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Abstract: - Time-step integration is a popular technique commonly used for the envelope transient simulation of 
an electronic circuit. However, many kinds of circuits are characterized by widely separated time scales, which 
lead to significant computational costs when numerically solving its differential systems. Even so, this situation 
can be exploited in an efficient way using multi-rate methods, which integrate system components with different 
step sizes. In this paper two multi-rate Runge-Kutta schemes are studied and tested in terms of computational 
speed and numerical stability. The results for linear stability analysis here obtained are much more coherent with 
the characteristics of the methods than the ones previously presented in [6].  
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1   Introduction 
Transient analysis of an electronic circuit is usually  
expressed by an initial value problem of the form  

( ) ( ) ( )0 0' , , ,ny t f y y t y y t t= = ∈R 0>
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 (1) 
where  is the solution. This system of ordinary 
differential equations (ODEs) can be numerically 
solved by time-step integration, which is a classical 
technique that is commercially used by all SPICE like 
simulators. However, when integrating systems 
whose components evolve at different time scales one 
would like to use numerical methods that do not 
expend unnecessary work on slowly changing 
components. In such cases traditional time-step 
integrators become inefficient and numerical schemes 
with different time-step sizes are required. For 
example, in highly integrated electronic circuits 
normally only a small part of the elements is active, 
whereas the major part is latent. This latency can be 
exploited by multi-rate methods, which integrate 
components of the slow subsystem with a larger step 
length than the fast subsystem. 
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     Let us consider (1). If we split this ordinary 
differential system into active and latent subsystems 
we obtain 
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where A  is the active components vector and L  
the latent components vector. The efficiency of the 
methods presented in this paper is verified only if 
there is a small number of fast changing components, 
i.e., if A  is a small subset of . It is so because 
while the active components A  are integrated with a 
small step size  (microstep), the latent components 

L  are integrated with a large step size 

y y

y y
y

h
y H  (macro-

step). The number of microsteps within a macrostep 
is m , thus 

( )1/ , .h m H m= ⋅ ∈N  
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Fig.1. Macro and microsteps 
 
     Throughout the integration process the partition 
into fast and slow components may vary with time, as 
well as . For a better understanding let us consider 
the basic example illustrated in Fig.2, where we have 
only five variables depending on t. Defining A as the 
active subsystem (fast changing components) and L 

m
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as the latent subsystem (slow changing components), 
then we will have  

{ }1 4,A y y= ,  { }2 3 5, ,L y y y=  

for t in the interval [ ]0 1,t t  and 

{ }2 5,A y y= ,  { }1 3 4, ,L y y y=  

for [ ]1 2,t t t∈ . 
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Fig.2. Active and latent components 
 
 
2   Multi-Rate Runge-Kutta Methods 
 
2.1 Definition  
Let us consider two Runge-Kutta (RK) methods [5], 
[8], that can but do not have to be the same, 
expressed by their Butcher tableaus (  and )cAb ,,
( )cAb ,, , for integrating  and , respectively. 
The resulting multi-rate Runge-Kutta (MRK) method 

Ay Ly

for the numerical solution of (2) is defined as follows 
[6]:  
• the active components  are given by Ay
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• the latent components  are given by Ly
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     As we can see the coupling between active and 
latent subsystems is performed by the intermediate 
stage values iAY ,

~
 and iLY ,

~
. There are several 

strategies for computing this values, like for example 
the ones suggested by Günther and Rentrop in [3] and 
[4], which are based in interpolation and/or 
extrapolation techniques. However, the algorithms 
studied and tested in this paper are the ones more 
recently proposed by Kværnø and Rentrop: MRKI 
and MRKII.  
      
2.2 MRKI and MRKII Algorithms 
In the MRKI algorithm the intermediate stage values 

iAY ,
~

 and iLY ,
~

 are obtained by 
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We must note that the iAY ,
~

 values are here somehow 
obtained by extrapolation from the first microstep.  
     MRKII is a more robust algorithm, where the iLY ,

~
 

values are given just as in MRKI, but where the iAY ,
~

 
values are obtained as follows: 
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     As we can see, in both MRK algorithms the 
( )cAb ,,  and ( )cAb ,,  classical Runge-Kutta 
methods are connected by coupling coefficients. In 
the MRKI we have ijγ , ijγ  and ( )jη λ , while in the 
MRKII we have ijγ , ( )jη λ , iλγ  and ( )ijξ λ . 
Obviously all these coefficients must be carefully 
chosen, in way to guarantee a certain order, or to 
retain the order of the ( )cAb ,,  and ( )cAb ,, , if they 
are of the same order. There are several ways to 



derive order conditions for MRK methods, but the 
most appropriate seems to be rewriting them as 
partitioned Runge-Kutta (PRK) methods. By 
applying the already established order theory for PRK 
[5], order conditions for MRKI and MRKII may be 
found. All details of this order study can be seen in 
[7] or [9]. 
      
2.3 The Bogacki-Shampine RK Method 
In both MRKI and MRKII algorithms described 
above we have considered for ( )  and cAb ,, ( )cAb ,,  
the same method: the Bogacki-Shampine embedded 
Runge-Kutta method [1]. Its Butcher tableau is 
 

0 0    
1/2 1/2 0   
3/4 0 3/4 0  
1 2/9 3/9 4/9 0 

ib  2/9 3/9 4/9  

îb  7/24 6/24 8/24 3/24 

Table 1. Bogacki-Shampine (2)3 
 
and it’s not difficult to verify that with ib  this explicit 
method is of order three, while with îb  it is only of 
order two, in spite of having four stages (one extra 
stage is added for error estimation).  
     In this case one possible set of coupling 
coefficients that satisfies the order conditions up to 
three in MRKI and MRKII is presented in Table 2. 
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Table 2. Coupling coefficients 
 
We must observe that this choice of coupling 
coefficients is not unique. Other choices are possible. 
It is so because the number of coefficients is larger 

than the number of order conditions (omitted here for 
brevity). 
 
 
3   Stability  
Numerical stability properties of various multi-rate 
schemes have been discussed by several authors. 
Unfortunately, most of these discussions (including 
the one presented in [6]) are not very detailed, nor 
very conclusive, and until now a concise theory is 
missing.  
     Beyond the study of the influence of the stiffness 
of the problem or the coupling between the active and 
latent subsystems, the main goal of this section is to 
compare the stability properties of MRKI with 
MRKII. 
 
3.1 Multi-Rate Test Problem  
The absolute stability properties of an integration 
method are usually studied by applying the method to 
the scalar test equation yy α=' , with α −∈C . 
Doing so for a standard Runge-Kutta method, the 
solution after one step  is given by h

( ) ,01 yhRy α=  
where ( )αhR  is the stability function of the method. 
The method is stable if and only if ( ) 1<αhR  [8]. 
However, multi-rate schemes require at least two 
components, so the linear differential system 
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might be an appropriate test problem. If the 
assumptions 

,1,0,
2211

2112
2211 <=<

αα
αα

γαα  

are satisfied, then no extra conditions are required to 
ensure that both eigenvalues of  have negative real 
parts. The parameter 

A
γ  can be seen as a measure for 

the coupling between the equations and we also 
define 2211 /αακ =  as a measure for the stiffness of 
the system. 
     The numerical solution of (3) performed by the 
algorithms MRKI or MRKII after one compound step 
(1 macrostep H  for L  and  microsteps  for 

) can be expressed by 
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where  is a matrix that depends on K H , ,  and 
the version of the MRK algorithm. It doesn't depend 
on the initial condition and for fixed step lengths 

h A

H  



and  it remains constant throughout the integration 
process.Thus, for example, from   
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Now, if  it is possible to find the entries 
11 , 12 , 21K  and 22 . The method is stable if and 

only if the spectral radius 

( )det 0≠M
K K K

( )ρ K  of the matrix  
satisfies . 

K
( ) 1ρ <K

     Step sizes  and h H  are chosen to ensure stability 
for the uncoupled system ( )02112 == αα , i.e., to 
ensure that the stability functions ( 11 )αhRA  and 

( 22 )αHRL  satisfy the conditions ( ) 111 <αhRA  and 
( ) 122 <αHRL . In the case of the Bogacki-

Shampine method that means [8] 112.54 0hα− < <  
and 222.54 0Hα− < < , that is to say,  and 2.54H <

κ≥m  if, with no loss of generality, we make 
122 −=α . The question is to know how the coupling 

γ  between the two systems affects the stability of the 
MRK and in what way it depends on κ , H  and m . 
      
3.2 Experimental Results 
Experimental results obtained computationally in 
MATLAB® are shown in Fig.3, where we have plots 
of some stability regions for ,  and 

. The methods are stable below the boundaries 
and unstable above and as it can be seen these 
stability regions become smaller with increasing 

1κ = 10κ =
30κ =

κ , 
γ  and m W ave a o tested other values of . e h ls κ  

larger than 30 and we obtained similar results with 
smaller regions (we just omitted them here for 
brevity). From the above we conclude that increasing 
the stiffness of the system, the coupling between the 
parts, or the number of microsteps, we force the 
methods to use a smaller macrostep H . We can also 

see in Fig.3 that MRKII is more robust than MRKI, 
since it has larger stability regions. According to the 
performance of both algorithms, this result is more 
coherent than the one presented by Kværnø in [6]. 
 
 
4   Technical Details  

erical results for the 
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Before presenting our num
simulation of an electronic test example with MRKI 
and MRKII, we will first introduce some technical 
details used for the code implementation of these two 
algorithms: stiffness detection, step size control and 
partitioning strategy. 
 
4
The Bogacki-Shampine e
method used in both MRK algorithms is an explicit 
method. As we know, explicit codes applied to stiff 
problems are not very efficient. So, in order to avoid 
that MRKI and MRKII waste too much effort when 
encountering stiffness, it is important that the code be 
equipped with an automatic detecting stiffness 
structure. Our strategy is presented in the following. 
     The local error of the Bogacki-Shampine method
can be estimated by 

4 4

err h= −( )∑ ∑ .          (4) 

On the other hand, in a linear problem the numerical 

where 

solution after one step is given by  
( )1 0y R z y= , 

( )R z  is the stability function of the method 
( )cAb ,, the same way we can say that  

( )1 0
ˆŷ R z y= , 

. In 

with ( )R̂ z  the stability funct n of the method io
( )ˆ,b A o, the error estimate can be given by 

( ) ( )1 1 0
ˆˆerr y y R z R z y

,c . S
⎡ ⎤= − = − ⋅⎣ ⎦ , 

that is to say, 
( ) 0err E z y= ⋅ , 

with  
( ) ( ) (ˆE z R z R z= − ) . 

Let us consider now a new embedded Runge-Kutta 
method, replacing b̂  by b  in the Bogacki-Shampine 
scheme. In a similar way, e have  w

( ) ( )1 1err y y R z R 0z y⎡ ⎤= − = − ⋅⎣ ⎦ , 

i.e., a new error estimate defined by 
( ) 0err E z y= ⋅ ,                        (5) 

with 



 
( ) ( ) ( )E z R z R z= − . 

The key idea is to choose the vector  so that the 
method (  is of order one, meaning that 

b
)

→
, ,b A c

( )2 , when 0err O h h= , 

and also that the condition 
( ) ( ) , 1E z E zθ θ≤ <  

is satisfied in the boundary of the stability region ℜ . 
If it is so, then we will have err err  for small 

step sizes h, i.e., step sizes which are determined by 
accuracy requirements (when the problem is not stiff) 
and err err<  when we are working near of the 
boundary of the stability region (the problem is 
possible stiff). A computer search gave us the 
following values for : b

[ ]0.2817 0.2800 0.4353 0.0030Tb = . 
With theses values ( ) ( ) 0.3E z E z ≈  in almost the 
whole boundary of ℜ , as we can see in Fig.4. 
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Fig.4. Stability region  and contour lines ℜ
( ) ( ) 0.25, 0.5, 1, 2 and 4E z E z =  

 
4.2 Step Size Control 
We want to have a code which automatically adjusts 
its step sizes in order to achieve a prescribed 
tolerance for the error. According to (4) the error 
estimates for the active and latent components in 
MRKI and MRKII algorithms are given by 

4
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Selection of new step lengths h and H is performed at 
the end of each macrostep, and the whole strategy for 
automatic step size control throughout the numerical 
integration process goes as follows: based on the 
error estimates (6) a new step length hprop is proposed 
for each component, defined by 

1
1

0.8
p

prop old
Tolh h
err

+⎛ ⎞
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⎝ ⎠
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where Tol is the desired error tolerance, p is the order 
of the method and hold = h (active components) or 
hold = H (latent components). The value 0.8 is just a 
safety factor so that the error will be acceptable the 
next time with high probability. Additionally, 
alternative error estimates (5) are also computed for 
each component and if err err<  the component is 
marked stiff. A new macrostep length Hnew is then 
obtained by 

min min ,0.5 maxnew prop prop

stiff all

H h
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but not allowed to increase too fast nor to decrease 
too fast, 

0.5 1.5newH H H⋅ ≤ ≤ ⋅ , 
to prevent a step size control with high zigzag. A new 
microstep length hnew is initially given by 

minnew prop

all

h h
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and then the value of  
new newm H h=  

must be rounded to the nearest integer towards plus 
infinity (in MRKI), or to the nearest multiple of four 
towards plus infinity (in MRKII). The new microstep 
length hnew is finally found by 

new newh H m= . 
 
4.3 Partitioning Strategy 
The partitioning of the differential system into the 
active and latent subsystems is done according to the 
following: each component that satisfies the 
condition  prop new  will be treated as latent on 
the next iteration; the remaining ones will be treated 
as actives.  

h H≥

 
 
5   Sample Application  
 
5.1 Electronic Pulse Generator  
In order to test the performance and the efficiency of 
our multi-rate algorithms an electronic pulse gene-
rator with MOSFETs was simulated with MRKI and 
MRKII. The schematic of this circuit is shown in 
Fig.5. 
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Fig.5. Pulse generator 
 
     This kind of circuit is commonly found in digital 
systems and it generates a positive pulse on its output 
when detects a transition from state 1 (high) to state 0 



(low) on its input. It is constituted by an odd number 
 of logical inverters connected in chain, followed 

by a NOR gate. The output of each inverter is the 
input of the next inverter and the charging and 
discharging of the capacitors  produces delays in 
the run time of the signal. Thus, Nv  is the logical 
negation of a phase shifted version of the input , 
and the output Ov  is the logical NOR between iv  
and N . For a better understanding let us look at the 
waveform chart illustrated in Fig.6. The input i  is a 
Heaviside (step) function where the transition from 
state 1 to 0 occurs at some time t. N  is also a step 
function, but due to the signal propagation delay the 
transition from one state to another occurs at some 
time . The result is a positive output pulse , 
in the interval [

N
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v
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Fig.6. Pulse generator waveform chart 
 
5.2 Mathematical Model  
Electronic circuit elements are characterized by 
equations which relate the voltage v  across them to 
the current i  through them (terminal voltage and 
current). In this case we have resistors R , whose 
terminal current and voltage are proportional  

vi
R

=  (Ohm’s law), 

capacitors , which are characterized by C
dvi C
dt

=  

and MOSFETs (metal oxide semiconductor field 
effect transistors). For these we chose a simple non 
dynamic model, a voltage controlled current source. 
Its characteristics are modeled in the following way: 

0GS GDi i= = , G – gate, D – drain, S – source,   

( ),,DS NL G Di K g v v v= ⋅ S

))
))

0

S

, 

where  is a non linear function defined by NLg

( ) ((
((

2
,

2

, max ,

max ,0

NL G D S G S T

G D T

g v v v v v V

v v V

= − −

− − −
 

with AV42 10K −= ⋅ -2 and V.  1TV =
     The mathematical model of an electronic circuit (a 
network made up of interconnections of many circuit 
elements and generators) is based on Kirchhoff’s 

current and voltage laws. Kirchhoff’s current law 
tells us that the net current into any node is zero. 
Kirchhoff’s voltage law says that the net sum of the 
voltage drops around any closed loop is zero.  
     Let us begin by applying the current law to node 

1  (output of the first inverter) of the pulse generator. 
We will have 
v

R C Di i i= +  
or, equivalently,  

1 1DD
DS

V v dvC i
R dt
−

= + . 

Now, once G iv v= , 1Dv v=  and , we obtain 0Sv =

( )1 1
1, ,0DD

NL i
V v dvC K g v v

R dt
−

= + ⋅  

that can be rewritten as   

(91 1
110 , ,0DD

NL i
dv V v K g v v
dt RC C

− − )⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦
.    (6) 

The reason why the scale factor  was inten-
tionnally included is because the run time of a digital 
signal is usually measured in nanoseconds. Similarly, 
for the next 

910−

1N −  nodes  we can write  kv

( )9
110 , ,0 ,

2, , .

k DD k
NL k k

dv V v K g v v
dt RC C

k N

−
−

−⎡ ⎤= − ⋅⎢ ⎥⎣ ⎦
= …

   (7) 

Finally, applying the Kirchhoff’s current law to node 
 (output of the NOR gate) we have Ov

( )

( )

910 , ,0

, ,0

O DD O
NL N O

NL i O

dv V v K g v v
dt RC C

K g v v
C

− −⎡= − ⋅⎢⎣
⎤− ⋅ .⎥⎦

     (8) 

Equations (6), (7) and (8) make up the differential 
system that models our pulse generator.  
 
5.3 Numerical Simulation Results  
The circuit with 51=N  inverters was simulated in 
MATLAB® from 0=t  to ns, for an input iv  
transition at 

40=t
1=t ns. The numerical solution Ov  is 

shown in Fig.7 and the overall results of this 
simulation are presented in Table 3. In all our tests 
we have considered VDD = 5V, R = 4.7 kΩ and 
C = 0.2 pF. 
 

 
time1       number of steps   error in  Ov

 (sec) rejected macro micro   
∞

⋅    
2L

⋅

MRKI 1.37    58  142  406 0.0048 0.0038
MRKII 2.15    60  135  616 0.0034 0.0029

Table 3. Numerical simulation results 
                                                           

1 Computation time (AMD Athlon 1.8 GHz, 256MB 
RAM). 



     In order to test the accuracy of the MRK methods 
a reference solution was achieved by numerically 
solving the ODE system (6)-(8) via classical time-
step integration, using a classical Runge-Kutta 
method of higher order, with an extremely small time 
step. 
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Fig.7. Numerical solution  Ov

 
 
6   Conclusions 
After several simulation tests with different quantities 
of logical inverters and different integration intervals, 
we can say that in general both MRK methods show a 
good performance when solving our sample circuit. 
However, the MRKII algorithm leads to an increase 
of the computational work, once the total time for 
obtaining the numerical solution was in all cases 
bigger than in MRKI. In Section 3 we saw that the 
MRKII was a more stable method, nevertheless this 
stability gain implies a consequent loss of computa-
tional speed. So, due to our opinion the MRKII 
algorithm must be chosen over MRKI only in stiff 
problems or when the coupling from the active to the 
latent part is strong. 
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