions and safe navigation
around obstacles. If verification fails, the module alerts the
client and suggests map modifications.

The cloud platform’s second module is the UAV mission
scheduling and image download module, allowing users to
schedule tasks for the swarm and download images for anal-
ysis. The module also lets users download images captured by
the swarm during their missions, allowing them to analyze
and process the data.

The third module is the gossip data transmission algo-
rithm, enabling coordinated communication between the
self-organized UAV swarm. This module calculates and selects
transmission parameters, creates a node graph, and verifies
the validity of the chosen gossip algorithm. The module alerts
the system administrator if the graph fails.

The fourth module is the image processing module, pro-
viding users with tools for analyzing and interpreting swarm
data, including object detection, image classification, and
data visualization. An Image Pixel to WGS Converter software
program is also used for georeferencing. The proposed cloud
platform could also utilize OpenDroneMap as a powerful tool
for processing the images captured by the UAV swarm during
their missions.

The low-level image processing module recovers images
from various degradations, such as noise, blur, haze, etc.
Recently, deep neural network-based methods have demon-
strated superior performance for image restoration, and the
case of multiple degradations can be solved jointly using end-
to-end learning. UAVs can also have mounted multispectral
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(MS) camera sensors that collect data from various regions of
the electromagnetic radiation spectrum with higher spectral
resolution than images captured by RGB sensors. When both
RGB and MS cameras are in use, one can process data cap-
tured by those cameras jointly to generate MS images having
high-spatial resolution from high-resolution RGB images and
low-spatial resolution MS images. This method, integrated
with an out-of-the-box image classification module, provides
improved classification accuracy for cases when only one of
the cameras (RGB or MS) is in use.

5. Implementation methods and
technologies

The methods and technologies underlying UAV swarm
design and operational management encompass a series of
protocols and algorithms. These mechanisms provide a foun-
dation for modeling swarm intelligence, controlling mission
coordination, facilitating collective decision-making, and
optimizing targeting task performance.

Distribution and redistribution of the swarm missions are
performed automatically. The motion of individual UAVs
along edges of the prescribed spatial network is operated by
our algorithms, which are developed and embedded accord-
ingly. These algorithms made it possible to avoid near-miss
collisions between UAVs within the swarm. Cryptographic
algorithms of proven security have been embedded in or-
der to ensure secure communication of UAVs within the
swarm.

In case of the lost or crash of individual UAVs, the swarm dy-
namically reconfigures/reshapes thus ensuring mission con-
tinuity. The responsibilities of lost UAVs are automatically
transferred to neighbors within the swarm. Appropriate al-
gorithms have been developed to neutralize the individual
UAVs localized uncertainties, errors or failures.

Our methods and algorithms for constructing optimal and
fault-tolerant schemes implementing information full ex-
change (gossip/broadcast models) served as a basis for build-
ing multi-agent decentralized control systems. During their
quasi-random walk (rotor-router model), the UAVs carry out
dynamic shooting of the surveyed area. Full and reliable ex-
change of the captured images is performed via an encrypted
internal radio channel. The frequency and other characteris-
tics of the swarm, also the position in space, are determined
with the required accuracy, which ensures the surveyed area
image completeness and continuity.

In order to resist domain-specific information or physi-
cal disruptions throughout the swarm mission performance,
the UAV swarm operates without any control panel or ex-
ternal instructions. Nevertheless, appropriate technological
solutions have been embedded to establish secure commu-
nication with the swarm in order to redirect, guide or re-
turn UAVs to the ground station safely. Raspberry Pi 4 Model
B types with Robot Operating System are used as on-board
computers for achieving autonomous flights. The developed
cloud platform integrates application programming inter-
faces to store, process, and analyze data obtained by UAVs.
For this purpose, edge/fog and cloud computing mechanisms

are embedded equipped with GPU/TPU cloud-edge devices.
The technological solutions are achieved through implemen-
tation of broadcast/gossip research problems; Eulerian walk
rotor-router models; graphs; cellular automata; coding and
cryptography theory along with parallel programming (MPI,
OpenMP, CUDA, Chapel) methods.

6. Conclusion
The paper presents an innovative approach to address-

ing the effective coordination and control challenges of UAV
swarms. By introducing mathematical models and paradigms
based on self-organizing swarms, the authors have made
significant strides in capturing the complex dynamics of
UAV swarm behavior. A cloud-based model is proposed to
utilize advanced methods and algorithms to develop fault-
tolerant schemes and construct a decentralized swarm of
UAVs.

Utilizing the rotor-router model for discrete-time walks
and incorporating the deterministic evolution of rotor con-
figurations on swarm graph vertices enable optimal imaging
of a given area during the swarm’s quasi-random walk. The
recommended optimal and fault-tolerant gossip/broadcast
schemes not only guarantee the information full exchange,
but also enhance the swarm’s resilience to internal failures
and external attacks, while cryptographic protocols ensure
security.

The modular nature of our hardware and software solution
within the customized virtual environment allows for easy
adaptation to various application areas. The model presents
a robust and efficient solution for operating UAV swarms in
multiple scenarios. It is planned to investigate the scalability
of the proposed models and algorithms, and explore meth-
ods to optimize the energy consumption of individual UAVs
within the swarms.

Future works will be dedicated to extending the rotor-
router model aimed at generalization of theorems for non-
planar graphs in three-dimensional space and to analytical
proof of our hypothesis on minimum number of calls for k-
fault tolerant gossip graphs.

To avoid long-distance connections prone to communica-
tion failures, we consider it necessary to create a simulation
program to be invoked prior to UAVs’ flight. By repeatedly
changing the numbering of the UAVs placed in their initial
positions (generation of the Knödel graph), we model the mo-
tion of the UAVs according to the rules for the rotor-router
model by iteratively applying the operations of interchange
in response to violations of permissible distance of commu-
nication. Also, the generation of nonisomorphic graphs pre-
serving the minimum number of calls and time steps should
be achieved. Obviously, in this case, there will be fewer re-
peating time steps and the level of fault-tolerance will de-
crease.
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