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  Abstract

Word count: 285

 

Although it has long been recognised that human activities affect fire regimes, the interactions between humans and fire are
complex and poorly understood. Many different approaches are used to study human-fire interactions, but in general they have
arisen in different disciplinary contexts to address highly specific questions. Models of human-fire interactions range from
conceptual local models to numerical global models. However, given that each type of model is highly selective about which aspects
of human-fire interactions to include, the insights gained from these models are often limited and contradictory, making them a
poor basis for developing fire-related policy and management practices. Here, we first review different approaches to modelling
human-fire interactions and then discuss ways in which these different approaches could be synthesised to provide a more holistic
approach to understanding human-fire interactions. We argue that the theory underpinning many types of models was developed
using only limited amounts of data and that, in an increasingly data-rich world, it is important to re-examine model assumptions
in a more systematic way. All of the models are designed to have practical outcomes but are necessarily simplifications of reality
and as a result of differences in focus, scale and complexity, frequently yield radically different assessments of what might happen.
We argue that it should be possible to combine the strengths and benefits of different types of model through enchaining the
different models, for example from global down to local scales or vice versa. There are also opportunities for explicit coupling of
different kinds of model, for example including agent-based representation of human actions in a global fire model. Finally, we
stress the need for co-production of models to ensure that the resulting products serve the widest possible community.
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 33 

Abstract 34 

 35 

Although it has long been recognised that human activities affect fire regimes, the interactions 36 

between humans and fire are complex, imperfectly understood, constantly evolving, and 37 

lacking any kind of integrative global framework. Many different approaches are used to study 38 

human-fire interactions, but in general they have arisen in different disciplinary contexts to 39 

address highly specific questions. Models of human-fire interactions range from conceptual 40 

local models to numerical global models. However, given that each type of model is highly 41 

selective about which aspects of human-fire interactions to include, the insights gained from 42 

these models are often limited and contradictory, which can make them a poor basis for 43 

developing fire-related policy and management practices. Here, we first review different 44 

approaches to modelling human-fire interactions and then discuss ways in which these different 45 

approaches could be synthesised to provide a more holistic approach to understanding human-46 

fire interactions. We argue that the theory underpinning many types of models was developed 47 

using only limited amounts of data and that, in an increasingly data-rich world, it is important 48 

to re-examine model assumptions in a more systematic way. All of the models are designed to 49 

have practical outcomes but are necessarily simplifications of reality and as a result of 50 
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differences in focus, scale and complexity, frequently yield radically different assessments of 51 

what might happen. We argue that it should be possible to combine the strengths and benefits 52 

of different types of model through enchaining the different models, for example from global 53 

down to local scales or vice versa. There are also opportunities for explicit coupling of different 54 

kinds of model, for example including agent-based representation of human actions in a global 55 

fire model. Finally, we stress the need for co-production of models to ensure that the resulting 56 

products serve the widest possible community. 57 

 58 

 59 

 60 

Word count: 10651 61 

 62 

 63 

1. Introduction 64 

 65 

Naturally occurring landscape fires, or wildfires, have been an integral component of the Earth 66 

System for 350-400 million years, since the development of vegetation on land (Scott, 2000; 67 

Bowman et. al, 2009). Humans have used fire for domestic  purposes for about one million 68 

years (e.g. Goren-Inbar et al., 2004; Karkanas et al., 2007; Berna et al., 2012) and fire has been 69 

used as a management tool to facilitate land clearance and pasture improvement at least since 70 

the Neolithic (Piperno, 1994; Arroyo-Kalin, 2012). Fire continues to be used today in 71 

subsistence activities and for maintaining cultural identity, where traditional fire knowledge 72 

governs burning (e.g. Mistry et al., 2005;  Eriksen, 2007). It has been estimated that about 280 73 

million hectares of land, mostly in the tropics and subtropics, are used for swidden agriculture 74 

(Heinimann et al., 2017) — much of which is facilitated by the use of fire for land clearance. 75 

 76 

Fire is the most important cause of natural disturbance (Pausas et al., 2017), influencing 77 

vegetation patterns and biogeochemical cycles (Scott, 2000) and promoting biodiversity in fire-78 

prone ecosystems (He et al., 2019). Fires also provide important ecosystem services, including 79 

helping to regulate the occurrence of catastrophic fires (Pausas and Keeley, 2019). However, 80 

alongside these benefits, there are considerable negative impacts from wildfires on human 81 

safety and health (e.g. Johnston et al., 2012; Liu et al., 2015; Yu et al., 2020), economic costs 82 

from fire management, disaster relief, property and forestry damage, tourism loss and health 83 

costs (Butry et al., 2001), severe impacts on forest recovery (Stevens-Rumann et al., 2018) and 84 

especially in ecosystems that are not well adapted to fire (Whitman et al., 2019; Kelly et al.,  85 

2020),and significant feedbacks from fires to climate (Liu et al., 2014; Harrison et al., 2018; 86 

Walker et al., 2019). Human-induced deforestation fires in tropical fire-resistant biomes also 87 

have noticeable and largely negative effects on biodiversity, human health and climate (e.g. 88 

Van der Werf et al., 2009; Reddington et al., 2014; Spracklen and Garcia-Carreras, 2015; 89 

Crippa et al., 2016; Exbrayat et al., 2017; Ellwanger et al., 2020), although this is most 90 

characteristic of the deforestation fires that are used to promote more intensive land-use 91 

practices rather than facilitating swidden agriculture (Murdiyarso and Adiningsih, 2007). 92 

The frequency and severity of wildfires are heterogenous over space and time, influenced by 93 

interactions between climatic conditions, ignitions and available fuel (Moritz et al. 2005, 94 

Krawchuck et al. 2009, Harrison et al. 2010). It is becoming increasing evident that 95 

anthropogenic climate warming promotes the conditions for wildfire, through extending the 96 

periods of fire weather, which occurs through a combination of high temperatures, low 97 

humidity and rainfall, and often high winds (Jolly et al., 2015; Jones et al., 2020). Future 98 
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climate projections indicate that there will be an increase in the likelihood of fire weather and 99 

this has been seen as another motivation for political action to limit climate change to below 100 

2°C (e.g. Burton et al., 2018; Turco et al., 2018). However, despite the increased prevalence of 101 

fire weather, satellite datasets show a decrease in burned area in recent years (Van Lierop et 102 

al., 2015; Doerr and Santín, 2016; Andela et al., 2017, Lizundia-Loiola et al. 2020a, Lizundia-103 

Loiola et al. 2020b). This trend is not statistically significant at the global scale (Forkel et al., 104 

2019a) but is important in certain regions, most noticeably in sub-Saharan Africa. The causes 105 

of this decline remain uncertain: Andela et al. (2017) argued that the decline was a reflection 106 

of human-induced land-use changes but more recent analyses suggest that changes in climate 107 

and natural vegetation cover also play a role, leading to both increased and decreased fire, and 108 

can offset the carbon losses from land-use change at a regional scale (Forkel et al., 2019a). 109 

Whatever the cause of the recent decline in burnt area, the implications for environmental 110 

policy and fire management are far different from those that would emerge from a 111 

consideration of fire weather trends alone. 112 

Predictions of the future trajectory of wildfires are required in order to predict the consequences 113 

of these changes for the Earth System (e.g. Kloster et al., 2012; Kloster and Lasslop, 2017), 114 

and these models must necessarily include some consideration of the role of anthropogenic 115 

fires and the complex role of humans in fire management (Lavorel et al., 2007; Knorr et al., 116 

2016; Rabin et al., 2017). Projections are also required of how changes in wildfires might 117 

impact human activities and, in turn, human activities might be modified in the light of these 118 

impacts and how political, economic, social or cultural factors might affect these responses. 119 

Models of human-fire relationships can also illuminate our understanding of the potential for 120 

human fire practices to have positive ecological outcomes, and of the role that fire plays in 121 

sustaining cultures and livelihoods. 122 

 123 

Many different types of models have been employed to examine human-fire interactions, 124 

ranging from informal or conceptual models to formal or mathematical models (Edmonds, 125 

2018), on scales ranging from local to global. These models have generally been developed 126 

and deployed to answer specific questions, and thus are rooted within disciplinary perspectives 127 

and understanding. Despite the recognition that integration of these different perspectives and 128 

approaches would be beneficial, and promote a better understanding of pyrogeography 129 

(Bowman et al., 2009), little progress has been made towards such an integration. This is a 130 

serious concern because, as the differences in the trends in fire weather versus burnt area amply 131 

illustrate, consideration of limited aspects of the climate-fire-human nexus could lead to 132 

radically different approaches to fire management and the development of policies for 133 

adaptation/mitigation actions. As in many areas of global change science, policy and 134 

management choices will need to reflect trade-offs between costs and benefits and this will 135 

require integrating the different perspectives gained by deploying multiple kinds of models. 136 

 137 

In this paper, we address the following questions: (i) what kinds of models are currently being 138 

used to address human-fire interactions? (ii) what can we learn from each of the different kinds 139 

of models?; and (iii) can we reconcile the different modelling perspectives and build more 140 

comprehensive fire-system models? To answer these questions, we first describe a number of 141 

different types of models that have been used to describe the interactions between humans and 142 

fire, encompassing both formal and informal models that operate at different spatial scales and 143 

emerge from different disciplinary or social perspectives. We describe what they are designed 144 

to do, their key characteristics, the assumptions that underpin them, how the models are 145 

currently implemented and their data requirements, and explicitly examine their current 146 

uncertainties and simplifications. We then explore commonalities between these models, if and 147 
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how different approaches can be reconciled or integrated, and if and when it is helpful to do 148 

so. Finally, we outline the major challenges and provide a basic roadmap for integrating 149 

insights from different types and scales of models. Through doing so, we propose a way 150 

forward for improving our understanding of human-fire interactions, providing a more solid 151 

foundation for predicting future fire regimes and a more comprehensive basis for building fire 152 

management plans and policies. 153 

 154 

 155 

2. Approaches to modelling fire 156 

 157 

Interest in human-fire relationships spans many disciplines, each asking very different types of 158 

questions, grounded in different philosophical approaches and drawing on a different 159 

knowledge base.  The tools used to address these questions, and specifically the informal or 160 

formal models developed within different research domains, can therefore be expected to be 161 

different from one another. Here, as a basis for exploring commonalities across models, we 162 

describe some of the types of models that are currently being used to examine human-fire 163 

interactions. These models differ in the spatial and temporal scale at which they operate, and 164 

the resolution and complexity that bio-physical processes and humans are represented (Figure 165 

1). We structure this discussion moving from the most people-centric models (place-based 166 

models of fire knowledge, agent based models, economic models), which are differentiated to 167 

some extent by the spatial scale at which they are developed and used, to the physics-based 168 

models that incorporate human-fire interactions to some extent (wildfire spread models, global 169 

fire models). In the last subsection, we look at how policies are developed and implemented in 170 

the context of modelling human-fire interactions. 171 

 172 

2.1 People-centric models 173 

 174 

2.1.1 Place-based models of fire knowledge 175 

 176 

Place-based models of fire knowledge represent the relationships between people, fire and the 177 

landscape in a local context in verbal, visual, written, or numerical form. Humans may be 178 

represented in such models as (i) users of fire for specific subsistence activities such as farming 179 

or pastoralism, (ii) fire managers, controlling fire in the landscape, often within non-180 

governmental or governmental institutions, or (iii) holistic fire users, embedded within social-181 

ecological systems in which fire is understood to have agency. Place-based models of fire 182 

knowledge can be used to understand historical and current patterns of fire use, the status of 183 

fire knowledge, the influence of social, environmental, economic and political factors on fire 184 

use, fire cosmologies and fire governance.  185 

 186 

The methodologies by which place-based models of fire knowledge are constructed and 187 

documented vary in the extent of involvement by local people in the research process. At one 188 

end of the spectrum, there are models constructed by researchers without involving local 189 

people, where the human influence on fire regimes is inferred from collated datasets. For 190 

example, Van Wilgen et al. (2004) combined a 45-year spatial dataset of fire occurrence in the 191 

Kruger National Park with climate data and information about management policies in different 192 

time periods to model the fire-return time and variability resulting from different management 193 

approaches. Models may be constructed by researchers using data about local people through 194 

ethnographic observation, interviews, questionnaires or participatory research methodologies. 195 

For example, Sorrenson (2004) used data from interviews with swidden farmers in the 196 
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Brazilian Amazon to develop a model linking the calendar week when farmers chose to burn 197 

an area to the length of the preceding fallow period. Where local people are involved, the 198 

research process attempts to elicit the mental models that fire users and other stakeholders have 199 

of their external reality and their place within it (Jones et al., 2011). Models co-produced by 200 

researchers with local people may involve amalgamation of models constructed by individuals 201 

or involve a group modelling process.  202 

 203 

Modelling processes also vary greatly in the extent to which they are structured around model 204 

production and the particular form of model envisaged. To model fire use in Bolivia, for 205 

example, Devisscher et al. (2016) followed a structured process of fuzzy cognitive mapping, 206 

involving focus group discussions to identify model variables and quantify the strength of 207 

relationships between them. Conceptual models may emerge post-hoc, drawing upon data from 208 

several sources. Monzón-Alvarado and Keys (2014), for example, used insights from research 209 

interviews and participatory mapping with swidden farmers in Mexico to develop a qualitative 210 

model of the cascading effects of early rains on agricultural burn outcomes across ecological, 211 

economic and cultural domains.  212 

 213 

There are many participatory modelling techniques that explicitly aim to co-produce a model 214 

with local people, many of which produce qualitative models (Voinov et al., 2018). A number 215 

of these techniques have been used to develop place-based models of fire knowledge. Seasonal 216 

calendars, for example, have been constructed to understand different fire practices in the 217 

context of annual ecological and social cycles (e.g. Rodríguez et al., 2011; McKemey et al., 218 

2020). Rich pictures, artistic impressions that can include pictures, text, and symbols 219 

representing particular situations or issues from the viewpoint(s) of the person or people who 220 

create them (Bell et al., 2016), have been used to develop shared understanding of fire 221 

management between Indigenous community members and representatives of governmental 222 

and non-governmental organisations (Bilbao et al. 2019, Figure 2). Causal loop diagrams, that 223 

depict causal or correlative relationships between different variables in a system (Lane, 2000), 224 

have been used to model responses of swidden agriculture to climate and social change in 225 

Panama (Li and Ford, 2019) and the role of fire use in land cover change in Indonesia 226 

(Medrilzam et al., 2014). Quantitative or semi-quantitative approaches have also been used to 227 

co-produce models. In fuzzy cognitive mapping, participants construct a diagram showing the 228 

direction and strength of relationships between variables, where the variables are defined by 229 

the participants (Özesmi and Özesmi, 2004). This methodology has been used, for example, to 230 

model fire use and wildfire risk in Bolivia (Devisscher et al., 2019). Constructing Bayesian 231 

belief networks, participants relate elements with discrete possible states to one another in a 232 

hierarchy, such that the state of elements higher up the hierarchy probabilistically influences 233 

the state of those lower down (Düspohl et al., 2012). This approach has been used to understand 234 

adaptive fire management in conservation areas in Australia (Smith et al., 2007). Different 235 

methodologies are appropriate in different social contexts. Barber and Jackson (2015), for 236 

example, argue that, to Aboriginal Australians, visual and relational modelling approaches 237 

make better intuitive sense than quantitative approaches, because these societies have both 238 

strong traditions of using artwork to represent relationships between people and the wider 239 

cosmological landscape and also keep track of elaborate kinship systems. 240 

 241 

Some forms of local knowledge, and some socio-ecological entities, relationships and 242 

processes, cannot be represented using participatory research frameworks. The biophysical 243 

elements of socio-ecological systems are generally more easily represented than socially-244 

constructed elements (Crane, 2010; Jones et al., 2011). Models may also not account for the 245 

multiple ways in which people understand causality simultaneously: offered explanations for 246 
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using fire might be proximate, functional, ontogenetic, evolutionary, or all four simultaneously 247 

(see Bliege et al. commentary in Scherjon et al. 2015, p. 315). Participatory modelling 248 

processes are affected by the power relations inherent in any local context, and between 249 

researchers and local people (Cooke and Kothari, 2001). Trust is important, particularly in 250 

cases where fire use has been delegitimised by the state and local fire users may therefore be 251 

wary of discussing the issue. The generalisation and simplification involved in model creation 252 

may impede consensus when people in a community have different understandings and 253 

practices. It is important to understand whether participating individuals have the right to share 254 

collective knowledge or speak on behalf of a group (Davis and Wagner, 2003). 255 

 256 

Constructing place-based models of fire knowledge can benefit local fire users. While 257 

modelling codifies what is already known, it can also be a creative process of knowledge 258 

making (Barber and Jackson, 2015). Workshops to elicit understandings of fire and socio-259 

ecological change among the Pemón in Venezuela, for example, exposed conflicting 260 

perspectives among elders and young people and allowed communities to develop new shared 261 

understandings (Rodríguez et al., 2018). Formalising knowledge and practices in model form 262 

can also give local people credibility and visibility. In the case of the Pemón, articulation of 263 

local knowledge in this way promoted dialogue with resource managers, shifting official 264 

narratives away from fire suppression towards management (Bilbao et al., 2019). However, 265 

there is considerable debate about whether rules derived from locally-specific knowledge can 266 

be applied in other places or at broader scales. When rules derived from Aboriginal fire 267 

knowledge were applied to institutional fire management in Australia, for example, they were 268 

criticised as prescriptive and ecologically detrimental (Wohling, 2009). Using place-based 269 

models of fire knowledge outside of their context also carries ethical implications because local 270 

people may not understand, and may therefore not be able to give informed consent to, the way 271 

their knowledge, in model form, is used. 272 

 273 

 274 

 275 

2.1.2 Agent-based models   276 

 277 

Agent-based models (ABMs) belong to a class of computational models that represent 278 

individual, heterogeneous, and often interacting, entities using sets of computational rules or 279 

relationships (e.g., Grimm et al., 2005; Bithell et al., 2008). The individual entities or agents in 280 

an ABM represent individual humans or groups of humans (i.e., institutions) and their activities 281 

in the social and physical worlds (Figure 3). Agents have the ability to make decisions about 282 

future actions based on their state, the state of other agents, and/or the state of the simulated 283 

environment (O’Sullivan et al., 2012). Decision-making is represented using explicit rules or 284 

decision-trees.  Actions that result from specific decisions may modify the state of the decision-285 

making agent, other agents, or the environment.  286 

 287 

ABMs provide considerable flexibility in the representation of decision making. For example, 288 

they can represent decision-making (i) with multiple alternative rules or strategies; (ii) that are 289 

imperfectly rational, for example because of incomplete availability of information; (iii) that 290 

pursue non-economically advantageous goals, for example because of cultural norms; or (iv) 291 

are adaptive through time, simulating learning processes. Furthermore, different decision-292 

making rules can be used for different members of a heterogeneous agent population. This 293 

flexibility has promoted the use of ABMs in studies of socio-ecological systems, in which 294 

interactions between agents and individual and environmental heterogeneity are understood to 295 
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be essential features (Levin et al., 2013). For example, ABMs have been used widely to 296 

examine land use and cover (e.g., Parker et al., 2003; Groeneveld et al., 2017), with specific 297 

consideration of land management systems including agriculture, (e.g., Huber et al., 2018), 298 

rangelands (Walker and Janssen, 2002) and forests (e.g., Rammer and Seidl, 2015). Most of 299 

these studies have been conducted at the human landscape-scale (i.e., 100–10,000 km2), and 300 

combine qualitative and quantitative data to structure and parameterise the models. Brändle et 301 

al. (2015), for example, examined processes of land abandonment and re-forestation in the Visp 302 

area of the Central Valais of Switzerland, developing an agent decision-making typology via a 303 

farm household survey in conjunction with the national agricultural census.  304 

 305 

In the context of fire, an ABM offers the potential to represent the decision-making in 306 

anthropogenic fire use and management as a process explicitly. However, so far, they have 307 

only been deployed to investigate the management and use of fire in land systems at a 308 

landscape-scale in the global north (e.g. Spain, USA; Wainwright and Millington, 2010; Hulse 309 

et al., 2016; Spies et al., 2017). Although these studies demonstrate the utility of ABMs for 310 

examining landscape-scale processes and locally-relevant policies and management strategies, 311 

the transferability of fire ABMs to other locations or their application beyond the landscape 312 

scale has yet to be demonstrated. Agent-based approaches to represent human behaviour have 313 

been used, however, to examine land-systems at a continental scale through defining Agent 314 

Functional Types (AFTs) (Brown et al., 2019). AFTs build on theoretically-informed 315 

typologies to create generalisations about human–environment interactions through two 316 

essential human characteristics: roles (e.g., forester, farmer) and behaviours (e.g., imitation, 317 

conservatism). They therefore allow representation not only of direct human impacts on the 318 

environment, but also behaviourally-mediated responses people might make to consequent 319 

environmental change.  320 

 321 

The advantages that ABMs provide for representing heterogeneous individual agents and their 322 

interactions have high data costs for both model parameterisation and evaluation. Data 323 

concerning the beliefs, values and/or objectives that shape human decision-making, for 324 

example, are needed to construct ABMs (Smajgl et al., 2011; Robinson et al., 2007) but are 325 

difficult to collect even at local scales. Most land-system ABMs have been placed-based and 326 

landscape-scale because the empirical data required to construct and use these models are 327 

difficult to obtain at broader scales (Verburg, 2019). Furthermore, the inherent complexity of 328 

dynamics resulting from multiple interacting, heterogeneous individuals can make identifying 329 

the causes of emergent patterns and outcomes challenging. It can be difficult to establish which 330 

features are common to the system of study and which are contingent on particular boundary 331 

conditions or structures in a case study (Millington et al., 2012; Manson et al., 2020). In the 332 

face of limited data for parameterisation and the high degrees of freedom in model structure, 333 

there may be considerable subjectivity involved in ABM development (Lee et al., 2015) and 334 

robust empirical verification or validation of a model is challenging (Schulze et al., 2017). As 335 

with all models, the quality of representation is dependent on the quality of data and theory 336 

available; in the case of ABMs for agency of individual humans these can be both lacking and 337 

contested.  338 

 339 

The adoption of more general assumptions, such as the use of AFTs, may facilitate the 340 

application of ABMs to understand human-fire interactions at a global scale. However, this 341 

will require a substantial improvement in the availability of data on human activities in relation 342 

to fire. Information about fire use in the context of agriculture, hunting and pastoralism is 343 

widespread in the literature, but fragmented across numerous academic disciplines including 344 

anthropology, sociology, development studies, ecology, and agronomy (Coughlan and Petty 345 
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2012). Synthesising such data into a global dataset to provide the empirical basis for improved 346 

modelling of anthropogenic fire is an important research priority. However, such synthesis 347 

could be used with tools such as cluster analysis to define AFT roles (Malek et al., 2019); this 348 

would be equivalent to gathering primary data e.g. through social surveys for using ABMs at 349 

finer spatial scales (Smajgl et al., 2011). Determining the global spatial distribution and 350 

variation of AFTs defined through a series of small-scale case studies represents a further 351 

challenge, but could be solved through comparison with secondary data sets and previous 352 

attempts to map land use and land use intensity at the global scale (e.g. Haberl et al., 2007; 353 

Malek and Verburg, 2020).  354 

 355 

Representation of the policy development process (see Section 2.3) is a major challenge in 356 

computational modelling of socio-ecological systems (Brown et al., 2019). Whilst agent-based 357 

modelling of policy outcomes and their (un-)intended consequences is comparatively 358 

widespread, few models include an explicit representation of the policymaking process 359 

itself (Castro et al., 2020). Policy is generally represented, at the regional to global scale, as a 360 

weighting towards a given outcome or ecosystem service provision within land user 361 

calculations (e.g. Holzhauer et al., 2018). One important shortcoming of this approach for 362 

wildfire models is the inability to account for abrupt policy changes in response to catastrophic 363 

fire regime shocks. Even when representing policy simply through input parameters, 364 

combining consideration of local, national, and global policy influences with land user 365 

preferences in a model could lead to highly complex emergent phenomena, with consequences 366 

for model interpretation and utility (Caillault et al., 2013).  367 

 368 

 369 

2.1.3 Economic models of wildfire  370 

 371 

Economic analysis examines the human drivers of wildfire occurrence, its effects on economic 372 

activity, and quantifies wildfire costs and benefits in terms of changes in human welfare (Figure 373 

4). Economic models of wildfire are largely empirical and aim to establish relationships 374 

between variables describing human behaviour and wildfire, estimate marginal effects, or 375 

monetise impacts. Modelling can be at the micro-level of individual agents including persons 376 

and firms, or at the aggregate macro-level of jurisdictions, states or countries.  377 

Wildfire can be the intended outcome of the behaviour of economic agents, where its timing 378 

and frequency is determined to optimise an objective function (Yoder, 2004; Varma, 2003; 379 

Prestemon and Butry, 2005; Purnomo et al., 2017). Economic models can be used to assess the 380 

efficiency of wildfire use, the extent to which its occurrence aligns with its socially desirable 381 

level. Many wildfire costs are not borne by the agents enjoying the benefits, and compensation 382 

mechanisms are not in place. These external costs are ignored by fire users, leading to 383 

overutilization of wildfire. At the same time, failure to acknowledge external benefits can lead 384 

to oversupply of suppression and under-provision of wildfire. Wildfires can occur as a result 385 

of seemingly unrelated economic activity and distorted incentives (Warziniack et al., 2019; 386 

Champ et al., 2020; Kountouris, 2020). Economic models characterise the wildfire-human 387 

interaction, highlight the presence of external costs and study agents’ incentives, to assist in 388 

the development of effective wildfire policy. 389 

 390 

Econometric models of wildfire combine variables on natural and human systems. Models may 391 

use time series data, samples of a population at a given time (cross-sections) or repeated 392 

sampling of the population through time (panel) data. Wildfire occurrence and burned area 393 

information typically come from earth observation or international, national and local incident 394 
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databases. There are multiple sources of economic variables. Macroeconomic models to assess 395 

the relationship between wildfire and the aggregate economy usually employ data on national 396 

or subnational income, employment, land use, or other economy-wide metrics (Wibbenmeyer 397 

et al 2019; Liao and Kousky, 2020; Boustan et al., 2020). Microeconometric models examining 398 

the relationship between individual agent behaviour and wildfire use consumer, household, 399 

firm or farm level survey, census and administrative data, and contrast the behaviour of units 400 

that do, or do not experience wildfire and its consequences.  401 

 402 

Models assessing either wildfire impacts on economic outcomes or economic impacts on 403 

wildfires typically control for factors affecting both human behaviour and wildfire. Unobserved 404 

confounders simultaneously determining wildfire and economic outcomes introduce biases in 405 

the estimation of causal relationships. Researchers utilize variation in space and time for 406 

estimation (Jayachandran, 2009; Moeltner et al., 2013). Biases due to individual (agent or 407 

jurisdiction) specific, time-invariant unobserved characteristics can be addressed through 408 

differencing or fixed effects estimators, which utilize the time dimension to remove both 409 

observed and unobserved constant-over-time characteristics, and employ within variation to 410 

estimate coefficients of interest (Michetti and Pinar, 2018; Bayham and Yoder, 2020).  411 

 412 

Endogeneity concerns remain from individual-specific time-varying unobserved variables, 413 

while panel data are not always available. Assessing the effect of wildfire smoke on health and 414 

behaviour, for example, is challenging as agents can self-select their degree of exposure. To 415 

address this type of problem, researchers leverage plausibly exogenous variation in agents’ 416 

exposure (Angrist et al., 1996). Zivin et al. (2019), for example, used variation in wind direction 417 

to compare examination performance in schools located upwind and downwind of a wildfire.  418 

 419 

Estimates of the economic value of wildfire impacts can be used for developing wildfire 420 

management policy, and for comparing different mitigation and adaptation interventions in a 421 

cost-benefit analysis framework. A good or service is considered to have economic value to 422 

the extent it contributes to human welfare. Economic valuation techniques are used to estimate 423 

the change in human welfare resulting from experiencing wildfire or its aftermath, and translate 424 

this into monetary units. Valuation assumes substitutability: consumers are willing to sacrifice 425 

income to avoid the negative consequences of wildfire, or are willing to accept compensation 426 

for wildfire damages. The economic value of some impacts can be inferred directly using 427 

market prices and estimations of the cost of replacing lost infrastructure and production (Butry 428 

et al., 2001; Richardson et al., 2012; Stephenson et al., 2013). It is harder to capture the total 429 

economic value of wildfire, however, either because there are no markets and prices for some 430 

ecosystem goods and services, or because observed prices are inaccurate signals of the true 431 

marginal social costs and benefits (Freeman et al. 2014). Ignoring the value of non-marketed 432 

goods and services, and pricing distortions, reduces the estimated cost of wildfire leading to its 433 

overuse.   434 

 435 

The non-marketed impacts of wildfire can be monetised using revealed and stated preference 436 

valuation methods (Freeman et al., 2014). Revealed preference methods use information from 437 

transactions in related markets to infer the value of an ecosystem good or service. The travel 438 

cost method is used to monetise the loss in recreational value from wildfire by modelling 439 

demand for recreation activities as a function of burned areas (Nobel et al., 2020) or wildfire 440 

risk (Hesseln et al., 2003). Hedonic pricing approaches typically use data from property market 441 

transactions to infer the influence of wildfire risk (Donovan et al., 2007; McCoy and Walsh, 442 

2018) or the proximity to burned area (Stetler et al., 2010) on property prices. Stated preference 443 

valuation asks consumers to participate in hypothetical markets and declare their preference 444 
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for a non-marketed good or service. In contingent valuation studies consumers state whether 445 

they are willing to pay (accept) some price to avoid (as compensation for incurring) the effects 446 

or risk of wildfire (Loomis et al., 2005; Loomis et al. 2009; Molina et al., 2019). In choice 447 

experiments, consumers make a series of choices among hypothetical good profiles comprising 448 

a series of attributes at different levels. When one of the attributes is monetary, the willingness 449 

to pay for each characteristic can be estimated (Remoundou et al., 2012; Campbell and 450 

Anderson, 2019; Mueller et al., 2019; Alló and Loureiro, 2020) Both stated preference 451 

approaches directly model consumer’s utility to explain stated choices. Whereas revealed 452 

preference methods only capture the effect of wildfire on use values (recreation, amenity etc), 453 

stated preference approaches also capture non-use values (existence, bequest etc). However, 454 

values estimated from stated preference studies could over- or underestimate the true costs and 455 

benefits of wildfire since they are hypothetical by design and, although careful design of the 456 

hypothetical market may go some way to reducing the biases (Carson and Groves, 2007; 457 

Vossler et al., 2012), the validity and usefulness of stated preference value estimates for policy 458 

making is highly debated (Hanemann, 1994; Diamond and Hausman, 1994; Hausman, 2012; 459 

Carson, 2012). 460 

 461 

 462 

2.2 Physics-centric models 463 

 464 

2.2.1 Wildfire spread models 465 

 466 

Spread models predict the position and intensity of the wildfire as a fuction of time and explain 467 

how it will evolves over a given landscpate. They are widely used as tools for wildfire 468 

preparedness (e.g. for prescribed burn planning, fuel management, evaluating threats to values-469 

at-risk, ecological applications, and training tools) and for operational firefighting (supporting 470 

incident management). They have also been used for post-wildfire investigations into 471 

suppression effectiveness and forensic support (Pearce, 2009). In contrast to the other types of 472 

models described here, wildfire spread models do not seek to address the two-way interactions 473 

between humans and fire explicitly. The outputs of wildfire spread models are also being 474 

integrated with fire evacuation models such as EXODUS (Veeraswamy et al., 2018) and open 475 

source platforms (Ronchi et al. 2019). 476 

 477 
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It was understood more than half a century ago that the principle of energy conservation could 478 

provide the basis for simulating the rate at which a fire front spreads across a landscape 479 

(Rothermel, 1972; Weber, 1991). In fire spread models, the spread of fire from one grid cell to 480 

the next may be based on the physical conservation of energy principle. Physics-based fire 481 

models include models of fuel-flame-plume interactions, such as Wildland Fire Dynamics 482 

Simulator (WFDS) (Mell et al., 2009). These models include physical processes such as fluid 483 

dynamics, combustion, heat transfer, pyrolysis, microphysics and turbulence, which are 484 

generally resolved at a high spatial resolution (cm-scale). Other physically-based models are 485 

concerned with plume-atmosphere interactions, which usually involve coupling relatively 486 

simple fire models within a high resolution mesoscale atmospheric model such as the Weather 487 

Research and Forecasting model (WRF-FIRE) (Mandel et al., 2011).  488 

 489 

Physics-based models are computationally demanding and are not able to simulate fire spread 490 

in real-time (Figure 5). Semi-empirical fire spread models were developed in response to 491 

operational needs to simulate the spread of fire across landscapes in real-time, or ideally faster 492 

than real-time. Such fire spread or fire growth models use spatial data on fuel characteristics 493 

(e.g. vegetation type, loading, moisture content), topography (elevation, slope, aspect), and 494 

weather (temperature, relative humidity, wind speed, wind direction). Model outputs (e.g. fire 495 

perimeter, fuel consumption) are determined by empirical fire behaviour sub-models, termed 496 

fuel models – a suite of empirically-derived fuel-specific equations that describe the 497 

relationship between the fuel, topography and weather inputs, and the fire rate-of-spread and/or 498 

intensity. The spatially-explicit simulation of a fire spread across a landscape uses Huygens’ 499 

physical principle of elliptical wave propagation (Richards, 1990; Finney, 1998). Examples of 500 

semi-empirical fire spread models include the Fire Area Simulator (FARSITE: Finney 1998) 501 

and Prometheus (Tymstra et al., 2010). FARSITE was developed by the U.S. Forest Service 502 

(USFS) as a National System for predicting wildland fire behaviour and spread in areas of the 503 

United States and is widely used by federal/state land management agencies as an operational 504 

tool for planning land management fires, responding to escaped fires, and responding to 505 

wildfire incidents. FARSITE’s empirical fuel models rely upon the surface fire predictions of 506 

Rothermel (1972), whose equations were derived from a series of small-scale laboratory burns 507 

based on homogeneous dead fuel beds. In contrast, the Prometheus model uses empirical fuel 508 

models representing 16 fuel types typical of Canadian ecosystems based on measurements of 509 

landscape-scale fires (Tymstra et al., 2010). Prometheus is mainly used to provide a decision-510 

support tool to aid fire managers planning prescribed fires, and in responding to escaped fires 511 

which necessitate the need to fight fire on the landscape (Suffling et al., 2008), but has also 512 

been used to examine landscape fire risk (Stralberg et al., 2018; Parisien et al., 2005). Other 513 

examples of semi-empirical fire spread models include Phoenix (Tolhurst et al., 2008) and 514 

SPARK (Miller et al., 2015) developed for Australian bushfires (Neale and May, 2018). 515 

 516 

As well as providing information on spatially-explicit fire perimeters, most of the semi-517 

empirical models will also provide information on fireline intensity (kW m-1), flame length 518 

(m), rate of spread (m min-1), heat release density (kJ m-2), reaction intensity (kW m-2), along 519 

with  information about such behaviours as crown fire activity (e.g. FARSITE). Depending on 520 

their use, fire spread models may include a number of additional physical or parameterised 521 

sub-models. Some examples include the parameterisation of embers-driven spotting behaviour 522 

(Finney, 1998) and emissions modules that may be used for subsequent modelling of smoke 523 

plume dispersion (Volkova et al., 2018). 524 
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 525 

 526 

2.2.2 Global fire models 527 

 528 

Global fire models are mathematical representations of processes that determine the occurrence 529 

and extent of fire, including ignition, spread, fuel combustion, vegetation mortality and natural 530 

suppression (Hantson et al., 2016). Global fire models are designed to interface with dynamic 531 

global vegetation models (DGVMs) to explicitly model the impact of fire on ecosystems and 532 

large-scale vegetation distribution. However, since DGVMs are increasingly included in the 533 

land-surface component of climate or earth system models, fire-enabled global vegetation 534 

models are also used to make predictions of how changes in fire regime impact pyrogenic 535 

emissions, biogeochemical cycles and ultimately climate. 536 

 537 

The vegetation model in which the fire model is embedded provides information about the 538 

vegetation, generally in terms of the proportions of different plant functional types present, and 539 

this in turn determines the amount of both live and dead fuel loads. Climate affects both 540 

vegetation growth and the probability of fire. Temperature and precipitation determine what 541 

plant types can grow and their productivity, for example, and hence determine fuel availability; 542 

they also determine the rate at which fuel dries out and therefore whether it is susceptible to 543 

burn. Wind speed, fuel continuity and the atmospheric vapour pressure deficit are important 544 

factors determining the rate at which a fire spreads and hence how large an area is burnt. 545 

 546 

The most fundamental assumption underpinning the representation of fire in global vegetation-547 

fire models is that processes can be represented mathematically and are universal in space and 548 

time. Spatial or temporal patterns in the expression of these processes should arise explicitly 549 

from the patterns in the controls on these processes. Thus, for example, a lightning strike will 550 

trigger an ignition if it produces a long continuing current sufficient to reach a given 551 

temperature threshold. Spatial differences in the number and energy of cloud-to-ground 552 

lightning strikes then determine how many lightning ignitions will take place in a given region. 553 

Similarly, an ignition will cause a fire only if the fuel bed is sufficiently dry; spatial differences 554 

in the occurrence of fire after ignition are then determined by climate factors that affect fuel 555 

dryness in a given location.  556 

 557 

The implementation of universal processes modulated by spatial or temporal differences in 558 

their controls is not always straightforward. In practice, many global vegetation-fire models 559 

use simplifications (parameterisations) of complex processes or represent these processes 560 

through empirical relationships. For example, fuel drying rates are determined not only by the 561 

atmospheric vapour pressure deficit and wind speed but also by the size and arrangement of 562 

the fuel (fuel packing). The influence of fuel packing on drying is represented through 563 

empirical relationships that relate packing to the size of the fuel, which in turn is related to the 564 

rate of drying and fire spread. Simplifications may also be introduced because of inadequacies 565 

in the available input data. For example, until recently the only global lightning data set 566 

available provided information about the total number of lightning strikes (Cecil et al., 2014), 567 

requiring assumptions about the partitioning between cloud-to-cloud and cloud-to-ground 568 

strikes and about the energetic efficiency of cloud-to-ground strikes (Latham and Schlieter, 569 

1989). In the absence of other information, it is usually assumed that these relationships are 570 

constant in space and time (see e.g. Thonicke et al., 2010). 571 

 572 
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Further simplifications are introduced (see Hantson et al., 2016; Rabin et al., 2017) because 573 

global vegetation-fire models are designed to operate at a coarse resolution (0.5° x 0.5° or 574 

coarser). This has three consequences. Firstly, the input data are specified at this resolution 575 

which means the model is run using average conditions. For example, the influence of wind 576 

speed on fire spread does not take account of variable wind gustiness or of pyrogenically 577 

induced winds. Secondly, models do not predict the precise location of a fire, but rather the 578 

proportion of a grid cell that is affected. Finally, there are no interaction between grid cells: 579 

fires do not spread from grid cell to grid cell.  580 

 581 

Although most global fire-vegetation models include some consideration of the role of humans 582 

in fire regimes (Rabin et al., 2017), this is the area which is treated most simplistically in the 583 

current generation of models. Humans are considered as a source of ignitions in many models 584 

(Figure 6). The number of ignitions is generally specified as a function of population density, 585 

increasing up to a threshold value where there are no additional ignitions with increasing 586 

population. Both the strength of the relationship between population density and number of 587 

ignitions and the threshold value are empirically tuned and vary between models. Some models 588 

employ different relationships between population density and number of ignitions depending 589 

on human economic systems (e.g. LPJ-LMfire: Pfeiffer et al., 2013), although again the values 590 

are empirically tuned. Humans may also be considered as a source of landscape modification 591 

(Figure 6), both promoting (e.g. agricultural fires, deforestation fires) and suppressing (e.g. 592 

through landscape fragmentation) fire. However, the failure to identify a universal process 593 

susceptible to mathematical formulation and modification through changes in easily obtained 594 

inputs means that these treatments are not fully prognostic. For example, deforestation fires are 595 

currently simulated using observed patterns of deforestation as an input. This allows the 596 

ecological, biogeochemical and climatic consequences of recent deforestation to be quantified, 597 

but the model has no predictive power because it does not incorporate process understanding 598 

about the causes (and therefore the possible future occurrence) of deforestation. Similarly, 599 

although most models exclude fire in cropland areas and thus account for the contribution of 600 

agricultural expansion to landscape fragmentation, models which include fire as an agricultural 601 

management tool are not fully prognostic, relying on data derived from remote sensing for 602 

burned cropland fraction (Rabin et al., 2018) or for empirical (non-process-based) 603 

parameterization of crop fires (Li et al., 2013). 604 

 605 

Global vegetation-fire models are useful tools for investigating the impact of changes in 606 

climate on fire regimes and feedbacks to climate. In a world increasingly affected by changes 607 

in land use and land management, it is imperative to incorporate more realistic treatments of 608 

human-fire interactions (Andela et al., 2017; Teckentrup et al., 2019; Forkel et al., 2019a, 609 

Hantson et al., 2020). Improved understanding of the processes involved, identification of 610 

which drivers could be specified from global data sources, and the creation of appropriate 611 

driving data sets are key to implementing human-fire interactions in global models in a realistic 612 

way. 613 

 614 

 615 

 616 

2.3 Fire and Policy 617 

 618 

Policies are a set of ideas or guidelines for the actions undertaken by many types of organisation 619 

including governments, non-governmental organisations (NGOs) and businesses. Fire policies 620 

may draw on the information provided by the various fire models described in the preceding 621 

sections and –  through their impact on human behaviour and vegetation – change the input 622 
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data for these models. Thus, when thinking about modelling human-fire interactions, it is 623 

helpful to consider how policies are developed and implemented (Figure 7). 624 

 625 

Policies are usually developed in response to a problem. However, the problem of fire can be 626 

framed very differently: for example, ecologists may focus on maintaining biodiversity by 627 

managing the size and timing of fires in line with the needs of an ecosystem or species of 628 

interest, whereas town councils will focus on preventing damage to people and infrastructure. 629 

In response to the 2015 Paris Climate Agreement, managing land use to reduce carbon 630 

emissions or increase sequestration has become an increasingly powerful driver for many fire-631 

related policies (Eloy et al., 2019). However, land use management decisions necessarily 632 

involve trade-offs between the aspirations of different groups of people (Mace et al., 2018).  633 

Thus although policies to reduce emissions from deforestation and forest degradation and 634 

enhance carbon stocks (REDD+) are promoted as win-win solutions, their implementation 635 

could lead to significant carbon-biodiversity trade-offs in fire-prone old-growth grassland 636 

ecosystems and reverse progress made in decentralising forest management to local 637 

communities (Phelps et al., 2010; Phelps et al., 2012). 638 

 639 

Policy formulation is a messy and unpredictable process (Cairney, 2015) that involves 640 

weighing up and negotiating trade-offs, that are essentially about power, relationships, 641 

responsibility and accountability (Nunan et al., 2018). In many cases, policy is determined 642 

more by politics than evidence. In Australia, for example, the compulsory purchase of land by 643 

government recommended by the Victoria Bushfire Royal Commission on the catastrophic 644 

fires of 2009 (Teague et al., 2010) was not adopted because of its political unpopularity 645 

(Bowman et al., 2011). Similarly, an investigation into a fire in which five fire-fighters died in 646 

Spain terminated discussion of the limitations of fire control (González-Hidalgo et al., 2014). 647 

The adoption of evidence-based policy may also be limited because the underpinning bodies 648 

of evidence, whether local or global, are rarely neutral. Fire experiments, which informed both 649 

colonial and post-colonial fire policy in West Africa, were designed to test the belief that the 650 

savanna was the product of generations of anthropogenic burning (Laris and Wardell, 2006), a 651 

view that has been widely contested both by social scientists (Amanor, 2002; Leach and 652 

Scoones, 2015) and by ecologists (West et al., 2000; Bond and Zaloumis, 2016). Knowledge-653 

production is fundamentally political in nature, as is evident in the privileging of remote 654 

sensing and quantitative analyses over traditional ecological knowledge in supporting fire 655 

suppression policies (Sletto, 2008; Leach and Scoones, 2015). 656 

 657 

Fire-related policies broadly fall into two categories, state-enforced regulations and market-658 

based mechanisms, though the boundaries between them are increasingly blurred (Sikor et al., 659 

2008; Lambin et al., 2014). Regulatory policies include land use zoning associated with rules 660 

about whether and when fires can be set. Market-based mechanisms, such as commodity 661 

roundtables (e.g. the Roundtable on Sustainable Palm Oil) may be implemented by the private 662 

sector but enforced by NGOs. Payments for Environmental Services schemes, like REDD+, 663 

may involve both governments and NGOs in implementation and enforcement (Lambin et al., 664 

2014). The different approaches can co-exist. Carmenta et al. (2017), for example, report that 665 

severe peat fires in Sumatra led to the development of a variety of fire management 666 

interventions across scales, sectors and stakeholders, ranging from new regulations to technical 667 

innovations, developments in fire monitoring and the provision of incentives to communities 668 

for fire-free practices.  669 

 670 

Once policies are formulated, there is an assumption that they will be implemented (Figure 7). 671 

In reality, there is often a large policy-implementation gap. This may arise because responsible 672 
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authorities lack the capacity or resources to enforce new rules. It can also be the result of poor 673 

policy development processes which have not effectively addressed the trade-offs experienced 674 

by some stakeholders. The fire exclusion policy adopted in Bale National Park in Ethiopia, for 675 

example, forced local communities to stop small-patch burning practices and resort to illlicit 676 

fires, often set late in the dry season when ignition is more likely, to maintain the grazing 677 

landscape, with the inadvertent result that the size of fires in the park has increased (Johansson 678 

et al., 2019). In contrast, wide acceptance allows Indigenous Tagbanua farmers in the 679 

Philippines to practise traditional fire-based swidden farming despite the practice being 680 

criminalised for decades by both state and non-state actors (Dressler et al., 2020). Political 681 

interests may also undermine policy intentions. In Tanzania, for example, community forest 682 

and fire management initiatives must defend collectively owned lands from the hunting fires 683 

set by more powerful and politically well-connected stakeholders who hold hunting 684 

concessions (Khatun et al., 2017). Understanding the diverse motivations for fire use is 685 

essential if interventions are to succeed (Carmenta et al., 2017). In the case of Sumatran peat 686 

fires, for example, no single stakeholder group is primarily responsible for fire-setting and there 687 

are many nuanced motivations for setting fires (Carmenta et al., 2017). Co-production of fire 688 

policies through the involvement of local stakeholders (Laris and Wardell, 2006; Monzón-689 

Alvarado et al., 2014; Humphrey et al., 2020) and the recognition of traditional knowledge in 690 

the environmental policy making process (Rodríguez et al., 2018; Bilbao et al., 2019; 691 

Devisscher et al., 2019; Mistry et al., 2019) may be important ways to narrow the policy-692 

implementation gap. When policies are evaluated (and possibly adapted) there is a need to 693 

disaggregate across societal groups, with particular attention paid to the voices of often 694 

marginalised stakeholders, such as the poorest, Indigenous peoples and women (Schreckenberg 695 

et al., 2018). 696 

 697 

 698 

3. Issues and Commonalities 699 

 700 

The models discussed here originate from diverse disciplines, were developed for different 701 

purposes and address different questions, include different types of processes, and operate on 702 

different time and space scales, resolution and complexity (Figure 1). Nevertheless, they share 703 

some common features.  704 

 705 

Each type of model has a theoretical basis for the representation of the relationship between 706 

humans, the biological, physical, and in some cases, spiritual, attributes of the environment, 707 

and fire. The underlying theory may be incomplete, the theoretical basis of some individual 708 

models developed within each class of models may even be wrong, but there is an assumption 709 

that the models should embody causal relationships. Data analysis or machine-learning 710 

approaches have been used to derive empirical relationships or parameterisations for economic 711 

models (Papakosta et al., 2017; Storm et al., 2020) and global fire models (Forkel et al., 2017; 712 

Stralberg et al., 2018; Forkel et al., 2019b), and may even be useful for the development of 713 

typologies (e.g. Delgado et al., 2018), but these are not unsupervised analyses and the types of 714 

data are selected based on the underlying theory involved.  715 

 716 

Each type of model is a simplification of the complexities of the real world. Even place-based 717 

models of fire knowledge represent a partial view, because participants are selected or self-718 

select, because people understand and relate to fire in multiple ways which may not always be 719 

elicited in the process of model construction, or because some social constructs are difficult to 720 

represent. Practical considerations also lead to simplification, whether this is the limited 721 

computer power available for global-scale fire modelling which precludes ultra-high resolution 722 
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in order to simulate individual fires (see e.g. Toivanen et al., 2019) or the limited data 723 

availability that necessitates substituting travel costs to monetise loss of recreational value in 724 

economic modelling (e.g. Hesseln et al., 2003; Nobel et al., 2020). Simplification may be 725 

driven by considerations of the relative importance of specific processes at a given time or 726 

space scale, informed by theory, or by lack of appropriate data. Lack of quantitative data on 727 

the timing and extent of human burning and fire suppression in agricultural areas, for example, 728 

underpins the widespread use of population density as a surrogate measure. However, all of 729 

the types of model require extensive data inputs, and in many cases data limitations are the 730 

strongest constraint on model development. 731 

 732 

The models differ in potential for co-production by scientists and stakeholders that use or 733 

manage fire or are directly impacted by wildfires. In some cases, stakeholder knowledge is 734 

incorporated by scientists into a pre-determined model structure. This is the case, for example 735 

where stated preference approaches are used in economic modelling (e.g. Loomis et al., 2005), 736 

or interview and social survey data feeds into an agent-based model (e.g. Spies et al., 2017). 737 

Stakeholders may also participate more directly, potentially playing a part in defining the 738 

structure of the model. Place-based models of fire knowledge have been most amenable to such 739 

participatory modelling approaches (e.g. Bilbao et al., 2019). Generally, co-production is more 740 

likely and feasible where models operate at smaller spatial scales, and can incorporate 741 

information from individuals or communities, and where power differentials between 742 

stakeholders are less extreme.  743 

Each type of model is oriented towards and designed to lead to practical outcomes. Place-based 744 

models of fire knowledge, for example, can be used to engineer dialogues between different 745 

groups of stakeholders or help promote cultural identity. ABMs can be used to develop locally 746 

relevant policies for landscape management, while economic models can be used to ensure that 747 

the hidden costs and benefits of wildfire are factored into the development of effective fire 748 

management policies. Global fire models provide a way to predict changes in fire regimes and 749 

fire impacts in response to future climate and land-use scenarios. However, different types of 750 

models may yield different recommendations for fire policy and management because of their 751 

very different foci and scales. The need to develop more holistic fire-related policies and 752 

practices provides a good motivation for combining the strengths and benefits of different types 753 

of models.  754 

 755 

Some differences between the models may be more apparent than real. There is an apparent 756 

tension for example between the assumption made by global fire models that processes are 757 

universal and the place-centred focus of place-based models of fire knowledge . This translates 758 

into the perception that policies and practices based on local knowledge cannot be usefully 759 

applied elsewhere.  However, global fire models also assume that universal processes such as 760 

ignition, fire spread and extinction are governed by factors that vary spatially, such as climate 761 

or vegetation properties or land use, thus giving rise to different fire regimes (Hantson et al., 762 

2016). The use of agent typologies (e.g. Lauk and Erb, 2016) makes a similar assumption - that 763 

there are universal activities or types of behaviour, although the mix of different agent types 764 

may change through time or across space as do climate and vegetation properties.  765 

 766 

 767 

 768 

4. Moving forward: key challenges and a roadmap for model use and integration  769 

 770 
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The major challenge for developing better models of human-fire interaction is lack of data that 771 

can be used to develop heuristic, globally-applicable schemes in a modelling framework.  772 

Collecting field data at a local level is time-consuming. The synthesis of data from multiple 773 

local studies into a global data set could provide one route to obtaining sufficient data to 774 

parameterise models, whether these are ABMs, economic models or fire-enabled vegetation 775 

models, but the quality of such a synthesis depends to some extent on whether the same 776 

information has been collected and whether the same data-collection methods have been 777 

applied (Costafreda-Aumedes et al., 2017). Many place-based models of fire knowledge are 778 

not framed in the quantitative way required for use by global fire models, for example. There 779 

is also an issue about representativeness. In the physical sciences, there are standard methods 780 

that are used to judge what is the minimum data set required to provide global metrics (see e.g. 781 

Mann et al., 2008). Such an assessment is likely to be more difficult given the diversity of 782 

human socio-economic and cultural systems and the heterogeneity of their influences on fire. 783 

Furthermore, research on human use and management of fire is fragmented across many 784 

disciplines and heterogenous in the methods use and data produced. However, this situation is 785 

not uncommon in studies of socio-ecological systems and meta-study methods to synthesise 786 

diverse case-studies have been developed (Magliocca et al., 2015; van Vliet et al., 2016). Large 787 

scale syntheses using such methods are ongoing (e.g. Perkins et al 2021; Smith and Mistry, 788 

2021), with the aim of improving systematic understanding of human use and management of 789 

fire, which in turn will be useful in developing improved human-fire models. 790 

 791 

The scaling-up of models that function at a local scale to the global scale is also a major 792 

challenge. Models of fire spread, for example, explicitly deal with the influence of topography, 793 

whereas global fire-enabled vegetation models ignore topographic influences. To some extent, 794 

this is because of the computational cost that working at sufficiently high resolution would 795 

entail but it also reflects decisions about the importance of specific factors at different scales, 796 

and whether these processes can be represented probabilistically rather than deterministically.  797 

 798 

 799 

To some extent, scaling up can be seen as a process of simplification. For example, scaling 800 

ABMs to the global scale could involve defining a limited number of Agency Functional Types 801 

(AFTs) based on theoretical typologies derived for example from local fire studies. This would 802 

be parallel to the use of Plant Functional Types (PFTs) in most of the current generation of 803 

dynamic global vegetation models (and indeed in most land-surface models). This parallel is 804 

informative about the potential traps involved in such simplification. The original idea behind 805 

the use of PFTs to represent plant functional diversity involved classifying plants in terms of 806 

adaptations to climate (Prentice et al., 1992; Harrison et al., 2010), drawing inspiration from 807 

the seminal work of Raunkiær (1909). PFTs defined in this way do not necessarily represent 808 

plant functional diversity with respect to other traits, for example they do not distinguish 809 

between fire-adapted, fire-tolerant and fire-intolerant species (Pausas et al., 2004; Brando et 810 

al., 2012; Clarke et al., 2013). Furthermore, recent empirical (Diaz et al., 2015) and theoretical 811 

(Wang et al., 2017, Smith and Keenan, 2020; Wang et al., 2021) developments suggest that 812 

there are alternative ways to treat plant diversity, including simulating the adaptive traits 813 

directly (e.g. Scheiter et al., 2013; Fyllas et al., 2014; Berzaghi et al., 2020) or as emergent 814 

properties of the system (Wang et al., 2017; Franklin et al., 2020; Harrison et al., 2021). Thus, 815 

in the creation of simplified representations of human-fire interactions, it will be important to 816 

consider both the purpose of the model which will use these relationships and to test the 817 

theoretical basis for such representations rigorously. Furthermore, in so far as the development 818 

of typologies of fire users assumes there are universal rules governing how specific fire-user 819 

types behave across time and space, or that certain fire practices are associated with certain 820 
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environmental conditions, there is a danger of adopting outdated concepts including 821 

environmental determinism or societal evolution through linear stages of economic 822 

development, with corresponding land management practices, from primitive to modern 823 

(Coughlan, 2015; Coughlan and Petty, 2013). 824 

 825 

Despite these challenges, there are ways to move forward. Climate projections are made using 826 

scenarios of changes in anthropogenic emissions and land use developed using alternative 827 

assumptions about human activities in the future, for example a continued dependence on fossil 828 

fuels or the widespread adoption of deliberate strategies to reduce emissions (O'Neill et al., 829 

2017; Riahi et al., 2017). Global fire-enabled vegetation models can use these climate 830 

projections to examine the consequences of climate changes for future fire regimes, but they 831 

could also use the underlying scenarios about human activities to modulate the treatment of 832 

human ignitions and/or suppression.  833 

 834 

Notwithstanding the highly political nature of much policy-formulation, the potential for 835 

different types of models to lead to radically different outcomes for policy and management 836 

means that some form of model integration is vital. The primary step is the development of 837 

ways to use outputs from one model to inform other models. For example, global vegetation-838 

fire models could be used to make projections of the probability of climate-induced changes in 839 

fire regimes. These projections could be used in the context of economic models to determine 840 

the costs and benefits of fire management or fire reduction at a regional scale. Agent-based 841 

models could then be used to establish whether specific mitigation actions are likely to be taken 842 

up in these regions. The predicted changes in human behaviour could then be used to construct 843 

new scenarios for incorporation into global vegetation-fire models simulations. The enchaining 844 

of models in this way is already integral to impact modelling, for example in the framework of 845 

the ISIMIP project (Rosenzweig et al., 2017). The challenge is either to develop consistent 846 

terminology and standardised protocols that allow outputs from one model to feed into another 847 

model or to provide appropriate tools that translate these outputs into appropriate formats. 848 

 849 

Another step in using multiple kinds of models to address human-fire interactions could focus 850 

on the implicit coupling of global and regional models. Global climate simulations, for 851 

example, are used to provide the boundary conditions for regional climate models which 852 

because of their higher resolution can be used to project the influence of local features, such as 853 

large lakes, on regional climate (e.g. Diallo et al., 2018). Higher-resolution regional models 854 

can also reduce the need for parameterisation of individual processes (Giorgi, 2019), but since 855 

they operate on a limited spatial domain they can do so without excessive computational costs. 856 

Similar approaches could be adopted with fire modelling, either to link similar types of models 857 

across scales (e.g. fire spread models and global vegetation-fire models) or to derive 858 

probabilistic representations of human-fire interactions derived from local studies into global-859 

scale models. Improved coupling between regional and global scales would facilitate 860 

addressing fire policy questions since wildfires are not typically confined to a single 861 

jurisdiction. Fire management has a global dimension, as illustrated by climate change 862 

mitigation concerns and transboundary pollution associated with forest fires in the tropics 863 

(Khatun et al., 2017). Scale is a challenge for natural resource governance, since ecological 864 

and social/administrative processes rarely occur on the same spatial or temporal scale (Nunan 865 

et al., 2018) and politics and power often determines the scale at which decisions are made 866 

(Zulu, 2009). Effective multi-level governance requires both vertical coordination between 867 

actors at different levels and horizontal cooperation, e.g. between different sectors (Nunan et 868 

al., 2018).  869 

 870 
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It is difficult to envisage creating a single model that addresses all the different questions and 871 

scales currently addressed by different types of human-fire models. Nevertheless, there are 872 

obvious avenues for integration. The use of local conceptual or placed-based models of fire 873 

knoweldge and of global fire-use typologies to develop agent classifications for use in global 874 

ABMs seems a fruitful avenue to explore. ABM can be readily combined with economic 875 

models (e.g. Bert et al., 2015), and building economic constraints into land- and fire-use 876 

decision-making would be useful. There is also an important gap in linking place-based models 877 

of fire knowledge with ABM. Given that landscape-scale ABMs have already drawn on 878 

interviews, surveys and workshops with fire managers in developed-world contexts (e.g. 879 

Millington et al., 2008; Spies et al., 2017), there is no reason why models could not be derived 880 

from data generated in similar ways with indigenous fire practitioners. Pursuing such model 881 

integration to understand human-fire interactions in developing world landscapes will be 882 

important for improving fire management and ensuring sustainability under changing socio-883 

economic and climate conditions. 884 

 885 

There is potential for global ABM predictions to be incorporated in fire-enabled global 886 

vegetation models: given that some global models already allow relationships between 887 

population density and number of ignitions to vary depending on changes in human economic 888 

systems through time (e.g. Pfeiffer et al, 2013), this could be extended to include other human-889 

fire interactions, such as suppression. Including humans as agents within a fire-enabled global 890 

vegetation model would also lay the groundwork for incorporating feedbacks between 891 

changing fire regimes and changing human activities (Figure 8). For example, under a loose 892 

model coupling, the ABM would provide static inputs to the fire-enabled global vegetation 893 

model, for example by replacing anthropogenic ignitions from population density with an 894 

ABM output. Under a tighter-coupling (Figure 8), the ABM would be run alongside the fire-895 

enabled global vegetation model, allowing cross-system feedbacks to be captured though at the 896 

expense of significant additional model complexity. In a loose coupling, the ABM’s ecological 897 

inputs such as land cover and NPP would come from secondary data, whilst under a tighter 898 

model coupling, these could come from the dynamic outputs of the fire-enabled global 899 

vegetation model (Antle et al., 2001). Designing rigorous methods of evaluating these coupled 900 

human-fire models, as is already done for fire-enabled vegetation models (Hantson et al., 901 

2020), will require careful consideration. 902 

 903 

The enchaining of models is not unidirectional. While it may be useful to think how insights 904 

gained at local scales or models that consider a single component of the human-fire system 905 

can contribute to improving global fire models, there could also be a useful flow of 906 

information from global models to other kinds of fire modelling. When modelling closely 907 

coupled human-natural systems, it is common to explore the uncertainty associated with 908 

policy decisions, socioeconomic trends, and technological development by exploring discrete 909 

scenarios for the future. These scenarios, or storylines, can be used to set up simulations from 910 

one kind of model that can then be fed into other kinds of models, in order to evaluate various 911 

aspects of the changing Earth system. The Inter-Sectoral Impacts Model Intercomparison 912 

Project (ISIMIP), for example, uses scenario-based trajectories from climate, economic, and 913 

land-use models as inputs to models that simulate the impacts of climate change on sectors 914 

including agriculture, human health, fisheries, and many others (Frieler et al., 2017). The 915 

outputs from global fire models could be used in a similar way. For example, global fire 916 

models driven by different scenarios of climate change could provide information about 917 

potential changes in fire frequency, burned area and fire intensity. These outputs could then 918 

be used in economic modelling, as the environmental constraints for ABM modelling at a 919 
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regional or local scale, or as what-if scenarios for local fire modelling. This can be illustrated 920 

by considering simulations of the response of burned area to changes in climate and land use 921 

under the SSP2-RCP4.5 scenario made with the CESM2-WACCM coupled climate model 922 

(Danabasoglu et al., 2020). By the middle of the 21st century (2040-2049), the model 923 

predicts a decrease in burnt area in western Africa although there is a substantial increase in 924 

burnt area in a limited area of north-central Africa (Figure 9a). In contrast, the model predicts 925 

a generalised increase in burnt area along the southern margin of Amazonia (Figure 9b). The 926 

projections of decreased burnt area in western Africa suggest that rigorous fire suppression 927 

policies may not be required as part of conservation measures to protect forested areas. On 928 

the other hand, the projected increase in burnt area in South America would have major 929 

economic and policy implications. These kind of scenario maps could also form the basis for 930 

exploring how local populations could adapt their current use of fire.  931 

Above all, the process of coupling different types of model will be a learning exercise, in part 932 

because it challenges narrow discipline-bound assumptions and in part because it provides 933 

the opportunity to assess the strengths and weaknesses of different approaches to 934 

understanding human-fire interactions (Antle et al., 2001; Voinov and Shugart, 2013). 935 

Coupling different types of models should facilitate detailed representation of individual 936 

elements of human-environment systems and also exploration of the links and feedbacks 937 

between those elements. However, there are technical, conceptual and semantic challenges in 938 

model coupling (Janssen et al., 2011), and these challenges are linked to important issues of 939 

model uncertainty and assessment (Millington et al., 2017). Semantic integration of models 940 

requires ensuring language, understanding, and perspectives on the entities and processes 941 

being modelled are shared between modellers from different disciplinary backgrounds. 942 

Conceptual integration requires ensuring alignment and consistency of concepts and units as 943 

information is passed between models, likely requiring conversion of units but also 944 

potentially concepts. Assessing the types and magnitudes of uncertainty introduced through 945 

model coupling will be an ongoing issue, although tools are available to assist in its 946 

management (e.g. Bastin et al. 2013). Coupling models of human activity with biophysical 947 

models to improve our understanding of fire regimes can benefit from the previous 948 

experience to couple models rooted in different scientific disciplines (e.g., Janssen et al., 949 

2011; Voinov and Shugart, 2013, Calvin and Bond-Lamberty, 2018). Ultimately, model 950 

coupling should provide a stronger foundation for making predictions about future fire 951 

regimes and how these are influenced and will influence human actions. It will also provide a 952 

basis for the co-production of fire-related policies that take account of the aspirations of all 953 

sectors of society, thus promoting environmental justice 954 
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Figure Captions 

 

 

Figure 1  Graphical illustration of the relationships between scale (spatial and temporal) and 

comprehensiveness (number of components in a model), with bio-physical resolution and 

complexity, and with the resolution and complexity of the representation of humans and human 

activities, for different fire models. 

 

Figure 2 Rich picture exploring fire management in the Canaima National Park, Venezuela, 

made by Indigenous participants of a climate change workshop in 2017 (Source: Jay Mistry). 

 

Figure 3 Elements of a possible agent-based model at the landscape-scale. Agents make 

decisions about future actions based on their state (including their goals and available 

resources), their interactions with other agents, constraints or incentives due to laws, policies 

and markets. and/or their perceived state of the simulated environment. As in the real world, 

agents often have a limited sphere of influence over the environment (e.g. which they own 

and/or manage). 

 

Figure 4 External costs of wildfires. Note: The horizontal axis measures wildfire incidents or 

area burned. The vertical axis measures costs and benefits in £. The marginal benefit line 

shows the additional benefit from one extra wildfire. Marginal Social and Marginal Private 

cost lines show the additional private and social costs from an extra wildfire. FS and FP 

represent the social and private optimal wildfire occurrence. Area E shows the external costs 

from oversupplying wildfires. 
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Figure 5. Typical time and space scales for different types of operational firespread models 

Figure by Ronchi et al., 2019, CC BY. 

 

 

Figure 6. Simplified representation of the structure of a global fire model. The orange boxes 

represent natural processes and the blue boxes human activities that impact fire starts, spread 

or duration, exclusion and/or suppression. The grey arrows show pathways taken by individual 

global fire models where arrows to a specific box show that this process is included explicitly. 

GPP: gross primary production; RH: relative humidity; PD: population density; GDP: gross 

domestic product: PFT: plant functional type. The Nesterov Index is one example of a fire 

danger index where ignition probability is calculated as a function of climate. The Rothermel 

equation is a quasi-empirical expression for the rate of fire spread based on the conservation of 

energy. 

 

Figure 7. Simplified policy cycle: Far from being a technocratic exercise, politics is embedded 

in the cycle, from the framing of the problem to determining which evidence to use, weighing 

up trade-offs between different policy options, ensuring resources and buy-in for policy 

implementation and undertaking and reacting to evaluation. 

 

 

Figure 8  Options for integrating an agent-based model of anthropogenic fire impacts into a 

fire-enabled global vegetation model or Earth System Model (ESM). The table shows examples 

of socio-ecological feedbacks that could be captured by tight model coupling. 

 

Figure 9. Simulated burned area by the middle of the 21st century (2040-2049) in response to 

the SSP2-RCP4.5 scenario made with the CESM2-WACCM coupled climate model, A: for 

northern Africa, and B: for South America. 
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