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The importance of agricultural yield elasticity for indirect land use 

change: A Bayesian network analysis for robust uncertainty 

quantification

A major barrier to realising biofuels’ climate change mitigation potential is 

uncertainty concerning carbon emissions from indirect land use change (ILUC). Central 

to this uncertainty is the extent to which yields can respond dynamically to increased 

demand for agricultural commodities. This study examines the elasticity of soybean and 

corn yields in the USA for 1990-2017 using Bayesian network models to robustly 

quantify uncertainty. The central finding is that a single parameter value for yield 

elasticity does not adequately represent the effects of technology, policy and price 

pressures through time. The models demonstrate the limiting role of technological 

progress as well as farmers’ capital investment in response to system shocks. Results 

suggest evaluation of parameter uncertainty alone is unlikely to capture a full range of 

future ILUC scenarios and reiterates the need for ILUC studies to use probabilistic 

approaches as standard to robustly inform climate change mitigation policies. 

Keywords: Yield, elasticity, ILUC, biofuel, Bayesian network.

1: Introduction

Large-scale deployment of bioenergy with carbon capture and storage 

(BECCS) is believed necessary to restrict global warming to below 1.5°C (IPCC 

2018). In scenarios consistent with warming of 1.5ºC or less, BECCS has been 

found necessary to remove an average of 12 Gt C yr-1 by 2100 (IPCC 2018). 

However, major concerns have been raised about the pressures placed on the land 

system by large-scale BECCS deployment (IPCC 2018). Prominent among the 

potential negative consequences of BECCS is indirect land use change (ILUC; 

Gough et al., 2018). ILUC occurs when a change in agricultural production in one 

location leads to a change in land use elsewhere to offset the change in land use at 

the primary location (Overmars et al., 2011). Emissions from indirect deforestation 

could erase the carbon sequestration potential of BECCS (El Akkari et al., 2018). 

Analysis of ILUC emissions due to first generation biofuels has 

highlighted agricultural intensification as the least studied and most uncertain 

aspect of the system (Wicke et al., 2012). Models used in ILUC studies represent 
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yield increases in a variety of ways depending primarily on their disciplinary 

background; a crucial modelling choice being whether to treat yield increases as 

endogenous or exogenous to the land system. However, in both cases, assumptions 

about future yields have been found to be the central cause of model uncertainty. 

Adopting the endogenous approach, Plevin et al. (2015) found that 50% 

of parameter uncertainty in ILUC projections of the widely-used economic-based 

Global Trade Analysis Project (GTAP) model is in the extent to which yields 

respond to changes in commodity demand – what is termed the ‘elasticity’ of yield 

with respect to demand. This gap in understanding is further demonstrated by the 

large range of parameter values given in the literature for the elasticity of 

agricultural yields. For example, the default parameterisation of the GTAP model is 

0.25 (Hertel et al., 2010), meaning for every percentage increase in price, yields 

would increase 0.25%. However, the empirical basis for this value is a group of 

seven studies using data from the period 1951-1988 (Keeney and Hertel 2009). By 

contrast, applying econometric methods to US Department of Agriculture data from 

1951-2010, Berry (2011) found a yield elasticity for Corn of just 0.03, leading them 

to conclude that yield is unconnected to price. In another study over the period 

1977-2007, Huang and Khanna (2010) use a mixed-effects model to calculate non-

zero yield elasticities that vary substantially between commodities: 0.15 for corn, 

0.06 for soybean and 0.43 for wheat. 

By contrast, ILUC studies using spatially explicit land use models 

typically side-step this uncertainty by parameterising yields as an exogenously 

defined constant annual percentage increase (e.g. Van der Hilst et al., 2018). 

Integrated assessment modelling of BECCS’ long-term potential also typically 

assumes a linear annual yield increase (Fajardy et al., 2019). Sensitivity analysis of 

a model treating yield as an exogenous forcing also found future yield assumptions 

were the most important and uncertain factor for determining global ILUC emission 

projections (Mosnier et al., 2013). 

 Furthermore, even where ILUC modelling studies account for yield 

elasticity, none have yet considered whether yield elasticity has an upper-bound – a 

size of price shock above which farmers lack the means to respond (see Hertel et 

al., 2019 for a review). This may become an ever more important consideration if 

increased globalisation of commodities trading increases the probability of trade 

disruptions, price spikes and subsequent windows of increased pressure on primary 
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ecosystems (Fuchs et al., 2019). This is particularly pertinent in the case of 

soybean, where prices are strongly influenced by globalised trading between the 

USA, Brazil and China (Yao et al., 2018).

The consequences of uncertainty in future yield projections for 

calculated ILUC emissions from biofuels are profound (figure 1). For example, 

Chen et al. (2018) found that factoring in a yield response to price reduced land 

clearing from soy biodiesel by 105%. Dumortier et al., (2010) found that including 

a yield-price response reduced Corn ethanol ILUC emissions from 1231 to 237 g 

CO2 eq. MJ-1. The extent of such parameter uncertainty caused Plevin et al. (2015) 

to advocate for probabilistic approaches as default in ILUC modelling and explicit 

presentation of uncertainty in all ILUC model results. The scale of uncertainty has 

also led to scepticism that current ILUC calculations should be used to inform 

policy (Plevin et al., 2017) and even whether mitigating ILUC emissions is an 

appropriate policy focus (Khanna et al., 2017). 

Uncertainty about yield elasticity is complicated by contrasting accounts 

of the underlying processes driving yield growth. Economic studies of yield 

increases have tended to model yield over the long-term as a linear function of 

research and development spending (Baldos et al., 2018). Similarly, an analysis of 

the physiological basis of yield changes in soybean from 1920-2007 found a robust 

linear increase driven by gradual gains in photosynthetic efficiency and biomass 

allocation (Koester et al., 2014). However, other analyses have stressed the non-

linear and disruptive impact of new agricultural technologies and policies on the 

land system. For example, studying the spatial allocation of land use change, 

Verstegen et al. (2016) found that increased demand for sugarcane ethanol in Brazil 

between 2003-2012 led to a fundamental shift in the land system between discrete 

system states. 

Similarly, the introduction of genetically modified (GM) crops  in 1996 

has profoundly impacted agricultural production (Barrows et al., 2014a), further 

complicating our understanding of yield increases and their role in ILUC processes. 

Taheripour et al., (2016) reviewed literature on yield increases due to GM and 

found that, since their introduction, GM crops had driven a 5.2-17.1% increase in 

corn and 0-10.3% increase in soybean yields. GM crops had also greatly expanded 

the range of climatic conditions and soil types in which soybean can be grown by 
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reducing competition pressures (Barrows et al., 2014a): Barrows et al., (2014b) 

found GM soybean had increased the acreage planted in the USA by up to 40%. 

Previous studies of yield elasticity have typically used conventional statistical 

approaches such as linear and mixed-effects models to unpick the relative importance of 

factors influencing yields (e.g. Berry and Schlenker 2011). However, these methods do 

not fully allow price-dependent yield changes to be separated from factors independent 

of price, which risks wrongful attribution of yield (in-)elasticity to exogenous factors 

such as climate or confusing the long-term rate of technological progress with short-

term price-driven intensification (Golub and Hertel, 2012; study question one, as 

below). Furthermore, such methods do not support robust uncertainty quantification 

(study question two) and assume a yield elasticity that is static through time (study 

question three). To address these challenges, we take a novel approach to study of yield 

elasticities, by applying Bayesian network (BN) models. We discuss key aspects of BNs 

relevant to our study in section 2.1 and for a more detailed introduction readers are 

referred to online appendix 1. 

Therefore, this study explores the impact of biofuel policies on yields in the 

USA corn and soybean production systems, which underpin creation of ethanol and 

biodiesel respectively. As the USA is the largest global producer of first-generation 

biofuels, and given BECCS remains an emerging technology, the USA is the best 

available test case to explore the potential ILUC consequences of BECCS. The study 

uses Bayesian network models to isolate yield response to price from confounding 

factors such as climate and long-term yield growth, to quantify uncertainty about yield 

elasticity, and to assess the impact of disruptive events on yields. It seeks to answer 

three central questions to better understand the importance of yield elasticity for ILUC:

(1) Are USA corn and soybean yields elastic to price, and if so, to what extent? 

(2)  What is an appropriate parameterisation to represent current uncertainty about 

yield elasticity within ILUC modelling studies?

(3) Has yield elasticity shown discrete system shifts driven by new technologies 

(e.g. GM crops) or the introduction of biofuel policies? 

If not, has it evolved linearly or remained constant through time?
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2: Methods

2.1: Overview of Study Methods

The structure of BNs can either be constructed using expert knowledge 

of a system, or using machine learning (Nagarajan et al., 2013). Typically, in the 

land use sciences, BN structures have been developed based on expert 

understanding (e.g. Celio et al., 2014), with the parameters of the model then 

defined quantitatively from field or remote sensing data (e.g. Nascimento et al., 

2020). However, given the identified lack of literature agreement on the processes 

that drive yield increases, we adopt a machine learning approach to create network 

structures, thereby defining the presence (or absence) of relationships between 

variables numerically. Specifically, machine learning was used to create the 

structures of BN models for spatiotemporal subsections of the corn and soybean 

production systems (section 2.3). A flow chart of study methods is given in figure 

2.

The use of BNs allowed relationships between price and agricultural 

intensification to be specified explicitly through the inclusion or omission of arcs 

(representing causal relationships) between price variables and drivers of yields (figure 

3). This should enable the price signal to be isolated from underlying yield growth 

(study question one, as above). The relationships represented by the arcs (directed 

edges) in a BN can themselves be parameterised with a probability distribution through 

Bayesian inference, enabling robust quantification of model parameter uncertainty 

(study question two; section 2.5). 

To further isolate yield elasticity from other processes, intensification was 

defined as all farming decisions that impact yields on existing productive agricultural 

land – fertiliser, chemical, seed, machinery inputs and double cropping. Double 

cropping was included to account for the negative impact on yields of the late planting 

date required for a second crop (Mourtzinis et al. 2017). Extensification was included in 

the study to account for more marginal lands being brought into production and 

constraining yield elasticity under elevated prices (Sechhi et al., 2009).

Methods developed in computational biology for the representation of gene 

regulatory networks with BNs support numerical identification of systemic breakpoints 

(Pyne et al., 2018). These methods simultaneously construct the dependencies within a 
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system and compute the breakpoints at which these change significantly (Dondelinger et 

al., 2013). Such methods enabled identification of systemic shifts within US agricultural 

production during the study period (section 2.3.1). Identifying timesteps where 

structural changes in the land system occurred allowed relaxation of the assumption that 

yield elasticity is static through time (question three).

The resulting BN models of subsections of the overall study system were 

combined into a single holistic model (figure 4; section 2.4). The USA soybean and 

corn agricultural systems were the central focus of the holistic model, with other drivers 

of commodity prices treated as external forcings. Varying these economic forcings was 

the basis of counterfactual experiments (section 2.6). Comparison of yields between 

scenarios allowed yield elasticity to be assessed (section 2.7). An erratic climate has 

been implicated in yield variance and agricultural commodity price spikes 

(Chatzopoulos et al., 2019). Therefore, whilst climate was not a central focus of 

counterfactual experiments, it was accounted for in intensification models, where yield 

was the target variable.  

2.2 Study Boundaries and Data Processing

2.2.1: Study Boundaries

The study period was set as 1990-2017 to allow analysis of the impact 

on agricultural production of the introduction of biofuel mandates in 2005 and GM 

crops in 1996. The study focuses on USDA agricultural resource regions one to six 

(ARR) (USDA 2000; figure 5). The ARRs are areas of the USA with broadly 

similar agricultural land uses and production systems. ARRs one to six were chosen 

as these were the dominant corn and soybean regions during the study period, 

accounting for 97% and 91% of national production respectively (USDA 2019); no 

data on key markers of intensification (machinery inputs, chemical and fertiliser 

inputs) were available for zones seven to nine (USDA ERS 2019).

2.2.2: Data Pre-processing

Table 1 gives an overview of sources and spatiotemporal resolution of 

data used in this study; table 2 describes all candidate predictor variables in 

intensification, extensification and price BN models following data pre-processing. 
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All data were re-scaled to an annual timestep and the county level, with linear 

interpolation used for data sets with partial spatial or temporal coverage. Where 

data were provided at the state-level, values for counties in missing states were 

filled with the mean of the relevant ARR. Processed data are made available as 

online appendices 2a-2h, and a detailed overview of data pre-processing is given in 

appendix 3. Further key points are noted below. 

2.2.2.1:  USDA agricultural survey. The USDA agricultural survey provided core 

data for acreage planted and harvested, yield and percentage of planted acreage that 

was irrigated. Planting dates were used to calculate a day by when 50% of the crop 

had been planted, which has been suggested as a proxy for double cropping (Egli 

2008). 

Response rates to the USDA Agricultural Survey are declining over 

time (Johansson and Effland 2017). As a result, 61% of counties for soybean and 

64% of counties for corn had at least one missing year of data. Survey responses 

are decreasing most acutely in regions outside Heartland (ARR one) – the region 

with the most intensive production and highest yields (USDA NASS 2019). For 

example, there were 10 times more missing data years per county in the Northern 

Great Plains (ARR three) compared to Heartland. Therefore, to mitigate this 

systematic bias, all counties with at least two data points were included, with linear 

interpolation used to fill missing years. The impact of this on study results were 

evaluated by learning BN models on data both with and without this data cleaning.

2.2.2.2: County-level Price and Profit Margin. Farmers’ decisions on which crops 

to grow, and how intensively, are influenced by short-term commodity prices and 

climate anomalies (Schnitkey and Zulauf 2019), tempered substantially by 

government subsidies (Graff Zivin and Perloff et al., 2012) and insurance schemes 

(Babcock 2012). However, a thorough and recent account of the weight farmers 

ascribe to these factors during their decision making could not be identified. 

Therefore, economic influence on land use was modelled in two ways, representing 

different weights to this information. Both representations of economic decision-

making become candidate predictor variables in a single set of extensification and 

intensification model structures (table 2). 
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The first method, to represent a short-term or low-information decision, 

was simply to allow commodity price from the previous year to influence decision-

making in the following year. Small regional differences in farm gate prices were 

ignored as price in the overall model was calculated at a national level (section 2.4). 

Second, to represent a higher-information decision, USDA ERS calculations of 

profit per-acre (USDA ERS 2019) were used as the basis for a per-acre profit-loss 

calculation for both corn and soybean. This accounted for yield, commodity price, 

operation and capital costs, crop failure, subsidies, insurance payments and the 

opportunity cost (the unrealised potential value of labour if put to another 

productive use) of using land productively rather than fallowing land and acquiring 

subsidies under the Conservation Reserve Programme (CRP) over a three-year 

window. For a detailed description see online appendix 3.

2.3: Component Model Construction

Prior to model construction, data were divided into the 6 USDA ARRs. Each 

region was then treated as a separate spatial subsystem. The target variable (the variable 

of central interest in a BN) for the intensification subnetworks was yield, and for 

extensification BNs the target was the change in acreage from the prior year. 

2.3.1: Time Break Identification

Growth in biofuel demand was previously found to cause discrete system shifts 

in land use (Verstegen et al., 2016). Therefore, we employed the EDISON machine 

learning algorithm (Dondelinger et al., 2013, appendix 1) to identify years in which 

systems exhibited a systemic shift. All potential explanatory and target variables were 

passed to the algorithm, which was run over 100 bootstrap samples of data for each 

ARR. To avoid overfitting resulting from multiple breakpoints being identified in 

consecutive study years, a single time break was permitted per spatial subsystem. The 

modal year identified as the highest probability breakpoint across iterations was chosen. 

This created 12 spatiotemporal subsystems of extensification and intensification for 

each commodity. 
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2.3.2: BN Variable Selection 

An initial screening of predictor variables (termed ‘feature selection’ in machine 

learning) was conducted to encourage parsimonious model learning. Within the time 

breaks identified by the EDISON algorithm, network structures were created using the 

‘hill climbing’ machine learning approach (Nagarajan et al., 2013), which creates 

network structures by seeking to optimise a given metric (appendix 1). The algorithm 

was run across 1000 bootstrap iterations with the Bayesian Information Criterion (BIC) 

as the metric (Schwarz 1978). Variables were retained if they connected to the target 

variable in at least 50% of network structures.

2.3.3: BN Structure and Parameter Learning

Following variable selection, network structures for extensification and 

intensification were constructed using the same bootstrap hill-climbing machine 

learning approach. To enable the final network structures to appropriately represent 

causal processes in the system, physically meaningless arcs (such as from yield to 

climate) were blacklisted from consideration by the algorithm. Furthermore, having 

identified temporal breakpoints in the system, static (a-temporal) BNs were used for 

model construction (figure 3). An assumption of dynamic BNs is that all variables 

potentially have lagged relationships. However, to best represent prior knowledge about 

farmers’ decision-making, we elected to directly specify which variables could exhibit 

lagged relationships. Therefore, we adopted a static BN framework, and defined lag 

structures explicitly by including price from the previous year and our profit-loss model 

as candidate predictor variables. A summary of the lagged relationships included in the 

model is given in table 3. 

A range of arc selection thresholds based on the proportion of bootstrap 

iterations in which an arc was present were then trialled. Therefore, to enable model 

assessment, data for 20% of counties were held back as a testing set. Final network 

structures were selected based on their overall BIC score and the RMSE of predictions 

on the relevant target variable in the testing set. Predictions from BNs were conducted 

using ‘likelihood weighting’ throughout; this is a stochastic sampling method for 

prediction that uses all available evidence in a BN, not just the direct parents of a node, 

and therefore accounts for indirect relationships in a system (Guo and Hse 2002; see 

appendix 1). 
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The chosen library for BN modelling, ‘bnlearn’ (Scutari 2010; section 2.8), has 

best-in-class facility for machine learning of network structures in systems with both 

discrete and continuous data types (Nagarajan et al., 2013). However, it does not 

support Bayesian parameterisation of such networks. Therefore, parameters for the 

relationships between nodes were initially specified with maximum likelihood 

estimates, which were used for model selection and calibration of the overall model. 

These parameters were then relearned with Bayesian methods to allow uncertainty 

quantification in model experiments (section 2.5). 

2.3.4: Price Model Construction

For price models, only 28 data points were available as training data. Therefore, 

rather than using machine learning to develop model structures, price BN models were 

constructed manually based on subject-matter knowledge and predictive accuracy. Final 

models were selected on the RMSE of their predictions across all 28 data points. 

2.4: Overall Model Construction

The 50 resulting BN models (12 intensive and 12 extensive component models, 

plus one price model, for each commodity) were then combined into one comprehensive 

model (figure 4). Farmers’ extensification and intensification decisions were predicted 

simultaneously at each time step. Based on intensive inputs, yield was predicted. Yield 

and commodity footprint predictions were combined to calculate agricultural production 

of each commodity. To convert production in the six study ARRs to national 

production, modelled production was multiplied by the reciprocal of the ratio of 

production in the study area to national production in USDA data in each study year:

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙,  𝑡 =
𝑛 = 6

∑
𝑛 =  1

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑛, 𝑡 ∗  
1

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐴𝑅𝑅1 ― 6, 𝑡
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑡

(1)

Modelled national production was then fed into the models of corn and soybean 

price. Calculated price became the lagged price variable influencing production in the 

next year. Modelled price and yield were also used to update three-year expected return, 

with costs scaling linearly with the percentage change in modelled inputs against 
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baseline data. The difference between expected return from corn, soybean, and CRP 

payments was also updated.

2.4.1: Model Calibration

Intensification and extensification outputs of the overall model were calibrated 

using annual county-level USDA yield and acreage data. During this process, 

extensification BNs consistently overestimated the elasticity of commodity acreage to 

price. Therefore, predicted change in acreage was divided by a free parameter 

representing the economic cost of converting new farmland for production (Claasen and 

Tegene 1999). The available acreage in each county was restricted to 150% of the 

maximum commodity acreage in the underlying data. With these additional constraints, 

the model performed well against observations (soybean pseudo r2 = 0.78, corn pseudo 

r2 = 0.79).  Prices in the baseline runs were an average of 2.51% above modelled prices 

in the standalone price model, and an average of 3.21% below this reference price in 

corn, suggesting the overall model slightly underestimated (overestimated) soybean 

(corn) supply elasticity (figure 6). Importantly, for both commodities, the model 

overestimates supply elasticity during the acute 2012 price spike. 

2.5: Uncertainty Quantification

In addition to assessment of data uncertainty on BN model structures (section 

2.3.2.1), parameter uncertainty was assessed. Deterministic parameters for each node in 

all intensification and extensification BNs were replaced with parameter distributions 

derived from Bayesian regressions. Where both discrete and continuous variables were 

present, separate parameter distributions were computed for each combination of 

discrete nodes in the network structure. This process was the direct Bayesian equivalent 

of the frequentist approach used to derive the BNs’ original deterministic parameters 

(Scutari 2010). Weakly informative priors, specifying the type of the posterior 

distribution (e.g. normal, gamma, etc.) without imparting strong information on its 

parameter values, were used for all variables in each regression. These were normal 

distributions with µ = 0 and σ as follows:  

Page 11 of 47

URL: http:/mc.manuscriptcentral.com/tlus  Email: landusescience@gmail.com

Journal of Land Use Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

𝝈𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 10 ∗  𝜎(𝑦)      (2)

𝝈𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (2.5 / 𝜎(𝑥)) ∗  𝜎(𝑦)      (3)

Probability-weighted samples (n = 500) were then made from the resulting posterior 

distributions to enable Monte Carlo simulation of the overall model. Whilst results 

presented for the overall model exclusively use stochastic intensification and 

extensification models, price models remained deterministic.

2.6: Model Experiments

Four counterfactual scenarios of the study period were explored to assess yield 

elasticities given shifts in economic forcings. These were compared against a baseline 

run where all forcings used historical values from USDA ERS data (USDA ERS 2019). 

The counterfactuals were: ‘Double Biofuel’ and ‘Half Biofuel’ in which forcings for 

biofuels were doubled and halved respectively; and ‘Double Both’ and ‘Half Both’ in 

which both biofuel and Chinese soybean demand were doubled and halved respectively. 

2.7: Analysis of Results

 Calculation of inter-scenario elasticity allowed the reaction of yields to the 

underlying demand signal to be isolated from other confounding factors. First, 

percentage change in yield between each scenario and the baseline run in each study 

year was calculated. Second, change in demand was calculated as the percentage change 

between baseline price and the theoretical price with increased demand but static supply 

predicted from standalone BN price models: 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =  

𝑌𝑖𝑒𝑙𝑑𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ―  𝑌𝑖𝑒𝑙𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 
𝑌𝑖𝑒𝑙𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐷𝑒𝑚𝑎𝑛𝑑𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ― 𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐷𝑒𝑚𝑎𝑛𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 (4) 

2.8: Computational Tools

Data preparation, modelling and analysis were conducted with the R 

programming language version 3.6.1 (R Core Team 2019). Time breaks were identified 

using EDISON library version 1.1.1 (Dondelinger et al., 2013). BN models were 
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constructed using the bnlearn package version 4.4.1 (Scutari 2010). Bayesian parameter 

learning for BN models was conducted in RStanarm version 2.18.2 (Goodrich et al., 

2018). Project code and R objects used to run the final model, including all 50 BN 

structures used, are made available as online appendices 4a-4c. 

3: Results

3.1: Component models

3.1.1: Time Breaks 

Temporal breakpoints identified numerically by the EDISON algorithm show 

clear alignment with real-world disruptive events (table 4), suggesting this method 

identified meaningful systemic shifts in the study system. Breakpoints for 

extensification all align with the introduction of GM crops, whilst 11/12 soybean and 

corn breakpoints cluster around the 2005 introduction of biofuel mandates and the 2012 

commodity price spike. 

3.1.2 Price models

The best-performing model of corn price had two predictor variables: 

USA production and the product of corn ethanol price and proportion of USA corn 

production used for ethanol (pseudo r2 = 0.90). The best-performing model of soybean 

price had three predictor variables: USA production, the price of biodiesel and Chinese 

soybean imports minus Brazilian soybean production – reflecting the importance of the 

globalised trading of soybean meal as animal feed in the commodity system (pseudo r2 

= 0.90; Yao et al., 2018).  

3.1.3: Underlying drivers of yields

Analysis of BN structures shows the primary influence on yields for both 

commodities are intensive inputs, accounting for 66% of parent nodes to yield in corn 

and 55% in soybean. ‘Parent nodes’ are those that influence a given variable of interest 

(figure 3). GM crops play a larger role in corn yields (13 parent nodes across all 

networks; figure 7) than soybean yields (3). Soybean is more sensitive to climate, with 

growing season temperature and precipitation accounting for 38% of parent nodes to 
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yield, compared to 20% in corn. Yield is more closely linked to price variables in corn, 

which had 45 price-dependent intensive drivers of yield, to 27 in soybean (figure 8). 

However, comparison of networks learned on data with linear interpolation 

across missing values (hereafter ‘interpolated data’) to those learned on data where 

counties with poorer data quality were filtered (hereafter ‘filtered data’) questions the 

certainty of these findings. In contrast to networks based on the interpolated data, 

networks for the filtered data have a similar number of intensive inputs as parents to 

yield between commodities: 35 for corn and 33 for soybean. 

Corn networks for Heartland (ARR1), where data was most complete, had just 

one fewer parent node yield for intensive inputs in the filtered data than the interpolated 

data. However, overall there were 26% fewer intensive inputs as parent nodes to yield 

in the filtered data compared to the interpolated data. In contrast, in soybean there was 

one more intensive input as a parent to yield in the filtered data, but there were four 

fewer parent nodes related to climate. This is indicative of the filtered data being 

weighted towards more established agricultural regions, where yields were less climate-

dependent.

3.2: Overall Model

3.2.1: Overview of Model Outputs

Model results indicate the agricultural system is substantially responsive to price 

effects (figure 9). Doubling of biofuel forcing leads to a 20.63% increase in corn yield 

and the ‘double both’ scenario leads to a 6.97% increase in soybean yields from the 

mean annual values across baseline scenario runs. In corn, intensification is more 

responsive to changes in demand than extensification by an average of 42.50%. 

Furthermore, price effect sizes are far greater in corn than soybean, perhaps reflecting 

the stronger role of climate in the soybean system.  However, in all cases, the 95% 

confidence interval is greater than the effect size, indicative of substantial parameter 

uncertainty across models of both commodities. 

3.2.2: Yield Elasticity

Calculating relative yield elasticity between counterfactual scenarios provides 

point estimates of 0.223 for corn and 0.152 for soybean (table 5, figure 10). Yield 

elasticity was significantly greater than zero in all scenarios (one-way Wilcoxon-tests: 
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corn, p<0.0001; soybean p<0.0001). Yield elasticity was significantly larger in 

scenarios where demand was decreased than in scenarios where demand was increased 

(one-way Kolmogorov-Smirnov tests, both commodities p<0.0001). This trend was 

most stark in the soybean biofuel only scenarios: median elasticity was just 0.065 in 

double biofuel, but 0.171 in half biofuel. Furthermore, yield elasticity tended to be 

negatively correlated with increased price forcing against the baseline. This trend was 

present throughout in soybean (Kendall’s Tau: 𝛕 -0.20, p<0.0001), but only present in 

corn after the introduction of biofuel mandates in 2005 (𝛕  -0.29, p<0.0001); before this 

the relationship was weakly positive (𝛕  +0.18, p<0.0001). 

Yield elasticity showed clear evidence of systemic shifts in response to price 

events in both corn and soybean (figure 11). Yield elasticities in corn after the 

introduction of biofuel mandates in 2005 increased by 156%, and after the commodity 

price spike in 2012 soybean yield elasticities increased by 87% (one-way Kolmogorov-

Smirnov tests, both p<0.0001). This suggests these major economic events more closely 

couple the system to price, although the larger effect size in scenarios with reduced 

demand pressures suggests the size of the event strongly impacts the system’s ability to 

respond (table 6) Importantly, the combination of the negative correlation of yield 

elasticity with increasing price pressure and increased yield elasticity post-2005 entails 

that when model outputs for the half biofuel run in corn from 2005 onwards are 

excluded, corn yield elasticity drops to 0.13 – giving a roughly similar value to soybean. 

4: Discussion and conclusions

4.1: Implications for ILUC modelling

In the results presented here, yield elasticity was greater than zero in all 

scenarios and across all time periods, reinforcing the findings of previous studies that 

intensification is vital for determining ILUC emissions. Point estimates for yield 

elasticities of 0.223 for corn and 0.152 for soybean are in broad agreement with the 

majority view in the literature for values of this parameter (table 7). The results in this 

study do not support the findings of Berry (2011) that yield is uncoupled from price 

effects, but do bolster that study’s argument that the widely used 0.25 value is a 

substantial overestimate (Hertel et al. 2010).

However, several factors complicate these findings. In our results, yields are 

clearly more elastic when demand declines than when demand increases (figure 10). 
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Declining yield elasticity as price pressure increases is particularly evident in corn after 

the introduction of biofuels and suggests farmers’ ability to increase yields in response 

to price has strong limitations. Using a single value to parameterise yield elasticity in 

ILUC modelling risks failing to capture this fundamental aspect of the system.

 This result is particularly notable given the model’s overestimation of supply 

elasticity during the 2012 commodity spike (figure 6). Although, the processed data 

included variables reflecting the relative expected profit of growing soybean or corn in 

extensification models (table 2), such nodes were rarely adopted during structure 

learning. Therefore, fully accounting for competition for available land between 

commodities is a limitation of the model presented, which contributed to the 

overestimation of supply elasticity during the 2012 price shock. As Bayesian networks 

gain traction in the land use sciences, future studies should pay careful attention to how 

such models can most effectively represent spatially-dependent competition between 

commodities, human land use decisions and evaluation of trade-offs. 

In line with the findings of Verstegen et al. (2016), results here show that yield 

elasticity shifts between discrete system states coincident with major price events – 

primarily the 2005 introduction of biofuel mandates in the case of corn and the 2012 

commodity spike in the case of soybean. It is likely that capital investment has played a 

role in this process. USDA data shows machinery investment in both corn and soybean 

spiked by more than 30% between 2011 and 2012, suggesting substantially higher 

prices were driving additional investment and enabling higher yields. This factor, 

combined with the observed decreasing elasticity with increased forcing points to a 

‘goldilocks window’ for yield elasticity: enough price increase to justify one-off capital 

outlays, not too large such that farmers lack the technology to respond. 

The role of capital investment also questions how durable yield gains due to 

increased intensive inputs would be in a period of prolonged lower demand (Bellmann 

and Hepburn 2018). Whilst corn ethanol prices declined by 103% and soy biodiesel 

prices declined by 38% from 2012-2017 (USDA ERS 2019), the introduction of the 

ARC subsidy scheme, which uses a 5-year average to determine a baseline commodity 

price, has meant that the 2012 price spike continued to influence production until 2017 

(USDA ERS 2019). Discussion of whether yield increases due to farmer-driven 

intensification are permanent or reversible is severely limited in the literature (see 

Malins et al., (2014) for a summary), and this study suggests more work is needed in 

this area. Furthermore, the importance of major price events to the system combined 
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with the complexity of the subsequent yield response indicates land use models treating 

yield increase as a linearly increasing exogenous forcing may not be equipped to 

robustly capture the dynamics of ILUC processes.

Whilst it was possible to detect systemic shifts in the land system due to 

national-scale price events, the central limitation of our study was that data uncertainty 

confounded precise conclusions regarding the underlying drivers of yield elasticity - a 

multi-faceted process that plays out in complex ways at the county-scale. Yield 

elasticity is inherently uncertain due to more limited data availability than for 

extensification for which satellite data allow ready quantification (e.g. Boryan et al., 

2011).  Future work should focus on primary data gathering via field studies and farm-

level surveys or development of novel remote sensing methods to further advance 

knowledge of the processes that determine farmers’ ability to respond to prices through 

intensification.

The importance of singular price events to the agricultural system during the 

study period questions whether probabilistic modelling on its own can capture a 

representative range of future ILUC scenarios. In addition to biofuels, increased 

agricultural commodity price variance has been linked to multiple exogenous drivers 

broadly indicative of increased globalisation, such as spillovers between agricultural 

and energy markets, futures’ trading and exchange rate policies (Kalkuhl et al., 2016; 

Grosche and Heckelei 2016).  In future, studies involving scenario-based ILUC 

modelling should incorporate the varying probability of trade disruptions and resulting 

system shocks under different socioeconomic pathways (Kalkuhl et al., 2016, O’Neil et 

al., 2014). The telecoupling framework may provide a conceptual basis to implement 

this in a systematic way (Liu et al., 2013). Further, the extent of parameter uncertainty 

in these results (figure 9) reiterates the need for all ILUC studies to use probabilistic 

approaches as standard (Plevin et al., 2015).

4.2: Implications for Policy

This study’s most immediate policy implication is that biofuel policies informed 

by studies which parameterised yield elasticity with a single value in the commonly 

used range of 0.2-0.25 may underestimate ILUC effects and overestimate the reductions 

in greenhouse gas emissions from first-generation biofuels. For example, assessments of 

the US National Renewable Fuel Standard and California’s Low Carbon Fuel Standard 

assumed a uniform yield elasticity of 0.25 (Hoekman and Broch 2018). More 
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fundamentally, the limitations of a single deterministic parameter for yield elasticity 

illustrated here further questions whether ILUC is currently understood and quantified 

to a precision that provides an appropriate basis for effective ILUC mitigation policies 

(Pelkmans et al., 2017; Khanna et al., 2017). 

Systemic shifts due to price events combined with greater yield elasticity when 

prices decline in the results here are consistent with a conceptual model of yield 

elasticity in which farmers may use intensive inputs to increase yield to a limited degree 

in the short-term, but where larger yield increases are ultimately a function of 

agricultural technology. Therefore, as farmers have relatively recently made substantial 

capital investments to respond to higher prices in the USA, it is unclear whether 

technology has advanced enough to enable US farmers to respond to a further system 

shock from the proposed increased biofuel mandate (Hoekman and Broch 2018). 

Such a strong limit to upside yield elasticity also highlights the potential for one-

off price spikes to create vulnerabilities for terrestrial Carbon stocks through peaks in 

ILUC emissions (Grosche and Heckelei 2016). Price spikes present an inherent 

difficulty for payment-based conservation schemes such as the US Conservation 

Reserve Programme (CRP), as rapid price changes can outpace policy responses such as 

increased conservation payments (Wright and Wimberley 2013). This challenge reflects 

a growing concern that lack of consideration of lagged-responses between the multiple 

actors in the land system risks undermining climate change mitigation policy-making 

(Brown et al., 2019). Therefore, to avoid land use emissions and damage to biodiversity 

(Wimberley et al., 2017), payments in the CRP and similar schemes elsewhere may 

need to be pre-emptively increased before any future subsidies or mandates to promote 

biofuel production are introduced. 

The potential for price spikes may increase as the currently regionalised 

production and consumption of biofuels becomes increasingly globalised (Matzenberger 

et al., 2015). However, the introduction of cellulosic biofuels may loosen the linkage 

between fuel prices and food inherent to first generation biofuels (Janda and Kristoufek 

2019), potentially mitigating against future price spikes. This bolsters the case for 

governments to incentivise cellulosic biofuel research and deployment rather than 

increasing existing mandates and subsidy schemes (Robertson et al., 2017). Moreover, 

for the carbon removal potential of BECCS to be realised, not only will supply chains 

need to be energy efficient (Fajardy and Mac Dowell 2018), but also robustly future-

proofed against price spikes and peaks in ILUC emissions. 
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Figure Captions

Figure 1: Literature range for greenhouse gas emissions of 1st generation biofuels: corn 

ethanol, soybean biodiesel and sugarcane ethanol, the predominant biofuel in Brazil 

(USDA FAS 2018), which is included for context. In all studies ILUC is the principal cause 

of uncertainty. Chen and Kocolski are individual modelling studies, Wicke reviewed 

modelling studies, whilst Overmars used statistical methods. Error bars are full reported 

range. Sources: Chen – Chen et al. (2018); Kocolski – Kocolski et al. (2013); Overmars – 

Overmars et al., (2015); Wicke – Wicke et al., (2012).

Figure 2: Flowchart of study methods; numbers in parentheses in the accompanying 

text box indicate the paper section of corresponding descriptions in the text.  

Figure 3: Illustrative Bayesian network structure demonstrating separation of price-

dependent from price-independent drivers of yield. Circles (nodes) represent 

variables and arrows (arcs) represent uni-directional probabilistic relationships 

between them (Jensen 2001). The figure is an a-temporal static BN; by contrast a 

dynamic BN would factor in lagged responses between variables. Yield is influenced 

by two variables (termed ‘parent nodes’), one of which is price-dependent (e.g. rate of 

fertiliser application, b) and one is price independent (e.g. growing season 

temperature, c). The price-dependent parent node to yield (b) can be updated given 

knowledge of price (a), allowing yield (d) to be predicted in the context of both price-

dependent and price-independent variables (c).

Figure 4: Structure of overall model. The USA agricultural system is the central model 

system, comprising 48 Bayesian Network sub-models. Commodity price is calculated with 

the two price BN models, using modelled national agricultural production and external 

forcings as inputs. The location of Bayesian networks in the overall model are indicated by 

underlined text. 

Figure 5: Spatial boundaries of this study; only counties where data was available, and 

so were included in the analysis, are shown coloured in.

Figure 6: Model calibration showing predicted price in the overall model and the price 

models as a standalone using observed production data. Additional error in the overall 

model outputs is therefore caused by errors in modelled USA agricultural production. 

Whilst both models perform well against observations, for both commodities, the overall 
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model overestimates farmers’ capacity to respond to increased price pressure during the 

2012 commodity spike.

Figure 7: Frequency of intensive agricultural inputs as parent nodes to yield in Bayesian 

network structures. ‘Interpolated’ and ‘Filtered’ reflect the two approaches trialled to deal 

with missing values in the underlying USDA data.  

Figure 8: Example Bayesian network model structures used in this study: a) for corn 

intensification in Heartland from 1990-2012 and b) for soybean intensification in the 

Northern Great Plains from 2005-2017. Yield and its relationships with other variables are 

marked red, whilst price variables and their relationships are marked blue. A) is denser, 

with a larger range of variables influencing yield, and more of these being influenced by 

price, whereas B) shows a greater impact for underlying environmental factors.  

Figure 9: Intensive and extensive response of agricultural production to changes in 

economic forcings. Columns are median values; error bars are 95% confidence interval.

Figure 10: Relative yield elasticity between counterfactual and baseline scenarios from 

Monte Carlo simulation. Results are grouped by scenarios where biofuel and Chinese 

soybean demand forcings were increased (double forcing) or reduced (half forcing). 

Values below 0 are indicative of a high degree of parameter uncertainty in the model. 

Although positively skewed (skewness: corn 0.019; soybean 0.812), overall commodity 

distributions are closer to a normal than lognormal distribution. Counts are of national 

mean elasticity in a given simulation study year.

Figure 11: Scatter plots of relative yield elasticities between counterfactual scenarios and 

baseline runs. Non-linear system shifts are highlighted by plotted shape. Soybean biofuel 

scenarios are shown from 2008 when biodiesel began to play a significant role in USA 

soybean production. 

Table Captions

Table 1: Overview of source, usage, temporal and spatial resolution of data sets used. 

Table 2: Overview of explanatory variables considered for inclusion in Bayesian network 

structures. Key: *raw acreage planted was for baseline data throughout, included as a 
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proxy for the underlying suitability of the county for agriculture; +nitrogen, potash and 

phosphate application rate considered separately. 

Table 3: Summary of temporal dependencies allowed between variables in BN models. 

Relative expected return is the expected return between soybean and corn, and between 

each commodity and CRP payments. Change in commodity acreage at lag 1 represents the 

effects of crop rotation on commodity acreage (Plourde et al., 2013).

Table 4: Breakpoint years identified for each commodity subsystem. 

Table 5: Summary statistics for relative yield elasticity between counterfactual scenarios 

and baseline model runs. Biofuel only and biofuel + Chinese demand scenarios for soybean 

are combined by respective increase or decrease in forcing. 

Table 6: Change in relative yield elasticity against the baseline scenario up to and after the 

given time break years. Overall, the 2005 introduction of biofuel mandates, and the 2012 

commodity price spike serve to increase the impact of short-term economic factors on 

yields. Soy biodiesel only became a major influence on soybean prices after 2005, so data 

from before that point are not shown. 

Table 7: Yield elasticity results compared to literature values. The value for Laborde and 

Valin (2011) is for all crops in the USA. 
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Figure 1: Literature range for greenhouse gas emissions of 1st generation biofuels: corn ethanol, soybean 
biodiesel and sugarcane ethanol, the predominant biofuel in Brazil (USDA FAS 2018), which is included for 
context. In all studies ILUC is the principal cause of uncertainty. Chen and Kocolski are individual modelling 

studies, Wicke reviewed modelling studies, whilst Overmars used statistical methods. Error bars are full 
reported range. Sources: Chen – Chen et al. (2018); Kocolski – Kocolski et al. (2013); Overmars – 

Overmars et al., (2015); Wicke – Wicke et al., (2012). 
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Figure 2: Flowchart of study methods; numbers in parentheses in the accompanying text box indicate the 
paper section of corresponding descriptions in the text.   
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Figure 3: Illustrative Bayesian network structure demonstrating separation of price-dependent from price-
independent drivers of yield. Circles (nodes) represent variables and arrows (arcs) represent uni-directional 
probabilistic relationships between them (Jensen 2001). The figure is an a-temporal static BN; by contrast a 

dynamic BN would factor in lagged responses between variables. Yield is influenced by two variables 
(termed ‘parent nodes’), one of which is price-dependent (e.g. rate of fertiliser application, b) and one is 

price independent (e.g. growing season temperature, c). The price-dependent parent node to yield (b) can 
be updated given knowledge of price (a), allowing yield (d) to be predicted in the context of both price-

dependent and price-independent variables (c). 
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Figure 4: Structure of overall model. The USA agricultural system is the central model system, comprising 
48 Bayesian Network sub-models. Commodity price is calculated with the two price BN models, using 

modelled national agricultural production and external forcings as inputs. The location of Bayesian networks 
in the overall model are indicated by underlined text. 
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Figure 5: Spatial boundaries of this study; only counties where data was available, and so were included in 
the analysis, are shown coloured in. 
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Figure 6: Model calibration showing predicted price in the overall model and the price models as a 
standalone using observed production data. Additional error in the overall model outputs is therefore caused 
by errors in modelled USA agricultural production. Whilst both models perform well against observations, for 
both commodities, the overall model overestimates farmers’ capacity to respond to increased price pressure 

during the 2012 commodity spike. 
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Figure 7: Frequency of intensive agricultural inputs as parent nodes to yield in Bayesian network structures. 
‘Interpolated’ and ‘Filtered’ reflect the two approaches trialled to deal with missing values in the underlying 

USDA data.   
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Figure 8: Example Bayesian network model structures used in this study: a) for corn intensification in 
Heartland from 1990-2012 and b) for soybean intensification in the Northern Great Plains from 2005-2017. 
Yield and its relationships with other variables are marked red, whilst price variables and their relationships 
are marked blue. A) is denser, with a larger range of variables influencing yield, and more of these being 

influenced by price, whereas B) shows a greater impact for underlying environmental factors.   
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Figure 9: Intensive and extensive response of agricultural production to changes in economic forcings. 
Columns are median values; error bars are 95% confidence interval. 
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Figure 10: Relative yield elasticity between counterfactual and baseline scenarios from Monte Carlo 
simulation. Results are grouped by scenarios where biofuel and Chinese soybean demand forcings were 
increased (double forcing) or reduced (half forcing). Values below 0 are indicative of a high degree of 

parameter uncertainty in the model. Although positively skewed (skewness: corn 0.019; soybean 0.812), 
overall commodity distributions are closer to a normal than lognormal distribution. Counts are of national 

mean elasticity in a given simulation study year. 
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Figure 11: Scatter plots of relative yield elasticities between counterfactual scenarios and baseline runs. 
Non-linear system shifts are highlighted by plotted shape. Soybean biofuel scenarios are shown from 2008 

when biodiesel began to play a significant role in USA soybean production. 
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Dataset Usage Temporal extent 
(resolution)

Spatial 
resolution

USDA Agricultural 
Survey1

Commodity acreage, yield, 
planting date, irrigated 
acreage 

1990-2017 (Annual) County

USDA ERS 
Intensification Data2

GM adoption, fertiliser 
application rates, rate of 
chemical & machinery 
inputs

GM seed: 
2000-2017 (Annual)

Fertiliser application:
1990-2017 (Annual)

Chemicals & Machinery: 
1997-2017 (5-yearly)

State

USDA ERS Profit-
Loss Model2

Medium-term expected 
return per acre 1997-2017 (Annual)

Agricultural 
Resource 
Region

Conserve Reserve 
Programme 
Enrolment & 
Payments3

CRP land availability and 
per acre payment 1990-2017 (Annual) County

USDA agricultural 
insurance data4

Medium-term expected 
return per acre, insured 
acreage pct.

1990-2017 (Annual) County

USDA ERS 
agricultural subsidies4

Feeds into medium-term 
expected return per acre 1990-2017 (Annual) State

Climate data for 
continental USA5

Mean growing season 
temperature and 
precipitation

1990-2017 (Monthly) 5km2 gridded

USDA ERS Biofuel 
Data4

National level influence of 
biofuel price & production 
on underlying commodity 
price

1990-2017 (Annual) National

USDA Foreign 
Agricultural Service 
Trade Data6

Import and Export of 
Soybean & influence on 
price

1990-2017 (Annual) National 

Source: 1USDA NASS 2019, 2USDA ERS 2019, 3USDA FSA 2019, 4USDA RMA 2019, 5Vose et al., 2014, 
6USDA FAS 2019.
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Variable category Extensification Intensification

Economic variables Price t-1 Price t-1

Relative 3-year profit expectation 
between Corn, Soy and CRP lands 3-year profit expectation

Proportion of total cropland planted 
with rice, sorghum, wheat or barley

Land management & 
suitability

Acres planted of target commodity 
(baseline)*

Acres planted of target commodity 
(baseline)*

Change in acres planted of target 
commodity lag-1*

Rate of fertiliser+, machinery and 
chemical application

Total CRP lands Julian Day at which half of target 
commodity was planted

% of target commodity production 
irrigated

Climate Growing season temperature Growing season temperature

Growing season precipitation Growing season precipitation

GM uptake
Pre-GM acres planted of target 
commodity, % change in acres 
planted (1996 = 1)

GM uptake % for target commodity 
(overall and those with stacked 
attributes)

GM uptake % for target commodity
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Variable Time lag (years) Intensification Extensification

Change in commodity 
acreage 1  

Commodity price 1 * 

Expected return on 
production 1-3 * 

Relative expected return 1-3  

* Price lags influence yield through intermediary variables such as fertiliser inputs.
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Agricultural Resource 
Region

Soybean 
Acreage Corn Acreage Soybean 

Intense Corn Intense

Heartland 1996 1996 2005 2013

Northern Crescent 1996 1996 2013 2013

Northern Great Plains 1996 1996 2005 2006

Prairie Gateway 1996 1996 2005 2006

Eastern Uplands 1996 1996 2013 2013

Southern Seaboard 1996 1996 1992 2013
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Corn Soybean

Percentile Overall Double Forcing Half Forcing Overall Double Forcing Half Forcing

25th 0.111 0.113 0.110 0.045 0.028 0.083

50th 0.223 0.206 0.256 0.152 0.109 0.199

75th 0.349 0.286 0.458 0.287 0.223 0.383
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Time break Scenario Soybean Corn
2005 Double Biofuel - 0.115
2012 Double Biofuel 0.235 0.113
2005 Half Biofuel - 0.321
2012 Half Biofuel 0.469 0.219
2005 Double Both -0.135
2012 Double Both -0.027
2005 Half Both 0.028
2012 Half Both 0.203  

Page 46 of 47

URL: http:/mc.manuscriptcentral.com/tlus  Email: landusescience@gmail.com

Journal of Land Use Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Commodity This study
Berry 
2011

Huang & 
Khanna 2010

Hertel et 
al., 2010

Laborde & 
Valin 2011

Corn 0.223 (0.136+) 0.03 0.15 0.25 0.2

Soybean 0.152 (0.133+) - 0.06 - 0.2

+ parameter value when substantial elasticities projected in the reduced forcing scenarios are filtered from the data. 
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