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The ability of humans to identify and reproduce short
time intervals (in the region of a second) may be
affected by many factors ranging from the gender and
personality of the individual observer, through the
attentional state, to the precise spatiotemporal
structure of the stimulus. The relative roles of these very
different factors are a challenge to describe and define;
several methodological approaches have been used to
achieve this to varying degrees of success. Here we
describe and model the results of a paradigm affording
not only a first-order measurement of the perceived
duration of an interval but also a second-order
metacognitive judgement of perceived time. This
approach, we argue, expands the form of the data
generally collected in duration-judgements and allows
more detailed comparison of psychophysical behavior to
the underlying theory. We also describe a hierarchical
Bayesian measurement model that performs a
quantitative analysis of the trial-by-trial data calculating
the variability of the temporal estimates and the
metacognitive judgments allowing direct comparison
between an actual and an ideal observer. We fit the
model to data collected for judgements of 750 ms
(bisecting 1500 ms) and 1500 ms (bisecting 3000 ms)
intervals across three stimulus modalities (visual, audio,
and audiovisual). This enhanced form of data on a given
interval judgement and the ability to track its
progression on a trial-by-trial basis offers a way of
looking at the different roles that subject-based,
task-based and stimulus-based factors have on the
perception of time.

Introduction

The perception of time from milliseconds to years
is a cognitive capacity that fascinates from many
different perspectives. Time, as a perceptual quantity,
has some unique characteristics that also make it
particularly challenging to measure and model. Of
all the measurable properties of the world that we
do somehow encode and experience, time is arguably
the most distanced from its physical realization when
considered in terms of its neural representation
(Buonomano & Rovelli, 2022; Grondin, 2023; Gruber,
Block, & Montemayor, 2022). Time is also unusual as
a fundamental perceptual experience in that it can be
derived from any sensory modality, although vision
and audition are the most commonly investigated.
Furthermore, the internal awareness of the duration
of time passed, the metacognition of time, is critical
for the maintenance of an ongoing awareness of,
and involvement in, the external world and the
segmentation of ongoing external events (Wahlheim,
Eisenberg, Stawarczyk, & Zacks, 2022; Zacks, 2020;
Zacks, Bezdek, & Cunningham, 2022). The loss of this
(temporal) context is a major symptom of psychosis
and seriously affects the ability of an individual to
interact socially or otherwise with their environment
(Bocker, Hijman, Kahn, & De Haan, 2000; Cohen
& Dochert, 2005), and a compromised perception
of time has been suggested as a diagnostic tool in
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childhood ADHD (Ptacek et al., 2019; Smith, Taylor,
Rogers, Newman, & Rubia, 2002) . Alternatively, there
are notable psychological states, such a creative “flow
state,” trance or meditative states, where the loss of the
sense of the passage of time is considered a positive and
desired outcome (Csikszentmihalyi, Abuhamdeh, &
Nakamura, 2005; Huxley, 1954). Time, and its passing,
can be thought of as a thread through the ongoing
narrative around which we construct our conscious
lives, and although we all have our own “thread,” we
also rely on substantial agreement about the passing
of time to coexist functionally in the same intertwined
reality.

The ability of subjects to identify and (re)produce
brief temporal intervals is influenced by many factors
whether stimulus, subject or task-based (Bruno,
Ayhan, & Johnston, 2012; Chen & Yeh, 2009;
Corcoran, Groot, Bruno, Johnston, & Cropper, 2018;
Droit-Volet & Meck, 2007; Jazayeri & Shadlen, 2010;
Mitani & Kashino, 2016; Ortega, Guzman-Martinez,
Grabowecky, & Suzuki, 2014; Piras & Coull, 2011),
with subject age and developmental stage attracting
particular interest (Droit-Volet, Meck, & Penney,
2007; Droit-Volet & Wearden, 2001; Droit-Volet &
Wearden, 2015; Droit-Volet, Wearden, & Zelanti, 2015;
Pouthas, Droit, Jacquet, & Wearden, 1990). Several
reviews have comprehensively outlined the current
state of empirical and theoretical development in time
perception (Block & Grondin, 2014; Bruno & Cicchini,
2016; Eagleman, 2008; Grondin, 2008; Grondin, 2010;
Matthews, 2015; Matthews & Meck, 2014; Matthews &
Meck, 2016; Meck & Ivry, 2016; Tsao, Yousefzadeh,
Meck, Moser, & Moser, 2022); the aim here is not to
repeat this information but to introduce and motivate
what we believe is a useful method to approach the
study of brief to moderate temporal intervals and the
metacognition of that perceptual experience. We have
used this approach to look at population differences in
time perception and metacognition (Corcoran et al.,
2018) but examine the methodology and data in a
small-N psychophysical design in more detail here
(Smith & Little, 2018), so we may develop a model
of time perception and metacognition with a higher
level of precision. To this end, we examine temporal
bisection performance in healthy adults for subsecond
(750 ms) and suprasecond (1500 ms) tasks within visual,
audio, and audiovisual modalities and the ongoing
metacognition of that performance.

Ways of measuring time

Time is unusual1 as a sensory quantity in that
it is not bound to one particular sensory input;
from an experimental perspective, the two most
common modalities chosen to generate the temporal
stimulus are auditory and visual, but measurement of

somatosensory time perception is also not uncommon
(Ball, Arnold, & Yarrow, 2017; Tomassini, Gori, Burr,
Sandini, & Morrone, 2011; Watanabe, Amemiya,
Nishida, & Johnston, 2010). Although much of the
work has taken a somewhat modality-agnostic approach
and focused on the sense of time passed, there have
also been notable studies focusing on the role of the
sensory modality itself in the percept (Ball et al., 2017;
Burr, Banks, & Morrone, 2009; Recanzone, 2003; van
Wassenhove, Buonomano, Shimojo, & Shams, 2008).

Grondin (2008); Grondin (2010) outlines four
main methods of investigating time that have been
traditionally distinguished within the literature: verbal-
estimation, reproduction, production, and comparison.
The final “comparison”category can be split into several
subcategories (e.g., roving or reminder, single-stimulus,
bisection), but this category overall is equivalent to
standard psychophysical methods of measurement for
any sensory capacity and tends to be favored in the
experimental literature. Time perception from a sensory
perspective is generally focused on the examination
of durations up to a few seconds. These methods and
approaches are neatly summarized in his Figure 1
(Grondin, 2010). The method examined in detail here
falls under this broad “comparison” definition, and
incorporates characteristics of both reproduction and
bisection, with an additional metacognitive component.

Bisection

Traditionally, in a standard temporal bisection
paradigm, participants are given two “standard” or
reference intervals, one shorter and one longer, which
they are required to remember. They then judge a series
of single “test” intervals to be closer to the shorter or
to the longer standard interval, effectively bisecting the
perceived difference between the two standards: the test
interval that is judged to be closer to either standard
half the time is the perceived bisection point (Kopec
& Brody, 2010). For instance, if the shorter standard
stimulus was one second and the longer standard was
three seconds, the inter-standard interval is two seconds,
and the veridical bisection point is also two seconds. The
data collected from this paradigm allows construction
of a psychometric function to identify the perceived
midpoint in the interval between the two standards
and the method is akin to the psychophysical Method
of Single Stimuli (Macmillan & Creelman, 1991) used
most effectively in measuring speed perception (McKee,
Silverman, & Nakayama, 1986).

Reproduction

Reproduction has, perhaps more simply, presented
the participant with an interval, demarcated through
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Figure 1. Schematic illustration of the modified temporal-bisection task trial. The stimulus is present for the full duration regardless of
the estimated bisection-point. Auditory feedback was provided on whether the participant had correctly chosen the interval closest
to the actual mid-point after the second sequence.

whatever means (a continuous tone or light, or a pulse
at the beginning and end of the interval is common)
and then asked the participant to reproduce that
interval through some means such as a button-press or
finger-tap. The result is then expressed as a mean and
variance in the reproduced interval compared to the test
duration.

We have developed a combination of these two
approaches which provides a behavioral measure that
allows us to observe the participants’ estimate of
perceived duration in a way that is not possible in the
case of the perceptual comparisons generally used in the
literature (Grondin, 2010). This paradigm also affords
greater flexibility with the collected data, providing
both a trial-by-trial estimate of a given test duration
and a cumulative summary of the mean and variance
of the estimate. Importantly, we also incorporate a
metacognitive component whereby the participant is
required to examine their own recent performance. This
combined paradigm also reduces the reliance upon
memory implicit in the standard bisection paradigm
through the actual period to be bisected being shown
each time the bisection/(re)production is enacted.

Metacognition of time

Metacognition is defined as awareness and
understanding of one’s own thought processes

(Fleming & Frith, 2014; Terrace & Metcalfe, 2005),
and we suggest that the awareness of time-passed is
crucial for interaction with the external world and
the ongoing events defining that world (Franklin,
Norman, Ranganath, Zacks, & Gershman, 2020;
Zacks, 2020). In the current context, we refer to
the awareness of one’s own performance in the
temporal task, with the intention of obtaining an
objective measure of a participant’s confidence in
their performance (Caziot & Mamassian, 2021; de
Gardelle, Le Corre, & Mamassian, 2016; Mamassian,
2016). We are interested in the potential to measure
the (raw) ability of participants to bisect an interval
and to also determine how well participants believed
they performed in the task. Given that the percept of
time can be so easily disrupted by many factors both
commonplace and otherwise (Ayhan, Revina, Bruno,
& Johnston, 2012; Brown & West, 1990; Cicchini &
Morrone, 2009; Droit-Volet & Meck, 2007; Grommet
et al., 2011; Maarseveen, Hogendoorn, Verstraten,
& Paffen, 2018; Morgan, Giora, & Solomon, 2008),
measuring metacognition in temporal tasks is an
important extension to the current standards. We
introduce this possibility here by asking the subjects
to compare two consecutive time interval estimates and
decide which they thought was the closer estimate to
the actual midpoint of the test interval. Feedback can
then be provided on the accuracy of this second-order
judgement.
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We recognize that in the context of our particular
paradigm, the use of the term metacognition may
differ from some other authors. This was a significant
issue raised by both our reviewers and we respect their
concerns. In short, we are interested in the insight
that the subject has into their performance after
completing two identical (bisection) tasks; to this end
we ask them in which trial did they perform better
once the tasks are complete. This means that their
metacognitive judgement can be based on any or all
information available to them for the period over which
the two tasks were performed. It also means that all
the information available to make the metacognitive
decision is not available at the moment the perceptual
(bisection) decision is made. We return to this issue in
the discussion but raise it here to clarify our position at
the outset.

Confidence

Subjective confidence in a decision judgement can
be argued to be an outcome of the metacognition
related to that decision; this relationship could then
provide a window to the underlying mechanisms of a
given decision (reviewed in Mamassian, 2016). There
have always been issues with measuring confidence
in a judgement since it is, by definition, a subjective
measure that is notoriously hard to standardize across
observers. The common methodology of using a
Likert scale to rate the degree of confidence in a given
judgement is fraught with error (Caziot & Mamassian,
2021; Mamassian, 2016; Morgan, Mason, & Solomon,
1997) and significant efforts have been made to find a
more effective way of measuring subjective confidence
(Fleming & Lau, 2014; Maniscalco & Lau, 2012;
Miyoshi, Sakamoto, & Nishida, 2022; Zizlsperger,
Kümmel, & Haarmeier, 2016; Zizlsperger, Sauvigny,
& Haarmeier, 2012; Zizlsperger, Sauvigny, Händel,
& Haarmeier, 2014) . In this vein, we suggest that
the forced-choice measurement introduced in this
paradigmmay be a direct way to overcome the problems
associated with Likert scale confidence measures such
as variable use of the full range between individuals, the
underlying assumption of linearity across the range and
variability both within and between subjects. We argue
that the paradigm outlined here provides an objective
and cumulative measure of confidence on a trial-by-trial
basis. Furthermore, the unique structure of the data
collected on the first- and second-order judgements
described here allows a genuine ideal observer analysis
of the data collected from each participant and each
condition. Our approach is substantially similar to
that of Caziot and Mamassian (2021), who argue that
confidence should be considered a measure of internal
consistency rather than external veridicality.

In summary, here we examine bisection performance
in subsecond and suprasecond intervals coded by
visual, audio or audiovisual stimuli and to see whether
stimuli with two coherent sources of information
(audiovisual) improves performance, and consistency in
the knowledge of that performance, over that with a
single source alone (visual or audio). We then analyze
and model both aspects of that data, bisection and
metacognition, using a hierarchical Bayesian approach,
that facilitates comparison to an ideal observer.

Method

Participants

Participants (aged 23 to 53) were either the authors
(SC, WLX) or recruited through word-of-mouth (N =
5; 3 of them were females). No participant reported
any history of neurological or psychiatric disorder,
nor was any individual taking ongoing medication. All
participants had normal (or corrected-to-normal) vision
and normal hearing. Experiments were approved by the
Human Ethics Advisory Group at the University of
Melbourne. Participants provided informed consent for
participation and academic use of their (anonymous)
data. Participants’ names were coded as JCZ, RXL,
SC, SLY, WLX and were reimbursed for their time
($15/hour) with the exception of the authors.

Apparatus and stimuli

Stimuli were developed using the Psychophysics
Toolbox, Version 3 (Brainard, 1997) and MATLAB
R2022a software package (TheMathWorks Inc, Natick,
MA). Stimuli were either visual (V), auditory (A), or a
synchronized combination of the two (AV). A Mac Pro
(early 2009, OS X El Capitan) computer was used to
run the software while time-critical interval-judgement
responses were collected via a calibrated Cedrus RB-530
(Cedrus Corporation, San Pedro, CA) response pad
and metacognitive judgements via a (wired) Macintosh
keyboard.

The visual stimulus was displayed on a SONY
Trinitron Multiscan G520 monitor (resolution = 1600
× 1200 pixels, frame rate = 100 Hz, mean luminance
= 40 cd/m2, CIE white point co-ordinates {x = 0.333,
y = 0.377}) within a stationary circular envelope
(diameter = 4°), the lower edge being located 4° above
a central fixation spot. The audio was delivered through
Sennheiser HD 25-mk2 headphones via a Roland
UA-M10 external USB DAC.

The visual stimulus consisted of a vertically
orientated sinusoidal luminance grating (spatial
frequency = 1 cycle/°; 0.8 Michelson contrast)
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presented against a gray background at the mean
luminance of the display (40 cd/m2). The auditory
stimulus was a 480 Hz pure tone set at a moderate
volume around 10 times detection threshold. The
synchronized stimulus was the combination of
both audio and visual stimuli from onset to offset.
Both stimuli were presented in rectangular temporal
envelopes as onset and offset were critical aspects of the
stimuli and any temporal smoothing would affect their
temporal definition. We are, however, mindful of the
potential effect of any temporal artefacts introduced
by this kind of envelope (Cropper & Badcock, 1994;
Watson, Ahumada, & Farrell, 1986).

Procedure

The experiment comprised the three stimulus
conditions presented according to the testing schedule
summarized in Table 1. Three sessions were carried
out over three weeks. All sessions were completed
in the same order for each participant so they were
afforded the same opportunity to build up their internal
representation of the duration to be bisected. We do
acknowledge that using this ordered approach to data
collection across subjects is not strictly best practice for
repeated-measures designs, but we consider, given the
aim of the experiment, it was appropriate in this case.

Each session took approximately three hours to
complete, including a break of 15 to 30 minutes between
the 1500 ms and the 3000 ms condition. There were
periods of one week between each main session, and
therefore between the visual, audio and audiovisual
conditions, for each participant. The participants were
also encouraged to take breaks between trial blocks if
they wished and to report any undue fatigue. In terms
of practice effects, these are explicitly built into, and
a crucial part of, the paradigm; trial-by-trial analysis
allows monitoring of the improvement in performance
over time (e.g., see Figure 3). All subjects reported that

Session
number

Stimulus
modality

Duration
condition
(msec)

Session 1 V 1500
3000

Session 2 A 1500
3000

Session 3 AV 1500
3000

Table 1. Testing schedule. Notes: V, the visual stimulus
condition; A, the auditory stimulus condition; AV, the
audio-visual stimulus condition. There was a one-week interval
between individual sessions.

the trial regimen was acceptable in terms of duration
and structure and that they did not suffer from undue
fatigue. The testing schedule is summarized in Table 1.

In each experimental session participants were tested
with one stimulus condition (the visual, auditory, or
audiovisual stimulus), which comprised 500 trials
presented in blocks of 100 trials. Each stimulus
condition was tested at two durations (1500 msec
(bisection of 750 msec), 3000 msec (bisection of 1500
msec)).

The modified temporal-bisection paradigm
Each trial involved a temporal estimation phase

and a metacognitive judgement phase. In the temporal
estimation phase participants were required to make
two interval-bisection estimates. In the metacognitive
judgement phase, participants were required to identify
which of the two, preceding interval-bisection estimates
was, in their opinion, closest to the predefined target
duration (the veridical bisection point). Participants
were never shown the actual bisection interval, only the
full test interval, learning the interval and its bisection
point was part of the task. Each trial block (of 100
trials × 5 episodes) measured the same test interval
to be bisected, allowing participants to build up an
internal representation of the task interval. They were
also told what the interval was they were trying to bisect
at the outset.

A schematic representation of the generic trial
structure is depicted in Figure 1 for a visual example.
The stimulus may be of any modality providing it can be
bisected in time. In the data discussed here, the stimulus
was always presented for the duration to be bisected
but we have also used two pulses, one at the beginning
and one at the end of the interval, as a modification of
the single continuous stimulus, and varied the modality
of the stimulus between the intervals to be compared
(Cropper, Kendrick, Goodbourn, Bruno, & Johnston,
2018).

All trials consisted of two identical intervals (one
of which is represented in Figure 1), each being
demarcated through the continuous presentation of the
test stimulus; in the example illustrated in Figure 1,
the temporal cue was solely visual. As indicated above,
the participant was told the interval duration that was
to be used for the entire block of trials and that they
were required to estimate half of this interval, bisecting
the period that the stimulus was present on the screen.
The first interval was initiated when the participant
depressed the response pad button. To avoid the use
of rhythm in the task (which we found, through pilot
testing, made the task trivial), a random delay, ranging
from 0 to 250 msec, was inserted after the button press
and prior to the appearance of the stimulus. Upon
appearance of the stimulus, the participant maintained
button depression until the perceived interval midpoint,
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Figure 2. Histogram plots using 150 bins from estimates of zero to the total stimulus duration for one observer (WLX) in the visual
1500 msec stimulus duration condition. To characterize observers’ second-order responding, the trial-by-trial data were redistributed
according to observers’ best estimate judgements, to gain mean and variance values of subjective best estimates, and by
complement, subjective worst estimates, across trials within a condition. The data were also redistributed according to the ideal best
and ideal worst estimates to gain the mean and variance in the case of ideal observer performance (i.e., the estimate distributions
expected if observers had perfect insight into their own performance). Note the increased y-axis range in the Ideal Best condition.

when they released the button. The stimulus remained
on-screen for the full duration of the interval. This
procedure was then repeated for the second interval
estimate following a 500 msec inter-stimulus interval.

After making a pair of bisection-point estimates, and
a further 500ms interval, participants were prompted to
make a two-alternative forced-choice response via the
keyboard arrow keys to indicate which of their estimates
they deemed closest to the target duration (i.e., their
“best” estimate). The choice remained on screen until
the decision was made (Figure 1). This retrospective
judgement of the two bisection intervals constitutes
the temporal metacognition component of the task. A
brief tone indicated whether the participant’s choice
had been the interval closest to the veridical bisection
point or not. Overall, this paradigm therefore contains

a first-order judgment, which is a combination of
temporal-bisection and interval-reproduction, followed
by a second-order forced-choice judgment of one’s own
accuracy (Caziot & Mamassian, 2021; Mamassian,
2016).

The exact strategy used by each observer to do
the task was up to them, as it invariably is in all
psychophysics. It is our intention that the subjects
perform the task as best they can, however they can,
and use the feedback given, whether explicitly or
implicitly through their own monitoring, to improve
on their performance in the subsequent trial-pair. We
consider that they are most likely to use all evidence
available to them, which implies that the subject can
use both the first part and the second part of either
interval (i.e., pre- and post-button-release) as evidence
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Figure 3. Raw trial-series of interval 1 for observer WLX (teal
line), for the visual 1500 ms stimulus duration condition. The
veridical bisection point at 750 msec is shown as a horizontal
red dashed line. Binned means with 95% CI shown in royal blue,
connected by dashed lines.

about whether they made an accurate assessment of
the mid-point. The noise associated with either of
these judgements (pre- or post-release) is the same.
The substantive point is that for the metacognitive
component of the task the observer must make a
judgment about performance on both trials taken as a
whole, wherever the information they use on each trial
to come that decision may come from. For instance,
for a total duration of 1500 msec, they could use the
pre-release interval they believed to be closest to 750
msec, the post-response interval closest to 750 msec, the
entire interval in which pre- and post-release interval
were most alike, or the best indicator of all these three
sources of evidence on any given trial. We are agnostic
about the source of information used but interested
in what this information tells the observer about their
performance.

Treatment and analysis of the data

One of the benefits of the modified bisection
paradigm is that the data collected can be examined
both as a trial-by-trial analysis of the subject
performance and, more traditionally, as an expression
of performance over the whole experimental condition.
Data analysis and modeling was performed in Matlab
(R2022a), JASP (Version 0.18), (JASP Team (2023))
and R (v4.3.1).

Basic raw data and sorting of individual responses
Example raw data for one observer (WLX) are

shown in Figure 2 as frequency histograms plotting the
estimated half-point of the 1500 msec interval for 500
trials. The data are presented in three different formats,
sorted by rows on the figure. The first row plots, as a
histogram, the bisection data for the first and second
interval estimates respectively. The second row re-sorts

the data into the perceived best (left-hand side) and
perceived worst of each pair. The third row plots the
actual best and worst estimates (i.e., the ideal observer
response). Each of the distributions has a mean and
variance that can be used to summarize performance
across all the trials and the trial-by-trial data can be
analyzed as a time-series for a given interval (Figure 3).
The individual trial estimates, followed by each pairwise
analysis of performance, allow a subjective ideal
Observer analysis for each subject and each set of
conditions. The bimodal pattern of the “ideal worst”
response is somewhat exaggerated in this example (real)
dataset but is a direct and predictable product of the
data-sorting algorithm and depends on the trial-by-trial
values of the particular dataset, which are influenced by
both subject and condition and also by the similarity
between the two bisection estimates of each trial pair.
For instance, the “ideal worst” response will always
have the estimate further from the mean of any given
pair creating a distribution containing the tails of
the original population, the “ideal best” response set
receiving the data closest to the mean. However, this
distinction becomes less clear as the two estimates
approach each other in value. Grouping the data in this
way allows the difference in variance between the best
and worst distributions to be used as a measure of the
knowledge of the observer of their own performance
(Corcoran et al., 2018). Although the variance is not an
ideal measure of a (potentially) bimodal distribution,
as noted by one of our reviewers, it does capture the
difference in the upper and lower bounds of the data
set to a first approximation and we consider it to be
a reasonable way of quantifying this difference in the
current instance for the subsequent calculation of the
Metacognitive Index (MCI; see below).

Analysis of performance over the duration of the
experiment

Figure 3 plots the performance on a trial-by-trial
basis for a single interval of the pair (Interval 1 in this
case—summarized in the top left graph in Figure 2)
over the entire 500 trials for one subject (WLX). The
individual bisection estimate (y axis) is plotted against
the trial number (x axis). The binned means (bins
of 50 trials, data points in middle of bin), with 95%
confidence intervals superimposed on the trial-by-trial
data. The benefit of looking at the data this way is that
one can see how performance changes over the duration
of the experiment.

This trial-by-trial approach to the analysis can be
extended to examine how previous trial performance
affects the current trial either globally by curve-
fitting the data or more locally by conducting an
autocorrelation of the data. Each of these approaches
offers some possibility of examining how the internal
representation of the target interval builds up for
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Figure 4. “Best” estimate of the interval bisection plotted for five subjects across three conditions (Visual, Audio and Audiovisual).
Error bars are ± SEM, and the dotted line indicates the veridical bisection point.

the participant over the period and how recent
performance affects the current decision. It also gives
a clear indication of any effects of practice/perceptual
learning or fatigue over multiple (5 × 100 trials)
sessions. Figure 3 is typical of all our subjects in that
after an initial “guessing” phase the duration estimate
approaches the veridical bisection point, albeit with
an overshoot and return in this case. Overall mean
performance then settles to remain approximately
constant across the 500 trials. The form of the
trial-by-trial data in conjunction with subjective reports
suggests that perceptual learning saturates after about
25 to 50 trials and the testing regime does not exhaust
the subject. Although we adopt a purely descriptive
approach in the current work, it is worth noting that
initial examination of our data suggests there were no
observable differences in the trial-by trial pattern of
data between each session (i.e., each week), indicating
that the learning phase was limited to within each
session rather than across sessions. This observation is
broadly consistent with recent work examining short-
and long-term perceptual learning in a variety of
tasks ranging from contrast discrimination to facial
recognition (Yang et al., 2022). Within-session (40
minutes to an hour) learning elicited far greater effects
than between session (23.6 hours) learning for all tasks,
most of which showed no significant between-session
learning (Yang et al., 2022; Figure 4). Given our
between-session period was a week, we are confident
this is unlikely to be a factor in our results.

Summary analysis: Re-sorted data
As implied in Figure 2, a summary analysis of

performance is perhaps the most obvious and common
way of looking at the data. The mean and variance of
the two intervals (Row 1 of Figure 2) give the accuracy
and precision respectively of the two bisection estimates
and are the standard way of representing this kind of

data, providing a means of comparing performance
in this paradigm to others in the literature. This
approach also allows the coefficient of the variation
(i.e. standard deviation of estimated duration/mean
estimated duration) to be used to express the adherence,
or otherwise, to Weber’s law, which predicts a constant
coefficient across different bisection periods and is an
enduring critical component of the scalar expectancy
theory of time (Corcoran et al., 2018; Grondin, 2014;
Wearden & Lejeune, 2008) .

Metacognition, feedback, and ideal observer analysis
Re-sorting the individual interval 1 and 2 trials into

perceived best and perceived worst, and ideal best and
ideal worst, gives some insight into how effectively
the individual subjects in each condition can access
and reflect upon their own performance during the
task. We expect (and observe (Corcoran et al., 2018))
that the difference between variance of the estimates
will be minimal in the Interval 1/2 condition and
maximal between ideal best/worst. The difference in the
subjective best/worst case will be somewhere between
these two extremes and this difference can be used to
quantify the degree of knowledge each subject had of
their own performance in the bisection/reproduction
task. To avoid concerns about the best function to fit
to the collected data, and to be consistent with the
subsequent modeling, we take a purely descriptive
approach to the raw data analysis and calculate the
arithmetic mean and variance directly in Matlab using
Mean() and Var() functions.

One way of summarizing the metacognitive
performance of the subject for a given set of conditions
is to calculate a ratio of the subjective and ideal variance
ratios as follows:

MCI =
(

Vi.best

Vi.worst

)/(
Vs.best

Vs.worst

)
(1)
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where the MCI is the Metacognitive Index for a given
subject and condition, V is the variance of the ideal
or subjective best/worst interval (indicated by the
subscript). If the subject has little knowledge of their
own performance, then the variance of the ‘best’ and
‘worst’ intervals will be substantially the same as that of
the first and second intervals (top row, Figure 2) and
the ‘subjective’ denominator of Equation 1 ( Vs.best

Vs.worst
)

will tend toward a value of 1. The overall MCI will
be the “ideal” numerator ( Vi.best

Vi.worst
), tending toward,

but not reaching, zero, divided by the subjective
denominator (approximating 1), resulting in a value
close to zero. Alternatively, if the subject has perfect
(ideal) knowledge of their own performance then both
(ideal) numerator ( Vi.best

Vi.worst
) and (subjective) denominator

( Vs.best
Vs.worst

) of Equation 1 will be the same, giving an
overall result of 1. Although the extreme values of
0 and 1 for the MCI are highly unlikely given the
variances are of actual subjective data, we argue that
this is a reasonable way to compare metacognitive
performance between conditions and observers.
Although there are some instances where the “ideal
worst” distribution is bimodal as in the example given

in Figure 2, we are primarily interested in the tails
of the distribution, which are well represented by the
variance.

Empirical results

Subjective “best” estimates for the bisection of the
two presentation intervals (1500 ms and 3000 ms) are
presented as bar-charts in Figure 4 for five observers
across each of the three conditions (visual [V], audio
[A], and audiovisual [AV]). There is some individual
difference in performance, as expected (Corcoran et al.,
2018), but all subjects do relatively well in the task in all
conditions and also show a good degree of consistency
with small error bars (±1 SEM). Overall performance
appeared closer to the veridical bisection point in the
longer duration condition. The trend for the visual
condition to be underestimated relative to the veridical,
compared to an overestimated audio or audiovisual
condition seen at the short duration, all but disappears
at the longer duration. Figure 5 replots this data as
the bisection point in each condition as a fraction of
the total duration where the relative bisection of 0.5

Figure 5. “Best” estimate of the interval bisection plotted relative to the total duration for the five subjects across conditions (Visual,
Audio, and Audiovisual, 1500 and 3000 msec). Error bars are ± SEM, and the dotted line indicates the veridical bisection point.
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Figure 6. Results of Bayesian repeated measures ANOVA for
relative bisection performance with stimulus “condition” and
“duration” as factors for the five subjects shown in Figure 5. (A)
Overall means; (B) By subject 1500 msec; (C) By subject 3000
msec. A relative bisection value of 0.5 (y axis) indicates veridical
performance. Error bars in (A) are 95% credible intervals. In b
and c, individual data points are plotted on the left-hand side
for each subject and condition. The boxplots in the center give
the median value (bold horizontal line), the interquartile range
between the twenty-fifth and seventy-fifth quartile (colored
bar). The “whiskers” indicate the minimum and maximum limits

→

(dotted horizontal line in Figure 4) indicates veridical
performance.

To provide some quantitative analysis of the
basic bisection performance, albeit for only 5
subjects, Figure 6 plots the results of a Bayesian
repeated-measures analysis of variance (ANOVA) for
the subjective “best” performance for the five subjects
with the conditions and duration as factors in the
analysis (Overall means [Figure 6A]; By subject 1500
msec [Figure 6B]; By subject 3000 msec [Figure 6C]);
values for the analyses are given in Table 2.2 Given
the few subjects used in the small-N design, any
suggestion of within-subject effects are very small, and
we acknowledge this. However, bearing in mind the
meaning of Bayes factors given below,2 we interpret
our data with caution. The intersection of the two
duration lines in Figure 6A suggests an interaction of
the condition and duration factors and this is timidly
supported by the model of best fit being the “full”
model in Table 2 (BF10 = 2.725). The greater effect
of stimulus modality condition at the short duration
on bisection performance than the longer one is made
illustrated in Figure 6A by the positive slope in the
1500 msec curve compared to the flatter 3000ms curve.
Individual duration data is shown by Raincloud plots
(Allen et al., 2012; JASP_Team, 2023) in Figures 6B
and 6C (see figure legend for description of the
plots). Given a main point of interest in the empirical
work here is the effect of stimulus modality, it is not
unreasonable to examine each duration independently
as a “planned comparison.” When we do this we see
a much stronger (i.e., BF >10) effect of condition at
the short duration only (1500 msec BF10 = 10.686) and
no effect at 3000ms (BF10 = 0.356) (see Appendix A
for more detail and post-hoc analyses). We note at this
stage that the modeling section to follow is essentially a
detailed hierarchical analysis of the raw behavioral data
and so will offer an alternate analysis and validation of
this data.

Figure 7 plots the metacognitive index (MCI) for
each subject and condition shown in Figure 5. The
closer the MCI value is to 1, the better the knowledge
the subject has of their own performance in each
trial-pair, and the closer to ideal performance. Although
there are clearly individual differences in metacognition
as there are in the interval estimation, there is a
tendency for the audiovisual condition to give a higher
MCI than either modality alone in three of the subjects
(RXL, SC & SLY) although not with subjects JCZ &
WLX.

←
(excluding outliers – individual data points visible in the main
line plot). Density plots on the right-hand side give the overall
distribution of the data across the range (Allen et al., 2012).
Output values for the calculations are given in Table 2.
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Models P(M) P(M|data) BFM BF10 Error %

Null model (incl. subject and random slopes) 0.200 0.190 0.938 1.000
Condition + Duration + Condition✻ Duration 0.200 0.518 4.292 2.725 1.173
Condition 0.200 0.123 0.561 0.647 0.848
Duration 0.200 0.103 0.458 0.541 2.132
Condition + Duration 0.200 0.067 0.286 0.351 1.368

Table 2. Bayesian RM-ANOVA model comparison—“Best” bisection. Notes: All models include subject and random slopes for all
repeated-measures factors.

Figure 7. MCI for each subject and condition, the bisection data for which is plotted in Figure 4.

A Bayesian repeated-measures ANOVA with
condition and duration as factors was again calculated
on the individual means from Figure 7. The group
means are plotted in Figure 8a, which makes the
trend across modalities clearer whereby the insight
the subject has into their performance improves from
visual through audio to audiovisual. The actual insight
into performance appears to be slightly reduced for
longer durations and there is no interaction between
factors evident in the graph. The preferred model is
condition alone (Table 3: BF10 = 2.415), of which we
make barely a mention, with no interaction between
factors (full model BF10 = 0.656). Consideration of the
effect of condition independently at each duration gives
a slightly more encouraging view suggesting a moderate
effect at only the shorter duration: 1500 msec: BF10 =
7.568; 3000 msec: BF10 = 0.993 (For these and post hoc
analyses, see Appendix A). Individual subject results
from the ANOVA are plotted in Figures 8b and c for
1500 msec and 3000 msec, respectively, with the overall
output values shown in Table 3.

Interim summary of empirical data
Given our caveats and caution above, the general

suggestion from the empirical data is that in terms of
bisection accuracy, there is no difference between the
visual, audio, or audiovisual conditions at the 3000

msec presentation duration (i.e., on average), they are
all slightly overestimated compared to veridical but
equivalent to one another. In the 1500 msec duration,
the audio condition is more accurate than the other
two conditions; there is a modest trend for the visual
condition to undershoot the bisection point and the
audiovisual condition to overshoot. When considering
the MCI data, which sorts the bisection data on the
basis of the metacognitive decision, the results show
that there is an increase toward ideal performance
(a higher MCI) from the visual through audio to
the audiovisual condition and this is overall slightly
better at the shorter duration, but again with only five
subjects these data only constitute a bare whisper of an
effect.

Hierarchical Bayesian model of bisection
estimates and metacognitive accuracy

In the purely empirical analysis above, the MCI
accounts for the metacognitive decision and bisection
data simultaneously by using the metacognitive
judgment as a basis for informing the sorting of
the bisection data. In this section, we have taken
an alternative analytical approach by modeling the
metacognitive decision directly while simultaneously
modeling the bisection judgments. This model is
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Figure 8. Results of Bayesian Repeated Measures ANOVA for
MCI performance with stimulus “condition” and “duration” as
factors for the five subjects shown in Figure 7. (A) Overall
means; (B) By subject 1500 msec; (C) By subject 3000 msec.
Error bars are 95% credible intervals. Output values for the
calculation are given in Table 3. For description of the Raincloud
plots see Figure 6.

psychological in the sense that we consider the
computational decision problem faced by the observer
during the bisection and metacognitive stages of
each trial (Marr, 1982) and we model each decision
as a probabilistic choice with the latent parameters
of decision distributions estimated in a hierarchical
Bayesian manner (Lee & Wagenmakers, 2014). The
benefit of this hierarchical analysis is each observer
informs the group-level distribution, which “shrinks”
estimates of subject-level parameters toward the group
average (Britten et al., 2021; Davis-Stober, Dana, &
Rouder, 2018; Davis-Stober, Dana, & Rouder, 2019;
Gelman et al., 2004) allowing for more accurate
estimates at the group level. Since we estimate posterior
distributions over all quantities associated with the
experiment for each participant, we can show that the
model can predict the observed interval bisections
estimates and the derived MCI data from each
condition, while unpacking this latter measure into an
alternative demonstration of ideal observer behavior.

We modeled the metacognitive decision on each
trial, ri, as a Bernoulli distribution with a parameter,
pi, indicating the probability that interval 1 was chosen
as the more accurate interval on trial i. This parameter
was derived from a comparison of the perceived error
in each interval as follows:

Let �1i and �2i be the error in intervals 1 and 2,
respectively, on trial i. That is:

�1i = |I1 − ϕ|
�2i = |I2 − ϕ|

where I1 and I2 are the bisections made by the
participant on intervals 1 and 2, respectively, and
ϕ indicates the subjective midpoint of the interval.
The subjective midpoint of each of the visual, audio
and audiovisual conditions is estimated around the
subjective midpoint estimate across all conditions,
which is itself assumed to be, as a reasonable starting
assumption, normally distributed around the true
midpoint. We model the bisection error by assuming
that the observed interval estimates I1 and I2 are
normally distributed with an observer-specific standard
deviation (which is unique to each condition—modality
× duration—and interval).

The model assumes that the participant chooses the
option with the smaller perceived error. To implement
this, we find the difference between the error in each
interval: d� = �1 − �2. (Here, we’ve suppressed
indexing by trial for simplicity). If the difference is
negative, then the error in the first interval is smaller,
and the participant should choose the first interval. If
the difference is positive, then the error in the second
interval is smaller, and the participant should choose
the second interval.

We assume that this choice occurs only
probabilistically and that the difference between the
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Models P(M) P(M|data) BFM BF10 Error %

Null model (incl. subject and random slopes) 0.200 0.161 0.767 1.000
Condition 0.200 0.388 2.540 2.415 3.389
Condition + Duration 0.200 0.242 1.279 1.507 1.521
Condition + Duration + Condition✻Duration 0.200 0.106 0.472 0.656 1.589
Duration 0.200 0.103 0.459 0.640 1.139

Table 3. Bayesian RM-ANOVA model comparison—MCI. Notes: All models include subject, and random slopes for all repeated
measures factors.

error estimates is normally distributed around the true
error difference, with a standard deviation representing
the accuracy of the error estimation.

d̂� ∼ Normal
(
d�, σm

)

In the ideal observer model, the standard
deviation would approach zero and consequently the
representation of the error would approach the true
error. Hence, the estimate of the standard deviation
gives us a direct comparison to the ideal observer.

pi, which determines the Bernoulli outcome of the
metacognitive decision, then equals the integral from
the distribution of d̂�between − ∞ and 0.

pi =
0∫

−∞
P

(
d̂�| d�, σd

)

When the error in interval 1 is smaller than in interval
2, the distribution will have most of its area in the
negative region, and hence, when variance is small,
pi will be close to 1 (see Figure 9). When the error in

Figure 9. Illustration of how the probability of responding with
interval 1 on a given trial is derived by integrating the
distribution over the perceived difference in error.

interval 2 is smaller than in interval 1, the distribution
will have most of its area in the positive region and pi
will be near 0 (i.e., interval 2 will be preferred). As the
standard deviation approaches 0, the model will choose
the interval with less error more accurately.

We estimated the standard deviations, σ I1, σ I2, and
σ d (along with the standard deviations for the midpoint
estimates, σ�, σMid ), hierarchically. We implemented
the model in JAGS (Plummer, 2003) with Matlab
and matjags (Steyvers, 2011) using two chains with a
burn-in period of 2000 and a sampling period of 5000
samples, thinning every twentieth sample. We assumed
a group-level distribution over the standard deviations
for the visual, audio and audiovisual conditions. JAGS
specifies the spread of the normal distribution in terms
of precision (i.e., 1/σ 2); the prior distributions for each
precision parameter were uniform from 0 to 100. To
capture the repeated-measures design, we assumed that
the subject-level precision parameters were sampled
from a multivariate normal distribution with a shared
variance-covariance parameter and a subject-specific
correlation parameter that captured how correlated the
variance estimates were across the three conditions.
All precision estimates were transformed to standard
deviations for ease of interpretation; a smaller standard
deviation indicating greater precision in the judgement.

In a nutshell, group-level standard deviation
estimates for the visual, audio and audiovisual
conditions measure the variability of the interval
estimation and the metacognitive accuracy. Values
near 0 indicate more accurate (veridical) estimates.
At the group-level, these parameter estimates allow
inference as to the difference between each modality
and the combined audiovisual condition. The
subject-level parameters indicate the performance
of different individuals and allow an assessment of
individual differences in bisection and metacognitive
judgment accuracy. Because the estimates are posterior
distributions of the parameters given the data, we
can make inferences about the difference in value by
directly comparing these distributions and examining
their overlap. We can also use the 95% credible interval
estimates as an inferential statistic. The credible interval
is the region of the posterior distribution containing
95% of the posterior probability. A more flexible
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Figure 10. Illustration of the model as a directed graph (see e.g., Lee & Wagenmakers, 2014). Shaded boxes illustrate observed
discrete variables, double circled nodes indicate derived variables, and white circles indicate continuous latent variables. The
likelihood and prior distributions are listed to the right of the graphical model. Variables are defined in text; ε = 0.1 to ensure a
positive semi-definite covariance matrix.

version of the credible interval, in that it deals with
skewed distributions better, is the highest density
interval (HDI), and it is this we calculate in the model
(Kruschke & Liddell, 2018).

Figure 10 shows the graphical model used to estimate
parameter posteriors for each duration condition.
Of note is that the latent parameter estimates are
constrained by all of the data, including the bisection
estimates for each interval and the metacognitive choice
for each trial and each subject from each condition.
All chains showed good convergence (maximum
R-hat = 1.0002; Gelman et al., 2004). Figure 11
shows the posterior density estimates for the group
level parameters. Specifically, the top two panels for
each condition show the standard deviation of the
subjective interval estimation while the bottom panel
(for each condition) shows the standard deviation of
the normal distribution for the metacognitive decision.
The metacognitive decision is driven by the standard
deviation estimate shown in this lower panel along with
the difference in the perceived error between interval 1
and interval 2 (i.e., d̂� as described above).

The interval bisection standard deviation estimates
have roughly the same posterior regardless of whether

the stimulus was presented visually, auditorily or as a
combined audiovisual signal, though in the 1500 msec
condition, the audiovisual condition had more
posterior density over smaller estimates than in the
visual or audio conditions alone. In the 3000 msec
condition, the posterior distributions are more similar.
In sum, the estimates have roughly equivalent precision
between modality and duration conditions (Corcoran
et al., 2018; Grondin, 2014; Mitani & Kashino, 2016;
Wearden & Lejeune, 2008). It appears the benefit of
having a redundant audiovisual signal (i.e., the same
information from two sources) is less prominent when
the duration to be estimated is longer. Comparing the
posterior estimates across the top two panels, there does
not appear to be any difference between the estimates
for interval 1 and interval 2.

The variance of the metacognitive judgement, which
determines the accuracy of the judgement, varied
depending on whether the interval was 1500 msec or
3000 msec. In the former, the visual condition posterior
had more density over smaller values (i.e., was closer
to the ideal observer) than the audio or audiovisual
conditions. In the 3000 msec condition, the pattern
reversed; the audiovisual condition had larger posterior
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Figure 11. Posterior densities for the subjective interval
midpoint standard deviations and subsequent metacognitive
decision standard deviations in the V, A, and AV conditions for
1500 and 3000 msec durations; upper and lower panel,
respectively.

Duration Constrained Full

1500 −358.49 −5927.8
3000 10520 7529.9

Table 4. DIC values for the constrained and full models fit to
each duration condition.

density over smaller variance estimates than the visual
and audio conditions, respectively.

To ascertain whether it was necessary to allow
for different condition level parameters, we fit a
constrained model in which the bisection standard
deviation and metacognitive standard deviation
estimates were assumed to be equivalent across the
A, V, and AV conditions. We compare the models
based on the Deviance Information Criteria (DIC;
(Gelman et al., 2014)) which provides a measure of
model fit penalized for the complexity of the model.
The deviance of the posterior parameters (i.e., θ ) is
computed as: D(θ ) = −2log L(y|θ ), where L(y|θ ) is the
likelihood of the data given the model parameters.
DIC is given as: DIC = D̄(θ ) + 2pD, where D̄(θ ) is the
average of the distribution of posterior deviance and
pD = 2var[log L(y|θ )]. DIC corrects average negative
log likelihood by a term which accounts for model
complexity; hence, smaller values of DIC are preferred.
The DICs for each condition are displayed in Table 4.
As shown, the full model which allowed separate
estimates for the A, V, and AV conditions was preferred
in each duration condition.

Table 5 shows the subject-level parameters in each
condition; of key interest is the subject level correlation
parameter which indicates a substantial level of
consistency between the precision of the interval
estimates and the precision of the metacognitive
decision. That is, the average posterior estimate of the
correlation between the estimates for A, V, and AV is
large (> 0.5) for most subjects.

To link the model estimates back into the empirical
data more clearly, Figure 12 plots the posterior
subject-level midpoint estimates for each condition as
given by the model (the data are shown in each plot as
black dots with ±1 standard error bar). These estimates
qualitatively follow the same pattern as the empirical
averages but are now additionally constrained by the
group level estimates as well as the data from both
intervals, not just the subjective “best” interval. In most
cases, this additional constraint quantitatively captures
the data within the 95% highest-density interval of each
bisection estimate.

The group-level midpoint estimates are shown in
Figure 13; although the individual bisection estimates
show noticeable variability between subjects, the group
estimates tend toward the veridical bisection point.
In both duration conditions, the overall mean (across
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modalities) tends slightly toward overestimation of the
bisection interval. However, this is more consistent
between modalities in the longer duration condition.
In the shorter duration condition, the visual modality
condition tends toward underestimation and there is
greater variability between conditions, much like the
empirical data.

Finally, we compared the posterior predictive
model estimates of the group MCI values with the
mean values from the data in Figure 7; both results
are plotted in Figure 14. That is, from the model’s
posterior predictions for the interval estimates and
the metacognitive judgment, we derived the posterior
predictions for the MCI values in the same manner as
computed for the data.

The figure shows both the model and the participants
have a better insight into their own performance in
the short duration condition than the longer one for
audio and audiovisual conditions (i.e., the posterior
distribution has higher values in the A and AV
conditions of the 1500 msec condition than the 3000
msec condition; 95% HDI, 1500 msec A condition =
[0.33, 0.57] vs 3000 msec A condition = [0.27, 0.57];
1500 msec AV condition = [0.53, 0.69] vs. 3000 msec
AV condition = [0.34, 0.45]), the visual condition
is largely similar across durations (95% HDIs, 1500
msec V condition = [0.22, 0.32] vs. 3000 msec V
condition = [0.24, 0.30]). The audiovisual stimulus
gives the best insight to bisection performance overall
at both durations, though performance is better at the
shorter duration. Although these can only be rough
estimates with only five participants, it does show good
agreement between the model and the empirical data,
suggesting that the underlying theory of the model is
a good estimate of what the participants are doing
when reflecting on their performance in the interval
judgement.

Discussion

The principal aim of this article is to describe a
modified paradigm to measure the perception and
metacognition of time, specifically duration, and
suggest why we believe it is a useful contribution to the
area. We also present a model to explain the collected
data over a modest range of stimulus properties and
intervals. The paradigm we describe combines temporal
interval bisection and (re)production as described in the
existing literature (Grondin, 2010) with an additional
forced-choice measure of confidence (Mamassian,
2016). In our paradigm, we ask participants to
bisect (i.e., identify the mid-point of) a temporal
interval as they perceive and monitor that interval,
repeat the procedure, and then judge how well they
performed in that pair of test intervals. This requires
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Figure 12. Subject-level midpoint estimates for each condition and interval duration.

the subject to build up and maintain an internal
representation of the target interval that they attempt
to match each time. For the second-order judgement
of trial-by-trial performance, where a single trial is a
pair of test-intervals, it is also possible to introduce
feedback to indicate whether the interval they chose to
be their best estimate was, in fact, closest to the veridical
midpoint of the pair. This feedback (if used) does not
give any information regarding the accuracy of the
estimate other than whether their choice was the better
guess; there is no indication of whether that best guess
was an over- or under-estimate of the veridical bisection
point. This direct (first-order), ongoing behavioral
estimate of duration followed by the second-order
assessment of performance offers several useful and
transparent ways of analyzing the collected data.

The data and modeling presented here suggest
that, when the overall pattern of results is considered,
although the measurement of the bisection point using
this paradigm has fundamentally similar properties
at both sub- and supra-second durations and across
single and dual modality conditions, the metacognitive
measurement is affected by both modality and duration.

There is a small underestimate of the veridical
bisection point for the visual stimulus at the shorter
duration compared to an overestimation for the

auditory stimulus, a difference which disappears at the
longer duration (Figure 6). On the face of it, this lack
of a strong consistent effect of modality or duration
on bisection performance is counter to reports of a
shortening of perceived duration for visual stimuli
compared to auditory stimuli (Droit-Volet et al., 2007;
Goldstone, Boardman, & Lhamon, 1959; Goldstone
& Goldfarb, 1964; Grondin, Meilleur-Wells, Ouellette,
& Macar, 1998; Ortega, Lopez, & Church, 2009;
Penney, Gibbon, & Meck, 2000; Walker & Scott, 1981;
Wearden, Edwards, Fakhri, & Percival, 1998; Wearden,
Todd, & Jones, 2006). However, our result is consistent
with other observations, often by the same authors,
showing the effect to be dependent upon many factors
both stimulus and paradigm-based (Mitani & Kashino,
2016; Ortega et al., 2009; Penney et al., 2000; Wearden
et al., 2006). The paradigm used here would seem
to be less susceptible to audiovisual modality-based
perceived duration differences than some others. It
is important to note, however, we are measuring an
indirect comparison between modalities here, although
we might still have expected some systematic difference
between the audio and visual midpoint estimates. This
observation, however, may also give some clue to what
the subjects are doing in the (admittedly unusual) task.
Any shortening of perceived duration would affect the
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Figure 13. Group posterior midpoint estimates in the two interval conditions for each stimulus type and the overall mean.

Figure 14. Group MCI estimated by the model shown as violin plots, with the mean group results plotted as data points. Error bars on
the data points are ±1 SEM.

entire interval, both pre- and post-response, equally,
other factors notwithstanding. If the subjects were
trying to center their response in the interval, then any
change in apparent duration as a product of stimulus
modality would be moot; the mid-point is still the
mid-point.

The focus of audiovisual interaction in time
perception has generally been on the relative dominance
of asynchronous signals, usually, but not always, in the
favor of the auditory input (Asaoka & Gyoba, 2016;
Burr et al., 2009; Chen & Yeh, 2009; de Haas, Cecere,
Cullen, Driver, & Romei, 2013; Goldstone et al., 1959;
Goldstone & Lhamon, 1972; Hartcher-O’Brien & Alais,
2011; Ortega et al., 2014; Ortega et al., 2009; Romei,
De Haas, Mok, & Driver, 2011; van Wassenhove et al.,
2008; Vicario, Rappo, Pepi, & Oliveri, 2009; Yuasa &
Yotsumoto, 2015). When signals are synchronous, as

in our stimuli, it has been argued that both audition
and vision contribute to the duration percept in a
way to optimize the precision of the result (Grassi &
Pavan, 2012; Hartcher-O’Brien, Di Luca, & Ernst,
2014), and code the percept as efficiently as possible
(Eagleman & Pariyadath, 2009). This also extends to
some degree to a combination of audio and tactile
signals (Ball et al., 2017). Our results, particularly when
modeled as a group, tend to agree with this combination
of both auditory and visual signals to achieve the
optimal result (Hartcher-O’Brien et al., 2014), where
the “AV” conditions in Figure 13 show estimates
closest to the veridical midpoint of the three conditions
(most obvious at 1500 msec) and a smaller standard
deviation of the posterior estimates at both durations
in Figure 11, indicating improved precision in the
audiovisual estimate. Cautious though this suggestion
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must be, it is clearly not the case that combining the
two signals has any detrimental effect on the duration
judgement, as may have been expected were attentional
resources limited.

In terms of the metacognitive response, the best
insight into bisection performance is seen for the
audiovisual stimulus at short durations, both for the
group data and the model (Figure 14). Increasing the
stimulus duration does not improve the metacognitive
performance and makes it worse for audio and
audiovisual modalities (visual alone stays approximately
constant), though the bimodal signal still gives the
best insight of the three conditions overall. That the
model estimates and averaged data show such good
agreement suggests the hierarchical architecture of
the model bears some relationship to the underlying
processes being modeled. The reduction in insight into
performance with increased duration may be explained
by a combination of our particular paradigm and the
description of assured metacognition and confidence as
internal consistency as opposed to external veridicality
(Caziot & Mamassian, 2021). It has been observed that
self-produced temporal intervals are perceived as being
shorter and more variable than passively observed
equivalents (Mitani & Kashino, 2016). In the context of
a consistent stimulus regime this increased variability is
confined to the suprasecond range, which would have
the effect of reducing internal consistency (increasing
variability) in our longer duration (self-produced)
bisection task. This effect is seen in the shift to the
right of the metacognitive error (σ ) density curves
in Figure 11 (lower) as duration increases. In the
framework outlined by Caziot & Mamassian (2021),
this would, in turn, result in reduced confidence and
poorer metacognition of bisection performance across
all stimulus modalities with longer durations, consistent
with both the modeling and empirical data in Figure 14.

Metacognition, confidence, and ideal-observer
analysis

Incorporating the second-order measure of
performance into the analysis allows the data to be
reordered in a way that affords access to how good
the subject thinks they are doing in the task. We argue
that taking this objective (forced-choice) measure of
how well the participant thinks they are doing in the
task (i.e., how accurate they think they are) allows a
more reliable measure of subjective confidence than the
standard rating approach. This property is a unique
aspect of the paradigm and the way in which the
bisection estimate is made.

The ability to then reorder the individual trial data
into perceived and actual best/worst performance allows
a given subject’s performance on the second-order task
to be expressed in the context of an ideal observer

analysis (Geisler, 1989; Geisler, 2003; Geisler, 2011)
and for this relationship to be broken down over
the duration of the experiment. The benefit of this
paradigm for this theoretical approach is that the trial
data for the ideal “device” is actual data from the
subject and condition in question, rather than estimated
or averaged data, as is usually the case. This means
that the degree of ideal behavior of the system at the
level of temporal metacognition and its properties over
the duration of the experiment can be more accurately
judged for a given set of conditions. It is also possible
that this aspect of the data might allow some reasonable
discrimination between underlying models of time
perception by examining how they behave over multiple
consecutive samples of a given epoch and how that
compares to collected data (Jazayeri & Shadlen, 2010).

The decision made by the subjects is different from
a standard two-interval forced choice magnitude-
discrimination task. In the standard task, two sensory
quantities are directly compared with one another,
and the decision made about which is greater. In our
task, each sensory quantity (i.e., the two independent
bisection estimates) is (are) compared to an internal
reference (the veridical, or perceived, midpoint of
the interval which is never actually given) and the
judgement made of which one is closer to the midpoint,
making it a metacognitive judgement. The subject
cannot make the correct decision based on which
appears longer or shorter directly as they might both
be too short (in which case the longer one is correct)
or too long (the shorter one is correct). The subject
still must choose which of those independent bisection
decisions to accept based on their judgement of the
reliability of their judgements. Although this is unique
to our paradigm and any conclusions must be made
in the context of the paradigm, we argue that this
decision process allows us to say that we have objective
evidence on accessing the information path that allows
the subject to make their decision in our paradigm and
we explicitly model this process.

Looking at the variance of the decisions made in
this way also gives us an objective measure of observer
confidence in the task and the possibility of measuring
how confidence in ongoing performance changes over
the duration of the experiment. This may also be
considered as a way of examining internal consistency,
which is possibly a better way of looking at the idea of
subjective confidence in a given judgement (Caziot &
Mamassian, 2021).

The addition of feedback at this level into the
paradigm (i.e., only at the second-order judgement
level) allows some modulation or reflection to be
introduced into the metacognitive component (or
in Bayesian terms, a prior to be updated). The only
noticeable effect of this adding feedback on subjects’
bisection performance was to decrease the number of
trials at which a bisection judgement somewhat close to
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veridical was reached (25-50 trial pairs in most subjects
(Corcoran et al., 2018)). An unusual property of
providing feedback at this stage in the decision process
is that once the perceived bisection point is estimated
relatively accurately in both intervals, they potentially
become indiscriminable from one another making the
provision of feedback more influential on the decision
process earlier in the trial series.

Modeling

The benefit of the hierarchical Bayesian model is
that it allows for simultaneous estimation of group-
and observer-level parameters and provides an estimate
of the uncertainty in those parameters. Hierarchical
Bayesian analysis is a method used to good effect in
complex multilevel systems such as ocean ecology
where each level of analysis informs and influences the
others in a continuous manner and each dataset has its
own particular set of conditions (Britten et al., 2021).
Given what we are trying to measure here, although not
as complex as oceanic carbon fluctuations across the
globe, we consider the first- and second-order decisions
inherent in our method to fit the hierarchical approach.

In our implementation, we jointly estimate
the variability of the interval estimation and the
metacognitive estimates allowing for determination of
the correlation in the error between these estimates.
Our model is a measurement model rather than a
psychological model, using the data to return useful
estimates of uncertainty parameters. As such it is an
effective form of statistical analysis of the data rather
than a standard descriptive model more common in the
literature. Nevertheless, we model the decision process
in a psychologically-meaningful way (see Figure 10)
drawing on principles of signal detection (Green &
Swets, 1966; Macmillan & Creelman, 1991) to provide a
theoretical framework for the decision. This approach
provides a good fit between the data and the model
estimates for both the bisection and the metacognitive
task, which encourages us in our approach. We have
deliberately kept it as simple as possible, but we
consider this a strength in our implementation. A
limitation of our approach, however, is that we assume
the psychological midpoint is static across trials (contra
to Figure 3). The model could therefore be extended by
allowing the estimates to vary functionally across trials,
as measured for each participant, but we leave that for
future work.

An interesting feature of these data and the model is
that although there is substantial individual difference
in performance, the performance of the group when
modeled in this way approaches the external veridical
bisection point, suggesting a shared sense of time
despite the obvious subjective differences; a time-based
version of Aristotle’s “wisdom of the crowd” (Galton,

1907), and a possible representation of our shared
thread of “real” time.

Conclusions

The paradigm described here offers a different way
to measure the percept of brief intervals of time as
they are experienced by the subject. The two stages
of the decision give both a first-order measure of the
temporal percept and a second-order metacognitive
judgement of performance. The summary measures
provide some equivalence to the extensive literature on
time perception, while the more unique trial-by-trial
data collection affords a detailed window into the way
in which the system builds up a representation of the
duration to be bisected, which in turn mediates future
performance.

Time and our insight into its passing has stimulated
debate for centuries from many disparate perspectives
and continues to do so, an observation illustrated
nicely in recent theoretical articles and the associated
commentaries (Buonomano&Rovelli, 2022; Glicksohn,
2022; Grondin, 2023; Gruber et al., 2022; Miller &
Wang, 2022). We consider that measuring both the
cognition and metacognition of sense of time passed in
the way illustrated here will contribute positively to that
debate.

Keywords: time perception, metacognition, ideal
observer analysis, psychophysical methods
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Footnotes
1As pointed out by one of the reviewers, this is not unique to time because
both number and space may be derived from several sensory inputs. We
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do, however, consider time to be a particularly primal sense to be unbound
by modality and interesting because of this.
2 Bayes factors (BF10) may be interpreted as follows: 1, No effect; 1–3,
Anecdotal/Not worth more than a bare mention; 3–10, Moderate; 10–30,
Strong; 30–100, Very Strong; >100 Extreme. (After Jeffreys, 1961; Kass &
Raftery, 1995; Lee & Wagenmakers, 2014).
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Appendix A: Additional data for the
Bayesian repeated-measures
ANOVAs

For the ANOVAS, all models include subject, and
random slopes for all repeated measures factors. For
the post-hoc comparisons, the posterior odds have
been corrected for multiple testing by fixing to 0.5 the
prior probability that the null hypothesis holds across
all comparisons (Westfall, Johnson, & Utts, 1997).
Individual comparisons are based on the default t test
with a Cauchy (0, r = 1/sqrt(2)) prior. The “U” in
the Bayes factor denotes that it is uncorrected (JASP,
Version 0.18).

Subjective “best” bisection estimates

Individual planned comparisons for each duration

Models P(M) P(M|data) BFM BF10 Error %

Model comparison
1500 msec
Null model (incl. subject
and random slopes)

0.500 0.086 0.094 1.000

Condition 0.500 0.914 10.686 10.686 0.602
Model comparison
3000 msec
Null model (incl. subject
and random slopes)

0.500 0.738 2.813 1.000

Condition 0.500 0.262 0.356 0.356 0.739

Post-hoc tests for the bisection ANOVA
Combined ANOVA for the “best” bisection estimate

(Figure 6 in main text):

Post Hoc Comparisons
Prior
Odds

Posterior
Odds BF10, U Error %

Condition
Visual
Audio 0.587 0.390 0.664 0.016
Audiovisual 0.587 0.486 0.828 0.019

Audio
Audiovisual 0.587 0.266 0.453 0.010

Duration
1500–3000 msec 1.000 0.301 0.301 0.012
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Individual ANOVA for each duration - bisection:

Post Hoc Comparisons
Prior
Odds

Posterior
Odds BF10, U Error %

Condition 1500 msec
Visual
Audio 0.587 0.730 1.242 0.019
Audiovisual 0.587 1.278 2.175 3.850 × 10−4

Audio
Audiovisual 0.587 1.844 3.140 4.188 × 10−4

Condition 3000 msec
Visual
Audio 0.587 0.235 0.400 0.001
Audiovisual 0.587 0.277 0.472 0.004

Audio
Audiovisual 0.587 0.275 0.468 0.004

Metacognitive Index (MCI) Estimates

Individual planned comparisons for each duration

Models P(M) P(M|data) BFM BF10 Error %

Model comparison
1500 msec
Null model (incl. subject
and random slopes)

0.500 0.117 0.132 1.000

Condition 0.500 0.883 7.568 7.568 0.586
Model comparison
3000 msec
Null model (incl. subject
and random slopes)

0.500 0.502 1.007 1.000

Condition 0.500 0.498 0.993 0.993 0.595

Post hoc tests for the MCI ANOVA
Combined ANOVA for the MCI estimate (Figure 7

in main text):

Post Hoc
Comparisons

Prior
Odds

Posterior
Odds BF10, U error %

Condition
Visual
Audio 0.587 0.587 0.999 0.022
Audiovisual 0.587 6.334 10.783 1.044 × 10−5

Audio
Audiovisual 0.587 0.726 1.236 0.026

Duration
1500–3000 msec 1.000 0.484 0.484 0.017

Individual ANOVA for each duration - MCI:

Post Hoc
Comparisons—
Condition

Prior
Odds

Posterior
Odds BF10, U error %

1500 msec
Visual
Audio 0.587 86.470 147.208 1.382 × 10−4

Audiovisual 0.587 2.162 3.681 1.491 × 10−4

Audio
Audiovisual 0.587 0.415 0.707 0.011

3000 msec
Visual
Audio 0.587 0.256 0.435 0.002
Audiovisual 0.587 0.649 1.105 0.016

Audio
Audiovisual 0.587 0.444 0.756 0.012

Appendix B: JAGS code for the
Hierarchical Bayesian model

model{

# Variance of precision draws
hyperPrec ∼ dunif(0, 100)
hyperSigma <- 1/sqrt(hyperPrec)

# Midpoint estimates
mpprec ∼ dunif(0, 100)
groupMidpoint ∼ dnorm(midpoint, mpprec)

# Cycle over conditions
for (k in 1:ncons){
conprec[k] ∼ dunif(0,100) # Condition precision
conmidpoint[k] ∼ dnorm(groupMidpoint, conprec[k]) # midpoint esti-

mate for each condition
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## Group level precision means
# interval 1 estimate
mprec1[k] ∼ dunif(0, 100)
logmprec1[k] <- log(mprec1[k]) # Log transform
msigma1[k] <- 1/sqrt(mprec1[k]) # convert to standard deviation

# interval 2 estimate
mprec2[k] ∼ dunif(0, 100)
logmprec2[k] <- log(mprec2[k])
msigma2[k] <- 1/sqrt(mprec2[k])

# metacognitive estimate
metaLambda[k] ∼ dunif(0, 100)
logMetaLambda[k] <- log(metaLambda[k])
metasigma[k] <- 1/sqrt(metaLambda[k])}

}
# Cycle over subjects
for (j in 1:nsubjects){

# subject specific correlation between conditions
subr[j] ∼ dunif(0, 1)

# Build covariance matrix from standard deviation
Sigma[1,1,j] <- pow(hyperSigma,2) + .1
Sigma[1,2,j] <- subr[j] * pow(hyperSigma,2)
Sigma[1,3,j] <- subr[j] * pow(hyperSigma,2)

Sigma[2,1,j] <- subr[j] * pow(hyperSigma,2)
Sigma[2,2,j] <- pow(hyperSigma,2) + .1
Sigma[2,3,j] <- subr[j] * pow(hyperSigma,2)

Sigma[3,1,j] <- subr[j] * pow(hyperSigma,2)
Sigma[3,2,j] <- subr[j] * pow(hyperSigma,2)
Sigma[3,3,j] <- pow(hyperSigma,2) + .1

# convert to precision matrix
Omega[1:ncons,1:ncons,j] <- inverse(Sigma[ , ,j]) # invert matrix for dmnorm

# sample log precision estimates for A, V, and AV for
logsubmprec1[j,1:ncons] ∼ dmnorm(logmprec1[1:3], Omega[ , ,j]) # interval 1
logsubmprec2[j,1:ncons] ∼ dmnorm(logmprec2[1:3], Omega[ , ,j]) # interval 2
logSubMetaLambda[j,1:ncons] ∼ dm-

norm(logMetaLambda[1:3], Omega[ , ,j]) # metacognitive decision

# possible problem is that precision samples can be negative so trans-
form them back to I[0, ]

# cycle over conditions
for (m in 1:ncons){
subprec[j,m]∼ dunif(0, 100)
submid[j,m] ∼ dnorm(conmidpoint[m], subprec[j,m]) # subjective mid-

point esetimates

# subject precisions for
submprec1[j,m] <- exp(logsubmprec1[j,m]) # interval 1
submprec2[j,m] <- exp(logsubmprec2[j,m]) # interval 2
subMetaLambda[j,m] <- exp(logSubMetaLambda[j,m]) # metacognitive decision

}
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}

# Cycle through each trial
for (i in 1:ndata){
# Likelihood of bisection estimate
# mprec indicates the variability of the midpoint estimate
# (smaller indicates a more accurate midpoint estimate)
i1[i] ∼ dnorm(submid[s[i], c[i]], submprec1[s[i], c[i]])
i2[i] ∼ dnorm(submid[s[i], c[i]], submprec2[s[i], c[i]])

# Subjective error
d1[i] <- abs(i1[i] - submid[s[i], c[i]])
d2[i] <- abs(i2[i] - submid[s[i], c[i]])
# Estimated error difference
dhat[i] <- d1[i] - d2[i]

# Find probability of responding with interval 1
# Lambda indicates the variability of the error estimate
# Lower values indicate a more accurate assessment of error
p[i] <- pnorm(0, dhat[i], subMetaLambda[s[i], c[i]]) # Integrate the differ-

ence distribution up to 0

# Likelihood of metacognitive choice
r[i] ∼ dbern(p[i]) # Each metacognitive choice is a Bernoulli vari-

able with a probability of selecting interval 1 specified by p
}

}


