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Abstract: - In telecommunication electronics, radio frequency applications are usually characterized by widely 
separated time scales. This multi-rate behavior arises in many kinds of circuits and increases considerably the 
computation costs of numerical simulations. In this paper we are mainly interested in electronic circuits driven 
by envelope modulated signals and we will show that the application of numerical methods based on a multi-rate 
partial differential equation analysis will lead to an efficient strategy for simulating this type of problems. 
 
Key-Words: - Electronic circuit simulation, envelope-modulated signals, multi-rate partial differential equations. 
 
1   Introduction 
Dynamical behavior of electronic circuits can in 
general be described by ordinary differential 
equations (ODEs) in time, involving electric voltages, 
currents and charges and magnetic fluxes. For a 
general nonlinear circuit, Kirchhoff's laws lead to the 
system 

    ( )( ) ( )( ) ( ),tx
dt

tydqtyp =+            (1) 

where ( ) nx t ∈R  and  stand for the 
excitation and state-variable vectors, respectively. 

 represents memoryless linear or nonlinear 
elements, while  models dynamical linear or 
nonlinear elements (capacitors or inductors).     

( ) ny t ∈R

( )( typ )
)( )( tyq

     When the excitation  is a multi-rate stimulus 
the simulation process of such circuits is often a very 
challenging issue, especially if they are highly 
nonlinear.  In the particular case in which we are 
interested (envelope modulated excited circuits) it 
happens that while envelopes are slowly varying 
signals, carriers are usually very high frequency 
sinusoids. Thus, obtaining the numerical solution of 
(1) is difficult because once we have signals with 
widely separated rates of variation we are forced to 
make discretizations on long time grids with 
extremely small time steps. 

( )tx

 
 
2   Multidimensional Problem 
In this section we will begin by presenting a recent 
generic formulation for solving electronic circuits 
with widely separated time scales. As we will see, the 
key idea behind this strategy is to use multiple time 
variables, which enable multi-rate signals to be 

represented more efficiently. In our case, we will 
need two time variables and we will adopt the 
following procedure: for the slowly-varying parts 
(envelope) of the expressions of  and ( )tx ( )ty , t  is 
replaced by 1t ; for the fast-varying parts (carrier) t  is 
replaced by 2 . This will result in bivariate 
representations for the excitation and the solution, 
and we will denote these two argument functions by 

t

( )21,ˆ ttx  and ( )21,ŷ tt .        
      
2.1 Bivariate Representation 
Simulating circuits using numerical schemes require 
time steps spaced closely enough to represent signals 
accurately. For concreteness let us consider the 
slowly-varying envelope signal  shown in Fig.1 
and let us suppose that it was plotted with 50 
samples, that is to say, 50 points were necessary to 
represent 

( )e t

( )e t  accurately.  
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Fig.1. Envelope signal e(t) 
 

     Let us also consider the envelope modulated 
signal ( )x t  shown in Fig.2, defined by 

( ) ( ) (sin 2 c )x t e t f tπ= , 
with a carrier frequency 21cf T=  and let’s suppose 
that 20 points were used per sinusoid. In this case the 
total number of samples will be . So, if 20 cN = × f
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we have for example kHz, then we will obtain 
 samples. Obviously, this number can 

be much larger if we increase c

1cf =
320 10N = ×

f  (e.g. 1cf = MHz 
would lead to  samples). 620 10N = ×
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Fig.2. Envelope modulated signal x(t) 

 
     Consider now the bivariate representation for 
( )x t  denoted by ( )1 2ˆ ,x t t  and defined by 

( ) ( ) (1 2 1 2ˆ , sin 2 c )x t t e t f tπ= . 
This function of two variables is periodic with respect 
to , but not to , i.e. 2t 1t

( ) (1 2 1 2 2ˆ ˆ, , )x t t x t t T= + . 
The plot of ( )1 2ˆ ,x t t  on the rectangle [ ] [ ]20,1 0,T×  
for a carrier period ms ( kHz) is shown 
in Fig.3 and because of its periodicity this plot 
repeats over the rest of the  axis. We must note that 

2 1T = 1cf =

2t
( )1 2ˆ ,x t t  doesn’t have many undulations, unlike 
( )x t  in Fig.2. Consequently, it can be represented by 

relatively few samples. In fact, if we consider the 
same 50 sample points for ( )e t   (  dimension) and 
the same 20 sample points for each carrier cycle (  
dimension) then we will have now only 

 samples, independently of the 
frequency 

1t
2t

50 20 1000N = × =
cf . This is very significant, because 

considerable computation and memory savings will 
result from this  reduction. N
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Fig.3. Bivariate representation ( )1 2

ˆ ,x t t  

     Note that the original signal ( )x t  can be easily 
recovered from its bivariate representation ( )1 2ˆ ,x t t , 
simply by setting 1 2t t t= = , that is to say, 

( ) (ˆ , )x t x t t= . 
Consequently, due to the periodicity of the function 
( )1 2ˆ ,x t t  in 2t  dimension, on the rectangular domain 

[ ] [ ]20,1 0,T×  we obtain 
( ) ( )2ˆ , modx t x t t T= , 

for any time value [ ]0,1t∈ . Observe that as t  
increases from 0 to 1, the set of points given by 
( )2, modt t T  traces the sawtooth path shown in 
Fig.4. By noting how ( )1 2ˆ ,x t t  changes along this 
path, the behavior of ( )x t  can be visualized. 
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2.2 Multi-Rate Partial Differential System 
The discussion presented above illustrates that in 
spite of the sampled bivariate signal involve far fewer 
points than its univariate form, it contains all the 
information needed to recover the original signal 
completely. This way the ordinary differential (ODE) 
system (1) will be converted to the multi-rate partial 
differential (MPDE) system 

    ( )( ) ( )( ) ( )( )
=

∂
∂

+
∂

∂
+

2

21

1

21
21

,ˆ,ˆ
,ˆ

t
ttyq

t
ttyqttyp  

   ( ).,ˆ 21 ttx=    (2) 
Then, if we want the original univariate solution ( )ty  
for a generic interval stt ≤≤0 , we must solve (2) on 
the rectangular region [ ] [ ]2,0,0 Tts ×  of  space, 
with the following initial and boundary conditions: 

21 , tt

( ) ( ,,0ˆ 22 tgty = )                         (3) 
( ) ( .,ˆ0,ˆ 211 Ttyty = )                       (4)              

( )⋅g  is any given initial-condition function  and (4) 
appears due to the periodicity of the problem in  
dimension. The univariate solution  may then be 
recovered from its bivariate form , simply by 
setting 

2t( )ty
( 21,ˆ tty )

( ) ( )2mod,ˆ Tttyty = .  
     The mathematical relation between the ODE 
system (1) and the MPDE system (2) is established 
by the following theorems: 
 



Theorem 1 If  and ( 21,ˆ tty ) ( )1 2ˆ ,x t t  satisfy the 
MPDE system (2), then 2  and ( ) ( )1ˆ ,y t y t c t c= + +
( ) ( )1 2ˆ ,x t x t c t c= + +  satisfy the ODE system (1), 

for any fixed . 1 2,c c ∈R
 
Proof: Since ( )( ) ( )( )1 2ˆ ,q y t q y t c t c= + + , then 
we have  

( )( ) ( )( )
( ) ( )1 2 1 2

1 2 1

1 , ,

ˆ ,

t t t c t c

dq y t q y t t dt
dt t dt

= + +

∂
= ⋅

∂
+  

( )( )
( ) (1 2 1 2

1 2 2

2 , ,

ˆ ,

t t t c t c

q y t t dt
t d

= + +

∂
+

∂
)

t
⋅ . 

Now, once 1 2 1
dt dt
dt dt

= = , according to (2) we obtain 

( )( ) ( ) ( ) ( )
 

1 2 1 2
1 2 , ,

ˆ ,
t t t c t c

dq y t
x t t

dt = + +
=

( )( )
( ) ( )1 2 1 2

1 2 , ,
ˆ ,

t t t c t c
p y t t

= + +
− , 

that is to say, 
( )( ) ( ) ((

( ) ( )( )
1 2 1 2ˆ ˆ,

dq y t
)),x t c t c p y t c t c

dt
x t p y t

= + + − + +

= −
  

and consequently  

( )( ) ( )( ) ( )
dq y t

p y t x t
dt

+ = .               

 
Theorem 2 If the ODE system (1) has a unique 
solution  for an excitation ( )ty ( )x t  given any initial 
condition, then the solution  of the MPDE 
system (2) is also unique (if it exists), given the initial 
and periodic boundary conditions (3) and (4). 

( 21,ˆ tty )

)

 
Proof: Theorem 1 tells us that the one-dimensional 
solutions  are given by , 
meaning that they are obtained along diagonal lines 

 in the  space, where  are 
the MPDE solutions with an initial condition 

( )ty ( ) ( )1 2ˆ ,y t y t c t c= + +

( )1 2,t c t c+ + 1 2,t t ( 21,ˆ tty
( )0y  

given by . Thus, on the 
diagonal lines passing through each point ( )  in 
the initial condition region 

( ) ( ) ( )1 2 2ˆ0 ,y y c c g c= =
1 2,c c

[ ]1 0,c T× 2 , the MPDE 
has a unique solution, since the ODE has a unique 
solution. Now, in view of the fact that ( )1 2ˆ ,y t t  is 
periodic with respect to , its value at any point 

 is equal to that at some point along one of the 
diagonal lines above (this leads to a sawtooth path on 
the rectangular region 

2t
( 1 2,t t )

][ ] [ 2,0,0 Tts × ). Consequently   
the solution ( )1 2ˆ ,y t t  is unique.                                 
 

3   Numerical Solution of the MPDE 
We will now present some efficient methods for 
solving (2)-(4), based on the bivariate strategy 
introduced in the previous section. The first three 
ones operate purely in the time domain. The last one 
is used to solve the MPDE for 1  dimension in the 
time domain and for  dimension in the frequency 
domain.      

t
2t

 
3.1 Finite Differences Method 
Let us consider the set of grid points ( )

ji
tt 21 ,  defined 

on the rectangle [ ] [ ]2,0,0 Tts ×  by 

0 11 1 1 10 ,
i KS st t t t t= < < < < < =          (5) 

0 1 22 2 2 2 20 ,
j K

t t t t T= < < < < < =         (6) 

with 

11 1 1i i i
h t t

−
= −   

and 

12 2 2j j
h t t

−j
= −  

the grid spacings in the 1  and 2  directions, 
respectively. By discretizing the partial differentia-
tion operators of the MPDE collocated on the grid, 
we obtain a system of nonlinear algebraic equations 
that can be numerically solved using for example 
Newton-Raphson method. For instance, consider the 
finite difference approximation given by the 
backward Euler rule 

t t

( )
( ) ( )

( ) ( )
,

ˆˆˆ

1

,1,

,,1
2121 iji

h
yqyq

t
yq jiji

tttt

−

=

−
≈

∂
∂

 

( )
( ) ( )

( ) ( )
,

ˆˆˆ

2

1,,

,,2
2121 jji

h
yqyq

t
yq jiji

tttt

−

=

−
≈

∂
∂

 

with ( )
ji

ttyy ji 21, ,ˆˆ = . This leads for each level i , 
from 1=i  to SKi = , to the scheme 

,0ˆ
ˆˆˆˆ

ˆ ,
2

1,,

1

,1,
, =−

−
+

−
+ −−

ji
jijijiji

ji x
h

qq
h

qq
p

ji

     (7) 

     ,,,1 2Kj …=  
where ( )jiji ypp ,, ˆˆ = , ( )jiji yqq ,, ˆˆ =  and ( )

ji
ttxx ji 21, ,ˆˆ = .  This way, knowing the initial solu-

tion on ( )00 1 == ti   given by ( )
jj 2,0 , we 

can find the solution on each next level i  by 
iteratively solving (7). 

tgŷ =

K
     We can rewrite (7) as  

, 20, 1, ,i jF j= = … , 
or, equivalently, 

( ) 0i iF Y = , 
with  



2,1 ,2 ,

T

i i i i KF F F F⎡ ⎤= ⎣ ⎦  

and 

2,1 ,2 ,

T

i i i i KY Y Y Y⎡= ⎣ ⎦⎤

)v

. 

If we choose for example the Newton-Raphson 
iterative solver, then on each iteration  we have to 
solve the linear system 

v

( ) ([ ] [ 1] [ ] [ ]v v v
i i i i iJ Y Y Y F Y+⎡ ⎤⋅ − = −⎣ ⎦  

where 
i

i

dFJ
dY

=  

is the Jacobian matrix of ( )iF ⋅ . 
     In the scalar case the Jacobian is a sparse 
matrix and according to (7) it’s not difficult to verify 
that it is given by 

2K K× 2

2 2

1 1

2 2

K K

D L
L D

J

L D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 
' '
, ,'

,
1 2

ˆ ˆ
ˆ

i j

i j i j
j i j

q q
D p

h h
= + +  

and 
'
, 1

2

ˆ

j

i j
j

q
L

h
−= − , 

with ( )'
, ,ˆ ˆ'i j i jp p y=  and ( )'

, ,ˆ ˆ'i j i jq q y= . 

 
3.2 Method of Lines 
Consider the semi-discretization of [ ] [ ]2,0,0 Tts ×  
defined by (6). Thus, by discretizing the MPDE (2) 
only in , we obtain an ordinary differential system 
in  dimension, that can be time-step integrated with 
an initial value solver (e.g. Runge-Kutta [1]). If we 
use, once again, finite difference approximations 
based on the backward Euler rule then we have 

2t
1t

  ( )( ) ( )( ) ( )( ) ( )( )
=

−
++ −

j
h

tyqtyq
dt

tydq
typ jjj

j
2

111

1

1
1

ˆˆˆ
ˆ  

( ) ,,,1,ˆ 21 Kjtx j …==        (8) 

where ( ) ( )
j

ttyty j 211 ,ˆˆ =  and ( ) ( )
j

ttxtx j 211 ,ˆˆ = . 

Now, according to the chain rule 
( )( )

( )
( ),ˆ

ˆ
1

'

ˆ1

1

1

ty
dy
dq

dt
tydq

j
tyy

j

j=

=  

(8) can be described in the classical form 

( )
( ) ,0

11

ˆ0ˆ
,0,ˆ,'ˆ

yy
ttytfy s

=
≤≤=

 

which in this case results in 

( ) ( ) ( )( ) ( )( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−−=

1

2

2

111
11111

'
1

ˆˆ
ˆˆˆ

h
tyqtyq

typtxty K                  

( )

1

ˆ 11

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

tyydy
dq  

( ) ( ) ( )( ) ( )( ) ( )( )
2

2 1 1 1'
2 1 2 1 2 1

2

ˆ ˆ
ˆ ˆ ˆ

q y t q y t
y t x t p y t

h

⎡ ⎤−
= − −⎢ ⎥
⎢ ⎥⎣ ⎦  

                                                         
( )2 1

1

ˆy y t

dq
dy

−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

       

( ) ( ) ( )( ) ( )( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−−= −

2

22

222
2

111
111

'
ˆˆ

ˆˆˆ
K

h
tyqtyq

typtxty KK
KKK

( )

1

ˆ 12

−

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

tyy K
dy
dq  

with ( ) ( )1 20 2 2ˆ , ,
K

T
y g t g t⎡ ⎤= ⎣ ⎦… . 

 
3.3 Shooting  
Consider now the semi-discretization of the rectangle 
[ ] [ ]2,0,0 Tts ×  defined by (5). By discretizing the 
MPDE (2) only in 1  dimension, we obtain for each 
level 

i
 an ordinary differential system in 2 , with 

periodic boundary conditions. If we use again the 
backward Euler rule then we have for each i , from 

t
t1 t

1=i  to SKi = , the boundary value problem 

( )( ) ( )( ) ( )( ) ( )( )
=+

−
+ −

2

2

1

212
2

ˆˆˆ
ˆ

dt
ydq

h
tyqtyq

typ iii
i

i

t
 

( ),ˆ 2txi=                 (9) 
( ) ( ,ˆ0ˆ 2Tyy ii )=                         (10) 

where ( ) ( )212 ,ˆˆ ttyty
ii =  and ( ) ( )212 ,ˆˆ ttxtx

ii . This 
means that once 

=
( )21ˆ tyi−  is known, the solution on 

next level, ( )2ˆ tyi , is achieved by solving (9)-(10). 
However, we must note that if we use an initial value 
solver (Runge-Kutta or another time-step integrator) 
with step size control (automatically adjusting its step 
lengths in order to achieve a prescribed tolerance for 
the error), then we will have an irregular grid with 
different grid point values 2 j

 (unequal discretizing 
of the 2  time axis) on successive levels 1i

. This 
means that when solving (9)-(10) we have to interpo-
late the numerical solution  for obtaining the 

t
t t

( )1 2ˆiy t−



numerical solution . Nevertheless, obviously 
for obtaining the whole solution  in the entire 
domain  we have to solve a totality of 

S  boundary value problems. Here we propose to 
solve (9)-(10) using classical shooting [2], [5].  

( )2ˆiy t
ŷ

[ ] [ 2,0,0 Tts × ]

)

K

     Shooting is an iterative solver that uses an initial 
value technique to solve a boundary value problem. 
In our case we have periodic boundary conditions and 
the problem can be formulated in the following way: 
what initial condition, or left boundary , should 
be selected for time-step integration, that would lead 
to a final condition, or right boundary,  satisfying 

? Shooting is, in fact, a procedure that 
consists in guessing the initial estimate, by comparing 
and wisely updating the initial condition after 
successive time-step integrations. One possible way 
to do so consists in starting from a predetermined 

 and successively making  

( )0ˆ iy

( ) (0ˆˆ 2 ii yTy =

( )[0]ˆ 0iy
( ) ( ) ( ) ( )[1] [0] [2] [1]

2ˆ ˆ ˆ ˆ0 , 0 ,i i i iy y T y y T= = …2

T

 
that is to say, 

( ) ( )[ 1] [ ]
2ˆ ˆ0v v

i iy y+ = , 
until 

( ) ( )[ ] [ ]
2ˆ ˆ 0f f

i iy T y To− < l

n

, 

with  a permitted tolerance for the error. If we 
define , such that 

Tol
: nφ →R R

( ) ( )( )2ˆ ˆ 0i iy T yφ= , 
then this natural initial condition update algorithm 
can be understood as the iterative solving of  

( )( ) ( )ˆ ˆ0i iy yφ = 0                        (11) 
using the fixed point iteration method.  
     Another way to guess the initial condition ( )0ˆ iy  
consists in making use of the Newton-Raphson 
iterative solver to get the solution of (11). In such 
case, rewriting (11) as 

( )( ) ( )( ) ( )ˆ ˆ ˆ0 0 0i i iF y y yφ= − 0=  
Newton iterations take the form 

( ) ( ) ( )( ) ( )( )[ 1] [ ] 1 [ ] [ ]ˆ ˆ ˆ ˆ0 0 0v v v v
i i i iy y J y F y+ −= − ⋅ 0 , 

where the Jacobian matrix is given by 

( )( ) ( ) ( )( )

( ) ( )( )

[ ] [ ]

[ ]

ˆ ˆ0 0
ˆ 0

ˆ 0
ˆ 0

v v
i i

i

v
i

i

dFJ y y
dy

d y I
dy

φ

=

= −
 

with I  the n  identity matrix. In practice, it is 
more efficient not to invert  but instead use for 
example LU decomposition to solve, at each step of 
the iteration, the linear algebraic system 

n×
J

( )( ) ( ) ( ) ( )( )[ ] [ 1] [ ]v [ ]ˆ ˆ ˆ ˆ0 0 0 0v v v
i i i iJ y y y F y+⎡ ⎤⋅ − = −⎣ ⎦ . 

     Newton iteration is considerably more expensive 
on computing time than is fixed point iteration. Each 
step of the later costs just one function evaluation, 
whereas each step of the former calls for the updating 
of the Jacobian and a new LU decomposition and 
back substitution. However, if the function φ  is 
linear or quasi-linear, the Newton-Raphson iterative 
solver becomes more efficient than the fixed point 
iteration method. 
 
3.4 Mixed Frequency-Time Method 
Let us return again to (9)-(10). We will now propose 
to solve each one of these boundary value problems 
using harmonic balance (HB) [2], [5]. HB is a classi-
cal solver commonly used in RF and microwave 
circuit simulation, which uses a linear combination of 
sinusoids to build the solution, by expanding all 
waveforms in Fourier series. 
     For simplicity let us suppose, instead of (9)-(10), a 
general univariate boundary value problem with 
periodic boundary conditions, defined by 

( )( ) ( )( ) ( ) ,
dq y t

p y t x t
dt

+ =         (12) 

( ) ( )00y y T= .                                  (13) 
If the excitation ( )x t  and the solution ( )y t  are both 
periodic of fundamental frequency 0 02 Tω π= , they 
can be expressed by their Fourier series 

( ) ( )0 0, .jk t jk t
k k

k k
x t X e y t Y eω ω

+∞ +∞

=−∞ =−∞

= =∑ ∑   (14) 

Truncating the harmonics at 0Kω  and substituting 
(14) in (12) we obtain 

0 0

0 .

K K
jk t jk t

k k
k K k K

K
jk t

k
k K

dp Y e q Y e
dt

X e

ω ω

ω

+ +

=− =−

+

=−

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

=

∑ ∑

∑
 

As it can be seen in detail for example in [5], the HB 
method consists in transforming this equation entirely 
to the frequency domain, in order to obtain  

( ) ( ) ( ) 0j= + −F Y P Y ΩQ Y X = ,      (15) 
where  and Y  stand for the vectors with the 
Fourier coefficients of the excitation and the solution 

X

[ ]0
T

K KX X X−=X  

[ ]0
T

K KY Y Y−=Y  
and 

0

0

0
0

0

jK
j j

jK

ω

ω

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Ω . 



The solution of the harmonic balance equation (15) is 
usually achieved by two similar iterative strategies, 
known as source stepping and harmonic-Newton 
algorithms. The first one tries to find the solution by 
successively solving partial linear problems obtained 
by increasing the magnitude of a reduced version of 
the excitation. The second one attempts to solve (15) 
by Newton-Raphson iteration for the full excitation, 
leading to 

( ) (1[ 1] [ ] [ ] [ ]v v v −
+ ⎡ ⎤= − ⋅⎣ ⎦Y Y J Y F Y )v , 

until 

( )[ ]f Tol<F Y , 

where 

( )
[ ]

[ ]

[ ] [ ]

v

v

v v

d
d

j
=

=

= +
Y Y

FJ Y
Y

G ΩC
 

with  and C  the Toeplitz [5] matrices of G dp dy  
and dq dy , respectively.  
     Now let us return to the problem (9)-(10). In this 
case, for each time-step  we will have an HB 
equation 

i
t1
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ˆˆ

ˆ
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1
ii

ii
i j
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YP =+
−

+ −  

where  and  are the vectors with the Fourier 
coefficients for the excitation and the solution on 
level . So, we have a mixed mode technique that 
handles the envelope (  dimension) in the time 
domain and the carrier (  dimension) in the 
frequency domain.  

iX̂ iŶ

i
1t

2t

      
 
4   Experimental Results 
 
4.1 Sample Application 
In order to test the efficiency of the methods 
presented in the previous section, we propose the 
nonlinear single node circuit of Fig.5.  
     Beyond the power source S , this circuit is 
composed by a linear conductance, a nonlinear 
capacitance and a nonlinear current source. The 
characteristics of the nonlinear elements are modeled 
in the following way: 

i

• For the current we considered a nonlinear voltage-
dependent current source  

( )( ) (( tvItvi OONL ))αtanh0= .            (16) 
• For the capacitance we considered that 

( )( ) (( tvitvq ONLFONL ))τ= ,             (17) 

which means that the storage charge is 
proportional to the conductive current. Thus,  

( )( ) ( )( )
( )

( )( )2
0 sech .

NL O
O

O

F O

dq v t
C v t

dv t

I v tτ α α

=

=

 

These nonlinear models are usually encountered in 
doped semiconductors (e.g. saturating velocity field 
resistors and junction diffusion capacitances). The 
forms of ( )( )NL Oi v t  and ( )( )OC v t  are plotted in 
Fig.6 and Fig.7, respectively.  
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Fig.5. Nonlinear circuit example 
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Fig.6. Nonlinear current 
 

vO(t)

C(vO(t))

1/α−1/α

τFαI0

 
Fig.7. Nonlinear capacitance 

 
 
4.2 Mathematical Model 
The mathematical model of an electronic circuit is 
based on Kirchhoff’s current and voltage laws: 
• Kirchhoff’s current law: “The net current into any 

node is zero”.  
• Kirchhoff’s voltage law: “The net sum of the 

voltage drops around any closed loop is zero”. 



In this case we have a simple single node circuit and 
we only need to apply the Kirchhoff’s current law to 
the node O . Doing so, we can say that the nodal 
analysis of the circuit leads to 

v

G C NLi i i i+ + = S .                      (18) 
The conductance G  is assumed as linear and is thus 
characterized by a proportional relation between its 
terminal voltage and current, that is to say,  

( ) ( )G Oi t Gv t= ,                     (19) 
known as Ohm’s law. For the nonlinear capacitance 
we have 

( ) ( )( )NL O
C

dq v t
i t

dt
=                   (20) 

for the fundamental relation between its current and 
charge. Substituting (19) and (20) in (18) we obtain 
the following ordinary differential equation: 

( ) ( )( ) ( )( ) ( .titvi
dt

tvdq
tGv SONL

ONL
O =++ )

ce the nonline

 

Finally, sin ar charge ( )(NL Oq v t )
)

 and 
current  are modeled by (17) and (16), we 
can write 

( )(NL Oi v t

     ( ) ( )( ) ( )2
0sech O

O F O

dv t
Gv t I v t

dt
ατ α+ +  

( )( ) ( )0 tanh O SI v t i tα+ = . (21)   
 
4.3 Numerical Simulation Results 
The circuit of Fig.5 was simulated in MATLAB® from 

 to ms, for 0=t 1000=t 1=G mΩ-1, mA, 4.00 =I
1=α V-1, s and an excitation 3102 −⋅=Fτ

( ) ( ) ( )tfteti cS π2sin=  mA, 
with a carrier frequency 1=cf kHz and an envelope  
( ) ( )tfte π2sin5= , Hz. 5.0=f

     The values of , 0G I , α  and Fτ  were chosen in 
way to obtain a considerably nonlinear problem and 
the overall results of this simulation are presented in 
Table 1 where, for comparison, we also included a 
non multi-rate method (classical univariate time-step 
integration). As we can see, the multi-rate methods 
presented in Section 3 exhibit significant advantages 
in speed over the non multi-rate method. In fact, 
while in the MPDE based methods we have total 
computation times ranging from 0.18 to 2.49 seconds, 
in the univariate time-step integration we have 15.93 
seconds.  
     In order to test the accuracy of the methods a 
reference solution was achieved by numerically 
solving the ODE (21) via classical univariate time-
step integration, using an embedded Runge-Kutta [1] 
method of higher order, with an extremely small time 
step. 

 
Method time1 error 

 (sec)    
∞

⋅     
2L

⋅  

Finite differences 1.82  0.0583  0.0407 
Method of lines 2.49  0.0664  0.0491 

Shooting 2.32  0.0378  0.0129 
Mixed (freq. - time) 0.18  0.0256  0.0072 

Univariate 15.93  0.0328  0.0199 

Table 1. Numerical simulation results 
 
     The bivariate solution is shown in Fig.8 and the 
univariate solution is of the type of the one plotted in 
Fig.9. 
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Fig.8. Bivariate solution, ( )1 2ˆ ,Ov t t  
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Fig.9. Univariate solution  ( )Ov t
 
     In order to have a more realistic and accurate idea 
of the solution, a time scaled version of ( )Ov t  in the 
interval [498,500]ms is plotted in Fig.10. The reason 
why we chose this particular interval is because the 
nonlinearity effects are stronger here (maximum 
excitation). 
 

                                                           
1 Computation time (AMD Athlon 1.8 GHz, 256MB 
RAM). 
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Fig.10. Univariate solution , in [498,500]ms ( )Ov t

 
     We have tested other values of G 0, I , α  and Fτ , 

ding to weakly nonlinear and quasi-linear 
problems, and the results were similar to the ones 
presented in Table 1: multi-rate methods were always 
much faster than the univariate one and an excellent 
speedup was exhibited by the mixed (frequency-time) 
method. However, the extreme efficiency of this 
mixed method cannot be generalized. In fact, if for a 
fixed excitation we successively increase the value of 

lea

α  or decrease the values of  and 0G I , the circuit 
nonlinearities become stronger and the method looses 
efficiency. We have simulated the problem with 

mΩ0.74G = -1, 0 mA, 0.155I = 2α = V-1 and 
s, and we obtained a total of 4.98 

seconds for the computation time of the mixed 
method, while for example in the finite differences 
method this time was 1.99 seconds. Furthermore, if 
we try to decrease the values of  G  or 0

35 10Fτ
−= ⋅

I  the solution 
cannot even be found by the mixed method. 
 
 
5   Conclusions 
Multi-rate methods have demonstrated to be much 
more efficient than the classical univariate method. It 
is so because they are based in a powerful strategy 
that uses two time variables to describe multi-rate 
behavior. Efficiency is achieved without compromi-
sing accuracy and considerable speedups are 
obtained. The mixed (frequency-time) method is 
extremely efficient for solving weakly nonlinear or 
quasi-linear circuits, but may become inefficient for 
solving strongly nonlinear circuits. In fact, under 
strong nonlinearities frequency methods become even 
useless because they require a large number of 
harmonics in Fourier expansions. Sharp features like 
spikes or pulses generated by highly nonlinear 
circuits are not represented efficiently in a Fourier 
basis. 
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