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Engineering students’ approaches to learning in two student-centred instructional models 

before and during the COVID-19 pandemic 

Abstract 

In this study, we investigated how well two different student-centred instructional models 

fostered engineering students’ learning in a time of crisis. We analysed students’ (N = 375) 

approaches to learning during four engineering mathematics courses in a Finnish university 

before and during the COVID-19 pandemic. Students’ deep and surface approaches to learning, 

as well as organised studying, were measured five times during an eight-month period. For the 

control group the student-centred elements were added to the framework of traditional lecture-

based teaching, whereas the intervention group’s instructional model disrupted the structures of 

traditional teaching more profoundly. Our results indicate that the pandemic and related 

restrictions were linked to a decrease in students’ deep approach to learning and organised 

studying, and an increase of surface approach to learning in both groups. However, the 

intervention group’s instructional model supported the deep approach to learning better than that 

of the control group.  

Keywords: approaches to learning; student-centred teaching; flipped learning; pandemic; 

engineering mathematics 

  

Introduction 

  

With the emergence of the COVID-19 pandemic in 2020, people worldwide faced sudden changes 

in their lives and were forced to adjust to new, stressful situations. Social contacts were restricted 

drastically, and people needed to work and study from their homes online. University students 

were stressed over their emotional health, academic work, employment, finances and their loved 

ones’ health (Mushquash & Grassia, 2020). The pandemic negatively affected students’ well-being 

and fuelled anxiety, causing depression symptoms (Evans et al., 2021). For these reasons, a need 

exists to find instructional models that support students' well-being and keep the quality of learning 

high, even in exceptional circumstances. 

 

One strategy for supporting the quality of students’ learning are student-centred teaching methods. 

Student-centred teaching can be seen as an umbrella that encompasses teaching methods in which 

students have an active role in their knowledge construction (Baeten et al., 2013). It has been 

shown to forster skills that are important for students’ future careers – such as problem solving, 

communication and teamwork (e.g., Baytiyeh & Naja, 2017; Yadav et al., 2011) – and it can affect 

students’ learning positively (e.g., Baytiyeh & Naja, 2017; Dochy et al., 2003; Lahdenperä et al. 

2018; Laursen et al., 2014; Yadav et al., 2011). One could hypothesise that student-centred 

teaching supports the quality of students’ learning also during the pandemic. 

 

In this study, we investigated how two instructional models that applied student-centred teaching 

in different intensities, supported the quality of learning before and during the pandemic. We 

viewed the quality of learning from the perspective of students’ approaches to learning (SAL; 

Marton & Säljö, 1976; Parpala & Lindblom-Ylänne, 2012). Approaches to learning describe 

intentions that students have when approaching a learning situation and typically are divided into 



deep and surface approaches, together with organised studying. Studies concerning the relationship 

of student-centred teaching methods and students’ approaches to learning report mixed results. 

Many studies have found that student-centred learning environments support favourable 

approaches to learning (e.g., Dolmans 2016; Wilson & Fowler, 2005), while in other studies 

student-centred learning environments have been linked with less optimal approaches to learning 

(e.g., Baeten et al., 2013; Struyven et al., 2006). This implies that more information is needed on 

different kinds of student-centred learning environments and contexts in which they are applied 

when studying their effect on students’ approaches to learning.  

 

Student-centred teaching methods 

  

During the past few decades, student-centred teaching methods have gained wide interest in higher 

education (e.g., Baeten et al., 2010; Karabulut-Ilgu et al., 2018). Baeten et al. (2013) define 

student-centred teaching as having three characteristics: Students play an active role in 

constructing knowledge; teachers facilitate students’ work; and the assignments used in teaching 

are authentic. Student-centred teaching can take different forms, and many teaching models can be 

considered to fall under its umbrella, including active learning (e.g., Prince, 2004), problem-based 

learning (e.g., Dochy et al., 2003), inquiry-based learning (e.g., Laursen et al., 2014) and flipped 

learning (Talbert, 2017). 

  

In the context of engineering education, student-centred teaching methods have been used and 

studied widely. In their systematic review Karabulut-Ilgu et al. (2018) investigated 62 studies on 

flipped learning in engineering education. According to their review, the learning gains in flipped 

learning were as good as or better than in traditional lecture-based teaching. As benefits of flipped 

learning, they reported flexibility of teaching arrangements, student engagement, learning gains in 

transferable skills, and improvement in interaction both between students and teachers and among 

students. According to the review, challenges include increased workload for teachers, student 

dissatisfaction with the teaching materials, technological issues and student resistance. In their 

three-year follow-up study, Polanco et al. (2004) showed that problem-based learning improved 

engineering students’ academic achievement more than traditional teaching. The positive effect of 

problem-based learning was seen also in consecutive courses. The results of Yadav et al. (2011) 

suggest that problem-based learning fosters problem-solving skills better than a lecture-based 

method for engineering students. 

  

Students’ approaches to learning 

  

There has been a long tradition of studying students’ approaches to learning in higher education 

research. Its origins lie in a study by Marton and Säljö (1976). They distinguished between two 

ways of processing information: surface processing and deep processing. Later, these concepts 

were developed further and replaced by surface approach to learning and deep approach to 

learning, which include students’ intentions related to both their studying and learning processes 

(e.g., Entwistle & Ramsden, 1983; Entwistle et al., 2006). Students applying the deep approach to 

learning aim to understand ideas for themselves, relate ideas to their previous knowledge and 

examine arguments critically. Students who apply the surface approach to learning use unreflective 

strategies such as memorisation and carrying out procedures (Entwistle & Peterson, 2004). They 

study in an unreflective manner and their knowledge is fragmented (Lindblom-Ylänne et al., 



2019). There is also a third approach, which has been referred to as strategic approach (Entwistle 

& Ramsden, 1983) or achieving approach (Biggs, 1993). Nowadays it is usually called organised 

studying. Students who apply this approach study in an organised manner, are good at time 

management, and can manage their concentration and effort (Entwistle & McCune, 2004). 

  

The deep approach to learning has been linked to higher achievement than the surface approach to 

learning (e.g., Marton & Säljö, 1976; Minbashian et al., 2004). Also organised studying has been 

shown to correlate positively with study success (Asikainen et al., 2014; Rytkönen et al., 2012). 

In particular, the combination of deep approach to learning and organised studying has been noted 

to be favorable (Haarala-Muhonen et al., 2017). 

 

Several characteristics of students and learning environments have been linked to students’ 

approaches to learning. If a student finds that a course’s workload is too heavy or experiences 

stress, it can manifest as the student taking the surface approach to learning (Cheung et al., 2020). 

Also, a lack of challenges can lead to the same result (Coertjens et al., 2016). The deep approach 

to learning and organised studying have been associated positively with the perception of receiving 

peer support (Coertjens et al., 2016; Lahdenperä et al., 2018). A study by Du et al. (2019) 

conducted with engineering students suggested that team projects foster a deep approach to 

learning. 

 

Student-centred learning environments can foster the deep approach to learning (e.g., Dolmans et 

al., 2016; Wilson & Fowler, 2005), but they can also encourage students to use the surface 

approach to learning (e.g., Baeten et al., 2013; Struyven et al., 2006). Leung et al. (2008) found 

that for engineering students, teacher-centred teaching correlated with the surface approach to 

learning at Hong Kong universities and with the deep approach to learning in mainland China. 

Therefore, comparing different student-centred learning environments is of interest in order to find 

out which elements of learning environments foster favourable approaches to learning. 

 

In this study, we investigated engineering students’ approaches to learning in two different student-

centred instructional models which utilised student-centred teaching in different intensities. One 

of the student-centred instructional models functioned within the traditional framework of lectures, 

and the other disrupted the traditional structures of mathematics teaching more profoundly. Even 

though the control and intervention groups were exposed to different kinds of teaching methods, 

both groups received student-centred instruction from pedagogically qualified and motivated 

teachers. We took a longitudinal approach by measuring students’ approaches to learning in four 

consecutive courses, as short interventions might not be sufficient to impact students’ approaches 

to learning (Baeten et al., 2010; Karabulut-Ilgu et al., 2018; Wilson & Fowler, 2005). A novel 

perspective is to study the effect from a sudden crisis on students’ approaches to learning. During 

the fourth course, the COVID-19 pandemic elicited severe disruptions in teaching, affecting both 

students and their learning environments drastically. All teaching had to migrate onto online 

platforms in mere days, and students and teachers’ personal lives were restricted severely. We 

investigated how the two different instructional models supported student learning in this 

unexpected and stressful situation. 

 

Research questions: 

  



RQ1: Did students’ approaches to learning differ over time in engineering mathematics courses 

that were taught using the two different instructional models? 

  

RQ 2: Was there a change in students’ approaches to learning in engineering mathematics courses 

taught using the two different instructional models before and during the COVID-19 pandemic? 

  

Context 

 

This study’s participants were students taking compulsory first-year engineering mathematics 

courses in a research-intensive university in Finland. Altogether, four focus courses were used in 

this study, each worth five ECTS (European Credit Transfer and Accumulation System) credits. 

Course topics included functions, complex numbers, matrices, differential and integral calculus, 

probability and statistics. Each course lasted seven weeks, plus an exam week. 

 

The participants were divided into two groups based on the instructional model used. The control 

group was taught using a student-centred model that was built within a traditional lecture-based 

format. The intervention group’s courses were taught using a student-centred model in which the 

structures of traditional teaching were removed.  The courses implemented with the two models 

had the same learning objectives and utilised the same written course materials and educational 

videos. In both models, students completed weekly tasks, some of which were online tasks with 

automatic feedback and others pen-and-paper tasks. Both models utilised the online platform 

Moodle.  Students’ grades were based on tasks completed during the course plus a final exam.  The 

two instructional models differed mainly in how contact teaching and assessment were organised. 

These differences are described below and summarised in Table 1. 

 

The control group’s model comprised a weekly schedule of four hours of lectures and two two-

hour exercise sessions. The lectures were sessions of approximately 250 students. In the lectures, 

the teacher explained and motivated the topics of the week and broke down thinking behind 

mathematical proofs. The students also discussed examples given by the teacher in small groups. 

Students completed tasks each week. During the exercise sessions, a group of approximately 25 

students solved tasks in smaller groups and discussed worked-out solutions with a teaching 

assistant. A tutoring lab was available for studying new topics and solving tasks with help from 

teaching assistants. Students also could participate in a weekly basic skills support session aimed 

at students who need to brush up on prior knowledge.  

 

In the intervention group, the idea of flipped learning (Talbert, 2017) was utilised. The students 

were introduced to new concepts with structured activities, and the group learning space was 

dedicated to interaction. Every week, the students received a theory pack comprising references to 

the written course materials and educational videos, as well as a problem set. Contact teaching 

comprised an exercise session, tutoring lab and basic skills support session just as for the control 

group. At the end of the week, students participated in a prime-time session (see Koskinen et al., 

2018) with their teacher. The students worked in dedicated small groups of approximately eight 

people both in the exercise sessions and prime-time meetings.  The prime-time meetings were 

sessions of approximately 25 students, in which each group had a 30-minute conversation with the 

teacher. The teacher and students discussed topics that were unclear after self-studying as well as 

study skills. When a student group was not discussing with a teacher, they worked on group tasks 



that summed up or expanded the week’s topics. Similar to the control group, the intervention group 

was given weekly, individual tasks. The main difference was that some of the intervention group’s 

tasks aimed at developing conceptual understanding. Also, some of the tasks were self- and peer-

assessed. In addition to self-assessing their solutions to tasks, students regularly self-assessed their 

competencies using the course’s learning objectives.  

  

The COVID-19 pandemic closed the society on March 19, 2020. Schools at all levels were closed 

for face-to-face education and people’s options to go out were very limited. In our focus university 

the teaching arrangement changed abruptly. For the control group, lectures were replaced by short 

educational videos. Instead of the exercise sessions, the students submitted all their tasks through 

the course’s online platform. Solutions to tasks were self-assessed or peer assessed. Support for 

exercises took place in a virtual tutoring lab using Microsoft Teams. The control group’s exam 

had two parts. The first part was an open-book online exam, and the second part comprised slightly 

randomised questions. The exam did not have overseers, and all course materials could be used. 

  

In the intervention group, the exercise sessions were cancelled. The tasks that previously were 

done before the exercise sessions were now self-assessed by the students. The tutoring lab moved 

from a face-to-face setting to online teaching, similar to the control group. Prime-time sessions 

were held with video conferencing separately for each small group. The exam comprised an open-

book online exam, an individual assignment and a brief one-on-one assessment discussion with 

the teacher via a video conference. 

 

During the four courses, the control group had two different responsible teachers. On average, they 

had 18 years of teaching experience (min. 16, max. 20 years). For the intervention group, there 

were four different responsible teachers with 16 years of experience on average (min. 6, max. 23 

years). All the responsible teachers had a 60-ECTS-credit pedagogical qualification. In addition, 

there were several teaching assistants supervising the exercise sessions and teaching in the tutoring 

lab. The teaching resources allocated for the control and intervention groups did not differ to a 

considerable degree. 

  

Table 1. Teaching arrangements for two student groups, control and intervention, that were taught 

using two different student-centred instructional models. 

 

[INSERT TABLE 1 HERE.] 

Method 

Participants 

The sample comprised 374 first year engineering students in higher education (126 females, 

33.7%; one person’s gender information was unavailable). Their average age was 21.91 (SD = 

2.336) years. Age information for three persons were missing. The females’ average age (M = 

21.98, SD = 2.679) was close to that of the males (M = 21.89, SD = 2.145). 

The students were assigned to either the control (n = 200, 53.5%; 72 females, 36.0%) or the 

intervention group (n = 174, 46.5%; 54 females, 31.0%) according to their study programmes. 



The students in the control group were from the electrical engineering, bioengineering and 

information technology programmes, whereas the students in the intervention group were from 

automation engineering, mechanical engineering, materials science and environmental and 

energy engineering. Gender distribution in the two groups was close to the overall gender 

distribution of the sample. The average ages in the two groups were similar and close to the 

whole sample average age: Control M = 22.00 (SD = 2.443), Intervention M = 21.81 (SD = 

2.210). 

Even though the students in the control and intervention groups had different majors, they all 

were engineering students whose first-year studies do not differ much from each other. Also, an 

initial measurement was done in the beginning of the semester (timepoint t0) to verify that 

students in the two groups did not have different approaches to learning.  

Procedure 

Students’ self-assessments of their approaches to learning were collected using an online survey 

on the Moodle platform used for teaching. Consent to participate was collected from the students 

during the first online survey data collection. Participation in this study was voluntary and the 

students were aware that they could withdraw at any time or refuse to answer any question 

without any consequences. The students completed five surveys during four engineering 

mathematics courses (each course lasted about seven weeks). The intervals between the five 

measurements varied from five to ten weeks. The first measurement (t0) took place in August 

2019, before the first course. The next three measurements were taken at the beginning of the 

second (t1, October 2019), third (t2, January 2020) and fourth (t3, March 2020) course. The fifth 

measurement (t4) was taken at the end of the fourth course (April 2020) during the pandemic. 

Instrument 

The participants completed a questionnaire (Parpala & Lindblom-Ylänne, 2012) on approaches 

to learning five times during this study. The questionnaire was based on the Experiences of 

Teaching and Learning Questionnaire (ETLQ; Entwistle et al., 2003) and evaluated university 

students’ approaches to learning in a state/event (course-specific) level with 12 self-response 

items under three dimensions: deep approach (four items), surface approach (four items) and 

organised studying (four items). Responses to the items were provided on a five-point scale 

ranging from 1 (totally disagree) to 5 (totally agree). The original study used to validate the 

questionnaire (Parpala, 2010) employed two university student samples from Finland and the UK 

and showed the following internal consistency values: deep (𝛼𝐹𝑖𝑛 = 0.82, 𝛼𝐵𝑟𝑖𝑡 = 0.76); surface 

(𝛼𝐹𝑖𝑛 = 0.59, 𝛼𝐵𝑟𝑖𝑡 = 0.70); organised (𝛼𝐹𝑖𝑛 = 0.76, 𝛼𝐵𝑟𝑖𝑡 = 0.78). A recent study with Danish 

university students (Herrmann et al., 2017) reported internal consistency values of 0.73 (deep), 

0.77 (surface) and 0.77 (organised). In our study, the average internal consistency values of the 

five repeated measurements were 0.52 (deep), 0.67 (surface) and 0.79 (organised). 

Statistical analyses 

Multilevel modeling (MLM, see e.g., Finch et al., 2014; Hox, 2010), more specifically mixed 

effects growth curve modeling, was performed with R statistical computing environment (R Core 

Team, 2020; RStudioTeam, 2016) to investigate change over time. Three SAL dimensions (deep 

approach to learning, surface approach to learning, organised studying) were the dependent 

variables (DV) in the analysis while Time, Treatment (0 = control, 1 = intervention) and Gender 



(0 = female, 1 = male) were the predictors. Predictors were not centered by the grand mean or 

group mean as they contained interpretable zero values. MLM was used as it allows analysis 

between different levels (level 1: SAL dimensions, level 2: students) and inclusion of variables 

with missing data. All the analyses were conducted with both nlme::lme (Pinheiro et al., 2021) 

and lme4::lmer (Bates et al., 2015) programs and maximum likelihood (ML) and restricted 

maximum likelihood (REML) methods. Although it is known that ML estimates of variances are 

underestimated (e.g., Hoffman, 2014), the effect is small with large data. 

Before analysis, the data were analysed for missing values with mice (van Buuren & Groothuis-

Oudshoorn, 2011), finalfit (Harrison et al., 2021) and naniar (Tierney et al., 2021) R packages. 

Original data contained five repeated measurements (total number of 2025 observations) from 

405 students with 25.5% of missing data. Missing data analysis (e.g., Gelman & Hill, 2007; van 

Buuren, 2018) with mice::md.pattern showed that the most frequent pattern (1508 observations, 

74.5%) was the one that contained complete data. The second most frequent pattern (508 

observations, 25.1%) had missing data in the survey variables (Deep, Surface, Organised). 

Investigation of missing data across the five timepoints showed that the proportion of missing 

data had a general declining tendency over time in SAL (30.9%, 31.4%, 20.2%, 21.7%, 21.2%) 

variables. Missing data were present quite equally in both control (27.3%) and intervention 

(22.5%) groups. Investigation of missing data matrix (finalfit::missing_pairs) showed that the 

most frequent missing values (in SAL variables) were randomly distributed across other 

variables. In addition, missing data was visualized with naniar::geom_miss_point by replacing 

missing values with values 10% lower than the minimum value of that variable (inspired by the 

20% rule from Swayne & Buja, 1998). Inspection of missing data through the five timepoints 

showed that it was evenly distributed in both control and intervention groups. As the data 

contained quite a large number of complete observations (1508 out of 2025), we decided to 

include observations containing missing values in the analysis and continue the preliminary 

analysis with the original data (2025 observations from 405 students). 

After missing value analysis, the data were investigated by each DV (Deep, Surface, Organised) 

for assumptions related to 1) within-group error and 2) random effects (Pinheiro & Bates, 2000, 

pp. 174-196). Analyses of the within-group residuals (BLUP’s, best linear unbiased predictors of 

the within-group errors) with both homoskedastic and heteroskedastic (different variances for 

each level of Treatment) models showed that the errors were centered at zero and normally 

distributed. Plotting the observed responses versus the within-group fitted values for each DV 

showed small standardised residuals, suggesting that the linear mixed-effects model was 

successful in explaining the growth curves. Normal plots of estimated random effects from both 

homoskedastic and heteroskedastic models for each DV showed symmetrical distributions for 

the intercept and time. Scatter plot matrixes of the estimated random effects indicated that there 

were no departures from the assumption of homogeneity of the random-effects distribution. 

Extreme values for each DV (using Time, Treatment and Gender as predictors) were analysed 

with RModelDiagnostics package (Wiley, 2020). Results indicated that there were 31 students 

who had extreme values in the DV’s. After excluding these students from the analysis, 

multivariate normality was achieved. The final data used in the analysis contained 1379 

observations from 374 students. It retained the original gender/treatment distributions and 

average age of the participants. 



Balance of the control and intervention groups was studied with full propensity score matching 

(PSM) using the MatchIt package (Ho et al., 2011) without replacement. The propensity score 

was estimated using logistic regression of the Treatment on the covariates (Deep, Surface, 

Organised). Results indicated that the mean variance ratio (preferably close to 1) and the mean 

empirical cumulative density function (preferably close to 0) values for the full data (𝑀𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 

0.82; 𝑆𝐷𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 0.048; 𝑀𝑖𝑛𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 0.79; 𝑀𝑎𝑥𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 0.89) were quite close to the 

values of the matched data (𝑀𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 0.96; 𝑆𝐷𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 0.109; 𝑀𝑖𝑛𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 0.80; 

𝑀𝑎𝑥𝑉𝑎𝑟𝑅𝑎𝑡𝑖𝑜 = 1.04). As the difference between the unmatched and matched data was small, 

further analyses were conducted without matching. 

The modeling strategy in this study was traditional (e.g., Pinheiro & Bates, 2000), comparing an 

unconditional means model (a.k.a. “empty”, “baseline” or “null” model) without predictors to 

several conditional models with an incremental number of predictors (including Time, Treatment 

and Gender). To estimate the general developmental trends for students’ approaches to learning, 

a two-level growth model of longitudinal change (Raudenbush & Bryk, 1986) was applied to the 

data. The first level (within-student) model describes each student’s intercepts (initial status at 

each measurement point) and slopes (rate of linear growth). The second level (between-student) 

model describes individual differences of students in these growth curve parameters. Within and 

between student variability were investigated with three unconditional means models (Model 0: 

random intercepts and no predictors; Model 1: random intercepts and time as a predictor; Model 

2: random intercepts and slopes, time as a predictor) to see if there was a systematic mean-level 

change and individual variability in the approaches to learning and studying. 

Before proceeding with the investigation of the properties of these three models, intraclass 

correlation (ICC) values were calculated with the performance::icc package (Lüdecke et al., 

2021) to determine the possible need for multilevel modeling. The ICC value describes the 

variance explained in a DV due to between-person clustering in the data. A high ICC value 

indicates that a multilevel modeling approach is relevant as a relatively high proportion of the 

variance in the DV is explained by the clustering structure in the data. Results showed quite high 

ICC values (Deep: Model 0 ICC = 0.55, Model 1 ICC = 0.55, Model 2ICC = 0.60; Surface: Model 

0 ICC = 0.59, Model 1 ICC = 0.61, Model 2 ICC = 0.69; Organised: Model 0 ICC = 0.67, Model 

1 ICC = 0.68, Model 2 ICC = 0.72), indicating a clear need for the use of a multilevel modeling 

approach with all three DV’s. 

Need for random intercepts (Model 1) or random intercepts and slopes (Model 2) were 

investigated by comparing the two models by their AIC (Akaike Information Criterion) values 

and with likelihood ratio (𝜒2) test (car::anova, Fox & Weisberg, 2019). These analyses were 

conducted with all three DV’s (Deep, Surface, Organised), but for illustrative purposes we 

present here only results related to deep approach to learning. AIC values for the two models 

were 1462.348 for Model 1 and 1443.427 for Model 2. The Model 2 with random intercepts and 

slopes had a better fit (lower AIC value) than Model 1. Subtracting the AIC value for Model 1 

from the (𝐴𝐼𝐶𝑚𝑖𝑛) value for Model 2 produced a difference larger than 2, indication of less than 

substantial evidence that Model 1 is superior compared to Model 2 (Burnham & Anderson, 2002, 

p.70). The same result was produced by likelihood ratio test (LRT): Model 2 (𝑙𝑜𝑔. 𝐿𝑖𝑘 = -

715.713) outperformed Model 1 (𝑙𝑜𝑔. 𝐿𝑖𝑘 = -727.174), p < .001). Similar results were obtained 

for the other two SAL dimensions. Based on these findings, analysis was continued with Model 

2.  



As Figure 1 with 20 randomly selected students from the control and intervention groups 

illustrates, model fit was improved by allowing both individual variation of students’ average 

scores on the deep approach to learning and individual variation of the related slopes. 

Figure 1. Random intercepts and slopes model of deep approach over time with randomly 

selected students from control (n = 20) and intervention (n = 20) groups 

 

Note: Blue line (“fixed”) represents overall estimated trend and red lines (“sid.f”) represent 

students’ individual estimated trends. 

The next step was to investigate if the cluster level error structures (five repeated measurements 

clustered by students) were autocorrelated. Each of the aforementioned models were re-run in 

nlme::lme with corCAR1 function (instead of corAR1) as it allows for unequally spaced time 

between observations (Finch, Bolin, & Kelley, 2014). 

In this study, timepoints were unequally spaced as the distance between measurements varied 

from five to ten weeks, and not all students completed the five surveys. AIC values for the 

autocorrelation error structure models for Deep and Surface dimensions were slightly better 

(smaller) than for the previously presented Model 2 (assuming the independence of random 

effects): 𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙2𝐷𝑒𝑒𝑝 = 1443.427; 𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙2𝐷𝑒𝑒𝑝𝐶𝐴𝑅1 = 1442.288; 𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙2𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 

2160.864; 𝐴𝐼𝐶𝑀𝑜𝑑𝑒𝑙2𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐶𝐴𝑅1 = 2160.178. However, the AIC value differences were less than 

two units (Burnham & Anderson, 2002) and the BIC values were better (smaller) in all models 



with independent error structures. In addition, as the likelihood ratio tests were not statistically 

significant between independent and autocorrelated models, further analyses with the three SAL 

dimensions were based on an assumption of independent cluster level error structures. 

Finally, as the goal was to investigate the change over time in three different DV’s, level 1 

orthogonal polynomial effects (e.g., Hoffman, 2015) were investigated with the Model 2 (Time 

as the predictor, random intercepts and slopes). Although curvilinear (cubic) trends were present 

in Surface and Organised models, LRT showed no significant improvement in the model fit. This 

led us to use a linear growth model with independent cluster level error structures for all three 

SAL dimensions. 

To sum up, unconditional growth model with linear time as a predictor (random intercepts and 

slopes) will be used later as the baseline model against which other models will be compared. 

Results 

The descriptive statistics are presented in Table 2. The means across the five measurement points 

indicated a general decline in deep approach to learning and organised studying. The decline in 

the control group seemed a little steeper in these dimensions than in the intervention group. 

Although the trend for surface approach to learning did not show a clear pattern, it seemed to 

have increased a bit more in the control than in the intervention group over time. 

[INSERT TABLE 2 HERE.] 

The Pearson product-moment bivariate correlations for the whole sample (n = 374) are presented 

in Table 3. Each variable was measured at five different points in time (t0–t4). Correlations 

ranged from -0.34 to 0.71. The items in all three SAL dimensions correlated positively with 

themselves over time, effect sizes being at least at the medium level (r > |.30|, see Cohen, 1988): 

𝑟𝐷𝑒𝑒𝑝 = 0.38–0.65, 𝑟𝑆𝑢𝑟𝑓𝑎𝑐𝑒 = 0.38–0.67, 𝑟𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑 = 0.53–0.71.  

[INSERT TABLE 3 HERE.] 

Research question 1: Students’ approaches to learning in two different instructional models 

The analyses started with the selection of predictors for the multilevel growth models of the three 

DV’s. Treatment (0 = control, 1 = intervention) was included as a predictor variable to the 

previously presented models for the deep, surface and organised (SAL) dimensions. A 

comparison of the models with LRT showed that treatment was a statistically significant 

predictor for the deep [𝜒2(1) = 8.175, p = 0.004] and organised [𝜒2(1) = 13.069, p < .001] 

models. However, an investigation of a possible interaction effect between time and treatment 

via LRT showed that such interaction was present only in the surface model [𝜒2(1) = 3.987, p = 

0.046]. This finding led to the inclusion of treatment as a predictor also in the surface model. 

Gender (0 = female, 1 = male) was also added as a predictor in all three SAL models, although it 

had a statistically significant association only with the surface approach to learning (this finding 

will be discussed later). 



Deep approach to learning 

The results of the mixed-effect growth curve modeling of the deep approach to learning are 

presented in Table 4 (sjPlot package, see Lüdecke, 2016). Model 0 represents an unconditional 

means model while Model 1 has Time as a growth component with random intercepts and Model 

2 has both random intercepts and slopes. The next two models are based on Model 2, but they 

have Treatment (Model 3) and Gender (Model 4) as predictors.  

[INSERT TABLE 4 HERE.] 

The ICC of Model 0 indicates that 55.3% of the variance in the deep approach to learning scores 

was attributed to student-to-student ‘cross-sectional’ variation (some were above, and some were 

below the average level), whereas 44.7% (1 - 0.553) of the variance was due to ‘longitudinal’ 

within-student measurement-to-measurement variation. Adding a linear time slope (in Model 2) 

increased between-student variation to 59.9%, indicating variations in the students’ average 

values from the repeated measurements. Mean growth rate (time) was statistically significantly 

negative, indicating that deep approach to learning decreased over time. The variance of this 

growth rate (𝜏11 = 0.005, C.I. = 0.003 – 0.009) suggested the existence of individual differences 

in the rate of growth. Results showed no intercept-slope correlation (𝜌01 = -0.05, C.I. = -0.34 – 
0.25). 

Treatment was also a statistically significant positive predictor (Model 3), highlighting the fact 

that participating in the intervention group (coded as ‘1’) had a positive impact on the students’ 

deep approach to learning (the control group was coded as ‘0’). Although the students’ deep 

approach to learning declined over time, those in the intervention group remained on a higher 

level than the students in the control group (Figure 2). As Model 4 shows, there was no 

interaction effect between time and treatment and gender was not associated with deep approach 

to learning. 

Figure 2. Development of deep approach to learning over time 



 

Note: Left hand side of the figure displays the observed values of the intervention (n = 174) and control (n = 200) 

groups. Right-hand side contains predicted values (based on Model 3 in Table 4) of the random sample of 60 

students. 

Power and effect size were analysed with simr::powerSim (Green & MacLeod, 2016) using 200 

simulations (𝛼 = .05). The mixed-effects model used in the power analyses had each SAL 

dimension in turn as a dependent variable, Treatment as a fixed predictor and Time as random 

predictor (both intercepts and slopes were allowed to vary for each student). The estimated 

power for the deep approach model was found to be 83.0% (C.I. = 77.1% – 87.9%), exceeding 

the desired level of 80.0% (see Cohen, 1988). However, the effect size (𝑑 = 0.12) was below the 

level of small effect (d = 0.20, see Cohen, 1988). 

Surface approach to learning 

The results of the mixed-effect growth curve modeling of the surface approach to learning are 

presented in Table 5. 

[INSERT TABLE 5 HERE.] 

The mean growth rate (time) was statistically significantly positive, indicating that surface 

approach to learning increased over time (Model 2 in Table 5). The variance of this growth rate 

(𝜏11 = 0.015, C.I. = 0.010 – 0.021) was greater compared to that of the deep approach (𝜏11 = 

0.005, see Model 2 in Table 4), suggesting that students differed more over time in their surface 

approach than in their deep approach. Moreover, the strong negative intercept-slope correlation 

(𝜌01 = -0.41, C.I. = -0.56 – -0.23) in Model 2 underscored that the students with lower initial 



levels of surface approach to learning had steeper rates of increase over time than those with 

higher initial levels. 

Treatment was included as a predictor in Model 3. It was a statistically significant negative 

predictor of surface approach only when interacting with time (Model 4). That is, the surface 

approach reached higher levels over time in the control group than in the intervention group 

(Figure 3). These findings should be interpreted with caution, as the estimated power of 

predicting the change in surface approach over time was low (11.0%, C.I. = 7.0% – 16.2%) 

alongside with a nonexistent effect size (d = - 0.04). 

Figure 3. Development of surface approach to learning over time 

 

Note: Left hand side of the figure displays the observed values of the intervention (n = 174) and control (n = 200) 

groups. Right-hand side contains predicted values (based on Model 3 in Table 5) of the random sample of 60 

students for both groups. 

As Model 4 in Table 5 shows, a gender effect was present. Negative estimate indicates that 

female students’ (coded with value 0) surface approach stayed on a higher level than male 

students’ (coded with value 1) surface approach over time (see Figure 4). The right-hand side of 

Figure 4 shows that this result was present in both control and intervention groups. 

Figure 4. Development of surface approach to learning by gender over time 



 

Note: Left hand side of the figure displays the observed values of the whole sample (n = 374) over time. The right-

hand side contains the observed values for the intervention (n = 174) and control (n = 200) groups over time. 

Organised studying 

The results of the mixed-effect growth curve modeling of the organised studying are presented in 

Table 6. The variance components of Model 0 indicate that the within-student (unexplained) 

variation 𝜎2 (32.3% of the total variation 𝜎2 + 𝜏00 = 0.589) was clearly smaller than those for 

deep approach (44.7%) and surface approach (41.0%). Contrary to the findings related to the 

deep and surface approaches, the ICC (0.677) for organised studying demonstrated that a greater 

portion (67.7%) of the variance was related to between-student variation, while a smaller portion 

of the variance (32.3%) was related to within-student variation. Therefore, the differences due to 

data clustering may be dominantly related to the disparities between the students’ levels of 

organised studying (some are better organised than others) rather than differences in their 

repeated measurement profiles. 

[INSERT TABLE 6 HERE.] 

The mean growth rate (time) was statistically significantly negative, indicating that organised 

studying decreased over time (Model 1). Model 2 shows that the variance of this growth rate (𝜏11 

= 0.012, C.I. = 0.007 – 0.022) was close to that of surface approach (𝜏11= 0.015, see Model 2 in 

Table 5) but clearly larger compared to that of deep approach (𝜏11 = 0.005, see Model 2 in Table 

4), suggesting that students differed more over time in their organised and surface approaches 

than in their deep approach. 



The results related to Model 3 (Table 6) showed that treatment was a statistically significant 

positive predictor of organised studying. That is, organised studying remained quite stable over 

time in the intervention group, while it clearly declined in the control group (Figure 5). The 

estimated power for the organised studying model was high (94.0%, C.I. = 89.8% – 96.9%), but 

the effect size remained quite small (d = 0.25).  

Figure 5. Development of organised studying over time 

 

Note: The left-hand side of the figure displays the observed values of the intervention (n = 174) and control (n = 

200) groups. The right-hand side contains predicted values (based on Model 3 in Table 6) of the random sample of 

60 students for both groups. 

Model 4 in Table 6 shows that there was no interaction between time and intervention. However, 

a negative estimate for gender indicated that female students’ (coded with value 0) organised 

studying stayed on a higher level than male students’ (coded with value 1) organised studying 

over time (see Figure 6). The right-hand side of the Figure 6 shows that this result was more 

clearly present in the control group than in the intervention group. 

Figure 6. Development of organised studying by gender over time 



 

Note: Left-hand side of the figure displays the observed values of the whole sample (n = 374) over time. The right-

hand side contains the observed values for the intervention (n = 174) and control (n = 200) groups over time. 

Research question 2: Students approaches to learning before and during the pandemic 

The second research question was answered by analysing the data at each of the five timepoints 

using multilevel modeling. The first four measurements (t0–t3) took place before the pandemic, 

and the fifth (t4) was taken during the pandemic. The predictors of the DV variables (Deep, 

Surface, Organised) in all the models presented below were Treatment (0 = control, 1 = 

intervention) and Gender (0 = female, 1 = male). As the longitudinal data was split into five 

timepoints, the Time variable was not used in the analysis. 

Deep approach to learning 

Table 7 presents the multilevel modeling results of the deep approach to learning at five 

timepoints. The treatment effect stayed positive over time, indicating that in the intervention 

group, the level of deep approach increased over time more than in the control group. However, 

the effect was statistically significant from the third measurement onwards (t2, after the second 

course). The result may be due to a lower number of participants in the first two timepoints than 

in the last three timepoints. Results showed no gender effect. 

[INSERT TABLE 7 HERE.] 



To further elaborate on these findings, contrasts related to time were analysed with the emmeans 

package (Lenth, 2021), together with the lme ‘SAS.contr’ and ‘intervals’ functions (Pinheiro & 

Bates, 2000). The last (fifth) measurement (t4, during pandemic) was set as the ‘baseline’ level 

of deep approach, and the four previous scores (t0–t3) were compared against it. The results for 

the whole sample showed that all measurements (estimated marginal means) prior to the 

pandemic were higher (t0 = 4.00; t1 = 3.98; t2 = 3.99; t3 = 3.99) and deviated statistically 

significantly from the baseline (t4) value of 3.91. This declining trend was best explained with 

both linear and quadratic change over time. Results with the control group data showed that only 

the first two measurements (t0 = 3.96; t1 = 3.95) were statistically significantly higher than the 

baseline (t4) value of 3.83. This indicates that this linear decline of the deep approach scores had 

started well before the pandemic restrictions took place. However, the analyses of the 

intervention group data showed both quadratic and cubic change over time: the deep approach to 

learning was inclining until the beginning of the pandemic. Estimated marginal means of the last 

two measurements (prior pandemic) at timepoints t2 (4.10) and t3 (4.07) were statistically 

significantly higher than at t4 during the pandemic (3.98). 

Surface approach to learning 

Investigations of the multilevel modeling results of the surface approach to learning at the five 

timepoints (Table 8) showed no treatment effect after the interaction with time had been removed 

(cross-sectional data). However, it became evident that the surface approach was higher in the 

intervention group than in the control group at the first three timepoints. Thereafter, it reached a 

higher level in the control group than in the intervention group (Table 8 and Figure 3). Surface 

approach was higher for the female students at all timepoints, but statistically significant 

difference was found only in the fourth measurement (t3, after the third course). 

[INSERT TABLE 8 HERE.] 

The results of the contrast analyses with the whole data highlighted that the surface approach 

estimated marginal means (t0 = 2.65, t1 = 2.79, t2 = 2.88, t3 = 2.85) prior to the last 

measurement (t4 = 3.06) were statistically significantly lower than at the last measurement, 

following both linear and cubic inclining trends. 

Organised studying 

Table 9 presents the multilevel modeling results of the organised studying at the five timepoints. 

The treatment association was statistically significant (positive) at all timepoints, indicating that 

the intervention group systematically rated their organised studying higher than the control group 

The association became stronger after the second course (timepoints t2–t4). Organised studying 

was higher for the female students at all timepoints, but statistically significant difference was 

found only in the first measurement (t0, before the first course). 

[INSERT TABLE 9 HERE.] 

Positive associations with treatment were further investigated with contrast analyses where the 

four (prior pandemic) measurements (t0–t3) were compared to the fifth measurement t4 (during 

pandemic). An investigation of the polynomial time trends (linear, quadratic, cubic, quartic) for 

the full data showed that although organised studying developed dominantly over time in linear 

way, a cubic trend was also statistically significant. The control group manifested a declining 



(negative) mostly linear trend over time, where the first (3.63) and last (3.38) measurements 

deviated statistically significantly (p < 0.001). By contrast, the intervention group demonstrated a 

mixture of linear, cubic and quartic trends over time. After the pandemic restrictions, a drop was 

apparent at t4 (during pandemic) compared to the previous measurements at t0 (t4–t0 = 0.17, p = 

0.004) and t2 (t4–t2 = 0.19, p = 0.001). 

Discussion 

We examined engineering students’ approaches to learning through a sequence of four 

mathematics courses. The students were divided into two groups that both received student-

centred instruction. For the control group, the student-centred elements were added to a 

traditional lecture-based framework. The intervention group’s instructional model was based on 

flipped learning and was designed from the point of view of student-centred learning. During the 

fourth course, the COVID-19 forced all teaching to shift to online format. In this study, we 

analysed students’ approaches to learning in the two instructional models, both before and during 

the pandemic. 

Before and during the pandemic, students in the intervention group reported using more 

favourable approaches to learning than the control group. Although the levels of deep approach 

to learning and organised studying declined over time, the students in the intervention group 

remained on a higher level than those in the control group. The surface approach to learning 

increased over time, but the students in the intervention group remained on a lower level than the 

students in the control group. It seems that the impact of the treatment effect came with a delay, 

as the surface approach of the intervention group declined only by measurement point 3. It may 

be that it took time for the students to adjust to a new instructional model. 

One explanation for the higher levels of deep approach learning in the intervention group is 

collaborative activities and peer support. In previous studies, these factors have been linked to high 

levels of deep approach to learning (e.g., Coertjens et al., 2016; Lahdenperä et al., 2018; Waters 

& Johnston, 2004). Also, students in the intervention group were given specific tasks that aimed 

for conceptual understanding. These tasks may have helped students understand ideas for 

themselves and examine the big picture, which are skills characteristic of the deep approach to 

learning (Entwistle & Peterson, 2004). Finally, the fact that students were expected to be active 

and take responsibility for their own learning in the intervention group might explain the high level 

of deep-approach learning (Wilson & Fowler, 2005). 

  

The high level of organised studying in the intervention group may be related to how the 

instructional model supported study management. Students were required to make study schedules 

for themselves, and study skills were discussed during the prime-time sessions with teachers. The 

students in the intervention group self-assessed their competencies throughout the courses, which 

made them reflect on their own learning and may have fostered organised studying (Clark, 2012). 

 

Gender differences were detected in students' approaches to learning. In general, female students 

had higher levels of surface approach to learning and organised studying than male students. 

It appeared that male students benefited more from the intervention than female students. Their 

level of surface approach to learning was low and their level of organised studying rose almost to 

the level of female students in the intervention group. However, when interpreting the gender 



differences between participants, it should be remembered most students were male (n = 247, 

66.3%). 

 

The teaching restrictions caused by the COVID19 pandemic forced the teachers of both 

instructional models to redesign all teaching to remote form practically overnight. It should be 

noted that since neither of the models was originally designed as online teaching, compromises 

had to be done. In both groups, exercise sessions were canceled, and the tutoring lab was taught 

online. The main difference in contact teaching between the two groups was that in the control 

group the lectures were canceled and replaced by online videos, whereas in the intervention group 

the prime-time sessions continued. This meant that the control group had less contact teaching, 

and their schedule was less structured compared to the intervention group. In both groups, 

assignments were submitted on the online learning platform and self- and peer-assessed, which 

was new for the control group, but not for the intervention group. All in all, fewer changes in 

the teaching arrangements were needed in the intervention group compared to the control group. 

 

The COVID19 pandemic had a negative impact on students' approaches to learning. During the 

pandemic, students reported a lower level of deep approach to learning and organised studying 

than before the pandemic. One explanation for the drop in deep approach to learning are meeting 

restrictions and distance learning that halted access to the structures that fostered peer support, 

such as exercise groups, providing fewer opportunities for students to indulge in mathematical 

discussions (see e.g., Coertjens et al., 2016; Lahdenperä et al., 2018; Waters & Johnston, 2004). 

The lack of regular meetings also may explain the decline in organised studying. Even though the 

deep approach to learning decreased, the level of deep approach to learning remained higher in the 

intervention group. This might be due to the regular prime-time meetings that continued in the 

intervention group in which the students met with a teacher and a fixed small group of peers.  

 

The surface approach to learning increased in both student groups during the pandemic. When 

teaching practices changed due to the pandemic, it happened unexpectedly. Both teachers and 

students had to learn how to use new digital tools in a couple of days. Also, teachers had only a 

few days to plan new teaching practices. In addition, the overall uncertainty that the pandemic 

caused, as well as meeting restrictions, generated stress and anxiety among students. Big workload 

and stress have been linked to increased levels of surface approach to learning in the literature 

(Cheung et al., 2020). 

  

Limitations of the study 

 

The control and intervention groups were not chosen randomly but based on students’ study 

programmes. It is known that approaches to learning are related to individual students’ 

characteristics (Baeten et al., 2010). To take this into account, the first measurement was done at 

the very beginning of the first course. No significant difference in the students’ approaches to 

learning between the control and intervention groups was observed in the first measurement. 

However, the cultures of different engineering study programmes (Lattuca, 2010) may have 

influenced students’ approaches to learning after the initial measurement. 

 



Altogether, six teachers led the four courses examined in this manuscript. Teachers’ approaches to 

teaching may influence students’ approaches to learning (Baeten et al., 2010). However, all the 

responsible teachers were experienced and had pedagogical qualifications. 

  

The data were self-reported, but the questionnaire has been validated in the Finnish, UK and 

Denmark higher education contexts (Parpala, 2010; Herrman et al., 2017). One limitation of the 

present study is the low internal consistency value (⍺ = .52) of the deep approach to learning 

dimension. This may be because the present study had a significantly smaller number of 

respondents (N = 374) than the three previous studies (Finland N = 2509, UK N = 2710, Denmark 

N = 4377). The participants comprised a selected group in the sense that they were among those 

who did not drop out from the courses and answered all five questionnaires.  

  

Implications for teaching and future research 

 

Our results suggest that the instructional model used for the intervention group supported 

favourable approaches to learning better than the one used for the control group, both before and 

during the pandemic. Based on prior research, we hypothesise that important elements that 

supported deep approach to learning in the intervention group include collaborative work, fixed 

small groups in which the students worked, conceptual tasks and self-assessment. All in all, the 

results indicate that, when implementing student-centred teaching, it is more efficient to design 

new structures than just add student-centred elements to traditional structures such as lectures (see 

Lahdenperä et al., 2019). 

 

In the future, more information is needed on which elements of the instructional model exerted the 

positive outcome in the intervention group. Collecting qualitative data, e.g., in the form of 

interviews and observations, could provide more information on students’ approaches to learning 

and the characteristics of instructional models that foster favourable approaches to learning.   
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Table 1. Teaching arrangements for two student groups, control and intervention, that were taught using two different student-centred instructional models.  

  Before the pandemic 

  Control Intervention 

Contact 

teaching 

lectures, exercise groups prime-time meetings, exercise groups 

Support tutoring lab, basic skills support sessions tutoring lab, basic skills support sessions 

Materials course materials, videos, computerised tasks, pen-

and-paper tasks 

course materials, videos, computerised tasks, pen-and-paper tasks, conceptual tasks 

Collaboration working with peers in the exercise groups and 

lectures 

working with a fixed small group in prime-time meetings and exercise groups; 

completing group assignments 

Assessment weekly tasks, exam weekly tasks, exam, peer assessment, self-assessment of tasks and learning objectives 

  During the pandemic 

  Control Intervention 



Contact 

teaching 

  Prime-time meetings 

Support tutoring lab, basic skills support sessions tutoring lab, basic skills support sessions 

Materials course materials, videos, computerised tasks, pen-

and-paper tasks 

course materials, videos, computerised tasks, pen-and-paper tasks 

Collaboration   working with a fixed small group in prime-time meetings, completing group 

assignments 

Assessment weekly tasks, exam, self-assessment and peer 

assessment of tasks 

  

weekly tasks, exam, peer assessment, self-assessment of tasks and learning objectives 

  

 

  



Table 2. Descriptive statistics 

 Deep (α = 0.52)  

M(SD) 

Surface (α = 0.67)  

M(SD) 

Organised (α = 0.79)  

M(SD) 

Control (n = 200)    

t0 3.99(0.465) 2.58(0.671) 3.65(0.710) 

t1 4.00(0.430) 2.70(0.726) 3.53(0.704) 

t2 3.91(0.499) 2.81(0.720) 3.44(0.759) 

t3 3.91(0.496) 2.84(0.622) 3.49(0.802) 

t4 3.84(0.541) 3.07(0.689) 3.41(0.841) 

Intervention (n = 174)    

t0 4.07(0.460) 2.59(0.594) 3.83(0.678) 

t1 4.06(0.422) 2.75(0.579) 3.71(0.638) 

t2 4.13(0.471) 2.83(0.671) 3.83(0.678) 

t3 4.10(0.469) 2.77(0.614) 3.82(0.674) 

t4 3.99(0.464) 2.92(0.619) 3.68(0.727) 

 

  



Table 3. Bivariate correlations among deep and surface approaches to learning and organised studying 

   Deep.t0  Deep.t1  Deep.t2  Deep.t3  Deep.t4  Surf.t0  Surf.t1  Surf.t2  Surf.t3  Surf.t4  Orga.t0  Orga.t1  Orga.t2  Orga.t3  Orga.t4  

Deep.t0  —                                             

Deep.t1  0.48  —                                          

Deep.t2  0.49  0.47  —                                       

Deep.t3  0.45  0.47  0.65   —                                   

Deep.t4  0.38  0.47  0.58  0.57  —                                 

Surf.t0  -0.34  -0.14  -0.14  -0.17  -0.09  —                              

Surf.t1  -0.06  -0.15  -0.11  -0.18  -0.11  0.61  —                           

Surf.t2  -0.11  -0.11  -0.19  -0.25  -0.18  0.56  0.62  —                        

Surf.t3  -0.18  -0.17  -0.30  -0.29  -0.23  0.51  0.56  0.67  —                     

Surf.t4  -0.11  -0.10  -0.19  -0.21  -0.28  0.38  0.50  0.59  0.67  —                  

Orga.t0  0.33  0.12  0.25  0.30  0.20  -0.27  -0.11  -0.23  -0.17  -0.17  —               

Orga.t1  0.17  0.12  0.20  0.17  0.26  -0.24  -0.22  -0.23  -0.19  -0.20  0.59  —            

Orga.t2  0.16  0.16  0.26  0.31  0.25  -0.13  -0.09  -0.22  -0.12  -0.13  0.61  0.71  —         

Orga.t3  0.27  0.13  0.33  0.37  0.30  -0.16  -0.10  -0.23  -0.18  -0.14  0.56  0.63  0.71  —      

Orga.t4  0.13  0.10  0.19  0.20  0.31  -0.04  -0.04  -0.24  -0.19  -0.27  0.53  0.63  0.67  0.67  — 

 

Note: Deep = Deep approach to learning; Surf = Surface approach to learning; Orga = Organised studying. 

  



Table 4. Changes over time and the treatment effect on deep approach to learning 

   Model 0Deep ~ 1  Model 1Deep ~ Time ri  Model 2Deep ~ Time ris  Model 3Deep ~ Time + Treatment ris  Model 4Deep ~ Time * Treatment + Gender ris  

Predictors  Est. (C.I.)  S.E.  p  Est. (C.I.)  S.E.  p  Est. (C.I.)  S.E.  p  Est. (C.I.)  S.E.  p  Est. (C.I.)  S.E.  p  

(Intercept)  3.968 

(3.926 – 4.009)  

0.021  <0.001  4.009 

(3.959 – 4.059)  

0.025  <0.001  4.017 

(3.970 – 4.065)  

0.024  <0.001  3.961 

(3.901 – 4.022)  

0.031  <0.001  3.988 

(3.902 – 4.075)  

0.044  <0.001  

Time  
   

-0.019 
(-0.032 – -

0.006)  

0.007  0.004  -0.023 
(-0.037 – -

0.008)  

0.008  0.003  -0.022 
(-0.037 – -

0.008)  

0.008  0.003  -0.034 
(-0.054 – -0.013)  

0.011  0.001  

Treatment  
         

0.119 

(0.038 – 0.199)  

0.041  0.004  0.080 

(-0.015 – 0.175)  

0.048  0.098  

Gender  
            

-0.012 

(-0.098 – 0.074)  

0.044  0.789  

Time * Treatment  
            

0.023 
(-0.006 – 0.053)  

0.015  0.121  

Random Effects  

σ2  0.107  0.107  0.095  0.095  0.096  

τ00  0.133 sid  0.132 sid  0.115 sid  0.114 sid  0.113 sid  

τ11        0.005 sid.Time  0.005 sid.Time  0.005 sid.Time  

ρ01        -0.05 sid  -0.08 sid  -0.07 sid  

ICC  0.553  0.553  0.599  0.591  0.590  

N  373 sid  373 sid  373 sid  373 sid  373 sid  

Observations  1375  1375  1375  1375  1375  

Deviance  1452.628  1444.091  1420.978  1412.803  1410.342  

AIC  1458.628  1452.091  1432.978  1426.803  1428.342  

Note: ri = Random intercepts; ris = Random intercepts and slopes; Est. = Estimated values; C.I. = 95% Confidence Interval of the estimated values; S.E. = Standard error of estimated values; p = 

Statistical significance of the estimated values; (Intercept) = Overall DV average when predictors are set to zero; 𝜎2 = Variance of the level 1 residuals (within-students); 𝜏00 = Variance of the 

cluster means (between-students); 𝜏11 = Variance of the cluster (student) slopes over time; 𝜌01 = Overall correlation between students’ intercepts and slopes; ICC = Adjusted intraclass 

correlation, proportion of the variance in DV explained by the random effects (clustering of the data); N = Number of students; Observations = Number of observations from students; Deviance = 

-2 ⋅ Log Likelihood, consistency of the model with the data; AIC = Akaike Information Criterion, predicting the power of predictors (Time, Treatment, Gender) on DV (Deep). 

 

  



Table 5. Changes over time and impacts of treatment on surface approach to learning  

  Model 0Surface ~ 1 Model 1Surface ~ Time ri Model 2Surface ~ Time ris Model 3Surface ~ Time + Treatment ris Model 4Surface ~ Time * Treatment + Gender ris 

Predictors Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p 

(Intercept) 2.828 

(2.769 – 2.887) 

0.030 <0.001 2.641 

(2.573 – 2.710) 

0.035 <0.001 2.646 

(2.573 – 2.719) 

0.037 <0.001 2.650 

(2.560 – 2.740) 

0.046 <0.001 2.714 

(2.586 – 2.842) 

0.065 <0.001 

Time 
   

0.088 
(0.072 – 0.105) 

0.008 <0.001 0.086 
(0.066 – 0.107) 

0.010 <0.001 0.086 
(0.065 – 0.106) 

0.010 <0.001 0.107 
(0.078 – 0.136) 

0.015 <0.001 

Treatment 
         

-0.020 

(-0.137 – 0.097) 

0.060 0.734 0.073 

(-0.071 – 0.217) 

0.073 0.320 

Gender 
            

-0.163 
(-0.287 – -0.040) 

0.063 0.010 

Time * Treatment 
            

-0.041 

(-0.081 – -0.001) 

0.021 0.045 

Random Effects 

σ2 0.191 0.173 0.139 0.087 0.087 

τ00 0.275 sid 0.278 sid 0.340 sid 0.350 sid 0.342 sid 

τ11     0.015 sid.Time 0.018 sid.Time 0.017 sid.Time 

ρ01     -0.41 sid -0.45 sid -0.44 sid 

ICC 0.590 0.616 0.692 0.784 0.780 

N 373 sid 373 sid 373 sid 373 sid 373 sid 

Observations 1375 1375 1375 1375 1375 

Deviance 2289.269 2186.263 2142.056 2122.352 2111.630 

AIC 2295.269 2194.263 2154.056 2154.352 2147.630 

Note: ri = Random intercepts; ris = Random intercepts and slopes; Est. = Estimated values; C.I. = 95% Confidence Interval of the estimated values; S.E. = Standard error of estimated values; p = 

Statistical significance of the estimated values; (Intercept) = Overall DV average when predictors are set to zero; σ2 = Variance of the level 1 residuals (within-students); τ00 = Variance of the 

cluster means (between-students); τ11 = Variance of the cluster (student) slopes over time; ρ01 = Overall correlation between students’ intercepts and slopes; ICC = Adjusted intraclass 

correlation, proportion of the variance in DV explained by the random effects (clustering of the data); N = Number of students; Observations = Number of observations from students; Deviance = 

-2 ⋅ Log Likelihood, consistency of the model with the data; AIC = Akaike Information Criterion, predicting the power of predictors (Time, Treatment, Gender) on DV (Surface). 

  



Table 6. Changes over time and impacts of treatment on organised studying 

  Model 0Organised ~ 1 Model 1Organised ~ Time ri Model 2Organised ~ Time ris Model 3Organised ~ Time + Treatment ris 
Model 4Organised ~ Time * Treatment + 

Gender ris 

Predictors Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p 

(Intercept) 3.565 

(3.496 – 3.634) 

0.035 <0.001 3.647 

(3.569 – 3.725) 

0.040 <0.001 3.654 

(3.578 – 3.729) 

0.038 <0.001 3.537 

(3.440 – 3.634) 

0.050 <0.001 3.666 

(3.529 – 3.803) 

0.070 <0.001 

Time 
   

-0.039 
(-0.056 – -

0.021) 

0.009 <0.001 -0.043 
(-0.063 – -

0.022) 

0.010 <0.001 -0.042 
(-0.063 – -

0.022) 

0.010 <0.001 -0.054 
(-0.082 – -

0.025) 

0.015 <0.001 

Treatment 
         

0.248 

(0.115 – 0.382) 

0.068 <0.001 0.220 

(0.072 – 0.368) 

0.075 0.004 

Gender 
            

-0.169 

(-0.310 – -
0.029) 

0.072 0.019 

Time × Treatment 
            

0.022 

(-0.019 – 0.063) 

0.021  

Random Effects 

σ2 0.190 0.160 0.160 0.160 0.161 

τ00 0.399 sid 0.381 sid 0.362 sid 0.350 sid 0.340 sid 

τ11   0.014 sid.Time 0.012 sid.Time 0.012 sid.Time 0.012 sid.Time 

ρ01   -0.15 sid -0.06 sid -0.09 sid -0.07 sid 

ICC 0.677 0.704 0.724 0.715 0.711 

N 373 sid 373 sid 373 sid 373 sid 373 sid 

Observations 1375 1375 1375 1375 1375 

Deviance 2401.214 2366.133 2350.083 2337.014 2330.434 

AIC 2407.214 2376.133 2362.083 2351.014 2348.434 

Note: ri = Random intercepts; ris = Random intercepts and slopes; Est. = Estimated values; C.I. = 95% Confidence Interval of the estimated values; S.E. = Standard error of estimated values; p = 

Statistical significance of the estimated values; (Intercept) = Overall DV average when predictors are set to zero; σ2 = Variance of the level 1 residuals (within-students); τ00 = Variance of the 

cluster means (between-students); τ11 = Variance of the cluster (student) slopes over time; ρ01 = Overall correlation between students’ intercepts and slopes; ICC = Adjusted intraclass 

correlation, proportion of the variance in DV explained by the random effects (clustering of the data); N = Number of students; Observations = Number of observations from students; Deviance = 

-2 ⋅ Log Likelihood, consistency of the model with the data; AIC = Akaike Information Criterion, predicting the power of predictors (Time, Treatment, Gender) on DV (Organised).  



Table 7. Multilevel model of deep approach to learning at five timepoints 

 Before pandemic          During pandemic 

  Model t0 Model t1 Model t2 Model t3  Model t4 

Predictors Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p  Est. (C.I.) S.E. p 

(Intercept) 4.055 

(3.937 – 4.173) 

0.060 <0.001 4.046 

(3.940 – 4.153) 

0.055 <0.001 3.898 

(3.789 – 4.006) 

0.056 <0.001 3.932 

(3.822 – 4.041) 

0.056 <0.001  3.806 

(3.694 – 3.918) 

0.057 <0.001 

Treatment 0.082 
(-0.031 – 0.195) 

0.058 0.156 0.064 
(-0.041 – 0.169) 

0.054 0.236 0.226 
(0.116 – 0.337) 

0.057 <0.001 0.197 
(0.085 – 0.309) 

0.057 0.001  0.141 
(0.025 – 0.258) 

0.059 0.018 

Gender -0.096 

(-0.221 – 0.029) 

0.064 0.134 -0.078 

(-0.192 – 0.036) 

0.058 0.183 0.013 

(-0.104 – 0.130) 

0.060 0.828 -0.040 

(-0.158 – 0.078) 

0.060 0.509  0.056 

(-0.067 – 0.178) 

0.062 0.372 

N 253 sid 250 sid 294 sid 287 sid  291 sid 

Observations 253 250 294 287  291 

Deviance 319.838 276.915 405.216 394.954  425.672 

AIC 329.838 286.915 415.216 404.954  435.672 

Note: Est. = Estimated values; C.I. = 95% Confidence Interval of the estimated values; S.E. = Standard error of estimated values; p = Statistical significance of the estimated values; N = Number 

of students; Observations = Number of observations from students; Deviance = -2 ⋅ Log Likelihood, consistency of the model with the data; AIC = Akaike Information Criterion, predicting the 

power of predictors (Treatment, Gender) on DV (Deep). 

  



Table 8. Multilevel model of surface approach to learning at five timepoints 

 Before pandemic  During pandemic 

  Model t0 Model t1 Model t2 Model t3  Model t4 

Predictors Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p  Est. (C.I.) S.E. p 

(Intercept) 2.660 

(2.497 – 2.824) 

0.084 <0.001 2.796 

(2.629 – 2.963) 

0.085 <0.001 2.917 

(2.761 – 3.073) 

0.080 <0.001 2.953 

(2.815 – 3.092) 

0.071 <0.001  3.149 

(3.004 – 3.294) 

0.074 <0.001 

Treatment 0.006 
(-0.150 – 0.162) 

0.080 0.939 0.050 
(-0.114 – 0.214) 

0.084 0.550 0.021 
(-0.137 – 0.180) 

0.081 0.794 -0.066 
(-0.208 – 0.076) 

0.073 0.362  -0.147 
(-0.298 – 0.003) 

0.077 0.056 

Gender -0.111 

(-0.284 – 0.062) 

0.088 0.211 -0.137 

(-0.315 – 0.041) 

0.091 0.133 -0.156 

(-0.323 – 0.012) 

0.086 0.071 -0.177 

(-0.327 – -0.027) 

0.077 0.022  -0.124 

(-0.283 – 0.034) 

0.081 0.125 

N 253 sid 250 sid 294 sid 287 sid  291 sid 

Observations 253 250 294 287  291 

Deviance 484.138 499.492 616.665 531.552  575.724 

AIC 494.138 509.492 626.665 541.552  585.724 

Note: Est. = Estimated values; C.I. = 95% Confidence Interval of the estimated values; S.E. = Standard error of estimated values; p = Statistical significance of the estimated values; N = Number 

of students; Observations = Number of observations from students; Deviance = -2 ⋅ Log Likelihood, consistency of the model with the data; AIC = Akaike Information Criterion, predicting the 

power of predictors (Treatment, Gender) on DV (Surface). 

  



Table 9. Multilevel model of organised studying at five timepoints 

 Before pandemic  During pandemic 

  Model t0 Model t1 Model t2 Model t3  Model t4 

Predictors Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p Est. (C.I.) S.E. p  Est. (C.I.) S.E. p 

(Intercept) 3.905 

(3.731 – 4.080) 

0.089 <0.001 3.648 

(3.479 – 3.817) 

0.086 <0.001 3.510 

(3.348 – 3.672) 

0.083 <0.001 3.612 

(3.446 – 3.779) 

0.085 <0.001  3.511 

(3.337 – 3.6
84) 

0.089 <0.001 

Treatment 0.193 

(0.027 – 0.360) 

0.085 0.024 0.187 

(0.020 – 0.353) 

0.085 0.029 0.399 

(0.235 – 0.564) 

0.084 <0.001 0.325 

(0.154 – 0.495) 

0.087 <0.001  0.277 

(0.096 – 0.4

57) 

0.092 0.003 

Gender -0.370 

(-0.554 – -0.185) 

0.094 <0.001 -0.178 

(-0.359 – 0.003) 

0.092 0.055 -0.111 

(-0.285 – 0.063) 

0.089 0.214 -0.176 

(-0.356 – 0.004) 

0.092 0.057  -0.159 

(-

0.349 – 0.03
1) 

0.097 0.103 

N 253 sid 250 sid 294 sid 287 sid  291 sid 

Observations 253 250 294 287  291 

Deviance 516.920 506.881 637.885 636.065  682.255 

AIC 526.920 516.881 647.885 646.065  692.255 

Note: Est. = Estimated values; C.I. = 95% Confidence Interval of the estimated values; S.E. = Standard error of estimated values; p = Statistical significance of the estimated values; N = Number 

of students; Observations = Number of observations from students; Deviance = -2 ⋅ Log Likelihood, consistency of the model with the data; AIC = Akaike Information Criterion, predicting the 

power of predictors (Treatment, Gender) on DV (Organised). 

 


