
Soft Computing
DOI 10.1007/s00500-012-0863-z

Automatic Evolution of Programs for Procedural Generation
of Terrains for Video Games

Accessibility and Edge Length Constraints

Miguel Frade · Francisco Fernandez de Vega · Carlos Cotta

This is an author post-print, the final publication is available at Springer via http://dx.doi.org/10.1007/s00500-012-0863-z

Abstract Nowadays the video game industry is facing

a big challenge: keep costs under control as games be-

come bigger and more complex. Creation of game con-

tent, such as character models, maps, levels, textures,
sound effects and so on, represent a big slice of total

game production cost. Hence, the video game industry

is increasingly turning to procedural content generation
to amplify the cost-effectiveness of the efforts of video

game designers. However, procedural methods for au-

tomated content generation are difficult to create and
parametrize. In this work we study a Genetic Program-

ming based procedural content technique to generate

procedural terrains that do not require parametrization,

thus, allowing to save time and help reducing produc-
tion costs. Generated procedural terrains present aes-

thetic appeal; however, unlike most techniques involv-

ing aesthetic, our approach does not require a human to
perform the evaluation. Instead, the search is guided by

the weighted sum of two morphological metrics: terrain

accessibility and obstacle edge length. The combination

Miguel Frade
School of Technology and Management,
Polytechnic Institute of Leiria
Campus 2 - Morro do Lena, Alto do Vieiro; Apartado 4162,
2411-901 Leiria; Portugal
Tel.: +351-244 843 428, Fax: +351-244 820 310
E-mail: miguel.frade@ipleiria.pt

Francisco Fernandez de Vega
Centro Universitario de Mérida, University of Extremadura
C/Sta. Teresa de Jornet, 38; 06800 Mérida - Badajoz; Spain
Tel.: +34-924 387 068, Fax: +34-924 303 782
E-mail: fcofdez@unex.es

Carlos Cotta
ETSI Informática (3.2.49), University of Málaga
Campus de Teatinos, 29071-Málaga; Spain
Tel.: +34-952 137 158, Fax: +34-952 131 397
E-mail: ccottap@lcc.uma.es

of the two metrics allowed us to find a wide range of fit

terrains that present more scattered obstacles in differ-

ent locations, than our previous approach with a single

metric. Procedural terrains produced by this technique
are already in use in a real video game.

Keywords Terrains · procedural content generation ·

video games · aesthetic appeal

1 Introduction

Traditionally, the main techniques used in content de-

velopment for video games have been artistry. From 3D
models to textures, bitmap graphics and sound effects,

all game content has been, generally, handcrafted by

artists and designers working specifically to that end.
This approach assures game developers full control over

their creations. Nevertheless, by delegating most or all

of the details up to the designer, manual content pro-
duction impose high requirements on designer in terms

of time and effort. This has a huge impact in production

costs as games became bigger and more complex (Ed-

wards, 2006). Therefore, game industry is increasingly
turning to procedural content generation methods to

keep costs under control. Procedural content generation

allows parametric control, which provides amplification
of designers productivity: a few parameters yield large

amounts of details (Ebert et al, 2003).

Procedural generation allows the automation of con-

tent creation (Nelson and Mateas, 2007). For instance,

it is possible to generate a forest were each plant specie

is represented by a set of parameters and each tree
is slightly different just by changing the seed for the

pseudo-random numbers generator (Lane and Prusin-

kiewicz, 2002; Prusinkiewicz and Lindenmayer, 2004).

2

The representation of procedural content is also ex-

tremely compact and can be measured in Kilobytes,
while others require Megabytes of storage. One good

example of compactness is the classic game Elite 1,

which succeed to keep 8 galaxies of 256 planets each
in a few tens of kilobytes by representing each planet

with just a few numbers. Another advantage that some

procedural content has is the ability to be computed at
any desired resolution. Fractals are a good example of

this characteristic (Mandelbrot, 1983). Finally, proce-

dural techniques allow more dynamic processes during

the game development cycle. Designers can change the
location of some level elements without having to re-

draw everything else. The procedural content can have

rules built in to automatically adapt to those changes.

However, procedural content generation has also its

own drawbacks. One disadvantage is its evaluation. This
operation requires intense computations and can be very

expensive. Procedural methods typically use a set of

parametric controls that enable a procedure to generate

many different outputs. To make a procedure more use-
ful, additional controls can be added. While the power

of a procedure may be enhanced in this way, the result-

ing interface can become overly complex. In the case of
a human using the interface, coming up with good re-

sults from a powerful procedure often degenerates into

an authoring processing of trial and error. Besides, pro-
cedural algorithms present a certain degree of unpre-

dictability: a small change in one parameter can result

in big changes in the outcome, or big changes might

not result in any significant modification. Whatever is
the case, designers end up performing a lot of tests and

simulations until they learn how the procedural system

behaves to tune it. This search, for the right input pa-
rameters and algorithm tune, is time consuming. For

example, the development of “Far Cry 2” 2 video game

took as much as 15 times more time to refine and tune
procedural tools than the amount of time developing

the underlying game engine (Remo, 2008). However, if

the desired content has characteristics that can be mea-

sured then the search process can be automated. That
automation can be achieved by Search-Based Procedu-

ral Content Generation (SBPCG) techniques (Togelius

et al, 2011).

SBPCG techniques apply a generate and test ap-

proach where procedural content is generated and then

tested, according to some criteria. A test function (also
called fitness function) grades the procedural content

instead of simply accepting or rejecting it. Then, new

content is produced, that is dependent on the score of
previous content, and this way tries to find better scor-

1video game published by Acornsoft in 1984
2video game published by Ubisoft in 2008

ing content. The process is repeated until the content is

considered good enough. Evolutionary algorithms are a
perfect match for this approach, although not the only

search mechanism of SBPCG.

In this work we use one SBPCG technique, which
we coined as Genetic Terrain Programing (GTP) (Frade

et al, 2009b), to generate procedural terrains for video

games. GTP utilizes Genetic Programing (GP) as an
automated evolutionary search tool for procedural ter-

rains, designated Terrain Programs (TPs). We believe

this approach will allow the generation of new terrain

types with aesthetic appeal. However, unlike other evo-
lutionary techniques were aesthetic evaluation is per-

formed by humans, our technique relies only on geo-

morphological metrics. Those metrics are accessibility
and obstacles edge length. The evolutionary search of

terrains with this characteristics will produce TPs that

do not require any parameter input. Therefore, TPs can
be integrated in video games without a human perform-

ing parameter tuning, thus allowing to save time and

money. Another purpose of our technique could be its

integration in authoring tools to inspire designer imag-
ination and serve as base of their work. The presented

work is the continuation of our previous research (Frade

et al, 2010a,b).
Section 2 focus on the importance of terrains in

video games, previous research about procedural terrain

generation and their different approaches. The GTP
technique and the used geomorphological metrics are

detailed in Section 3. Section 4 presents the applied test

methodology, results and its discussion. Finally, conclu-

sions and future work are laid out in Section 5.

2 Background

The desire for providing the player with novel and en-
gaging content without a large investment in designers

resources drives the goal of automatic content genera-

tion. Previous work has shown the viability of this ap-

proach, some examples can be found in Hastings et al
(2009); Nelson and Mateas (2007); Togelius and Schmid-

huber (2008); Togelius et al (2011). Terrains are one of

the many assets whose generation can be automated.
They play a fundamental role in some type of games

(Forbus et al, 2002; Smelik et al, 2010; Wells, 2005) and

increases game replayability value (Sampath, 2004).
Fractals are the most common procedural method to

generate artificial terrains. They are the favorite algo-

rithms of game designers, mainly due to their speed and

simplicity of implementation. They offer unlimited ex-
tent landscapes and can cover an arbitrarily large area

without seams or unwanted pattern repetition (Ebert

et al, 2003).

3

Self-similarity is the key concept behind any frac-

tal technique (Peitgen et al, 2004). This characteris-
tic allows the generation of surfaces regardless of the

scale in which they are displayed. However, real ter-

rains present this characteristic only on a limited scale
(Goodchild, 1980). Mandelbrot (1983) was the first to

realize the similarity between the trace of one dimen-

sional fractional Brownian motion and the contours of
mountains peaks. Over the years other fractal algo-

rithms were invented and nowadays there are five dif-

ferent approaches: Poisson faulting (Mandelbrot, 1983;

Voss, 1987); Fourier filtering (Mandelbrot, 1983; Mastin
et al, 1987; Sakas, 1993; Voss, 1987); midpoint displace-

ment (Miller, 1986); successive random additions (Voss,

1987); and finally summing band-limited noises (also
known as noise synthesis) (Miller, 1986; Musgrave et al,

1989; Perlin, 1985).

The statistical behavior of fractals results in maps
that present homogeneous features that are noticeable

on large scales, which makes them easily recognizable.

To address this issue Musgrave et al (1989) introduced
a noise synthesis variant that enables some control over

fractal dimension to create eroded fractal terrain, re-

ferred as multifractal. To increase realism they also re-
sort to physical simulation of erosion. However, ero-

sion simulation is slow and introduces more parame-

ters for the user to control. To alleviate this problem

Olsen (2004) proposed several optimizations that sacri-
fice physical correctness over performance with little vi-

sual impact. Other fractal based terrain generation ap-

proaches have been proposed by Pabst and Jense (1995)
and Pi et al (2006).

All terrain synthesis based purely on fractals, con-

trol the output by means of parameters, such as the
Holder exponent, fractal dimension, octaves and lacu-

narity, just to name a few. These parameters impact

the generated terrain as a whole and do not allow the
specification of features location or their dimensions.

Besides, to grasp the effect of each parameter requires a

deep understanding of fractal mathematics and/or trial
and error experiments until the desired effect is found.

This process is time consuming and there is no guaran-

tee the desired features are discovered. To overcome this

problem a new set of methodologies have been devised
over the years that can be categorized into: (1) syn-

thesis by example of real world data; (2) constrained

generation; (3) interactive modification of a base ter-
rain; (4) use of software agents; and finally (5) search

based algorithms.

(1) Synthesis of terrain by example of real world

data - Techniques in this category consist on: extracting

features from Digital Elevation Models (DEM); classify

them; compose a new terrain with the desired char-

acteristics; and finally smooth the transitions between

the different terrain features. This concept is applied by
Chiang et al (2005) where an interactive environment

was created to synthesize terrains based on microscopic

terrain features. They use geometric primitives to build
the terrain profile and then a matching procedure is ap-

plied to replace them by real world data. Later Tu et al

(2008) proposed several improvements to this method.
A similar approach is presented by Brosz et al (2006),

were small scale characteristics from one real terrain

are extracted and applied to a base terrain to increase

its detail and resolution. A similar method is described
by Zhou et al (2007) where a terrain is generated based

on extracted features of a input height-map and a user

line drawing that defines the occurrence of large-scale
features. Yet another approach is presented by Li et al

(2006). Their proposal has four stages: terrain silhou-

ette generation; terrain feature retrieval; region selec-
tion and filling; and texture generation. The main ad-

vantage of all techniques in this category is the realism

of produced terrains. However, they require a suitable

set of examples to be able to create all desired ter-
rain features. Although nowadays there are many free

sources of real world DEM, building the appropriate

data set can be tedious and time consuming.

(2) Constrained generation - Control of terrain fea-
tures can also be attained by imposing constraints, where

the process takes into account some restrictions during

or after the initial generation phase. There are several

methods in this area that can be further sub-categorized
into: surface approximations and deformation. Surface

approximation methods are commonly used to recon-

struct sparse DEM data, or to procedurally amplify
DEM resolution (Vemuri et al, 1997). With the same

goal Pouderoux et al (2004) managed to obtain good ap-

proximations using radial basis functions. A constrained
fractal model based on midpoint displacement algorithm

is presented by Belhadj (2007). His main goal is to

reconstruct DEM’s by specifying the exact locations

and height of some DEM points. Belhadj and Audibert
(2005) use ridge and river networks to constraint the

fractal creation of the height map. However, these algo-

rithms do not appear to be controllable as there is no
guarantee as to the shape of the terrain between points.

A different method is introduced by Szeliski and Ter-

zopoulos (1989), where they apply a surface fitting al-
gorithm using splines that is perturbed by adding frac-

tal detail. However, due to the use of a coarse spline

mesh, only large scale modifications are possible. The

proposal of Kamal and Uddin (2007) resembles Poisson
faulting fractals, it draws straight lines across the base

map to create a series of randomly placed polygons in

each iteration. A set of locations with desired terrain

4

feature can be specified and some additional control is

provided by means of three additional parameters, but
its impact on the resulting height map is not intuitive.

(3) Interactive modification of a base terrain - On
the demand for easily and intuitively control of ter-

rain features from the user perspective, several meth-

ods have emerged based on interactive modification of a

base terrain. These methods have one interactive phase
were the user can specify major features of maps, but

rely on procedural techniques to add the small details.

Schneider et al (2006) introduced a real time editor
where the user edits the terrain by interactively mod-

ifying the base functions of the noise generator by re-

placing the Perlin noise grid with a set of user-drawn
gray-scale images. This approach has the advantages to

break the too homogeneous look of large scale fractal

terrains. Carpentier and Bidarra (2009) created an ap-

plication that allows users to paint height-maps directly
in 3D view by applying procedural brushes. However,

this approach shares some disadvantages of other man-

ual editing methods, such as large amount of memory
to store the resulting terrain and final result depends on

user skills. Smelik et al (2010) proposes another sketch

based approach were users compose a digital sketch of
the rough terrain layout. Then, the framework gener-

ates a high-resolution map that complies to the speci-

fied features at large with high level of detail on a small

scale. Although interactivity can be seen as the main
strength of these techniques, it is also its main disad-

vantage because it prevents terrain generation from be-

ing fully automated.

(4) Software agents - A new approach, based on

software agents, has been proposed by Doran and Par-

berry (2010). Their generator applies agents in three
phases: coast line, landform and erosion. The authors

claim their approach to be more intuitive and control-

lable than fractals. However, the quantity of parame-
ters that need to be defined is huge (12 only for the

mountains agent) and will require a certain amount of

trial and error experiments until the desired result is
achieved.

(5) Search based algorithms - The main challenge

of parametric approaches is to find the right values of
parameters that produce the desired terrain features.

To address this problem several proposals have been

made that relay on search based algorithms to find
the right parameters, or generate new procedures, to

achieve the desired terrain features. For instance, Stach-

niak and Stuerzlinger (2005) employ a stochastic local

search algorithm that finds an acceptable set of defor-
mation operations to apply to a base terrain in order to

obtain a map that approximately adheres to the spec-

ified constraints. An evolutionary approach was pro-

posed by Ong et al (2005), where genetic algorithms

are used to transform height maps in order to conform
them to the required features. Their approach has two

stages: the two-dimension terrain silhouette phase, and

the terrain height map generation phase. The 2D ter-
rain silhouette and a database of representative height

map samples are the only form of control. Ashlock et al

(2008) propose co-evolution of L-systems parameters
and grammar to fit a specific terrain shape, which has

some resemblance to symbolic regression. A different

perspective is proposed by Togelius et al (2010b). They

apply multi-objective EAs to evolve height maps that fit
some user predicted entertainment metrics to hopefully

increase players interest on the game. This concept is

further developed and applied to StarCraft video game
(Togelius et al, 2010a). None of these approaches ad-

dresses aesthetic appeal or creativity of the generated

terrains.
Our proposal fits the search-based category. Terrain

Programs (TPs) are generated and tested according to

the weighted sum of two morphological criteria: accessi-

bility and obstacles edge length, were the evolutionary
search mechanism in use is genetic programing. GTP

aims to generate content with aesthetic appeal, a trait

common to many research work in the field of Interac-
tive Evolutionary Computation (IEC), like Sims (1991),

Unemi (1998) or Stanley (2007), just to name a few. Our

technique shares with these examples an indirect pheno-
type representation, like an expression encoded as a tree

or as neural network. However, contrarily to IEC, our

goal is to generate aesthetic content without human in-

tervention during the evolutionary process. Once found,
TPs can be easily integrated in video games and will not

require any input parameter to control its look. To the

best of our knowledge, this area has not been address
in previous procedural content generation research. The

following section details the proposed technique, the fit-

ness function and the reasoning behind it.

3 Genetic Terrain Programming

Our SBPCG technique, Genetic Terrain Programing

(GTP), consists on the application of GP (Koza, 1992;
Poli et al, 2008) to evolve mathematical expressions,

designated TPs, that will generate artificial terrains.

Our first implementation of GTP was interactive (GTPi)
(Frade et al, 2008, 2009b). In spite of the good results

obtained this way, this approach presented two limita-

tions: user fatigue (a common trait of Interactive Evo-

lutionary Systems) and the lack of ability to perform
zoom (more details about the zoom limitation can be

found in (Frade et al, 2009a)). To address GTPi limita-

tions a second version of GTP, designated GTPa, was

5

Table 1 GP function set

Name Description

plus(a, b), minus(a, b),
arithmetical functions

multiply(a, b)

sin(a), cos(a),
trigonometric functions

tan(a), atan(a)

exp(a) returns ea

myLog(a)
returns 0 if a = 0 and

log(|a|) otherwise

myPower(a, b)
returns 1 if b = 0, 0 if

a = 0 and |a|b otherwise

myDivide(a, b)
returns a if b = 0

and a÷ b otherwise

mySqrt(a) returns
√

|a|

negative(a) returns −a

developed to evaluate and classify TPs automatically.
GTPa removes the human factor from the evolutionary

process, that was present in GTPi, and uses instead

a direct fitness function. With GTPa terrain genera-
tion from a given TP is deterministic and will allow

designers to search TPs offline (during game develop-

ment phase) and incorporate them as procedures into

a game. In spite of the differences of GTPa over GTPi,
the goal of generating aesthetic terrains remains. Frade

et al (2010a) presented the first study of GTPa with a

fitness function based on terrain accessibility and Frade
et al (2010b) showed the results for a fitness function

based on obstacles edge length constraints. This paper

continues the work of the two previous publications to
study GTPa behavior when both metrics are combined.

The function set used in GTPa is described in Ta-

ble 1 and three different terminal sets are used: T1 =
{ myNoise(x, y), ERC}, T2 = { X, Y , ERC} and

T3 = { myNoise(x, y), X, Y , ERC}. ERC stands for

Ephemeral Random Constant (Koza, 1992) and ERC ∈
[0, 10]. The terminal myNoise(x, y) is a lattice noise

function based on Blender 3D lattice noise primitive

orgBlenderNoise3, see Eq. (1). Lattice noise functions,
commonly used as fractals primitives, use one or more

set of uniformly distributed pseudo random numbers at

every integer coordinate point. The intermediate values

are calculated using spline interpolation (Ebert et al,
2003). The ideal properties and mathematical details of

a noise function are presented by Perlin (1985, 2002).

In myNoise(x, y) the input parameters are implicit, so
to differentiate them from the explicit parameters X

and Y small case is used. Given the way we imple-

mented terminal myNoise, it is possible to produce a

3Source code available under GNU General Public License
at http://www.blender.org/

Fig. 1 Terrain generated by myNoise(x, y) with height map
parameters specified in Table 5

terrain with only this terminal, Fig. 1 shows a three-

dimensional render of such terrain.

myNoise(x, y) = 2× orgBlenderNoise(x, y, 0)− 1 (1)

We use three different terminal sets to evaluate its

influence in the resulting terrains and because TPs gen-

erated with them will have different properties. Terrain
Programs generated with terminal set T1 will have only

implicit functions. Therefore, it will be possible for a

single TP to generate many view areas (see Fig. 2) that

share the same morphological look. This can be done
by changing Lx and Ly with values big enough to avoid

overlapping of viewing areas. This property can be used

to simulate randomness, were Lx and Ly would work as
seeds. This feature opens the possibility to game devel-

opers to offer players with novel, but similar, terrains

each time they play and that way increase game re-
playability value. However, the small amount of termi-

nals in T1 will restrict terrain diversity. Still, we want

to access if the combination of both metrics will have a

positive impact in terrain diversity. Two more terminal
sets were created: T2 and T3. Terminal set T2 presents

standard GP terminals with two variables X and Y and

T3 is the union of the previous terminal sets. Although
TPs from both T2 and T3 will lack the possibility of

generating different view areas with the same morpho-

logical look, we want to study their behavior regarding
terrain appeal, diversity and if they are more fit for our

evaluation function.

3.1 Terrain Programs Evaluation

With GTPa, the evaluation of TPs will be performed by
a fitness function instead of a human. That evaluation

will be based on the map they produce, therefore it is

required to convert them to a height map. To that end,
the continuous surface that a TP can generate must

be delimited and sampled to obtain the corresponding

altitude h, where h = f(x, y), h, x, y ∈ R. The altitude

values are stored in matrix H = {hr,c}
r6nr

c6nc
, whose size

nr×nc depends on the amount of samples and therefore

define the height map resolution. Equation (2) shows

the relationship between the height map matrix H and

6

�

�

����������������	

�

��������
� �

� �

� �

� �

� �

� �

� � � � �

����	

Fig. 2 Terrain view area

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
	
�

Fig. 3 Neighbor positions

the TPs continuous functions. The value hr,c represents

the elevation value for row r and column c, and Dx, Dy

are the terrain dimensions. Sx, Sy allow the control of

the zoom level and Lx, Ly allow us to localize the origin

of the terrain view area (see Fig. 2).

hr,c =f

(

c× Dx

nc−1

Sx

+ Lx,
r ×

Dy

nr−1

Sy

+ Ly

)

r ∈ {1, · · · , nr}, c ∈ {1, · · · , nc}, (2)

Dx, Dy, Sx, Sy ∈ R
+ and Lx, Ly ∈ R

The proposed method for evaluating TPs is based
on two morphological metrics: accessibility score (Frade

et al, 2010a) and obstacles edge length score (Frade

et al, 2010b). The accessibility score aims to generate
terrains were a certain percentage of the terrain area is

accessible. A part of a terrain is accessible if its slope is

under a defined threshold. So, we create the slope map

S = {sr,c}
r6nr

c6nc
to store the declination for each cell r, c

of the height map H. The slope values are calculated

with Eq. (3) and the partial derivatives for cell z5 (see

Fig. 3) are estimated by Eq. (4) and Eq. (5), where ∆x

and ∆y are the height map distances between each cell

(Horn, 1981).

Slope(%) = 100×

√

(

∂f

∂x

)2

+

(

∂f

∂y

)2

(3)

∂f

∂x
≈

(z3 + 2z6 + z9)− (z1 + 2z4 + z7)

8∆x
(4)

∂f

∂y
≈

(z7 + 2z8 + z9)− (z1 + 2z2 + z3)

8∆y
(5)

Fig. 4 Example of two accessibility maps using only acces-
sibility score with terminal set T2 (left) and T3 (right). The
black areas represent terrain obstacles.

Once the slope map S is calculated it is necessary
to determine the cells that are accessible. To that end

an accessibility map A = {ar,c}
r6nr

c6nc
is created with the

same size of the height map. A is a binary map, with
either 0 or 1 value in each cell depending on the selected

slope threshold. The accessible cells of a terrain should

be connected in an large area to allow player units to

move around and for building placement. Therefore, we
search the biggest connected accessible area in A, recur-

ring to a component labeling algorithm. Then the ter-

rain is evaluated by Eq. (6), where A+ is the amount
of cells that belong to the biggest accessible area.

The accessibility criteria alone would make a com-

pletely flat terrain the best fit. However, such terrain

does not add realism or interest to the terrain. To pre-
vent this, the accessibility score υs, is defined in Eq. (7).

The biggest accessible area is limited by the threshold

υt, where pa ∈ [0, 1] is the percentage of desired ac-
cessible area. The ceil function will allow υs to achieve

the exact value of zero and stop the evolutionary pro-

cess. Otherwise we would have to stipulate a tolerance

value whose value would be dependent from the chosen
resolution for the height map, which is undesirable.

υ =
nrnc

A+

, where A+ =

nr
∑

r=1

nc
∑

c=1

ar,c, A+ 6= 0 (6)

υs = |υ − υt| , where υt =
nrnc

⌈panrnc⌉
, pa 6= 0 (7)

However, as shown by Frade et al (2010a), this met-
ric alone tends to produce terrains with a single or very

few obstacles, see Fig. 4. This situation is specially ob-

vious with terminals T2 and T3. These terrains are less
interesting for video game usage. To address this prob-

lem we decided to measure obstacles’ edge length and

use it also to calculate individuals’ fitness. This met-
ric will increase the amount of obstacles and its edge

complexity (Frade et al, 2010b). The edge line can be

determined through the Laplacian operator over the ac-

cessibility map A (Gonzalez and Woods, 2002). This
operator can be estimated for cell z5 (see Fig. 3) by Eq.

(8) and whenever it returns a positive value means that

z5 belongs to the edge line and the correspondent cell

7

Fig. 5 Edge maps built from the accessibility maps in Fig. 4

er,c, of the binary edge map E = {er,c}
r6nr

c6nc
, is filled

with value 1. Fig. 5 shows two examples of edge maps.

∇2f ≈ 8z5 − (z1 + z2 + z3 + z4 + z6 + z7 + z8 + z9) (8)

Based on the amount of cells that belong to the
edge, we classify the terrain by the edge value ε defined

in Eq. (9), where E+ is the sum of all cells with er,c = 1.

ε =
nrnc

E+

, where E+ =

nr
∑

r=1

nc
∑

c=1

er,c, E+ 6= 0 (9)

εs = |ε− εt| , where εt =
nrnc

⌈penrnc⌉
, pe 6= 0 (10)

The edge value ε used alone as fitness function,
would prevent the formation of large accessible areas.

To avoid this problem we defined the edge score εs in

Eq. (10). This way the edge length is limited by the

threshold εt, where pe ∈ [0, 1] is the desired percentage
of edge length in relation to the total terrain area.

We want to access the ability of GTPa to generate

aesthetic terrains without human intervention during
the evolutionary process and its applicability to video

games. Many computer games using large-scale outdoor

terrain, such as real time strategy genre, pose more
requirements to terrain shape than visual appearance.

Player characters must be able to move around the ter-

rain and there must exist a decent number of flat areas

to allow various structures to be placed upon (Olsen,
2004). These considerations can be formalized into two

criteria:

– height map cells with an inclination below a certain

threshold s allowing unit movement and structures

placement should be in an area as large as possible;

– the height map should not be flat, the inaccessible
areas should be scattered throughout the terrain to

increase aesthetic appeal and hopefully player inter-

est.

To fulfill these criteria we developed the accessibility

metric (to ensure large accessible areas) and the edge

length metric to guarantee that inaccessible areas have
a complex clipping and are dispersed throughout the

terrain. A similar reasoning is used by Olsen (2004).

However, instead of obstacles edge length he uses slope

Table 2 Test parameters and their values

Par. Value Par. Value

T1 {ERC,myNoise} s1 18%

T2 {ERC,X, Y } s2 27%

T3 {ERC,X, Y,myNoise} s3 36%

pa1 70% pe1 20%

pa2 80% pe2 25%

pa3 90% pe3 30%

wa 0.0, 0.1, ..., 1.0 seed 1, 2, ..., 20

map standard deviation. We have also made some tests
with this metric to find out that it was not adequate

to our purposes. Olsen (2004) uses a base terrain and

then applies erosion algorithms to help the appearance

of both flat areas and obstacles. Due to its nature, these
transformations are limited by the base terrain. On the

other hand, GTP creates terrains from scratch without

any constraints regarding their initial form. Therefore,
the GP system was able to easily generate them with

the desired standard deviation values by producing stair

forms. This was undesired, because it was limiting the
appearance of more diverse terrain types.

So far both accessibility score (Frade et al, 2009b)
and edge length score metrics have been studied sepa-

rately (Frade et al, 2010b). In this work we study how

the weighted sum of these two metrics, see Eq. (11), can
improve terrain diversity, impact terrains aesthetic and

influence the GP search performance. A multi-objective

implementation is planned as future work, were more

geomorphological metrics might be easily added.

fitness = waυs + weεs (11)

4 Tests and Results

As detailed in previous section, TPs evaluation depends

on several parameters: slope threshold (from now on

represented by s), percentage of accessibility area pa,
percentage of the edge length pe and weights wa and

we. All parameters and terminal sets will impact both

GP performance and resulting terrains. Therefore, to

understand the behavior of GTPa with weighted sum
of accessibility and edge length scores, we devised a

series of tests.

We grouped in Table 2 a set of parameters, which

we designate as Test Parameters, whose influence we

want to study. Ti where i = 1, .., 3 represent termi-
nal sets whose propose was detailed in Section 3. Slope

is another important parameter, it will affect the con-

struction of the accessibility map A, and that way in-

8

 0

 2

 4

 6

 8

 10

 12

 14

pa1 pa2 pa3

p
e

 (
%

)

T1 T2 T3

Fig. 6 Mean percentage of pe values calculated from the re-
sults obtained with Accessibility Score function (Frade et al,
2010a). Error bars show the standard error of the mean for
20 runs.

fluence the fitness of a given TP. Three different slopes

sj , j = 1, .., 3, were tested, whose values are in Table

2. These slope values were chosen because they are big
enough to affect the movement of a common motorized

vehicles and to see how flexible our system is and its

impact in GTPa performance. We also want to verify
if this test parameter can indirectly influence terrain

smoothness.

pe(%) = 100×
E+

nrnc

(12)

The percentage of accessible terrain and edge length
are controlled by pa and pe respectively. We performed

tests with three different values for both parameters.

We analyzed the accessibility maps produced in (Frade

et al, 2010a) and measured the edge length from all
maps, and calculated the correspondent pe values with

Eq. (12), where nr, nc = 128. Figure 6 shows the results

from that analysis, where it is noticeable that terminals
T2 and T3 produce terrains with significantly smaller

pe values than T1. This observation was reinforced by a

Mann-Whitney U-test of each parameter combination
for T2 and T3 with respect to T1. All tests returned p-

values lower than 0.05 (see Table 3), which means that

T1 edge values are different, with statistical significance,

from the ones obtained with T2 and T3. In face of these
values and considering that the maximum pe obtained

was 22.25% we decided to perform tests with the fol-

lowing values: pe1 = 20%, pe2 = 25% and pe3 = 30%.

Finally, for these series of tests we established a lin-

ear relation between wa and we as shown in Eq. (13).
Due to this relation, from now on, we will refer only to

wa in results’ discussion.

wa + we = 1 (13)

Table 3 Mann-Whitney U-test for edge values calculated
when only accessibility was in use.

Test T1

parameters pa1 pa2 pa3

T2

pa1 6.302e−08 6.302e−08 6.302e−08

pa2 6.302e−08 6.302e−08 4.871e−07

pa3 1.122e−06 1.122e−06 1.122e−06

T3

pa1 6.302e−08 6.302e−08 3.929e−05

pa2 7.415e−07 1.122e−06 1.175e−05

pa3 6.302e−08 6.302e−08 7.415e−07

Our tests included all the combinations between all

the test parameters Ti, sj , pak, pel and wm. For each

combination, 20 runs (r = 1, 2, .., 20) were performed
with different seeds, which sums to 17 820 different ex-

ecutions. The experiments were performed in a cluster

with 18 virtual machines in heterogeneous computers,

all running GNU Linux.

Besides the Test Parameters, there are two more

sets whose values where fixed for all runs. GP Param-

eters is one of them, whose maximum and initial val-

ues, as well as operators, are defined in Table 4. The
search stops whenever the fitness reaches the value of

zero or the amount of generations reaches the value of

50, whichever comes first. Both crossover and mutation
operators are the same as the ones used by Koza (1992).

The crossover operator uses tournament selection to

chose two individuals and swap between them two ran-

domly selected subtrees. Our tests were performed with
a tournament size of 7, however preliminary tests were

made with different sizes, but they all presented similar

results. The mutation operator is subtree mutation and
is applied to randomly chosen individuals, where a ran-

domly selected subtree is replaced by another randomly

created subtree. The mutation rate might be considered
too high for most GP applications. However, our goal

is not optimization, but to use the GP system as a tool

to explore many different solutions. Therefore, a high

mutation rate will help to avoid equal solutions for dif-
ferent runs.

The other parameter set is the Height Map Param-

eters, whose values are presented in Table 5. They are

necessary because the evaluation of the GP individuals
is made after converting them to high maps. These pa-

rameters were also fixed across all the runs we made.

Sub-section 4.1 presents the results of the test pa-
rameters over fitness, number of generations and tree

size. Terminals and functions frequency analysis is pre-

sented in sub-section 4.2 followed by a terrain overlap

9

Table 4 GP Parameters

GP Value

maximum generations 50

population size 500

initialization method half and half

ramped from 2 to 6

max. depth 17

selection operator tournament, size 7

crossover operator rate 70%

mutation operator subtree, rate 30%

Table 5 Height map parameters

Height map Value

nr and nc 128

Lx and Ly 0

Sx and Sy 1

Dx and Dy 10

study in section 4.3. Finally, the render of some TPs

are shown in sub-section 4.4.

4.1 GP System

The amount of time the search phase will take is in-

fluenced by the complexity of the fitness function and

test parameters values. So, in order to analyze how our

GP system performed we plotted the average number
of generations (Fig. 7), tree sizes (Fig. 8) and fitness

values (Fig. 10).

Figure 7 shows the average number of generations
that our system had to perform until a solution was

found. The smaller the number of generations the bet-

ter (less computations to find a solution). Five graphics
are presented in Fig. 7. On top is plotted the mean

number of generations regarding all performed experi-

ments (global mean mg) for each wa. Bellow, four ad-

ditional plots are presented regarding the difference be-
tween the mean number of generations for a given test

parameter m<parameter> and the global mean. Those

graphics, with difference values, are sorted by test pa-
rameters: terminals (mTi

− mg), slopes (msj − mg),

accessibility (mpak
−mg) and edge length (mpel −mg).

This approach, of one global plot followed by four plots
of differences, is also applied to Fig. 8, 9, 10, 11, 12 and

15.

The first thing to stand out from Fig. 7 (and also

in Fig. 8) is that wa = 0 and wa = 1 are special cases.
The amount of required generations on both situations

is considerably lower than for 0.1 6 wa 6 0.9. For

0.1 6 wa 6 0.9 the number of generations present a

small tendency to decrease as wa increases. Regarding

the influence of each terminal, it is clear that on aver-
age T2 requires more generations than T1 and T3. The

accessibility parameter pa3 also requires more genera-

tions than pa1 and pa2 before achieving a solution. On
the other hand, both slope and edge length parameters

present a small influence on the number of generations.

For 0.1 6 wa 6 0.9 average tree sizes, see Fig 8,
present a small trend to increase with the increase of

wa. Terminal T2 generate trees whose size is consis-

tently higher than T1 and T3. T3 presents the smaller

tree sizes, but with a very small difference to T1. Pa-
rameter pe1 displays smaller tree sizes than the others

edge length parameters, but that advantage decreases

as wa increases and vanish after wa = 0.7. The test pa-
rameters for slope and accessibility have a very small

influence in tree sizes. Curiously, the amount of gener-

ations tends to decrease as wa increases, in the range
0.1 6 wa 6 0.9, while tree sizes present the opposite

behavior. This suggests that, in this range, more com-

plex TPs are able to solve the problem better and that

higher wa promotes this kind of trees.

Since TPs can be used to generate terrains dynami-
cally, their execution time is of most importance. There-

fore, we measured the execution time of the best TPs

generating a height map of size 1024×1024 with double

precision. This task was performed in a single computer

with a Core 2 Duo CPU running at 2.4GHz with 1GB of

RAM. Execution time varied between 0.101 and 9.613

seconds, depending on tree size and functions at use.
Figure 9 presents the average execution time of best

TPs. Although it presents bigger tree sizes, terminal

T2 has lower execution times than T1 and T3. This is
explained by the fact that terminal myNoise is very

complex and time consuming function, which penalizes

execution times of T1 and T3.

Our results show that TPs can generate big maps
with times in the same order of magnitude of the ones

obtained by Belhadj (2007). However, each cell value of

the height map is independent from others cells, so TPs

present very good scalability and can take advantage of
modern multi core CPUs or GPUs to speed up its gen-

eration. Therefore, TPs execution times can be greatly

improved.

Our fitness function was built to be minimized, there-
fore the closer the fitness values are to zero, the better.

Globally, the higher wa is (except for wa = 0) the bet-

ter the fitness values are (closer to zero), see Fig. 10. It

is clear that as pa increases the fitness values get worse,
which was expected. However, we did not anticipated

such a huge difference between pa3 and the others pa

values. The slope impact in fitness shows that s1 has

10

5

15

25

35

45

55

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

G
e
n
e
ra
ti
o
n
s

Global mean (mg)

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

G
e
n
e
ra
ti
o
n
s

mT1
- mg mT2

- mg mT3
- mg

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

G
e
n
e
ra
ti
o
n
s

ms1
- mg ms2

- mg ms3
- mg

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

G
e
n
e
ra
ti
o
n
s

mpa1
- mg mpa2

- mg mpa3
- mg

-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

G
e
n
e
ra
ti
o
n
s

mpe1
- mg mpe2

- mg mpe3
- mg

Fig. 7 Mean number of generations versus wa. Error bars
represent the standard error of the mean.

worse performance than s2 and s3. We were expect-

ing that smaller slope values would have better fitness.

A more detailed analysis was conducted and we no-
ticed that runs with the combination of s1 with pa3
was the main cause for the globally bad performance of

s1. Slopes s2 and s3 have a similar behavior.

30

40

50

60

70

80

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

T
re
e
 S
iz
e

Global mean (mg)

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

T
re
e
 S
iz
e

mT1
- mg mT2

- mg mT3
- mg

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

T
re
e
 S
iz
e

ms1
- mg ms2

- mg ms3
- mg

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

T
re
e
 S
iz
e

mpa1
- mg mpa2

- mg mpa3
- mg

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

T
re
e
 S
iz
e

mpe1
- mg mpe2

- mg mpe3
- mg

Fig. 8 Mean of GP tree sizes versus wa. Error bars represent
the standard error of the mean.

Considering the average edge length values in Fig. 6
we expected that the higher the pe value was, the worse

the fitness would be. However, pe1 presents worse values

than the others, pe2 has the better fitness values, fol-

lowed closely by pe3. This might mean that our system
does not behave linearly with the edge length param-

eter, further tests with lower pe values are required to

better understand this parameter.

11

0.7

0.9

1.1

1.3

1.5

1.7

1.9

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
s
e
c
o
n
d
s
)

T
im
e
 (
s
e
c
o
n
d
s
)

Global mean (mg)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
s
e
c
o
n
d
s
)

T
im
e
 (
s
e
c
o
n
d
s
)

mT1
- mg mT2

- mg mT3
- mg

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
s
e
c
o
n
d
s
)

T
im
e
 (
s
e
c
o
n
d
s
)

ms1
- mg ms2

- mg ms3
- mg

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
s
e
c
o
n
d
s
)

T
im
e
 (
s
e
c
o
n
d
s
)

mpa1
- mg mpa2

- mg mpa3
- mg

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
s
e
c
o
n
d
s
)

T
im
e
 (
s
e
c
o
n
d
s
)

mpe1
- mg mpe2

- mg mpe3
- mg

Fig. 9 Mean of TP execution times versus wa. Error bars
represent the standard error of the mean.

We expected the fitness of T3 to be similar or better

than the other two terminals sets, given that T3 is the

union of T1 and T2. To find out why this was happen-

ing we plotted the percentage of solutions (TPs) that
reached fitness zero. Although T3 presented the worse

average fitness value for most of the wa range, it clearly

presented higher percentage of TPs with fitness zero

0

0.001

0.002

0.003

0.004

0.005

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

F
it
n
e
s
s

Global mean (mg)

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

F
it
n
e
s
s

mT1
- mg mT2

- mg mT3
- mg

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

F
it
n
e
s
s

ms1
- mg ms2

- mg ms3
- mg

-0.004

-0.002

0

0.002

0.004

0.006

0.008

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

F
it
n
e
s
s

mpa1
- mg mpa2

- mg mpa3
- mg

-0.004

-0.002

0

0.002

0.004

0.006

0.008

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s

F
it
n
e
s
s

mpe1
- mg mpe2

- mg mpe3
- mg

Fig. 10 Mean fitness values versus wa. Error bars represent
the standard error of the mean.

than the ones with T2, see Fig. 11. This suggests that
T3 might be able to achieve better fitness values than

the others terminals if a higher limit of generations is

used.

12

10
20
30
40
50
60
70
80
90
100

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 p
e
rc
e
n
ta
g
e
s
 (
%
)

T
P
s
 f
it
n
e
s
s
=
0
 (
%
)

Global (Pg)

-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 p
e
rc
e
n
ta
g
e
s
 (
%
)

T
P
s
 f
it
n
e
s
s
=
0
 (
%
)

PT1- Pg PT2- Pg PT3- Pg

-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 p
e
rc
e
n
ta
g
e
s
 (
%
)

T
P
s
 f
it
n
e
s
s
=
0
 (
%
)

Ps1- Pg Ps2- Pg Ps3- Pg

-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 p
e
rc
e
n
ta
g
e
s
 (
%
)

T
P
s
 f
it
n
e
s
s
=
0
 (
%
)

Ppa1- Pg Ppa2- Pg Ppa3- Pg

-25.0
-20.0
-15.0
-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 p
e
rc
e
n
ta
g
e
s
 (
%
)

T
P
s
 f
it
n
e
s
s
=
0
 (
%
)

Ppe1- Pg Ppe2- Pg Ppe3- Pg

Fig. 11 Percentage of TPs that reached fitness 0 versus wa.

4.2 Occurrence Analysis

To see which functions and terminals contributed the

most to achieve the best solutions, we calculated how

often each of them occurred according to Eq. (14). The
terminal or function which we want to calculate is rep-

resented by funh, TPr is the solution for the seed r

and N is the sum of tree sizes for all seeds r and is

calculated by Eq. (15).

Oc(funh) =
1

N

rn
∑

r=1

count(funh, TPr) (14)

N =

funn
∑

h=1

rn
∑

r=1

count(funh, TPr) (15)

Figure 12 shows the occurrence of each terminal and

function and their variation imposed by test parame-

ters. As expected, terminals have a great impact. For
T1 and T3 the terminal myNoise is quite predominant

when compared with the remaining functions. Terminal

myNoise seems to be main responsible for the good re-

sults of T1 and T3 depicted in Fig. 11, although X and
Y seem to be better at finding solutions for the edge

length score function for 0 < wa < 0.3. Terminal ERC

occurrence is impacted by terminals and, with less sig-
nificance by slope, accessibility and edge length param-

eters. The third most common function is cos which is

affected by chosen terminal, slope or edge length param-
eters. It is also noticeable that pa has almost no influ-

ence in functions occurrence, pe only influences cos and

mySqrt significantly. Finally, slope influences mainly

cos, multiply, myDivide and mySqrt. Figure 13 shows
the influence of wa over the average occurrence of each

function. However, only wa = 1 has a considerable im-

pact on functions occurrence.

Given that one of our goals is to explore different
solutions, we decided also to see if there were any re-

peated solutions (TPs). We found a total of 106 differ-

ent TPs that appeared more than once, relative to 248
runs (which represents 1.39% of the runs). As we ex-

pected, the higher concentration of repeated TPs was in

the wa values where the fitness values were worse, spe-

cially for wa = 0.1. A larger limit for the amount of gen-
erations might reduce, or even eliminate, the amount of

repeated TPs, but more tests are needed to confirm it.

4.3 Overlap

As shown in Fig. 11, there was a relative large num-

ber of TPs to reach the perfect fitness value of zero for
different test parameters combinations. We want to in-

vestigate if this happens due to the existence of several

different solutions, or due to convergence of the solu-
tions. We already know that there are some repeated

TPs, but these solutions have not reached a fitness value

of zero, besides there might exist different TPs that are

mathematically equivalent and render the same terrain.
Therefore, we compared each accessibility map with the

other 19 from the 20 runs of each test (changing only the

seed). The comparison consists in counting how much

13

3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0

D
if

fe
re

n
c

e
 b

e
tw

e
e

n
 m

e
a

n
s

 (
%

)
O

c
c

u
rr

e
n

c
e

 (
%

)

Global mean (mg)

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

D
if

fe
re

n
c

e
 b

e
tw

e
e

n
 m

e
a

n
s

 (
%

)
O

c
c

u
rr

e
n

c
e

 (
%

)

mT1
- mg mT2

- mg mT3
- mg

-1.0

-0.5

0.0

0.5

1.0

D
if

fe
re

n
c

e
 b

e
tw

e
e

n
 m

e
a

n
s

 (
%

)
O

c
c

u
rr

e
n

c
e

 (
%

)

ms1
- mg ms2

- mg ms3
- mg

-1.0

-0.5

0.0

0.5

1.0

D
if

fe
re

n
c

e
 b

e
tw

e
e

n
 m

e
a

n
s

 (
%

)
O

c
c

u
rr

e
n

c
e

 (
%

)

mpa1
- mg

mpa2
- mg

mpa3
- mg

-1.0

-0.5

0.0

0.5

1.0

exp
m

yLog

tan
negative

Y m
ySqrt

m
inus

X plus
m

yD
ivide

atan
m

ultiply

sin
m

yPow
er

cos
ER

C
m

yN
oise

D
if

fe
re

n
c

e
 b

e
tw

e
e

n
 m

e
a

n
s

 (
%

)
O

c
c

u
rr

e
n

c
e

 (
%

)

mpe1
- mg

mpe2
- mg

mpe3
- mg

Fig. 12 Mean occurrence of functions and terminals versus
wa. Error bars represent the standard error of the mean.

inaccessible (black, ar,c = 0) area overlaps between two

accessibility maps, see example in Fig 14. To compute

the overlap value op,q between two maps Ap and Aq we

used Eq. (16), were an overlap value of 100% means
that maps Ap and Aq are equal. Then we defined the

overlap value of each map op as the average of all op,q,

as shown in Eq. (17).

 2

 4

 6

 8

 10

 12

exp
m
yLog

tan
negative

Y m
ySqrt

m
inus

X plus
m
yD
ivide

atan
m
ultiply

sin
m
yPow

er

cos
ER
C
m
yN
oise

O
c
c
u
rr
e
n
c
e
 (
%
)

wa weights

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 13 Mean occurrence of functions and terminals for a
given wa weight.

Fig. 14 Overlap of inaccessible areas between two maps.
These maps are from T2, s2, pa1, pe3, r8 on the left (1) and
r16 at center (2). On the right is the resulting overlap with
o1,2 = 21.67%

op,q(%) = 100×

nr
∑

r=1

nc
∑

c=1

(¬Ap ∧ ¬Aq)

max

(

nr
∑

r=1

nc
∑

c=1

¬Ap,
nr
∑

r=1

nc
∑

c=1

¬Aq

) (16)

op =
1

rn − 1

rn
∑

q=1

op,q, q 6= p (17)

Figure 15 shows the average overlap values op and

the correspondent influence of the test parameters. Over-

all, the overlap value for wa = 0 and wa = 1 are higher

than for the remaining range of wa. This is in part ex-
plained by the hight amount of terrains that presented

an overlap of 100%, which was 1.30% and 1.11% re-

spectively. For wa = 0.1 and wa = 0.2 the amount of
maps with an overlap of 100% was 0.19% and 0.06%,

while for the remaining wa values was 0.00%. Overall,

the weighted combination of the accessibility score and
edge length score is beneficial to reduce the average

overlap values. Which is good, because we want to be

able to generate as much diverse terrains as possible.

Terminal T2 is the one that provides lower overlap
values, followed by T3 and then T1. Slope has no signifi-

cant impact in overlap and pe only makes difference for

pe1 and wa = 0, for the remaining values it also has no

14

30

35

40

45

50

55

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
%
)

O
v
e
rl
a
p
 (
%
)

Global mean (mg)

-15

-10

-5

0

5

10

15

20

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
%
)

O
v
e
rl
a
p
 (
%
)

mT1
- mg mT2

- mg mT3
- mg

-15

-10

-5

0

5

10

15

20

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
%
)

O
v
e
rl
a
p
 (
%
)

ms1
- mg ms2

- mg ms3
- mg

-15

-10

-5

0

5

10

15

20

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
%
)

O
v
e
rl
a
p
 (
%
)

mpa1
- mg mpa2

- mg mpa3
- mg

-15

-10

-5

0

5

10

15

20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

wa weights

D
if
fe
re
n
c
e
 b
e
tw
e
e
n
 m
e
a
n
s
 (
%
)

O
v
e
rl
a
p
 (
%
)

mpe1
- mg mpe2

- mg mpe3
- mg

Fig. 15 Overlap of inaccessible areas versus wa. Error bars
represent the standard error of the mean.

influence. Finally, the accessibility parameter presents

an expected behavior, the higher pa is the lower the

overlap values are.

4.4 Sample Terrains

Given the huge amount of results, we only performed

a visual inspection of 100 terrains for each terminal

set. To illustrate them we present 8 different TPs for

each terminal set, which are displayed in Fig 16 to 27.

Both the visual inspected and presented terrains were
randomly selected, although we deliberately avoid to

present any terrain obtained with wa = 0 and wa = 1,

because these situations were already address in our
previous work (Frade et al, 2010a,b).

For all depicted terrains, we present on top the H

map displayed as gray scale image and its correspondent
accessibility map A. At the bottom, we show a rendered

image of a three dimension view point from the terrain.

Those renders were performed in Blender 3D without

textures to emphasize terrains surface shape. Each fig-
ure has the identification of the TP that generated it

with the following syntax: terminal, slope, pa, pe, wa

and seed. For abbreviation proposes we replaced wa by
wm and seed by ru, where m can take values in the

range m = 0, .., 10 and u = 1, .., 20.

From our visual inspection, it is clear that terminal
sets have a great impact in both terrains look and di-

versity. Terminal set T1 is the one that has the lowest

diversity. We found several terrains that were quite sim-

ilar, one example is the right terrain from Fig. 16 and
the left one from Fig 18. This similarity is due the small

number of terminals in T1 and the high frequency value

of myNoise. T3 presents more diversity than T1, but
the influence of terminal myNoise is quite noticeable,

which was expected given its high rate of occurrence

shown in Fig. 12. The impact of terminals X and Y is
also perceptible, but much more subtle. For instance,

on left terrain of Fig. 24 it is possible to see the wave

shape of the terrain (this feature is easier to perceive in

the gray scale image), although with a very small ampli-
tude. On the right terrain of the same figure the height

values steadily increase along the Y axis (see also cor-

respondent gray scale image). Another good example
of X and Y terminals influence on T3 are both terrains

shown in Fig. 27, were the terrains change their look at

a given point, abruptly in the left terrain and smoothly
in the right one. Terminal set T2 is the one that pres-

ents more diverse terrains. From the analyzed samples

we have not found terrains with a high degree of sim-

ilarity as the example mentioned previously. However,
terrains from T2 tend to present geometric patterns and

symmetry, which give them a strange look.

Results regarding diversity were somehow expected,
given previous experience. Still, we had hope that the

combination of the accessibility and edge length metrics

would have a positive impact in diversity. Our hopes

were increased when the overlap values (presented in
Fig. 15), showed smaller overlap values when both met-

rics were used. However, after performing our visual in-

spection we can not state that the diversity of terrains

15

Fig. 16 Terrains generated by TP T1, s1, pa1, pe1, w2, r5 with
fitness = 0.000000 on the left, and T1, s1, pa2, pe3, w4, r16 with
fitness = 0.000445 on the right

Fig. 17 Terrains generated by TP T1, s2, pa1, pe2, w9, r9 with
fitness = 0.000098 on the left, and T1, s2, pa2, pe3, w8, r1 with
fitness = 0.000000 on the right

Fig. 18 Terrains generated by TP T1, s2, pa3, pe1, w1, r14
with fitness = 0.000053 on the left, and T1, s2, pa3, pe1, w5, r2
with fitness = 0.000000 on the right

has increased. We believe that the increase of diversity

can be better addressed by fine-tuning the terminal set.

We also noticed an unexpected side effect of using

both metrics to generate terrains. Generally, the am-

plitude of terrains (the difference between the lowest
and highest height values) was very small. The left ter-

rain from Fig. 19 is one of the few exceptions, but even

that one does not present high amplitudes as some ter-

Fig. 19 Terrains generated by TP T1, s3, pa1, pe2, w4, r18
with fitness = 0.000000 on the left, and T1, s3, pa3, pe2, w5, r10
with fitness = 0.000151 on the right

Fig. 20 Terrains generated by TP T2, s1, pa1, pe2, w7, r2 with
fitness = 0.000000 on the left, and T2, s1, pa2, pe1, w6, r4 with
fitness = 0.000400 on the right

Fig. 21 Terrains generated by TP T2, s2, pa1, pe2, w9, r9 with
fitness = 0.000000 on the left, and T2, s2, pa2, pe2, w1, r18 with
fitness = 0.001144 on the right

rains obtained for wa = 1. This was strange, because
we do not impose any restriction to height values. Our

function set (see Table 1) is composed by continuous

functions, with only three exceptions: myLog(a) when

a = 0, myDivide(a, b) when b = 0 and myPower(a, b)
when a = 0 and b < 0. We thought those exceptions

were enough to create sudden changes in terrain and

create hight obstacles this way. However, to accom-

16

Fig. 22 Terrains generated by TP T2, s2, pa3, pe1, w8, r3 with
fitness = 0.000181 on the left, and T2, s2, pa3, pe2, w9, r8 with
fitness = 0.000068 on the right

Fig. 23 Terrains generated by TP T2, s3, pa1, pe2, w2, r13
with fitness = 0.000199 on the left, and T2, s3, pa3, pe3, w1, r2
with fitness = 0.000015 on the right

Fig. 24 Terrains generated by TP T3, s1, pa3, pe1, w2, r6 with
fitness = 0.008510 on the left, and T3, s1, pa3, pe2, w4, r11 with
fitness = 0.042003 on the right

plish the required edge length terrain height values must
change often. Therefore, we believe the edge length met-

ric is the main responsible for small amplitude terrains,

specially with the chosen pe values. Frequency results

in Fig. 13 corroborate this reasoning, because only for
wa = 1 the frequency values change significantly, be-

sides the presence of periodic functions, like cos and

sin, decrease. Still, we think further tests with smaller

Fig. 25 Terrains generated by TP T3, s2, pa1, pe3, w8, r17
with fitness = 0.000470 on the left, and T3, s2, pa2, pe3, w4, r16
with fitness = 0.000000 on the right

Fig. 26 Terrains generated by TP T3, s2, pa3, pe1, w8, r16
with fitness = 0.000060 on the left, and T3, s2, pa3, pe2, w7, r8
with fitness = 0.002825 on the right

Fig. 27 Terrains generated by TP T3, s3, pa2, pe2, w8, r10
with fitness = 0.000000 on the left, and T3, s3, pa3, pe2, w2, r8
with fitness = 0.020270 on the right

pe values should be performed to confirm whether they

allow terrains with bigger amplitudes.

Another option to address the amplitude issue would

be to include one or more functions with discontin-

uous behavior on the function set, for example mod

(remainder for the modulo operation) or the if state-

ment. However, in this case we think that some addi-

tional measures should be taken to prevent those dis-

17

Fig. 28 Top view of TP T2, s1, pa3, pe3, w5, r1 with 2 different
zoom levels: Sx = Sy = 1 and 2 (see Eq. 2)

continuous functions to dominate the solutions, which

would prevent the appearance of smooth terrains. One

of these measures could be different probability values
for a given function to be chosen from the function set.

Although the picked slope values would have a se-
vere impact in the mobility of vehicles, their differences

were not big enough to impact terrains in a visible way.

In fact, considering the results regarding the GP sys-
tem, overall slope has a very limited influence, being

only significant in fitness values. Therefore, we think

further tests must be performed with slope values cov-

ering a bigger range to access if they can influence ter-
rains smoothness.

As stated previously, TPs generate a continuous sur-
face that needs to be sampled and limited to generate

the height map. This is achieved by Eq. (2) which also

allow us to control the zoom level (through Sx and Sy)
and resolution (through nr and nc). The zoom level

allows video games to compute only a small portion of

the terrain that needs to be displayed. This can be used

to simulate a player approaching or getting away from
a particular point in the terrain, see Fig. 28. On the

other hand, resolution will allow video game developers

to control the amount of processing required to generate
the terrain at the expense of terrain details.

To show the usability of TPs as a procedural tech-
nique to generate terrains dynamically in a real video

game, a few selected TPs were embedded in Chapas4

video game. Chapas (Rodrigues et al, 2010) is an open

source turn-based bottlecap racing game, with 3D graph-
ics, where the players strategically control the racers

with cards and has support for multi-players. Figure

29 presents a screenshot of Chapas video game at the
beginning of the running phase.

4Available for download at http://sourceforge.net/

projects/chapas/

Fig. 29 Screenshot of Chapas video game were the terrain
was generated online by a TP.

5 Conclusions and Future Work

TheGTPa technique performs automated search of pro-

cedures, by means of genetic programing, that are able
to generate terrains according to the weighted sum of

two metrics: accessibility score and edge length score.

The parameters allow us to control the slope thresh-
old (that differentiate the accessible from the inaccessi-

ble terrain areas), how much area should be made ac-

cessible, and the edge length of the inaccessible areas.

Throughout a series of experiments we have shown that
our system is able to find many different solution that

fit our fitness function. Both accessibility score and edge

length metrics perform the desired function, but our re-
sults show that GTPa can achieve better fitness values

for accessibility score than for the edge length metric

(see Fig. 10). The combination of the two metrics also
helps to decrease terrain overlap, which is desirable as

it means more diverse solutions. However, it will not in-

crease terrain diversity when compared with the use of

a single metric. This combination also presents the side
effect of generating terrains with small amplitudes (the

difference between the lowest and highest height val-

ues), whose main responsible is the edge length score
function. We believe this problem can be addressed us-

ing lower pe values and by introducing more discontin-

uous functions in the function set.

Repeated TPs represent 1.39% of the solutions and

appear when the fitness values are worse, but overall
45.22% of the solutions reached the perfect score of

zero. Both situations, increasing the amount of solu-

tions reaching fitness value of zero and reducing the
amount of repeated TPS, can be addressed by increas-

ing the maximum allowed generations. This will also

help terminal set T3 to have better fitness values, be-

cause the more elements the terminal set has, the big-
ger the search space is, and more generations will be

required to find a good solution. Chosen slope thresh-

old values also influence fitness values, were s1 = 20%

18

presented the worse results, however its impact is neg-

ligible for the remaining GP system performance.

The search for the right TP can be long, depending

mainly on how many generations are allowed, popula-
tion size and used metrics, but this is a common charac-

teristic of search-based techniques. However, once found

TPs execution times are short and in the same order of

magnitude of other procedural techniques. TPs have
also the advantages of offering room for execution time

improvements as they are easily parallelized, a feature

that many procedural techniques do not present. To
create a terrain from a TP only height map parameters

(see Table 5) are need, but these only concern terrain

resolution, zoom level and origin, not its look. There-
fore, TPs do not require any input parameter to model

terrain shape and there is no need for a time consum-

ing and expensive phase of parameter tunning. To prove

the viability of our technique some TPs are already in
use in a real video game, were the terrain generation

occurs online.

As expected, terminal sets have a big impact in ter-

rain diversity, look and aesthetic appeal. Terminal set

T1 has few diversity, but showed us the potentiality of

implicit functions as terminal by providing appealing
surfaces without pattern repetition. On the other hand,

T2 has many diverse terrain types, but exhibits many

geometric patterns. Finally, T3, which is the union of
the other two terminal sets, reinforces the importance

of myNoise terminal to achieve fit solutions. There-

fore, most terrains produced with T3 present a heavy
influence of myNoise terminal in its looks. In regard to

slope parameter, it did not present a significant change

in terrains looks, which we believe to be a direct conse-

quence of a narrow range of the used values.

In spite of the interesting results, this work opens

many challenges for future research. Logically the next
step would be to test our system under a multi-objective

approach, given that we used two different metrics and

more could be added this way. Nevertheless, there are

many topics that can also be addressed in future work.
For instance, the prevalence of myNoise in T3 showed

us that fractal based function are important to find fit-

ter solutions with an interesting aesthetic appeal. How-
ever, the diversity of terrain types is not big enough, so

it could be augmented by adding more discontinuous

functions to the function set and by adding new frac-
tal based functions. Given the current used metrics dis-

continuous functions can overtake the predominant role

and that way avoiding the appearance of smooth ter-

rains. So, a new line of work can be the study of different
probabilities for the functions to be selected from their

set. With new fractal based functions we could obtain

changes in frequency and amplitude in terrain features,

but this approach introduces new questions. An open

question is whether the new fractal functions should
be introduced as terminals with implicit parameters, or

whether those parameters should evolve as well. Some

fractal based functions present parameters like octaves
and lacunarity whose values are valid or interesting only

in a limited range. So, if we let those parameters to

evolve the values must be normalized, which raises the
question of what normalization function to use.

Another possible research line could be to try new

metrics from the geomorphology field to see if this way

it would be possible to obtain more realistic terrains.
Some researchers claim to be possible to classify all real

terrains with only 3 parameters designated as geometric

signatures (Iwahashi and Pike, 2007), using them as a
search criteria can be of interest. Other types of search

criteria can also be studied, for instance level curves to

define desired terrain shape, instead of parameters.

Acknowledgements We are deeply grateful to the Infor-
matics and Communications Services of Computer Science
department from University of Coimbra, Portugal, for giving
us a time slot on 18 nodes of their MILIPEIA cluster. Also,
a special word of appreciation to Patŕıcio Domingues that
made the required arrangements that made possible our use
of the cluster. Without their generosity our tests would not
have been possible.

The authors acknowledge the support of Spanish Ministry
of Science and Innovation under project ANYSELF (TIN2011-
28627-C04). The first an second authors are supported by
University of Extremadura, project Grupo GEA. The second
author is also supported by Gobierno de Extremadura, Con-

sejeria de Economia-Comercio e Innovacion and FEDER,
project GRU09105. The third author is supported by Spanish
Ministry of Science and Innovation under projects TIN2008-
05941, and by Junta de Andalucia under project TIC-6083.

References

Ashlock D, Gent S, Bryden K (2008) Embryogene-

sis of artificial landscapes. In: Hingston PF, Barone

LC, Michalewicz Z (eds) Design by Evolution, Nat-
ural Computing Series, Springer Berlin Heidelberg,

pp 203–221, URL http://dx.doi.org/10.1007/

978-3-540-74111-4_12

Belhadj F (2007) Terrain modeling: a constrained frac-

tal model. In: 5th International conference on CG,

virtual reality, visualisation and interaction in Africa,
ACM, Grahamstown, South Africa, pp 197–204, DOI

10.1145/1294685.1294717

Belhadj F, Audibert P (2005) Modeling landscapes

with ridges and rivers: bottom up approach. In:
GRAPHITE ’05: Proceedings of the 3rd interna-

tional conference on Computer graphics and interac-

tive techniques in Australasia and South East Asia,

19

ACM, New York, NY, USA, pp 447–450, DOI http:

//doi.acm.org/10.1145/1101389.1101479
Brosz J, Samavati FF, Sousa MC (2006) Terrain Syn-

thesis By-Example. In: First International Confer-

ence on Computer Graphics Theory and Applications
Carpentier G, Bidarra R (2009) Interactive GPU-based

procedural heightfield brushes. In: Proceedings of the

4th International Conference on Foundations of Dig-
ital Games, ACM New York, NY, USA, pp 55–62

Chiang M, Huang J, Tai W, Liu C, Chang C (2005)

Terrain synthesis: An interactive approach. In: Inter-

national Workshop on Advanced Image Tech
Doran J, Parberry I (2010) Controlled Procedural Ter-

rain Generation Using Software Agents. IEEE Trans-

actions on Computational Intelligence and AI in
Games 2(2)

Ebert D, Musgrave K, Peachey D, Perlin K, Worley S

(2003) Texturing and Modeling: A Procedural Ap-
proach, 3rd edn. Morgan Kaufmann

Edwards R (2006) The Economics of Game Publishing.

Website (accessed on Sep. 2011), http://uk.games.

ign.com/articles/708/708972p1.html

Forbus KD, Mahoney JV, Dill K (2002) How Qualita-

tive Spatial Reasoning Can Improve Strategy Game

AIs. IEEE Intelligent Systems 17(4):25–30, DOI
http://dx.doi.org/10.1109/MIS.2002.1024748

Frade M, Fernández de Vega F, Cotta C (2008) Mod-

elling Video Games’ Landscapes by Means of Genetic
Terrain Programming - A New Approach for Improv-

ing Users’ Experience. In: Giacobini M, et al (eds)

Applications of Evolutionary Computing, Springer,

Napoli, Italy, Lecture Notes in Computer Science, vol
4974, pp 485–490

Frade M, Fernández de Vega F, Cotta C (2009a)

Adding Zoom Feature to Terrain Programmes. In:
VI Congreso Español sobre Metaheuŕısticas, Algorit-

mos Evolutivos y Bioinspirados (MAEB’09), Málaga,

Spain, pp 293–300
Frade M, Fernández de Vega F, Cotta C (2009b) Breed-

ing Terrains with Genetic Terrain Programming -

The Evolution of Terrain Generators. International

Journal for Computer Games Technology 2009(Arti-
cle ID 125714):13, DOI 10.1155/2009/125714

Frade M, Fernández de Vega F, Cotta C (2010a) Evolu-

tion of Artificial Terrains for Video Games Based on
Accessibility . In: Chio CD, et al (eds) Applications of

Evolutionary Computation, Springer, Lecture Notes

in Computer Science, vol 6024, pp 90–99
Frade M, Fernández de Vega F, Cotta C (2010b) Evolu-

tion of Artificial Terrains for Video Games Based on

Obstacles Edge Length. In: IEEE Congress on Evo-

lutionary Computation 2010, pp 1–8, DOI 10.1109/
CEC.2010.5586032

Gonzalez RC, Woods RE (2002) Digital Image Process-

ing, 2nd edn. Prentice Hall
Goodchild M (1980) Fractals and the accuracy of geo-

graphical measures. Mathematical Geology 12:85—-

98
Hastings EJ, Guha RK, Stanley KO (2009) Evolving

Content in the Galactic Arms Race Video Game.

Computational Intelligence pp 241–248
Horn B (1981) Hill shading and the reflectance map.

Proceedings of the IEEE 69(1):14–47

Iwahashi J, Pike RJ (2007) Automated classifications

of topography from DEMs by an unsupervised
nested-means algorithm and a three-part geo-

metric signature. Geomorphology 86(3-4):409 –

440, DOI DOI:10.1016/j.geomorph.2006.09.012,
URL http://www.sciencedirect.com/

science/article/B6V93-4M6SB5Y-3/2/

510ca957d542d84fba3e3af50968fdf8

Kamal KR, Uddin YS (2007) Parametrically controlled

terrain generation. In: GRAPHITE ’07: Proceed-

ings of the 5th international conference on Com-

puter graphics and interactive techniques in Australia
and Southeast Asia, ACM, New York, NY, USA,

pp 17–23, DOI http://doi.acm.org/10.1145/1321261.

1321264
Koza JR (1992) Genetic Programming. On the pro-

gramming of computers by means of natural selec-

tion. Cambridge MA: The MIT Press
Lane B, Prusinkiewicz P (2002) Generating Spatial Dis-

tributions for Multilevel Models of Plant Communi-

ties. In: Proceedings of Graphics Interface 2002

Li Q, Wang G, Zhou F, Tang X, Yang K (2006)
Example-Based Realistic Terrain Generation. In: Pan

Z, Cheok A, Haller M, Lau R, Saito H, Liang

R (eds) Advances in Artificial Reality and Tele-
Existence, Lecture Notes in Computer Science, vol

4282, Springer Berlin / Heidelberg, pp 811–818,

URL http://dx.doi.org/10.1007/11941354_84,
10.1007/11941354 84

Mandelbrot BB (1983) The Fractal Geometry of Na-

ture. W. H. Freeman

Mastin G, Watterberg P, Mareda J (1987) Fourier
synthesis of ocean scenes. IEEE Computer Graph-

ics and Applications 7:16–23, DOI http://doi.

ieeecomputersociety.org/10.1109/MCG.1987.276961
Miller GSP (1986) The definition and rendering of ter-

rain maps. In: SIGGRAPH ’86: Proceedings of the

13th annual conference on Computer graphics and in-
teractive techniques, ACM, New York, NY, USA, pp

39–48, DOI \url{http://doi.acm.org/10.1145/15922.

15890}

Musgrave FK, Kolb CE, Mace RS (1989) The synthe-
sis and rendering of eroded fractal terrains. In: SIG-

20

GRAPH ’89: Proceedings of the 16th annual con-

ference on Computer graphics and interactive tech-
niques, ACM, NY, USA, pp 41–50, DOI http://doi.

acm.org/10.1145/74333.74337

Nelson MJ, Mateas M (2007) Towards automated
game design. In: AI*IA ’07: Proceedings of the 10th

Congress of the Italian Association for Artificial In-

telligence on AI*IA 2007, Springer-Verlag, Berlin,
Heidelberg, pp 626–637, DOI http://dx.doi.org/10.

1007/978-3-540-74782-6\ 54

Olsen J (2004) Realtime procedural terrain generation

- realtime synthesis of eroded fractal terrain for use
in computer games. Department of Mathematics And

Computer Science (IMADA), University of Southern

Denmark
Ong TJ, Saunders R, Keyser J, Leggett JJ (2005)

Terrain generation using genetic algorithms. In:

GECCO ’05: Proceedings of the 2005 conference
on Genetic and evolutionary computation, ACM,

NY, USA, pp 1463–1470, DOI http://doi.acm.org/

10.1145/1068009.1068241

Pabst J, Jense H (1995) Dynamic terrain generation
based on multifractal techniques. In: Proceedings of

the International Workshop on High Performance

Computing for Computer Graphics and Visualisa-
tion, Swansea

Peitgen HO, Jürgens H, Saupe D (2004) Chaos and

Fractals - New Frontiers of Science, 2nd edn. Springer
Perlin K (1985) An image synthesizer. SIGGRAPH

Comput Graph 19(3):287–296, DOI http://doi.acm.

org/10.1145/325165.325247

Perlin K (2002) Improving noise. In: SIGGRAPH ’02:
Proceedings of the 29th annual conference on Com-

puter graphics and interactive techniques, ACM, New

York, NY, USA, pp 681–682, DOI http://doi.acm.
org/10.1145/566570.566636

Pi X, Song J, Zeng L, Li S (2006) Procedural ter-

rain detail based on patch-LOD algorithm. In: Pan
Z, Aylett R, Diener H, Jin X, Göbel S, Li L

(eds) Technologies for E-Learning and Digital En-

tertainment, Lecture Notes in Computer Science,

vol 3942, Springer Berlin / Heidelberg, pp 913–
920, URL http://dx.doi.org/10.1007/11736639\

_111, 10.1007/11736639 111

Poli R, Langdon WB, McPhee NF (2008) A field guide
to genetic programming. Lulu.com, URL http://

www.gp-field-guide.org.uk, (With contributions

by J. R. Koza)
Pouderoux J, Gonzato JC, Tobor I, Guitton P (2004)

Adaptive hierarchical RBF interpolation for creating

smooth digital elevation models. In: GIS ’04 - 12th

annual ACM international workshop on Geographic
information systems, ACM, New York, NY, USA, pp

232–240, DOI http://doi.acm.org/10.1145/1032222.

1032256
Prusinkiewicz P, Lindenmayer A (2004) The Algorith-

mic Beauty of Plants. Springer-Verlag

Remo C (2008) MIGS: Far Cry 2’s Guay On The Impor-
tance Of Procedural Content. Website (accessed on

Sep. 2011), http://www.gamasutra.com/php-bin/

news_index.php?story=21165

Rodrigues N, Frade M, Fernández de Vega F (2010) De-

velopment of chapas an open source video game with

genetic terrain programming. In: VII Congreso Es-

pañol sobre Metaheuŕısticas, Algoritmos Evolutivos
y Bioinspirados (MAEB), Valencia, Spain

”
pp 1–8

Sakas G (1993) Modeling and animating turbulent

gaseous phenomena using spectral synthesis. The Vi-
sual Computer: International Journal of Computer

Graphics 9(4):200–212, DOI \url{http://dx.doi.org/

10.1007/BF01901724}
Sampath D (2004) ABRCon, Adaptive oBject Re-

CONfiguration: an approach to enhance, repeat

playability of games and repeat watchability of

movies. In: ACE ’04: Proceedings of the 2004
ACM SIGCHI International Conference on Advances

in computer entertainment technology, ACM, New

York, NY, USA, pp 313–316, DOI http://doi.acm.
org/10.1145/1067343.1067388

Schneider J, Boldte T, Westermann R (2006) Real-

time editing, synthesis, and rendering of infinite land-
scapes on GPUs. In: Vision, modeling, and visu-

alization 2006: proceedings, November 22-24, 2006,

Aachen, Germany, IOS Press, p 145

Sims K (1991) Artificial evolution for computer graph-
ics. In: SIGGRAPH ’91: Proceedings of the 18th an-

nual conference on Computer graphics and interac-

tive techniques, ACM, NY, USA, pp 319–328, DOI
http://doi.acm.org/10.1145/122718.122752

Smelik RM, Tutenel T, de Kraker KJ, Bidarra R (2010)

Declarative terrain modeling for military training
games. International Journal of Computer Games

Technology 2010:11, DOI 10.1155/2010/360458, ar-

ticle ID 360458

Stachniak S, Stuerzlinger W (2005) An algorithm for
automated fractal terrain deformation. Computer

Graphics and Artificial Intelligence 1:64–76

Stanley K (2007) Compositional pattern produc-
ing networks: A novel abstraction of develop-

ment. Genetic Programming and Evolvable Ma-

chines 8:131–162, URL http://dx.doi.org/10.

1007/s10710-007-9028-8

Szeliski R, Terzopoulos D (1989) From splines to frac-

tals. SIGGRAPH Comput Graph 23(3):51–60, DOI

http://doi.acm.org/10.1145/74334.74338

21

Togelius J, Schmidhuber J (2008) An experiment

in automatic game design. In: Proceedings of the
IEEE Symposium on Computational Intelligence and

Games (CIG), pp 111–118

Togelius J, Preuss M, Beume N, Wessing S, Hagelback
J, Yannakakis G (2010a) Multiobjective exploration

of the starcraft map space. In: Computational Intelli-

gence and Games (CIG), 2010 IEEE Symposium on,
IEEE, pp 265–272

Togelius J, Preuss M, Yannakakis GN (2010b) To-

wards multiobjective procedural map generation. In:

PCGames ’10: Proceedings of the 2010 Workshop
on Procedural Content Generation in Games, ACM,

New York, NY, USA, pp 1–8, DOI http://doi.acm.

org/10.1145/1814256.1814259
Togelius J, Yannakakis GN, Stanley KO, Browne C

(2011) Search-based procedural content generation:

A taxonomy and survey. Computational Intelligence
and AI in Games, IEEE Transactions on 3(3):172 –

186, DOI 10.1109/TCIAIG.2011.2148116

Tu SC, Huang CY, Tai WK (2008) Terrain synthe-

sis based on microscopic terrain feature. In: Pan Z,
Zhang X, El Rhalibi A, Woo W, Li Y (eds) Technolo-

gies for E-Learning and Digital Entertainment, Lec-

ture Notes in Computer Science, vol 5093, Springer
Berlin / Heidelberg, pp 644–655, URL http://dx.

doi.org/10.1007/978-3-540-69736-7_69

Unemi T (1998) A design of multi-field user inter-
face for simulated breeding. In: Proceedings of the

Third Asian Fuzzy and Intelligent System Sympo-

sium, Masan, Korea, pp 489–494

Vemuri B, Mandal C, Lai SH (1997) A fast gibbs sam-
pler for synthesizing constrained fractals. Visualiza-

tion and Computer Graphics, IEEE Transactions on

3(4):337–351, DOI 10.1109/2945.646237
Voss R (1987) Fractals in nature: characterization, mea-

surement, and simulation. SIGGRAPH

Wells WD (2005) Generating enhanced natural environ-
ments and terrain for interactive combat simulations

(genetics). In: VRST ’05: Proceedings of the ACM

symposium on Virtual reality software and technol-

ogy, ACM, New York, NY, USA, pp 184–191, DOI
http://doi.acm.org/10.1145/1101616.1101655

Zhou H, Sun J, Turk G, Rehg JM (2007) Ter-

rain synthesis from digital elevation models. IEEE
Transactions on Visualization and Computer Graph-

ics 13(4):834–848, DOI http://dx.doi.org/10.1109/

TVCG.2007.1027, member-Turk, Greg and Member-
Rehg, James M.

